David Brownell <david-b@pacbell.net>:
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD
55 * Developers:: OpenOCD Developers
56 * Building OpenOCD:: Building OpenOCD From SVN
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Commands:: Flash Commands
68 * NAND Flash Commands:: NAND Flash Commands
69 * General Commands:: General Commands
70 * JTAG Commands:: JTAG Commands
71 * Sample Scripts:: Sample Target Scripts
72 * TFTP:: TFTP
73 * GDB and OpenOCD:: Using GDB and OpenOCD
74 * Tcl Scripting API:: Tcl Scripting API
75 * Upgrading:: Deprecated/Removed Commands
76 * Target Library:: Target Library
77 * FAQ:: Frequently Asked Questions
78 * Tcl Crash Course:: Tcl Crash Course
79 * License:: GNU Free Documentation License
80 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
81 @comment case issue with ``Index.html'' and ``index.html''
82 @comment Occurs when creating ``--html --no-split'' output
83 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
84 * OpenOCD Concept Index:: Concept Index
85 * Command and Driver Index:: Command and Driver Index
86 @end menu
87
88 @node About
89 @unnumbered About
90 @cindex about
91
92 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
93 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
94 Since that time, the project has grown into an active open-source project,
95 supported by a diverse community of software and hardware developers from
96 around the world.
97
98 @section What is OpenOCD?
99
100 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
101 in-system programming and boundary-scan testing for embedded target
102 devices.
103
104 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
105 with the JTAG (IEEE 1149.1) compliant taps on your target board.
106
107 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
108 based, parallel port based, and other standalone boxes that run
109 OpenOCD internally. @xref{JTAG Hardware Dongles}.
110
111 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
112 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
113 Cortex-M3 (Stellaris LM3 and ST STM32) based cores to be
114 debugged via the GDB protocol.
115
116 @b{Flash Programing:} Flash writing is supported for external CFI
117 compatible NOR flashes (Intel and AMD/Spansion command set) and several
118 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
119 STM32x). Preliminary support for various NAND flash controllers
120 (LPC3180, Orion, S3C24xx, more) controller is included.
121
122 @section OpenOCD Web Site
123
124 The OpenOCD web site provides the latest public news from the community:
125
126 @uref{http://openocd.berlios.de/web/}
127
128
129 @node Developers
130 @chapter OpenOCD Developer Resources
131 @cindex developers
132
133 If you are interested in improving the state of OpenOCD's debugging and
134 testing support, new contributions will be welcome. Motivated developers
135 can produce new target, flash or interface drivers, improve the
136 documentation, as well as more conventional bug fixes and enhancements.
137
138 The resources in this chapter are available for developers wishing to explore
139 or expand the OpenOCD source code.
140
141 @section OpenOCD Subversion Repository
142
143 The ``Building From Source'' section provides instructions to retrieve
144 and and build the latest version of the OpenOCD source code.
145 @xref{Building OpenOCD}.
146
147 Developers that want to contribute patches to the OpenOCD system are
148 @b{strongly} encouraged to base their work off of the most recent trunk
149 revision. Patches created against older versions may require additional
150 work from their submitter in order to be updated for newer releases.
151
152 @section Doxygen Developer Manual
153
154 During the development of the 0.2.0 release, the OpenOCD project began
155 providing a Doxygen reference manual. This document contains more
156 technical information about the software internals, development
157 processes, and similar documentation:
158
159 @uref{http://openocd.berlios.de/doc/doxygen/index.html}
160
161 This document is a work-in-progress, but contributions would be welcome
162 to fill in the gaps. All of the source files are provided in-tree,
163 listed in the Doxyfile configuration in the top of the repository trunk.
164
165 @section OpenOCD Developer Mailing List
166
167 The OpenOCD Developer Mailing List provides the primary means of
168 communication between developers:
169
170 @uref{https://lists.berlios.de/mailman/listinfo/openocd-development}
171
172 All drivers developers are enouraged to also subscribe to the list of
173 SVN commits to keep pace with the ongoing changes:
174
175 @uref{https://lists.berlios.de/mailman/listinfo/openocd-svn}
176
177 @node Building OpenOCD
178 @chapter Building OpenOCD
179 @cindex building
180
181 @section Pre-Built Tools
182 If you are interested in getting actual work done rather than building
183 OpenOCD, then check if your interface supplier provides binaries for
184 you. Chances are that that binary is from some SVN version that is more
185 stable than SVN trunk where bleeding edge development takes place.
186
187 @section Packagers Please Read!
188
189 You are a @b{PACKAGER} of OpenOCD if you
190
191 @enumerate
192 @item @b{Sell dongles} and include pre-built binaries
193 @item @b{Supply tools} i.e.: A complete development solution
194 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
195 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
196 @end enumerate
197
198 As a @b{PACKAGER}, you will experience first reports of most issues.
199 When you fix those problems for your users, your solution may help
200 prevent hundreds (if not thousands) of other questions from other users.
201
202 If something does not work for you, please work to inform the OpenOCD
203 developers know how to improve the system or documentation to avoid
204 future problems, and follow-up to help us ensure the issue will be fully
205 resolved in our future releases.
206
207 That said, the OpenOCD developers would also like you to follow a few
208 suggestions:
209
210 @enumerate
211 @item @b{Always build with printer ports enabled.}
212 @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
213 @end enumerate
214
215 @itemize @bullet
216 @item @b{Why YES to LIBFTDI + LIBUSB?}
217 @itemize @bullet
218 @item @b{LESS} work - libusb perhaps already there
219 @item @b{LESS} work - identical code, multiple platforms
220 @item @b{MORE} dongles are supported
221 @item @b{MORE} platforms are supported
222 @item @b{MORE} complete solution
223 @end itemize
224 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
225 @itemize @bullet
226 @item @b{LESS} speed - some say it is slower
227 @item @b{LESS} complex to distribute (external dependencies)
228 @end itemize
229 @end itemize
230
231 @section Building From Source
232
233 You can download the current SVN version with an SVN client of your choice from the
234 following repositories:
235
236 @uref{svn://svn.berlios.de/openocd/trunk}
237
238 or
239
240 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
241
242 Using the SVN command line client, you can use the following command to fetch the
243 latest version (make sure there is no (non-svn) directory called "openocd" in the
244 current directory):
245
246 @example
247 svn checkout svn://svn.berlios.de/openocd/trunk openocd
248 @end example
249
250 Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
251 For building on Windows,
252 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
253 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
254 paths, resulting in obscure dependency errors (This is an observation I've gathered
255 from the logs of one user - correct me if I'm wrong).
256
257 You further need the appropriate driver files, if you want to build support for
258 a FTDI FT2232 based interface:
259
260 @itemize @bullet
261 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
262 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
263 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
264 homepage (@uref{http://www.amontec.com}). The JTAGkey uses a non-standard VID/PID.
265 @end itemize
266
267 libftdi is supported under Windows. Do not use versions earlier than 0.14.
268
269 In general, the D2XX driver provides superior performance (several times as fast),
270 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
271 a kernel module, only a user space library.
272
273 To build OpenOCD (on both Linux and Cygwin), use the following commands:
274
275 @example
276 ./bootstrap
277 @end example
278
279 Bootstrap generates the configure script, and prepares building on your system.
280
281 @example
282 ./configure [options, see below]
283 @end example
284
285 Configure generates the Makefiles used to build OpenOCD.
286
287 @example
288 make
289 make install
290 @end example
291
292 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
293
294 The configure script takes several options, specifying which JTAG interfaces
295 should be included (among other things):
296
297 @itemize @bullet
298 @item
299 @option{--enable-parport} - Enable building the PC parallel port driver.
300 @item
301 @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
302 @item
303 @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
304 @item
305 @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
306 @item
307 @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
308 @item
309 @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
310 @item
311 @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
312 @item
313 @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
314 @item
315 @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
316 @item
317 @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
318 @item
319 @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
320 @item
321 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
322 @item
323 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c driver,
324 give the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
325 @item
326 @option{--with-ftd2xx-linux-tardir=PATH} - If using FTDICHIP.COM ft2232c driver
327 on Linux, give the directory where the Linux driver's TAR.GZ file was unpacked.
328 @item
329 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
330 @item
331 @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
332 @item
333 @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
334 @item
335 @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
336 @item
337 @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
338 @item
339 @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
340 @item
341 @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
342 @item
343 @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
344 @item
345 @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
346 @item
347 @option{--enable-dummy} - Enable building the dummy port driver.
348 @end itemize
349
350 @section Parallel Port Dongles
351
352 If you want to access the parallel port using the PPDEV interface you have to specify
353 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
354 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
355 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
356
357 The same is true for the @option{--enable-parport_giveio} option, you have to
358 use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
359
360 @section FT2232C Based USB Dongles
361
362 There are 2 methods of using the FTD2232, either (1) using the
363 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
364 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
365
366 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
367 TAR.GZ file. You must unpack them ``some where'' convient. As of this
368 writing (12/26/2008) FTDICHIP does not supply means to install these
369 files ``in an appropriate place'' As a result, there are two
370 ``./configure'' options that help.
371
372 Below is an example build process:
373
374 @enumerate
375 @item Check out the latest version of ``openocd'' from SVN.
376
377 @item If you are using the FTDICHIP.COM driver, download
378 and unpack the Windows or Linux FTD2xx drivers
379 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
380 If you are using the libftdi driver, install that package
381 (e.g. @command{apt-get install libftdi} on systems with APT).
382
383 @example
384 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents
385 /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents
386 @end example
387
388 @item Configure with options resembling the following.
389
390 @enumerate a
391 @item Cygwin FTDICHIP solution:
392 @example
393 ./configure --prefix=/home/duane/mytools \
394 --enable-ft2232_ftd2xx \
395 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
396 @end example
397
398 @item Linux FTDICHIP solution:
399 @example
400 ./configure --prefix=/home/duane/mytools \
401 --enable-ft2232_ftd2xx \
402 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
403 @end example
404
405 @item Cygwin/Linux LIBFTDI solution ... assuming that
406 @itemize
407 @item For Windows -- that the Windows port of LIBUSB is in place.
408 @item For Linux -- that libusb has been built/installed and is in place.
409 @item That libftdi has been built and installed (relies on libusb).
410 @end itemize
411
412 Then configure the libftdi solution like this:
413
414 @example
415 ./configure --prefix=/home/duane/mytools \
416 --enable-ft2232_libftdi
417 @end example
418 @end enumerate
419
420 @item Then just type ``make'', and perhaps ``make install''.
421 @end enumerate
422
423
424 @section Miscellaneous Configure Options
425
426 @itemize @bullet
427 @item
428 @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
429 @item
430 @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
431 Default is enabled.
432 @item
433 @option{--enable-release} - Enable building of an OpenOCD release, generally
434 this is for developers. It simply omits the svn version string when the
435 openocd @option{-v} is executed.
436 @end itemize
437
438 @node JTAG Hardware Dongles
439 @chapter JTAG Hardware Dongles
440 @cindex dongles
441 @cindex FTDI
442 @cindex wiggler
443 @cindex zy1000
444 @cindex printer port
445 @cindex USB Adapter
446 @cindex rtck
447
448 Defined: @b{dongle}: A small device that plugins into a computer and serves as
449 an adapter .... [snip]
450
451 In the OpenOCD case, this generally refers to @b{a small adapater} one
452 attaches to your computer via USB or the Parallel Printer Port. The
453 execption being the Zylin ZY1000 which is a small box you attach via
454 an ethernet cable. The Zylin ZY1000 has the advantage that it does not
455 require any drivers to be installed on the developer PC. It also has
456 a built in web interface. It supports RTCK/RCLK or adaptive clocking
457 and has a built in relay to power cycle targets remotely.
458
459
460 @section Choosing a Dongle
461
462 There are three things you should keep in mind when choosing a dongle.
463
464 @enumerate
465 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
466 @item @b{Connection} Printer Ports - Does your computer have one?
467 @item @b{Connection} Is that long printer bit-bang cable practical?
468 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
469 @end enumerate
470
471 @section Stand alone Systems
472
473 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
474 dongle, but a standalone box. The ZY1000 has the advantage that it does
475 not require any drivers installed on the developer PC. It also has
476 a built in web interface. It supports RTCK/RCLK or adaptive clocking
477 and has a built in relay to power cycle targets remotely.
478
479 @section USB FT2232 Based
480
481 There are many USB JTAG dongles on the market, many of them are based
482 on a chip from ``Future Technology Devices International'' (FTDI)
483 known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip.
484 See: @url{http://www.ftdichip.com} for more information.
485 In summer 2009, USB high speed (480 Mbps) versions of these FTDI
486 chips are starting to become available in JTAG adapters.
487
488 As of 28/Nov/2008, the following are supported:
489
490 @itemize @bullet
491 @item @b{usbjtag}
492 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
493 @item @b{jtagkey}
494 @* See: @url{http://www.amontec.com/jtagkey.shtml}
495 @item @b{oocdlink}
496 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
497 @item @b{signalyzer}
498 @* See: @url{http://www.signalyzer.com}
499 @item @b{evb_lm3s811}
500 @* See: @url{http://www.luminarymicro.com} - The Stellaris LM3S811 eval board has an FTD2232C chip built in.
501 @item @b{olimex-jtag}
502 @* See: @url{http://www.olimex.com}
503 @item @b{flyswatter}
504 @* See: @url{http://www.tincantools.com}
505 @item @b{turtelizer2}
506 @* See:
507 @uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or
508 @url{http://www.ethernut.de}
509 @item @b{comstick}
510 @* Link: @url{http://www.hitex.com/index.php?id=383}
511 @item @b{stm32stick}
512 @* Link @url{http://www.hitex.com/stm32-stick}
513 @item @b{axm0432_jtag}
514 @* Axiom AXM-0432 Link @url{http://www.axman.com}
515 @item @b{cortino}
516 @* Link @url{http://www.hitex.com/index.php?id=cortino}
517 @end itemize
518
519 @section USB JLINK based
520 There are several OEM versions of the Segger @b{JLINK} adapter. It is
521 an example of a micro controller based JTAG adapter, it uses an
522 AT91SAM764 internally.
523
524 @itemize @bullet
525 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
526 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
527 @item @b{SEGGER JLINK}
528 @* Link: @url{http://www.segger.com/jlink.html}
529 @item @b{IAR J-Link}
530 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
531 @end itemize
532
533 @section USB RLINK based
534 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
535
536 @itemize @bullet
537 @item @b{Raisonance RLink}
538 @* Link: @url{http://www.raisonance.com/products/RLink.php}
539 @item @b{STM32 Primer}
540 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
541 @item @b{STM32 Primer2}
542 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
543 @end itemize
544
545 @section USB Other
546 @itemize @bullet
547 @item @b{USBprog}
548 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
549
550 @item @b{USB - Presto}
551 @* Link: @url{http://tools.asix.net/prg_presto.htm}
552
553 @item @b{Versaloon-Link}
554 @* Link: @url{http://www.simonqian.com/en/Versaloon}
555
556 @item @b{ARM-JTAG-EW}
557 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
558 @end itemize
559
560 @section IBM PC Parallel Printer Port Based
561
562 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
563 and the MacGraigor Wiggler. There are many clones and variations of
564 these on the market.
565
566 @itemize @bullet
567
568 @item @b{Wiggler} - There are many clones of this.
569 @* Link: @url{http://www.macraigor.com/wiggler.htm}
570
571 @item @b{DLC5} - From XILINX - There are many clones of this
572 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
573 produced, PDF schematics are easily found and it is easy to make.
574
575 @item @b{Amontec - JTAG Accelerator}
576 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
577
578 @item @b{GW16402}
579 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
580
581 @item @b{Wiggler2}
582 @*@uref{http://www.ccac.rwth-aachen.de/@/~michaels/@/index.php/hardware/@/armjtag,
583 Improved parallel-port wiggler-style JTAG adapter}
584
585 @item @b{Wiggler_ntrst_inverted}
586 @* Yet another variation - See the source code, src/jtag/parport.c
587
588 @item @b{old_amt_wiggler}
589 @* Unknown - probably not on the market today
590
591 @item @b{arm-jtag}
592 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
593
594 @item @b{chameleon}
595 @* Link: @url{http://www.amontec.com/chameleon.shtml}
596
597 @item @b{Triton}
598 @* Unknown.
599
600 @item @b{Lattice}
601 @* ispDownload from Lattice Semiconductor
602 @url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
603
604 @item @b{flashlink}
605 @* From ST Microsystems;
606 @uref{http://www.st.com/stonline/@/products/literature/um/7889.pdf,
607 FlashLINK JTAG programing cable for PSD and uPSD}
608
609 @end itemize
610
611 @section Other...
612 @itemize @bullet
613
614 @item @b{ep93xx}
615 @* An EP93xx based Linux machine using the GPIO pins directly.
616
617 @item @b{at91rm9200}
618 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
619
620 @end itemize
621
622 @node Running
623 @chapter Running
624 @cindex running OpenOCD
625 @cindex --configfile
626 @cindex --debug_level
627 @cindex --logfile
628 @cindex --search
629
630 The @option{--help} option shows:
631 @verbatim
632 bash$ openocd --help
633
634 --help | -h display this help
635 --version | -v display OpenOCD version
636 --file | -f use configuration file <name>
637 --search | -s dir to search for config files and scripts
638 --debug | -d set debug level <0-3>
639 --log_output | -l redirect log output to file <name>
640 --command | -c run <command>
641 --pipe | -p use pipes when talking to gdb
642 @end verbatim
643
644 By default OpenOCD reads the file configuration file ``openocd.cfg''
645 in the current directory. To specify a different (or multiple)
646 configuration file, you can use the ``-f'' option. For example:
647
648 @example
649 openocd -f config1.cfg -f config2.cfg -f config3.cfg
650 @end example
651
652 Once started, OpenOCD runs as a daemon, waiting for connections from
653 clients (Telnet, GDB, Other).
654
655 If you are having problems, you can enable internal debug messages via
656 the ``-d'' option.
657
658 Also it is possible to interleave commands w/config scripts using the
659 @option{-c} command line switch.
660
661 To enable debug output (when reporting problems or working on OpenOCD
662 itself), use the @option{-d} command line switch. This sets the
663 @option{debug_level} to "3", outputting the most information,
664 including debug messages. The default setting is "2", outputting only
665 informational messages, warnings and errors. You can also change this
666 setting from within a telnet or gdb session using @option{debug_level
667 <n>} @xref{debug_level}.
668
669 You can redirect all output from the daemon to a file using the
670 @option{-l <logfile>} switch.
671
672 Search paths for config/script files can be added to OpenOCD by using
673 the @option{-s <search>} switch. The current directory and the OpenOCD
674 target library is in the search path by default.
675
676 For details on the @option{-p} option. @xref{Connecting to GDB}.
677
678 Note! OpenOCD will launch the GDB & telnet server even if it can not
679 establish a connection with the target. In general, it is possible for
680 the JTAG controller to be unresponsive until the target is set up
681 correctly via e.g. GDB monitor commands in a GDB init script.
682
683 @node Simple Configuration Files
684 @chapter Simple Configuration Files
685 @cindex configuration
686
687 @section Outline
688 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
689
690 @enumerate
691 @item A small openocd.cfg file which ``sources'' other configuration files
692 @item A monolithic openocd.cfg file
693 @item Many -f filename options on the command line
694 @item Your Mixed Solution
695 @end enumerate
696
697 @section Small configuration file method
698
699 This is the preferred method. It is simple and works well for many
700 people. The developers of OpenOCD would encourage you to use this
701 method. If you create a new configuration please email new
702 configurations to the development list.
703
704 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
705
706 @example
707 source [find interface/signalyzer.cfg]
708
709 # GDB can also flash my flash!
710 gdb_memory_map enable
711 gdb_flash_program enable
712
713 source [find target/sam7x256.cfg]
714 @end example
715
716 There are many example configuration scripts you can work with. You
717 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
718 should find:
719
720 @enumerate
721 @item @b{board} - eval board level configurations
722 @item @b{interface} - specific dongle configurations
723 @item @b{target} - the target chips
724 @item @b{tcl} - helper scripts
725 @item @b{xscale} - things specific to the xscale.
726 @end enumerate
727
728 Look first in the ``boards'' area, then the ``targets'' area. Often a board
729 configuration is a good example to work from.
730
731 @section Many -f filename options
732 Some believe this is a wonderful solution, others find it painful.
733
734 You can use a series of ``-f filename'' options on the command line,
735 OpenOCD will read each filename in sequence, for example:
736
737 @example
738 openocd -f file1.cfg -f file2.cfg -f file2.cfg
739 @end example
740
741 You can also intermix various commands with the ``-c'' command line
742 option.
743
744 @section Monolithic file
745 The ``Monolithic File'' dispenses with all ``source'' statements and
746 puts everything in one self contained (monolithic) file. This is not
747 encouraged.
748
749 Please try to ``source'' various files or use the multiple -f
750 technique.
751
752 @section Advice for you
753 Often, one uses a ``mixed approach''. Where possible, please try to
754 ``source'' common things, and if needed cut/paste parts of the
755 standard distribution configuration files as needed.
756
757 @b{REMEMBER:} The ``important parts'' of your configuration file are:
758
759 @enumerate
760 @item @b{Interface} - Defines the dongle
761 @item @b{Taps} - Defines the JTAG Taps
762 @item @b{GDB Targets} - What GDB talks to
763 @item @b{Flash Programing} - Very Helpful
764 @end enumerate
765
766 Some key things you should look at and understand are:
767
768 @enumerate
769 @item The reset configuration of your debug environment as a whole
770 @item Is there a ``work area'' that OpenOCD can use?
771 @* For ARM - work areas mean up to 10x faster downloads.
772 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
773 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
774 @end enumerate
775
776
777
778 @node Config File Guidelines
779 @chapter Config File Guidelines
780
781 This section/chapter is aimed at developers and integrators of
782 OpenOCD. These are guidelines for creating new boards and new target
783 configurations as of 28/Nov/2008.
784
785 However, you, the user of OpenOCD, should be somewhat familiar with
786 this section as it should help explain some of the internals of what
787 you might be looking at.
788
789 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
790
791 @itemize @bullet
792 @item @b{interface}
793 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
794 @item @b{board}
795 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
796 contain initialization items that are specific to a board - for
797 example: The SDRAM initialization sequence for the board, or the type
798 of external flash and what address it is found at. Any initialization
799 sequence to enable that external flash or SDRAM should be found in the
800 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
801 a CPU and an FPGA or CPLD.
802 @item @b{target}
803 @* Think chip. The ``target'' directory represents a JTAG tap (or
804 chip) OpenOCD should control, not a board. Two common types of targets
805 are ARM chips and FPGA or CPLD chips.
806 @end itemize
807
808 @b{If needed...} The user in their ``openocd.cfg'' file or the board
809 file might override a specific feature in any of the above files by
810 setting a variable or two before sourcing the target file. Or adding
811 various commands specific to their situation.
812
813 @section Interface Config Files
814
815 The user should be able to source one of these files via a command like this:
816
817 @example
818 source [find interface/FOOBAR.cfg]
819 Or:
820 openocd -f interface/FOOBAR.cfg
821 @end example
822
823 A preconfigured interface file should exist for every interface in use
824 today, that said, perhaps some interfaces have only been used by the
825 sole developer who created it.
826
827 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
828
829 @section Board Config Files
830
831 @b{Note: BOARD directory NEW as of 28/nov/2008}
832
833 The user should be able to source one of these files via a command like this:
834
835 @example
836 source [find board/FOOBAR.cfg]
837 Or:
838 openocd -f board/FOOBAR.cfg
839 @end example
840
841
842 The board file should contain one or more @t{source [find
843 target/FOO.cfg]} statements along with any board specific things.
844
845 In summary the board files should contain (if present)
846
847 @enumerate
848 @item External flash configuration (i.e.: NOR flash on CS0, two NANDs on CS2)
849 @item SDRAM configuration (size, speed, etc.
850 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
851 @item Multiple TARGET source statements
852 @item All things that are not ``inside a chip''
853 @item Things inside a chip go in a 'target' file
854 @end enumerate
855
856 @section Target Config Files
857
858 The user should be able to source one of these files via a command like this:
859
860 @example
861 source [find target/FOOBAR.cfg]
862 Or:
863 openocd -f target/FOOBAR.cfg
864 @end example
865
866 In summary the target files should contain
867
868 @enumerate
869 @item Set defaults
870 @item Create taps
871 @item Reset configuration
872 @item Work areas
873 @item CPU/Chip/CPU-Core specific features
874 @item On-Chip flash
875 @end enumerate
876
877 @subsection Important variable names
878
879 By default, the end user should never need to set these
880 variables. However, if the user needs to override a setting they only
881 need to set the variable in a simple way.
882
883 @itemize @bullet
884 @item @b{CHIPNAME}
885 @* This gives a name to the overall chip, and is used as part of the
886 tap identifier dotted name.
887 @item @b{ENDIAN}
888 @* By default little - unless the chip or board is not normally used that way.
889 @item @b{CPUTAPID}
890 @* When OpenOCD examines the JTAG chain, it will attempt to identify
891 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
892 to verify the tap id number verses configuration file and may issue an
893 error or warning like this. The hope is that this will help to pinpoint
894 problems in OpenOCD configurations.
895
896 @example
897 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f
898 (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
899 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678,
900 Got: 0x3f0f0f0f
901 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
902 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
903 @end example
904
905 @item @b{_TARGETNAME}
906 @* By convention, this variable is created by the target configuration
907 script. The board configuration file may make use of this variable to
908 configure things like a ``reset init'' script, or other things
909 specific to that board and that target.
910
911 If the chip has 2 targets, use the names @b{_TARGETNAME0},
912 @b{_TARGETNAME1}, ... etc.
913
914 @b{Remember:} The ``board file'' may include multiple targets.
915
916 At no time should the name ``target0'' (the default target name if
917 none was specified) be used. The name ``target0'' is a hard coded name
918 - the next target on the board will be some other number.
919 In the same way, avoid using target numbers even when they are
920 permitted; use the right target name(s) for your board.
921
922 The user (or board file) should reasonably be able to:
923
924 @example
925 source [find target/FOO.cfg]
926 $_TARGETNAME configure ... FOO specific parameters
927
928 source [find target/BAR.cfg]
929 $_TARGETNAME configure ... BAR specific parameters
930 @end example
931
932 @end itemize
933
934 @subsection Tcl Variables Guide Line
935 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
936
937 Thus the rule we follow in OpenOCD is this: Variables that begin with
938 a leading underscore are temporary in nature, and can be modified and
939 used at will within a ?TARGET? configuration file.
940
941 @b{EXAMPLE:} The user should be able to do this:
942
943 @example
944 # Board has 3 chips,
945 # PXA270 #1 network side, big endian
946 # PXA270 #2 video side, little endian
947 # Xilinx Glue logic
948 set CHIPNAME network
949 set ENDIAN big
950 source [find target/pxa270.cfg]
951 # variable: _TARGETNAME = network.cpu
952 # other commands can refer to the "network.cpu" tap.
953 $_TARGETNAME configure .... params for this CPU..
954
955 set ENDIAN little
956 set CHIPNAME video
957 source [find target/pxa270.cfg]
958 # variable: _TARGETNAME = video.cpu
959 # other commands can refer to the "video.cpu" tap.
960 $_TARGETNAME configure .... params for this CPU..
961
962 unset ENDIAN
963 set CHIPNAME xilinx
964 source [find target/spartan3.cfg]
965
966 # Since $_TARGETNAME is temporal..
967 # these names still work!
968 network.cpu configure ... params
969 video.cpu configure ... params
970
971 @end example
972
973 @subsection Default Value Boiler Plate Code
974
975 All target configuration files should start with this (or a modified form)
976
977 @example
978 # SIMPLE example
979 if @{ [info exists CHIPNAME] @} @{
980 set _CHIPNAME $CHIPNAME
981 @} else @{
982 set _CHIPNAME sam7x256
983 @}
984
985 if @{ [info exists ENDIAN] @} @{
986 set _ENDIAN $ENDIAN
987 @} else @{
988 set _ENDIAN little
989 @}
990
991 if @{ [info exists CPUTAPID ] @} @{
992 set _CPUTAPID $CPUTAPID
993 @} else @{
994 set _CPUTAPID 0x3f0f0f0f
995 @}
996
997 @end example
998
999 @subsection Creating Taps
1000 After the ``defaults'' are choosen [see above] the taps are created.
1001
1002 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
1003
1004 @example
1005 # for an ARM7TDMI.
1006 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
1007 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf \
1008 -expected-id $_CPUTAPID
1009 @end example
1010
1011 @b{COMPLEX example:}
1012
1013 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
1014
1015 @enumerate
1016 @item @b{Unform tap names} - See: Tap Naming Convention
1017 @item @b{_TARGETNAME} is created at the end where used.
1018 @end enumerate
1019
1020 @example
1021 if @{ [info exists FLASHTAPID ] @} @{
1022 set _FLASHTAPID $FLASHTAPID
1023 @} else @{
1024 set _FLASHTAPID 0x25966041
1025 @}
1026 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 \
1027 -expected-id $_FLASHTAPID
1028
1029 if @{ [info exists CPUTAPID ] @} @{
1030 set _CPUTAPID $CPUTAPID
1031 @} else @{
1032 set _CPUTAPID 0x25966041
1033 @}
1034 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe \
1035 -expected-id $_CPUTAPID
1036
1037
1038 if @{ [info exists BSTAPID ] @} @{
1039 set _BSTAPID $BSTAPID
1040 @} else @{
1041 set _BSTAPID 0x1457f041
1042 @}
1043 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 \
1044 -expected-id $_BSTAPID
1045
1046 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
1047 @end example
1048
1049 @b{Tap Naming Convention}
1050
1051 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
1052
1053 @itemize @bullet
1054 @item @b{tap}
1055 @item @b{cpu}
1056 @item @b{flash}
1057 @item @b{bs}
1058 @item @b{etb}
1059 @item @b{jrc}
1060 @item @b{unknownN} - it happens :-(
1061 @end itemize
1062
1063 @subsection Reset Configuration
1064
1065 Some chips have specific ways the TRST and SRST signals are
1066 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
1067 @b{BOARD SPECIFIC} they go in the board file.
1068
1069 @subsection Work Areas
1070
1071 Work areas are small RAM areas used by OpenOCD to speed up downloads,
1072 and to download small snippets of code to program flash chips.
1073
1074 If the chip includes a form of ``on-chip-ram'' - and many do - define
1075 a reasonable work area and use the ``backup'' option.
1076
1077 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
1078 inaccessible if/when the application code enables or disables the MMU.
1079
1080 @subsection ARM Core Specific Hacks
1081
1082 If the chip has a DCC, enable it. If the chip is an ARM9 with some
1083 special high speed download features - enable it.
1084
1085 If the chip has an ARM ``vector catch'' feature - by default enable
1086 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
1087 user is really writing a handler for those situations - they can
1088 easily disable it. Experiance has shown the ``vector catch'' is
1089 helpful - for common programing errors.
1090
1091 If present, the MMU, the MPU and the CACHE should be disabled.
1092
1093 Some ARM cores are equipped with trace support, which permits
1094 examination of the instruction and data bus activity. Trace
1095 activity is controlled through an ``Embedded Trace Module'' (ETM)
1096 on one of the core's scan chains. The ETM emits voluminous data
1097 through a ``trace port''. The trace port is accessed in one
1098 of two ways. When its signals are pinned out from the chip,
1099 boards may provide a special high speed debugging connector;
1100 software support for this is not configured by default, use
1101 the ``--enable-oocd_trace'' option. Alternatively, trace data
1102 may be stored an on-chip SRAM which is packaged as an ``Embedded
1103 Trace Buffer'' (ETB). An ETB has its own TAP, usually right after
1104 its associated ARM core. OpenOCD supports the ETM, and your
1105 target configuration should set it up with the relevant trace
1106 port: ``etb'' for chips which use that, else the board-specific
1107 option will be either ``oocd_trace'' or ``dummy''.
1108
1109 @example
1110 etm config $_TARGETNAME 16 normal full etb
1111 etb config $_TARGETNAME $_CHIPNAME.etb
1112 @end example
1113
1114 @subsection Internal Flash Configuration
1115
1116 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
1117
1118 @b{Never ever} in the ``target configuration file'' define any type of
1119 flash that is external to the chip. (For example a BOOT flash on
1120 Chip Select 0.) Such flash information goes in a board file - not
1121 the TARGET (chip) file.
1122
1123 Examples:
1124 @itemize @bullet
1125 @item at91sam7x256 - has 256K flash YES enable it.
1126 @item str912 - has flash internal YES enable it.
1127 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1128 @item pxa270 - again - CS0 flash - it goes in the board file.
1129 @end itemize
1130
1131 @node About JIM-Tcl
1132 @chapter About JIM-Tcl
1133 @cindex JIM Tcl
1134 @cindex tcl
1135
1136 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1137 learn more about JIM here: @url{http://jim.berlios.de}
1138
1139 @itemize @bullet
1140 @item @b{JIM vs. Tcl}
1141 @* JIM-TCL is a stripped down version of the well known Tcl language,
1142 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1143 fewer features. JIM-Tcl is a single .C file and a single .H file and
1144 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1145 4.2 MB .zip file containing 1540 files.
1146
1147 @item @b{Missing Features}
1148 @* Our practice has been: Add/clone the real Tcl feature if/when
1149 needed. We welcome JIM Tcl improvements, not bloat.
1150
1151 @item @b{Scripts}
1152 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1153 command interpreter today (28/nov/2008) is a mixture of (newer)
1154 JIM-Tcl commands, and (older) the orginal command interpreter.
1155
1156 @item @b{Commands}
1157 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1158 can type a Tcl for() loop, set variables, etc.
1159
1160 @item @b{Historical Note}
1161 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1162
1163 @item @b{Need a crash course in Tcl?}
1164 @* See: @xref{Tcl Crash Course}.
1165 @end itemize
1166
1167 @node Daemon Configuration
1168 @chapter Daemon Configuration
1169 @cindex initialization
1170 The commands here are commonly found in the openocd.cfg file and are
1171 used to specify what TCP/IP ports are used, and how GDB should be
1172 supported.
1173
1174 @section Configuration Stage
1175 @cindex configuration stage
1176 @cindex configuration command
1177
1178 When the OpenOCD server process starts up, it enters a
1179 @emph{configuration stage} which is the only time that
1180 certain commands, @emph{configuration commands}, may be issued.
1181 Those configuration commands include declaration of TAPs
1182 and other basic setup.
1183 The server must leave the configuration stage before it
1184 may access or activate TAPs.
1185 After it leaves this stage, configuration commands may no
1186 longer be issued.
1187
1188 @deffn {Config Command} init
1189 This command terminates the configuration stage and
1190 enters the normal command mode. This can be useful to add commands to
1191 the startup scripts and commands such as resetting the target,
1192 programming flash, etc. To reset the CPU upon startup, add "init" and
1193 "reset" at the end of the config script or at the end of the OpenOCD
1194 command line using the @option{-c} command line switch.
1195
1196 If this command does not appear in any startup/configuration file
1197 OpenOCD executes the command for you after processing all
1198 configuration files and/or command line options.
1199
1200 @b{NOTE:} This command normally occurs at or near the end of your
1201 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1202 targets ready. For example: If your openocd.cfg file needs to
1203 read/write memory on your target, @command{init} must occur before
1204 the memory read/write commands. This includes @command{nand probe}.
1205 @end deffn
1206
1207 @section TCP/IP Ports
1208 @cindex TCP port
1209 @cindex server
1210 @cindex port
1211 The OpenOCD server accepts remote commands in several syntaxes.
1212 Each syntax uses a different TCP/IP port, which you may specify
1213 only during configuration (before those ports are opened).
1214
1215 @deffn {Command} gdb_port (number)
1216 @cindex GDB server
1217 Specify or query the first port used for incoming GDB connections.
1218 The GDB port for the
1219 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1220 When not specified during the configuration stage,
1221 the port @var{number} defaults to 3333.
1222 @end deffn
1223
1224 @deffn {Command} tcl_port (number)
1225 Specify or query the port used for a simplified RPC
1226 connection that can be used by clients to issue TCL commands and get the
1227 output from the Tcl engine.
1228 Intended as a machine interface.
1229 When not specified during the configuration stage,
1230 the port @var{number} defaults to 6666.
1231 @end deffn
1232
1233 @deffn {Command} telnet_port (number)
1234 Specify or query the
1235 port on which to listen for incoming telnet connections.
1236 This port is intended for interaction with one human through TCL commands.
1237 When not specified during the configuration stage,
1238 the port @var{number} defaults to 4444.
1239 @end deffn
1240
1241 @section GDB Configuration
1242 @anchor{GDB Configuration}
1243 @cindex GDB
1244 @cindex GDB configuration
1245 You can reconfigure some GDB behaviors if needed.
1246 The ones listed here are static and global.
1247 @xref{Target Create}, about declaring individual targets.
1248 @xref{Target Events}, about configuring target-specific event handling.
1249
1250 @deffn {Command} gdb_breakpoint_override <hard|soft|disable>
1251 @anchor{gdb_breakpoint_override}
1252 Force breakpoint type for gdb @command{break} commands.
1253 The raison d'etre for this option is to support GDB GUI's which don't
1254 distinguish hard versus soft breakpoints, if the default OpenOCD and
1255 GDB behaviour is not sufficient. GDB normally uses hardware
1256 breakpoints if the memory map has been set up for flash regions.
1257
1258 This option replaces older arm7_9 target commands that addressed
1259 the same issue.
1260 @end deffn
1261
1262 @deffn {Config command} gdb_detach <resume|reset|halt|nothing>
1263 Configures what OpenOCD will do when GDB detaches from the daemon.
1264 Default behaviour is @var{resume}.
1265 @end deffn
1266
1267 @deffn {Config command} gdb_flash_program <enable|disable>
1268 @anchor{gdb_flash_program}
1269 Set to @var{enable} to cause OpenOCD to program the flash memory when a
1270 vFlash packet is received.
1271 The default behaviour is @var{enable}.
1272 @end deffn
1273
1274 @deffn {Config command} gdb_memory_map <enable|disable>
1275 Set to @var{enable} to cause OpenOCD to send the memory configuration to GDB when
1276 requested. GDB will then know when to set hardware breakpoints, and program flash
1277 using the GDB load command. @command{gdb_flash_program enable} must also be enabled
1278 for flash programming to work.
1279 Default behaviour is @var{enable}.
1280 @xref{gdb_flash_program}.
1281 @end deffn
1282
1283 @deffn {Config command} gdb_report_data_abort <enable|disable>
1284 Specifies whether data aborts cause an error to be reported
1285 by GDB memory read packets.
1286 The default behaviour is @var{disable};
1287 use @var{enable} see these errors reported.
1288 @end deffn
1289
1290 @node Interface - Dongle Configuration
1291 @chapter Interface - Dongle Configuration
1292 Interface commands are normally found in an interface configuration
1293 file which is sourced by your openocd.cfg file. These commands tell
1294 OpenOCD what type of JTAG dongle you have and how to talk to it.
1295 @section Simple Complete Interface Examples
1296 @b{A Turtelizer FT2232 Based JTAG Dongle}
1297 @verbatim
1298 #interface
1299 interface ft2232
1300 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1301 ft2232_layout turtelizer2
1302 ft2232_vid_pid 0x0403 0xbdc8
1303 @end verbatim
1304 @b{A SEGGER Jlink}
1305 @verbatim
1306 # jlink interface
1307 interface jlink
1308 @end verbatim
1309 @b{A Raisonance RLink}
1310 @verbatim
1311 # rlink interface
1312 interface rlink
1313 @end verbatim
1314 @b{Parallel Port}
1315 @verbatim
1316 interface parport
1317 parport_port 0xc8b8
1318 parport_cable wiggler
1319 jtag_speed 0
1320 @end verbatim
1321 @b{ARM-JTAG-EW}
1322 @verbatim
1323 interface arm-jtag-ew
1324 @end verbatim
1325 @section Interface Command
1326
1327 The interface command tells OpenOCD what type of JTAG dongle you are
1328 using. Depending on the type of dongle, you may need to have one or
1329 more additional commands.
1330
1331 @itemize @bullet
1332
1333 @item @b{interface} <@var{name}>
1334 @cindex interface
1335 @*Use the interface driver <@var{name}> to connect to the
1336 target. Currently supported interfaces are
1337
1338 @itemize @minus
1339
1340 @item @b{parport}
1341 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1342
1343 @item @b{amt_jtagaccel}
1344 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1345 mode parallel port
1346
1347 @item @b{ft2232}
1348 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1349 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1350 platform. The libftdi uses libusb, and should be portable to all systems that provide
1351 libusb.
1352
1353 @item @b{ep93xx}
1354 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1355
1356 @item @b{presto}
1357 @* ASIX PRESTO USB JTAG programmer.
1358
1359 @item @b{usbprog}
1360 @* usbprog is a freely programmable USB adapter.
1361
1362 @item @b{gw16012}
1363 @* Gateworks GW16012 JTAG programmer.
1364
1365 @item @b{jlink}
1366 @* Segger jlink USB adapter
1367
1368 @item @b{rlink}
1369 @* Raisonance RLink USB adapter
1370
1371 @item @b{vsllink}
1372 @* vsllink is part of Versaloon which is a versatile USB programmer.
1373
1374 @item @b{arm-jtag-ew}
1375 @* Olimex ARM-JTAG-EW USB adapter
1376 @comment - End parameters
1377 @end itemize
1378 @comment - End Interface
1379 @end itemize
1380 @subsection parport options
1381
1382 @itemize @bullet
1383 @item @b{parport_port} <@var{number}>
1384 @cindex parport_port
1385 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1386 the @file{/dev/parport} device
1387
1388 When using PPDEV to access the parallel port, use the number of the parallel port:
1389 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1390 you may encounter a problem.
1391 @item @b{parport_cable} <@var{name}>
1392 @cindex parport_cable
1393 @*The layout of the parallel port cable used to connect to the target.
1394 Currently supported cables are
1395 @itemize @minus
1396 @item @b{wiggler}
1397 @cindex wiggler
1398 The original Wiggler layout, also supported by several clones, such
1399 as the Olimex ARM-JTAG
1400 @item @b{wiggler2}
1401 @cindex wiggler2
1402 Same as original wiggler except an led is fitted on D5.
1403 @item @b{wiggler_ntrst_inverted}
1404 @cindex wiggler_ntrst_inverted
1405 Same as original wiggler except TRST is inverted.
1406 @item @b{old_amt_wiggler}
1407 @cindex old_amt_wiggler
1408 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1409 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1410 @item @b{chameleon}
1411 @cindex chameleon
1412 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1413 program the Chameleon itself, not a connected target.
1414 @item @b{dlc5}
1415 @cindex dlc5
1416 The Xilinx Parallel cable III.
1417 @item @b{triton}
1418 @cindex triton
1419 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1420 This is also the layout used by the HollyGates design
1421 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1422 @item @b{flashlink}
1423 @cindex flashlink
1424 The ST Parallel cable.
1425 @item @b{arm-jtag}
1426 @cindex arm-jtag
1427 Same as original wiggler except SRST and TRST connections reversed and
1428 TRST is also inverted.
1429 @item @b{altium}
1430 @cindex altium
1431 Altium Universal JTAG cable.
1432 @end itemize
1433 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1434 @cindex parport_write_on_exit
1435 @*This will configure the parallel driver to write a known value to the parallel
1436 interface on exiting OpenOCD
1437 @end itemize
1438
1439 @subsection amt_jtagaccel options
1440 @itemize @bullet
1441 @item @b{parport_port} <@var{number}>
1442 @cindex parport_port
1443 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1444 @file{/dev/parport} device
1445 @end itemize
1446 @subsection ft2232 options
1447
1448 @itemize @bullet
1449 @item @b{ft2232_device_desc} <@var{description}>
1450 @cindex ft2232_device_desc
1451 @*The USB device description of the FTDI FT2232 device. If not
1452 specified, the FTDI default value is used. This setting is only valid
1453 if compiled with FTD2XX support.
1454
1455 @b{TODO:} Confirm the following: On Windows the name needs to end with
1456 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1457 this be added and when must it not be added? Why can't the code in the
1458 interface or in OpenOCD automatically add this if needed? -- Duane.
1459
1460 @item @b{ft2232_serial} <@var{serial-number}>
1461 @cindex ft2232_serial
1462 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1463 values are used.
1464 @item @b{ft2232_layout} <@var{name}>
1465 @cindex ft2232_layout
1466 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1467 signals. Valid layouts are
1468 @itemize @minus
1469 @item @b{usbjtag}
1470 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1471 @item @b{jtagkey}
1472 Amontec JTAGkey and JTAGkey-Tiny
1473 @item @b{signalyzer}
1474 Signalyzer
1475 @item @b{olimex-jtag}
1476 Olimex ARM-USB-OCD
1477 @item @b{m5960}
1478 American Microsystems M5960
1479 @item @b{evb_lm3s811}
1480 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1481 SRST signals on external connector
1482 @item @b{comstick}
1483 Hitex STR9 comstick
1484 @item @b{stm32stick}
1485 Hitex STM32 Performance Stick
1486 @item @b{flyswatter}
1487 Tin Can Tools Flyswatter
1488 @item @b{turtelizer2}
1489 egnite Software turtelizer2
1490 @item @b{oocdlink}
1491 OOCDLink
1492 @item @b{axm0432_jtag}
1493 Axiom AXM-0432
1494 @item @b{cortino}
1495 Hitex Cortino JTAG interface
1496 @end itemize
1497
1498 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1499 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1500 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1501 @example
1502 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1503 @end example
1504 @item @b{ft2232_latency} <@var{ms}>
1505 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1506 ft2232_read() fails to return the expected number of bytes. This can be caused by
1507 USB communication delays and has proved hard to reproduce and debug. Setting the
1508 FT2232 latency timer to a larger value increases delays for short USB packets but it
1509 also reduces the risk of timeouts before receiving the expected number of bytes.
1510 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1511 @end itemize
1512
1513 @subsection ep93xx options
1514 @cindex ep93xx options
1515 Currently, there are no options available for the ep93xx interface.
1516
1517 @section JTAG Speed
1518 @anchor{JTAG Speed}
1519 JTAG clock setup is part of system setup.
1520 It @emph{does not belong with interface setup} since any interface
1521 only knows a few of the constraints for the JTAG clock speed.
1522 Sometimes the JTAG speed is
1523 changed during the target initialization process: (1) slow at
1524 reset, (2) program the CPU clocks, (3) run fast.
1525 Both the "slow" and "fast" clock rates are functions of the
1526 oscillators used, the chip, the board design, and sometimes
1527 power management software that may be active.
1528
1529 The speed used during reset can be adjusted using pre_reset
1530 and post_reset event handlers.
1531 @xref{Target Events}.
1532
1533 If your system supports adaptive clocking (RTCK), configuring
1534 JTAG to use that is probably the most robust approach.
1535 However, it introduces delays to synchronize clocks; so it
1536 may not be the fastest solution.
1537
1538 @b{NOTE:} Script writers should consider using @command{jtag_rclk}
1539 instead of @command{jtag_khz}.
1540
1541 @deffn {Command} jtag_khz max_speed_kHz
1542 A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1543 JTAG interfaces usually support a limited number of
1544 speeds. The speed actually used won't be faster
1545 than the speed specified.
1546
1547 As a rule of thumb, if you specify a clock rate make
1548 sure the JTAG clock is no more than @math{1/6th CPU-Clock}.
1549 This is especially true for synthesized cores (ARMxxx-S).
1550
1551 Speed 0 (khz) selects RTCK method.
1552 @xref{FAQ RTCK}.
1553 If your system uses RTCK, you won't need to change the
1554 JTAG clocking after setup.
1555 Not all interfaces, boards, or targets support ``rtck''.
1556 If the interface device can not
1557 support it, an error is returned when you try to use RTCK.
1558 @end deffn
1559
1560 @defun jtag_rclk fallback_speed_kHz
1561 @cindex RTCK
1562 This Tcl proc (defined in startup.tcl) attempts to enable RTCK/RCLK.
1563 If that fails (maybe the interface, board, or target doesn't
1564 support it), falls back to the specified frequency.
1565 @example
1566 # Fall back to 3mhz if RTCK is not supported
1567 jtag_rclk 3000
1568 @end example
1569 @end defun
1570
1571 @node Reset Configuration
1572 @chapter Reset Configuration
1573 @cindex Reset Configuration
1574
1575 Every system configuration may require a different reset
1576 configuration. This can also be quite confusing.
1577 Please see the various board files for examples.
1578
1579 @b{Note} to maintainers and integrators:
1580 Reset configuration touches several things at once.
1581 Normally the board configuration file
1582 should define it and assume that the JTAG adapter supports
1583 everything that's wired up to the board's JTAG connector.
1584 However, the target configuration file could also make note
1585 of something the silicon vendor has done inside the chip,
1586 which will be true for most (or all) boards using that chip.
1587 And when the JTAG adapter doesn't support everything, the
1588 system configuration file will need to override parts of
1589 the reset configuration provided by other files.
1590
1591 @section Types of Reset
1592
1593 There are many kinds of reset possible through JTAG, but
1594 they may not all work with a given board and adapter.
1595 That's part of why reset configuration can be error prone.
1596
1597 @itemize @bullet
1598 @item
1599 @emph{System Reset} ... the @emph{SRST} hardware signal
1600 resets all chips connected to the JTAG adapter, such as processors,
1601 power management chips, and I/O controllers. Normally resets triggered
1602 with this signal behave exactly like pressing a RESET button.
1603 @item
1604 @emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets
1605 just the TAP controllers connected to the JTAG adapter.
1606 Such resets should not be visible to the rest of the system; resetting a
1607 device's the TAP controller just puts that controller into a known state.
1608 @item
1609 @emph{Emulation Reset} ... many devices can be reset through JTAG
1610 commands. These resets are often distinguishable from system
1611 resets, either explicitly (a "reset reason" register says so)
1612 or implicitly (not all parts of the chip get reset).
1613 @item
1614 @emph{Other Resets} ... system-on-chip devices often support
1615 several other types of reset.
1616 You may need to arrange that a watchdog timer stops
1617 while debugging, preventing a watchdog reset.
1618 There may be individual module resets.
1619 @end itemize
1620
1621 In the best case, OpenOCD can hold SRST, then reset
1622 the TAPs via TRST and send commands through JTAG to halt the
1623 CPU at the reset vector before the 1st instruction is executed.
1624 Then when it finally releases the SRST signal, the system is
1625 halted under debugger control before any code has executed.
1626 This is the behavior required to support the @command{reset halt}
1627 and @command{reset init} commands; after @command{reset init} a
1628 board-specific script might do things like setting up DRAM.
1629 (@xref{Reset Command}.)
1630
1631 @section SRST and TRST Signal Issues
1632
1633 Because SRST and TRST are hardware signals, they can have a
1634 variety of system-specific constraints. Some of the most
1635 common issues are:
1636
1637 @itemize @bullet
1638
1639 @item @emph{Signal not available} ... Some boards don't wire
1640 SRST or TRST to the JTAG connector. Some JTAG adapters don't
1641 support such signals even if they are wired up.
1642 Use the @command{reset_config} @var{signals} options to say
1643 when one of those signals is not connected.
1644 When SRST is not available, your code might not be able to rely
1645 on controllers having been fully reset during code startup.
1646
1647 @item @emph{Signals shorted} ... Sometimes a chip, board, or
1648 adapter will connect SRST to TRST, instead of keeping them separate.
1649 Use the @command{reset_config} @var{combination} options to say
1650 when those signals aren't properly independent.
1651
1652 @item @emph{Timing} ... Reset circuitry like a resistor/capacitor
1653 delay circuit, reset supervisor, or on-chip features can extend
1654 the effect of a JTAG adapter's reset for some time after the adapter
1655 stops issuing the reset. For example, there may be chip or board
1656 requirements that all reset pulses last for at least a
1657 certain amount of time; and reset buttons commonly have
1658 hardware debouncing.
1659 Use the @command{jtag_nsrst_delay} and @command{jtag_ntrst_delay}
1660 commands to say when extra delays are needed.
1661
1662 @item @emph{Drive type} ... Reset lines often have a pullup
1663 resistor, letting the JTAG interface treat them as open-drain
1664 signals. But that's not a requirement, so the adapter may need
1665 to use push/pull output drivers.
1666 Also, with weak pullups it may be advisable to drive
1667 signals to both levels (push/pull) to minimize rise times.
1668 Use the @command{reset_config} @var{trst_type} and
1669 @var{srst_type} parameters to say how to drive reset signals.
1670 @end itemize
1671
1672 There can also be other issues.
1673 Some devices don't fully conform to the JTAG specifications.
1674 Others have chip-specific extensions like extra steps needed
1675 during TAP reset, or a requirement to use the normally-optional TRST
1676 signal.
1677 Trivial system-specific differences are common, such as
1678 SRST and TRST using slightly different names.
1679
1680 @section Commands for Handling Resets
1681
1682 @deffn {Command} jtag_nsrst_delay milliseconds
1683 How long (in milliseconds) OpenOCD should wait after deasserting
1684 nSRST (active-low system reset) before starting new JTAG operations.
1685 When a board has a reset button connected to SRST line it will
1686 probably have hardware debouncing, implying you should use this.
1687 @end deffn
1688
1689 @deffn {Command} jtag_ntrst_delay milliseconds
1690 How long (in milliseconds) OpenOCD should wait after deasserting
1691 nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
1692 @end deffn
1693
1694 @deffn {Command} reset_config signals [combination [trst_type [srst_type]]]
1695 This command tells OpenOCD the reset configuration
1696 of your combination of JTAG interface, board, and target.
1697 If the JTAG interface provides SRST, but the board doesn't connect
1698 that signal properly, then OpenOCD can't use it. @var{signals} can
1699 be @option{none}, @option{trst_only}, @option{srst_only} or
1700 @option{trst_and_srst}.
1701
1702 The @var{combination} is an optional value specifying broken reset
1703 signal implementations. @option{srst_pulls_trst} states that the
1704 test logic is reset together with the reset of the system (e.g. Philips
1705 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1706 the system is reset together with the test logic (only hypothetical, I
1707 haven't seen hardware with such a bug, and can be worked around).
1708 @option{combined} implies both @option{srst_pulls_trst} and
1709 @option{trst_pulls_srst}. The default behaviour if no option given is
1710 @option{separate}.
1711
1712 The optional @var{trst_type} and @var{srst_type} parameters allow the
1713 driver type of the reset lines to be specified. Possible values are
1714 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1715 test reset signal, and @option{srst_open_drain} (default) and
1716 @option{srst_push_pull} for the system reset. These values only affect
1717 JTAG interfaces with support for different drivers, like the Amontec
1718 JTAGkey and JTAGAccelerator.
1719 @end deffn
1720
1721
1722 @node Tap Creation
1723 @chapter Tap Creation
1724 @cindex tap creation
1725 @cindex tap configuration
1726
1727 In order for OpenOCD to control a target, a JTAG tap must be
1728 defined/created.
1729
1730 Commands to create taps are normally found in a configuration file and
1731 are not normally typed by a human.
1732
1733 When a tap is created a @b{dotted.name} is created for the tap. Other
1734 commands use that dotted.name to manipulate or refer to the tap.
1735
1736 Tap Uses:
1737 @itemize @bullet
1738 @item @b{Debug Target} A tap can be used by a GDB debug target
1739 @item @b{Flash Programing} Some chips program the flash directly via JTAG,
1740 instead of indirectly by making a CPU do it.
1741 @item @b{Boundry Scan} Some chips support boundary scan.
1742 @end itemize
1743
1744
1745 @section jtag newtap
1746 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1747 @cindex jtag_device
1748 @cindex jtag newtap
1749 @cindex tap
1750 @cindex tap order
1751 @cindex tap geometry
1752
1753 @comment START options
1754 @itemize @bullet
1755 @item @b{CHIPNAME}
1756 @* is a symbolic name of the chip.
1757 @item @b{TAPNAME}
1758 @* is a symbol name of a tap present on the chip.
1759 @item @b{Required configparams}
1760 @* Every tap has 3 required configparams, and several ``optional
1761 parameters'', the required parameters are:
1762 @comment START REQUIRED
1763 @itemize @bullet
1764 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1765 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1766 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1767 some devices, there are bits in the IR that aren't used. This lets you mask
1768 them off when doing comparisons. In general, this should just be all ones for
1769 the size of the IR.
1770 @comment END REQUIRED
1771 @end itemize
1772 An example of a FOOBAR Tap
1773 @example
1774 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1775 @end example
1776 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1777 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1778 [6,4,2,0] are checked.
1779
1780 @item @b{Optional configparams}
1781 @comment START Optional
1782 @itemize @bullet
1783 @item @b{-expected-id NUMBER}
1784 @* By default it is zero. If non-zero represents the
1785 expected tap ID used when the JTAG chain is examined. Repeat
1786 the option as many times as required if multiple id's can be
1787 expected. See below.
1788 @item @b{-disable}
1789 @item @b{-enable}
1790 @* By default not specified the tap is enabled. Some chips have a
1791 JTAG route controller (JRC) that is used to enable and/or disable
1792 specific JTAG taps. You can later enable or disable any JTAG tap via
1793 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1794 DOTTED.NAME}
1795 @comment END Optional
1796 @end itemize
1797
1798 @comment END OPTIONS
1799 @end itemize
1800 @b{Notes:}
1801 @comment START NOTES
1802 @itemize @bullet
1803 @item @b{Technically}
1804 @* newtap is a sub command of the ``jtag'' command
1805 @item @b{Big Picture Background}
1806 @*GDB Talks to OpenOCD using the GDB protocol via
1807 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1808 control the JTAG chain on your board. Your board has one or more chips
1809 in a @i{daisy chain configuration}. Each chip may have one or more
1810 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1811 @item @b{NAME Rules}
1812 @*Names follow ``C'' symbol name rules (start with alpha ...)
1813 @item @b{TAPNAME - Conventions}
1814 @itemize @bullet
1815 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1816 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1817 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1818 @item @b{bs} - for boundary scan if this is a seperate tap.
1819 @item @b{etb} - for an embedded trace buffer (example: an ARM ETB11)
1820 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1821 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1822 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1823 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1824 @end itemize
1825 @item @b{DOTTED.NAME}
1826 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1827 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1828 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1829 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1830 numerous other places to refer to various taps.
1831 @item @b{ORDER}
1832 @* The order this command appears via the config files is
1833 important.
1834 @item @b{Multi Tap Example}
1835 @* This example is based on the ST Microsystems STR912. See the ST
1836 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1837 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1838
1839 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1840 @*@b{checked: 28/nov/2008}
1841
1842 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1843 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1844 tap which then connects to the TDI pin.
1845
1846 @example
1847 # The order is...
1848 # create tap: 'str912.flash'
1849 jtag newtap str912 flash ... params ...
1850 # create tap: 'str912.cpu'
1851 jtag newtap str912 cpu ... params ...
1852 # create tap: 'str912.bs'
1853 jtag newtap str912 bs ... params ...
1854 @end example
1855
1856 @item @b{Note: Deprecated} - Index Numbers
1857 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1858 feature is still present, however its use is highly discouraged and
1859 should not be counted upon. Update all of your scripts to use
1860 TAP names rather than numbers.
1861 @item @b{Multiple chips}
1862 @* If your board has multiple chips, you should be
1863 able to @b{source} two configuration files, in the proper order, and
1864 have the taps created in the proper order.
1865 @comment END NOTES
1866 @end itemize
1867 @comment at command level
1868 @comment DOCUMENT old command
1869 @section jtag_device - REMOVED
1870 @example
1871 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1872 @end example
1873 @cindex jtag_device
1874
1875 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1876 by the ``jtag newtap'' command. The documentation remains here so that
1877 one can easily convert the old syntax to the new syntax. About the old
1878 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1879 ``irmask''. The new syntax requires named prefixes, and supports
1880 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1881 @b{jtag newtap} command for details.
1882 @example
1883 OLD: jtag_device 8 0x01 0xe3 0xfe
1884 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1885 @end example
1886
1887 @section Enable/Disable Taps
1888 @b{Note:} These commands are intended to be used as a machine/script
1889 interface. Humans might find the ``scan_chain'' command more helpful
1890 when querying the state of the JTAG taps.
1891
1892 @b{By default, all taps are enabled}
1893
1894 @itemize @bullet
1895 @item @b{jtag tapenable} @var{DOTTED.NAME}
1896 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1897 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1898 @end itemize
1899 @cindex tap enable
1900 @cindex tap disable
1901 @cindex JRC
1902 @cindex route controller
1903
1904 These commands are used when your target has a JTAG route controller
1905 that effectively adds or removes a tap from the JTAG chain in a
1906 non-standard way.
1907
1908 The ``standard way'' to remove a tap would be to place the tap in
1909 bypass mode. But with the advent of modern chips, this is not always a
1910 good solution. Some taps operate slowly, others operate fast, and
1911 there are other JTAG clock synchronisation problems one must face. To
1912 solve that problem, the JTAG route controller was introduced. Rather
1913 than ``bypass'' the tap, the tap is completely removed from the
1914 circuit and skipped.
1915
1916
1917 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1918
1919 @itemize @bullet
1920 @item @b{Enabled - Not In ByPass} and has a variable bit length
1921 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1922 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1923 @end itemize
1924
1925 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1926 @b{Historical note:} this feature was added 28/nov/2008
1927
1928 @b{jtag tapisenabled DOTTED.NAME}
1929
1930 This command returns 1 if the named tap is currently enabled, 0 if not.
1931 This command exists so that scripts that manipulate a JRC (like the
1932 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1933 enabled or disabled.
1934
1935 @page
1936 @node Target Configuration
1937 @chapter Target Configuration
1938 @cindex GDB target
1939
1940 This chapter discusses how to create a GDB debug target. Before
1941 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1942
1943 @section targets [NAME]
1944 @b{Note:} This command name is PLURAL - not singular.
1945
1946 With NO parameter, this plural @b{targets} command lists all known
1947 targets in a human friendly form.
1948
1949 With a parameter, this plural @b{targets} command sets the current
1950 target to the given name. (i.e.: If there are multiple debug targets)
1951
1952 Example:
1953 @verbatim
1954 (gdb) mon targets
1955 CmdName Type Endian ChainPos State
1956 -- ---------- ---------- ---------- -------- ----------
1957 0: target0 arm7tdmi little 0 halted
1958 @end verbatim
1959
1960 @section target COMMANDS
1961 @b{Note:} This command name is SINGULAR - not plural. It is used to
1962 manipulate specific targets, to create targets and other things.
1963
1964 Once a target is created, a TARGETNAME (object) command is created;
1965 see below for details.
1966
1967 The TARGET command accepts these sub-commands:
1968 @itemize @bullet
1969 @item @b{create} .. parameters ..
1970 @* creates a new target, see below for details.
1971 @item @b{types}
1972 @* Lists all supported target types (perhaps some are not yet in this document).
1973 @item @b{names}
1974 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1975 @verbatim
1976 foreach t [target names] {
1977 puts [format "Target: %s\n" $t]
1978 }
1979 @end verbatim
1980 @item @b{current}
1981 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1982 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1983 @item @b{number} @b{NUMBER}
1984 @* Internally OpenOCD maintains a list of targets - in numerical index
1985 (0..N-1) this command returns the name of the target at index N.
1986 Example usage:
1987 @verbatim
1988 set thename [target number $x]
1989 puts [format "Target %d is: %s\n" $x $thename]
1990 @end verbatim
1991 @item @b{count}
1992 @* Returns the number of targets known to OpenOCD (see number above)
1993 Example:
1994 @verbatim
1995 set c [target count]
1996 for { set x 0 } { $x < $c } { incr x } {
1997 # Assuming you have created this function
1998 print_target_details $x
1999 }
2000 @end verbatim
2001
2002 @end itemize
2003
2004 @section TARGETNAME (object) commands
2005 @b{Use:} Once a target is created, an ``object name'' that represents the
2006 target is created. By convention, the target name is identical to the
2007 tap name. In a multiple target system, one can preceed many common
2008 commands with a specific target name and effect only that target.
2009 @example
2010 str912.cpu mww 0x1234 0x42
2011 omap3530.cpu mww 0x5555 123
2012 @end example
2013
2014 @b{Model:} The Tcl/Tk language has the concept of object commands. A
2015 good example is a on screen button, once a button is created a button
2016 has a name (a path in Tk terms) and that name is useable as a 1st
2017 class command. For example in Tk, one can create a button and later
2018 configure it like this:
2019
2020 @example
2021 # Create
2022 button .foobar -background red -command @{ foo @}
2023 # Modify
2024 .foobar configure -foreground blue
2025 # Query
2026 set x [.foobar cget -background]
2027 # Report
2028 puts [format "The button is %s" $x]
2029 @end example
2030
2031 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
2032 button. Commands available as a ``target object'' are:
2033
2034 @comment START targetobj commands.
2035 @itemize @bullet
2036 @item @b{configure} - configure the target; see Target Config/Cget Options below
2037 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
2038 @item @b{curstate} - current target state (running, halt, etc.
2039 @item @b{eventlist}
2040 @* Intended for a human to see/read the currently configure target events.
2041 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
2042 @comment start memory
2043 @itemize @bullet
2044 @item @b{mww} ...
2045 @item @b{mwh} ...
2046 @item @b{mwb} ...
2047 @item @b{mdw} ...
2048 @item @b{mdh} ...
2049 @item @b{mdb} ...
2050 @comment end memory
2051 @end itemize
2052 @item @b{Memory To Array, Array To Memory}
2053 @* These are aimed at a machine interface to memory
2054 @itemize @bullet
2055 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
2056 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
2057 @* Where:
2058 @* @b{ARRAYNAME} is the name of an array variable
2059 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
2060 @* @b{ADDRESS} is the target memory address
2061 @* @b{COUNT} is the number of elements to process
2062 @end itemize
2063 @item @b{Used during ``reset''}
2064 @* These commands are used internally by the OpenOCD scripts to deal
2065 with odd reset situations and are not documented here.
2066 @itemize @bullet
2067 @item @b{arp_examine}
2068 @item @b{arp_poll}
2069 @item @b{arp_reset}
2070 @item @b{arp_halt}
2071 @item @b{arp_waitstate}
2072 @end itemize
2073 @item @b{invoke-event} @b{EVENT-NAME}
2074 @* Invokes the specific event manually for the target
2075 @end itemize
2076
2077 @section Target Events
2078 @cindex events
2079 @anchor{Target Events}
2080 At various times, certain things can happen, or you want them to happen.
2081
2082 Examples:
2083 @itemize @bullet
2084 @item What should happen when GDB connects? Should your target reset?
2085 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
2086 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
2087 @end itemize
2088
2089 All of the above items are handled by target events.
2090
2091 To specify an event action, either during target creation, or later
2092 via ``$_TARGETNAME configure'' see this example.
2093
2094 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
2095 target event name, and BODY is a Tcl procedure or string of commands
2096 to execute.
2097
2098 The programmers model is the ``-command'' option used in Tcl/Tk
2099 buttons and events. Below are two identical examples, the first
2100 creates and invokes small procedure. The second inlines the procedure.
2101
2102 @example
2103 proc my_attach_proc @{ @} @{
2104 puts "RESET...."
2105 reset halt
2106 @}
2107 mychip.cpu configure -event gdb-attach my_attach_proc
2108 mychip.cpu configure -event gdb-attach @{
2109 puts "Reset..."
2110 reset halt
2111 @}
2112 @end example
2113
2114 @section Current Events
2115 The following events are available:
2116 @itemize @bullet
2117 @item @b{debug-halted}
2118 @* The target has halted for debug reasons (i.e.: breakpoint)
2119 @item @b{debug-resumed}
2120 @* The target has resumed (i.e.: gdb said run)
2121 @item @b{early-halted}
2122 @* Occurs early in the halt process
2123 @item @b{examine-end}
2124 @* Currently not used (goal: when JTAG examine completes)
2125 @item @b{examine-start}
2126 @* Currently not used (goal: when JTAG examine starts)
2127 @item @b{gdb-attach}
2128 @* When GDB connects
2129 @item @b{gdb-detach}
2130 @* When GDB disconnects
2131 @item @b{gdb-end}
2132 @* When the taret has halted and GDB is not doing anything (see early halt)
2133 @item @b{gdb-flash-erase-start}
2134 @* Before the GDB flash process tries to erase the flash
2135 @item @b{gdb-flash-erase-end}
2136 @* After the GDB flash process has finished erasing the flash
2137 @item @b{gdb-flash-write-start}
2138 @* Before GDB writes to the flash
2139 @item @b{gdb-flash-write-end}
2140 @* After GDB writes to the flash
2141 @item @b{gdb-start}
2142 @* Before the taret steps, gdb is trying to start/resume the target
2143 @item @b{halted}
2144 @* The target has halted
2145 @item @b{old-gdb_program_config}
2146 @* DO NOT USE THIS: Used internally
2147 @item @b{old-pre_resume}
2148 @* DO NOT USE THIS: Used internally
2149 @item @b{reset-assert-pre}
2150 @* Before reset is asserted on the tap.
2151 @item @b{reset-assert-post}
2152 @* Reset is now asserted on the tap.
2153 @item @b{reset-deassert-pre}
2154 @* Reset is about to be released on the tap
2155 @item @b{reset-deassert-post}
2156 @* Reset has been released on the tap
2157 @item @b{reset-end}
2158 @* Currently not used.
2159 @item @b{reset-halt-post}
2160 @* Currently not usd
2161 @item @b{reset-halt-pre}
2162 @* Currently not used
2163 @item @b{reset-init}
2164 @* Used by @b{reset init} command for board-specific initialization.
2165 This is where you would configure PLLs and clocking, set up DRAM so
2166 you can download programs that don't fit in on-chip SRAM, set up pin
2167 multiplexing, and so on.
2168 @item @b{reset-start}
2169 @* Currently not used
2170 @item @b{reset-wait-pos}
2171 @* Currently not used
2172 @item @b{reset-wait-pre}
2173 @* Currently not used
2174 @item @b{resume-start}
2175 @* Before any target is resumed
2176 @item @b{resume-end}
2177 @* After all targets have resumed
2178 @item @b{resume-ok}
2179 @* Success
2180 @item @b{resumed}
2181 @* Target has resumed
2182 @item @b{tap-enable}
2183 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
2184 @example
2185 jtag configure DOTTED.NAME -event tap-enable @{
2186 puts "Enabling CPU"
2187 ...
2188 @}
2189 @end example
2190 @item @b{tap-disable}
2191 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
2192 @example
2193 jtag configure DOTTED.NAME -event tap-disable @{
2194 puts "Disabling CPU"
2195 ...
2196 @}
2197 @end example
2198 @end itemize
2199
2200 @section Target Create
2201 @anchor{Target Create}
2202 @cindex target
2203 @cindex target creation
2204
2205 @example
2206 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
2207 @end example
2208 @*This command creates a GDB debug target that refers to a specific JTAG tap.
2209 @comment START params
2210 @itemize @bullet
2211 @item @b{NAME}
2212 @* Is the name of the debug target. By convention it should be the tap
2213 DOTTED.NAME. This name is also used to create the target object
2214 command, and in other places the target needs to be identified.
2215 @item @b{TYPE}
2216 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
2217 @comment START types
2218 @itemize @minus
2219 @item @b{arm7tdmi}
2220 @item @b{arm720t}
2221 @item @b{arm9tdmi}
2222 @item @b{arm920t}
2223 @item @b{arm922t}
2224 @item @b{arm926ejs}
2225 @item @b{arm966e}
2226 @item @b{cortex_m3}
2227 @item @b{feroceon}
2228 @item @b{xscale}
2229 @item @b{arm11}
2230 @item @b{mips_m4k}
2231 @comment end TYPES
2232 @end itemize
2233 @item @b{PARAMS}
2234 @*PARAMs are various target configuration parameters. The following ones are mandatory:
2235 @comment START mandatory
2236 @itemize @bullet
2237 @item @b{-endian big|little}
2238 @item @b{-chain-position DOTTED.NAME}
2239 @comment end MANDATORY
2240 @end itemize
2241 @comment END params
2242 @end itemize
2243
2244 @section Target Config/Cget Options
2245 These options can be specified when the target is created, or later
2246 via the configure option or to query the target via cget.
2247
2248 You should specify a working area if you can; typically it uses some
2249 on-chip SRAM. Such a working area can speed up many things, including bulk
2250 writes to target memory; flash operations like checking to see if memory needs
2251 to be erased; GDB memory checksumming; and may help perform otherwise
2252 unavailable operations (like some coprocessor operations on ARM7/9 systems).
2253 @itemize @bullet
2254 @item @b{-type} - returns the target type
2255 @item @b{-event NAME BODY} see Target events
2256 @item @b{-work-area-virt [ADDRESS]} specify/set the work area base address
2257 which will be used when an MMU is active.
2258 @item @b{-work-area-phys [ADDRESS]} specify/set the work area base address
2259 which will be used when an MMU is inactive.
2260 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2261 @item @b{-work-area-backup [0|1]} does the work area get backed up;
2262 by default, it doesn't. When possible, use a working_area that doesn't
2263 need to be backed up, since performing a backup slows down operations.
2264 @item @b{-endian [big|little]}
2265 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2266 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2267 @end itemize
2268 Example:
2269 @example
2270 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2271 set name [target number $x]
2272 set y [$name cget -endian]
2273 set z [$name cget -type]
2274 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2275 @}
2276 @end example
2277
2278 @section Target Variants
2279 @itemize @bullet
2280 @item @b{cortex_m3}
2281 @* Use variant @option{lm3s} when debugging older Stellaris LM3S targets.
2282 This will cause OpenOCD to use a software reset rather than asserting
2283 SRST, to avoid a issue with clearing the debug registers.
2284 This is fixed in Fury Rev B, DustDevil Rev B, Tempest; these revisions will
2285 be detected and the normal reset behaviour used.
2286 @item @b{xscale}
2287 @*Supported variants are
2288 @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
2289 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
2290 @item @b{mips_m4k}
2291 @* Use variant @option{ejtag_srst} when debugging targets that do not
2292 provide a functional SRST line on the EJTAG connector. This causes
2293 OpenOCD to instead use an EJTAG software reset command to reset the
2294 processor. You still need to enable @option{srst} on the reset
2295 configuration command to enable OpenOCD hardware reset functionality.
2296 @comment END variants
2297 @end itemize
2298 @section working_area - Command Removed
2299 @cindex working_area
2300 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2301 @* This documentation remains because there are existing scripts that
2302 still use this that need to be converted.
2303 @example
2304 working_area target# address size backup| [virtualaddress]
2305 @end example
2306 @* The target# is a the 0 based target numerical index.
2307
2308 @node Flash Commands
2309 @chapter Flash Commands
2310
2311 OpenOCD has different commands for NOR and NAND flash;
2312 the ``flash'' command works with NOR flash, while
2313 the ``nand'' command works with NAND flash.
2314 This partially reflects different hardware technologies:
2315 NOR flash usually supports direct CPU instruction and data bus access,
2316 while data from a NAND flash must be copied to memory before it can be
2317 used. (SPI flash must also be copied to memory before use.)
2318 However, the documentation also uses ``flash'' as a generic term;
2319 for example, ``Put flash configuration in board-specific files''.
2320
2321 @quotation Note
2322 As of 28-nov-2008 OpenOCD does not know how to program a SPI
2323 flash that a micro may boot from. Perhaps you, the reader, would like to
2324 contribute support for this.
2325 @end quotation
2326
2327 Flash Steps:
2328 @enumerate
2329 @item Configure via the command @command{flash bank}
2330 @* Do this in a board-specific configuration file,
2331 passing parameters as needed by the driver.
2332 @item Operate on the flash via @command{flash subcommand}
2333 @* Often commands to manipulate the flash are typed by a human, or run
2334 via a script in some automated way. Common tasks include writing a
2335 boot loader, operating system, or other data.
2336 @item GDB Flashing
2337 @* Flashing via GDB requires the flash be configured via ``flash
2338 bank'', and the GDB flash features be enabled.
2339 @xref{GDB Configuration}.
2340 @end enumerate
2341
2342 Many CPUs have the ablity to ``boot'' from the first flash bank.
2343 This means that misprograming that bank can ``brick'' a system,
2344 so that it can't boot.
2345 JTAG tools, like OpenOCD, are often then used to ``de-brick'' the
2346 board by (re)installing working boot firmware.
2347
2348 @section Flash Configuration Commands
2349 @cindex flash configuration
2350
2351 @deffn {Config Command} {flash bank} driver base size chip_width bus_width target [driver_options]
2352 Configures a flash bank which provides persistent storage
2353 for addresses from @math{base} to @math{base + size - 1}.
2354 These banks will often be visible to GDB through the target's memory map.
2355 In some cases, configuring a flash bank will activate extra commands;
2356 see the driver-specific documentation.
2357
2358 @itemize @bullet
2359 @item @var{driver} ... identifies the controller driver
2360 associated with the flash bank being declared.
2361 This is usually @code{cfi} for external flash, or else
2362 the name of a microcontroller with embedded flash memory.
2363 @xref{Flash Driver List}.
2364 @item @var{base} ... Base address of the flash chip.
2365 @item @var{size} ... Size of the chip, in bytes.
2366 For some drivers, this value is detected from the hardware.
2367 @item @var{chip_width} ... Width of the flash chip, in bytes;
2368 ignored for most microcontroller drivers.
2369 @item @var{bus_width} ... Width of the data bus used to access the
2370 chip, in bytes; ignored for most microcontroller drivers.
2371 @item @var{target} ... Names the target used to issue
2372 commands to the flash controller.
2373 @comment Actually, it's currently a controller-specific parameter...
2374 @item @var{driver_options} ... drivers may support, or require,
2375 additional parameters. See the driver-specific documentation
2376 for more information.
2377 @end itemize
2378 @quotation Note
2379 This command is not available after OpenOCD initialization has completed.
2380 Use it in board specific configuration files, not interactively.
2381 @end quotation
2382 @end deffn
2383
2384 @comment the REAL name for this command is "ocd_flash_banks"
2385 @comment less confusing would be: "flash list" (like "nand list")
2386 @deffn Command {flash banks}
2387 Prints a one-line summary of each device declared
2388 using @command{flash bank}, numbered from zero.
2389 Note that this is the @emph{plural} form;
2390 the @emph{singular} form is a very different command.
2391 @end deffn
2392
2393 @deffn Command {flash probe} num
2394 Identify the flash, or validate the parameters of the configured flash. Operation
2395 depends on the flash type.
2396 The @var{num} parameter is a value shown by @command{flash banks}.
2397 Most flash commands will implicitly @emph{autoprobe} the bank;
2398 flash drivers can distinguish between probing and autoprobing,
2399 but most don't bother.
2400 @end deffn
2401
2402 @section Erasing, Reading, Writing to Flash
2403 @cindex flash erasing
2404 @cindex flash reading
2405 @cindex flash writing
2406 @cindex flash programming
2407
2408 One feature distinguishing NOR flash from NAND or serial flash technologies
2409 is that for read access, it acts exactly like any other addressible memory.
2410 This means you can use normal memory read commands like @command{mdw} or
2411 @command{dump_image} with it, with no special @command{flash} subcommands.
2412 @xref{Memory access}.
2413 @xref{Image access}.
2414
2415 Write access works differently. Flash memory normally needs to be erased
2416 before it's written. Erasing a sector turns all of its bits to ones, and
2417 writing can turn ones into zeroes. This is why there are special commands
2418 for interactive erasing and writing, and why GDB needs to know which parts
2419 of the address space hold NOR flash memory.
2420
2421 @quotation Note
2422 Most of these erase and write commands leverage the fact that NOR flash
2423 chips consume target address space. They implicitly refer to the current
2424 JTAG target, and map from an address in that target's address space
2425 back to a flash bank.
2426 @comment In May 2009, those mappings may fail if any bank associated
2427 @comment with that target doesn't succesfuly autoprobe ... bug worth fixing?
2428 A few commands use abstract addressing based on bank and sector numbers,
2429 and don't depend on searching the current target and its address space.
2430 Avoid confusing the two command models.
2431 @end quotation
2432
2433 Some flash chips implement software protection against accidental writes,
2434 since such buggy writes could in some cases ``brick'' a system.
2435 For such systems, erasing and writing may require sector protection to be
2436 disabled first.
2437 Examples include CFI flash such as ``Intel Advanced Bootblock flash'',
2438 and AT91SAM7 on-chip flash.
2439 @xref{flash protect}.
2440
2441 @anchor{flash erase_sector}
2442 @deffn Command {flash erase_sector} num first last
2443 Erase sectors in bank @var{num}, starting at sector @var{first} up to and including
2444 @var{last}. Sector numbering starts at 0.
2445 The @var{num} parameter is a value shown by @command{flash banks}.
2446 @end deffn
2447
2448 @deffn Command {flash erase_address} address length
2449 Erase sectors starting at @var{address} for @var{length} bytes.
2450 The flash bank to use is inferred from the @var{address}, and
2451 the specified length must stay within that bank.
2452 As a special case, when @var{length} is zero and @var{address} is
2453 the start of the bank, the whole flash is erased.
2454 @end deffn
2455
2456 @deffn Command {flash fillw} address word length
2457 @deffnx Command {flash fillh} address halfword length
2458 @deffnx Command {flash fillb} address byte length
2459 Fills flash memory with the specified @var{word} (32 bits),
2460 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
2461 starting at @var{address} and continuing
2462 for @var{length} units (word/halfword/byte).
2463 No erasure is done before writing; when needed, that must be done
2464 before issuing this command.
2465 Writes are done in blocks of up to 1024 bytes, and each write is
2466 verified by reading back the data and comparing it to what was written.
2467 The flash bank to use is inferred from the @var{address} of
2468 each block, and the specified length must stay within that bank.
2469 @end deffn
2470 @comment no current checks for errors if fill blocks touch multiple banks!
2471
2472 @anchor{flash write_bank}
2473 @deffn Command {flash write_bank} num filename offset
2474 Write the binary @file{filename} to flash bank @var{num},
2475 starting at @var{offset} bytes from the beginning of the bank.
2476 The @var{num} parameter is a value shown by @command{flash banks}.
2477 @end deffn
2478
2479 @anchor{flash write_image}
2480 @deffn Command {flash write_image} [erase] filename [offset] [type]
2481 Write the image @file{filename} to the current target's flash bank(s).
2482 A relocation @var{offset} may be specified, in which case it is added
2483 to the base address for each section in the image.
2484 The file [@var{type}] can be specified
2485 explicitly as @option{bin} (binary), @option{ihex} (Intel hex),
2486 @option{elf} (ELF file), @option{s19} (Motorola s19).
2487 @option{mem}, or @option{builder}.
2488 The relevant flash sectors will be erased prior to programming
2489 if the @option{erase} parameter is given.
2490 The flash bank to use is inferred from the @var{address} of
2491 each image segment.
2492 @end deffn
2493
2494 @section Other Flash commands
2495 @cindex flash protection
2496
2497 @deffn Command {flash erase_check} num
2498 Check erase state of sectors in flash bank @var{num},
2499 and display that status.
2500 The @var{num} parameter is a value shown by @command{flash banks}.
2501 This is the only operation that
2502 updates the erase state information displayed by @option{flash info}. That means you have
2503 to issue an @command{flash erase_check} command after erasing or programming the device
2504 to get updated information.
2505 (Code execution may have invalidated any state records kept by OpenOCD.)
2506 @end deffn
2507
2508 @deffn Command {flash info} num
2509 Print info about flash bank @var{num}
2510 The @var{num} parameter is a value shown by @command{flash banks}.
2511 The information includes per-sector protect status.
2512 @end deffn
2513
2514 @anchor{flash protect}
2515 @deffn Command {flash protect} num first last (on|off)
2516 Enable (@var{on}) or disable (@var{off}) protection of flash sectors
2517 @var{first} to @var{last} of flash bank @var{num}.
2518 The @var{num} parameter is a value shown by @command{flash banks}.
2519 @end deffn
2520
2521 @deffn Command {flash protect_check} num
2522 Check protection state of sectors in flash bank @var{num}.
2523 The @var{num} parameter is a value shown by @command{flash banks}.
2524 @comment @option{flash erase_sector} using the same syntax.
2525 @end deffn
2526
2527 @section Flash Drivers, Options, and Commands
2528 @anchor{Flash Driver List}
2529 As noted above, the @command{flash bank} command requires a driver name,
2530 and allows driver-specific options and behaviors.
2531 Some drivers also activate driver-specific commands.
2532
2533 @subsection External Flash
2534
2535 @deffn {Flash Driver} cfi
2536 @cindex Common Flash Interface
2537 @cindex CFI
2538 The ``Common Flash Interface'' (CFI) is the main standard for
2539 external NOR flash chips, each of which connects to a
2540 specific external chip select on the CPU.
2541 Frequently the first such chip is used to boot the system.
2542 Your board's @code{reset-init} handler might need to
2543 configure additional chip selects using other commands (like: @command{mww} to
2544 configure a bus and its timings) , or
2545 perhaps configure a GPIO pin that controls the ``write protect'' pin
2546 on the flash chip.
2547 The CFI driver can use a target-specific working area to significantly
2548 speed up operation.
2549
2550 The CFI driver can accept the following optional parameters, in any order:
2551
2552 @itemize
2553 @item @var{jedec_probe} ... is used to detect certain non-CFI flash ROMs,
2554 like AM29LV010 and similar types.
2555 @item @var{x16_as_x8} ...
2556 @end itemize
2557
2558 To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes)
2559 wide on a sixteen bit bus:
2560
2561 @example
2562 flash bank cfi 0x00000000 0x01000000 2 2 $_TARGETNAME
2563 flash bank cfi 0x01000000 0x01000000 2 2 $_TARGETNAME
2564 @end example
2565 @end deffn
2566
2567 @subsection Internal Flash (Microcontrollers)
2568
2569 @deffn {Flash Driver} aduc702x
2570 The ADUC702x analog microcontrollers from ST Micro
2571 include internal flash and use ARM7TDMI cores.
2572 The aduc702x flash driver works with models ADUC7019 through ADUC7028.
2573 The setup command only requires the @var{target} argument
2574 since all devices in this family have the same memory layout.
2575
2576 @example
2577 flash bank aduc702x 0 0 0 0 $_TARGETNAME
2578 @end example
2579 @end deffn
2580
2581 @deffn {Flash Driver} at91sam7
2582 All members of the AT91SAM7 microcontroller family from Atmel
2583 include internal flash and use ARM7TDMI cores.
2584 The driver automatically recognizes a number of these chips using
2585 the chip identification register, and autoconfigures itself.
2586
2587 @example
2588 flash bank at91sam7 0 0 0 0 $_TARGETNAME
2589 @end example
2590
2591 For chips which are not recognized by the controller driver, you must
2592 provide additional parameters in the following order:
2593
2594 @itemize
2595 @item @var{chip_model} ... label used with @command{flash info}
2596 @item @var{banks}
2597 @item @var{sectors_per_bank}
2598 @item @var{pages_per_sector}
2599 @item @var{pages_size}
2600 @item @var{num_nvm_bits}
2601 @item @var{freq_khz} ... required if an external clock is provided,
2602 optional (but recommended) when the oscillator frequency is known
2603 @end itemize
2604
2605 It is recommended that you provide zeroes for all of those values
2606 except the clock frequency, so that everything except that frequency
2607 will be autoconfigured.
2608 Knowing the frequency helps ensure correct timings for flash access.
2609
2610 The flash controller handles erases automatically on a page (128/256 byte)
2611 basis, so explicit erase commands are not necessary for flash programming.
2612 However, there is an ``EraseAll`` command that can erase an entire flash
2613 plane (of up to 256KB), and it will be used automatically when you issue
2614 @command{flash erase_sector} or @command{flash erase_address} commands.
2615
2616 @deffn Command {at91sam7 gpnvm} bitnum (set|clear)
2617 Set or clear a ``General Purpose Non-Volatle Memory'' (GPNVM)
2618 bit for the processor. Each processor has a number of such bits,
2619 used for controlling features such as brownout detection (so they
2620 are not truly general purpose).
2621 @quotation Note
2622 This assumes that the first flash bank (number 0) is associated with
2623 the appropriate at91sam7 target.
2624 @end quotation
2625 @end deffn
2626 @end deffn
2627
2628 @deffn {Flash Driver} avr
2629 The AVR 8-bit microcontrollers from Atmel integrate flash memory.
2630 @emph{The current implementation is incomplete.}
2631 @comment - defines mass_erase ... pointless given flash_erase_address
2632 @end deffn
2633
2634 @deffn {Flash Driver} ecosflash
2635 @emph{No idea what this is...}
2636 The @var{ecosflash} driver defines one mandatory parameter,
2637 the name of a modules of target code which is downloaded
2638 and executed.
2639 @end deffn
2640
2641 @deffn {Flash Driver} lpc2000
2642 Most members of the LPC2000 microcontroller family from NXP
2643 include internal flash and use ARM7TDMI cores.
2644 The @var{lpc2000} driver defines two mandatory and one optional parameters,
2645 which must appear in the following order:
2646
2647 @itemize
2648 @item @var{variant} ... required, may be
2649 @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2650 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx)
2651 @item @var{clock_kHz} ... the frequency, in kiloHertz,
2652 at which the core is running
2653 @item @var{calc_checksum} ... optional (but you probably want to provide this!),
2654 telling the driver to calculate a valid checksum for the exception vector table.
2655 @end itemize
2656
2657 LPC flashes don't require the chip and bus width to be specified.
2658
2659 @example
2660 flash bank lpc2000 0x0 0x7d000 0 0 $_TARGETNAME \
2661 lpc2000_v2 14765 calc_checksum
2662 @end example
2663 @end deffn
2664
2665 @deffn {Flash Driver} lpc288x
2666 The LPC2888 microcontroller from NXP needs slightly different flash
2667 support from its lpc2000 siblings.
2668 The @var{lpc288x} driver defines one mandatory parameter,
2669 the programming clock rate in Hz.
2670 LPC flashes don't require the chip and bus width to be specified.
2671
2672 @example
2673 flash bank lpc288x 0 0 0 0 $_TARGETNAME 12000000
2674 @end example
2675 @end deffn
2676
2677 @deffn {Flash Driver} ocl
2678 @emph{No idea what this is, other than using some arm7/arm9 core.}
2679
2680 @example
2681 flash bank ocl 0 0 0 0 $_TARGETNAME
2682 @end example
2683 @end deffn
2684
2685 @deffn {Flash Driver} pic32mx
2686 The PIC32MX microcontrollers are based on the MIPS 4K cores,
2687 and integrate flash memory.
2688 @emph{The current implementation is incomplete.}
2689
2690 @example
2691 flash bank pix32mx 0 0 0 0 $_TARGETNAME
2692 @end example
2693
2694 @comment numerous *disabled* commands are defined:
2695 @comment - chip_erase ... pointless given flash_erase_address
2696 @comment - lock, unlock ... pointless given protect on/off (yes?)
2697 @comment - pgm_word ... shouldn't bank be deduced from address??
2698 Some pic32mx-specific commands are defined:
2699 @deffn Command {pic32mx pgm_word} address value bank
2700 Programs the specified 32-bit @var{value} at the given @var{address}
2701 in the specified chip @var{bank}.
2702 @end deffn
2703 @end deffn
2704
2705 @deffn {Flash Driver} stellaris
2706 All members of the Stellaris LM3Sxxx microcontroller family from
2707 Texas Instruments
2708 include internal flash and use ARM Cortex M3 cores.
2709 The driver automatically recognizes a number of these chips using
2710 the chip identification register, and autoconfigures itself.
2711 @footnote{Currently there is a @command{stellaris mass_erase} command.
2712 That seems pointless since the same effect can be had using the
2713 standard @command{flash erase_address} command.}
2714
2715 @example
2716 flash bank stellaris 0 0 0 0 $_TARGETNAME
2717 @end example
2718 @end deffn
2719
2720 @deffn {Flash Driver} stm32x
2721 All members of the STM32 microcontroller family from ST Microelectronics
2722 include internal flash and use ARM Cortex M3 cores.
2723 The driver automatically recognizes a number of these chips using
2724 the chip identification register, and autoconfigures itself.
2725
2726 @example
2727 flash bank stm32x 0 0 0 0 $_TARGETNAME
2728 @end example
2729
2730 Some stm32x-specific commands
2731 @footnote{Currently there is a @command{stm32x mass_erase} command.
2732 That seems pointless since the same effect can be had using the
2733 standard @command{flash erase_address} command.}
2734 are defined:
2735
2736 @deffn Command {stm32x lock} num
2737 Locks the entire stm32 device.
2738 The @var{num} parameter is a value shown by @command{flash banks}.
2739 @end deffn
2740
2741 @deffn Command {stm32x unlock} num
2742 Unlocks the entire stm32 device.
2743 The @var{num} parameter is a value shown by @command{flash banks}.
2744 @end deffn
2745
2746 @deffn Command {stm32x options_read} num
2747 Read and display the stm32 option bytes written by
2748 the @command{stm32x options_write} command.
2749 The @var{num} parameter is a value shown by @command{flash banks}.
2750 @end deffn
2751
2752 @deffn Command {stm32x options_write} num (SWWDG|HWWDG) (RSTSTNDBY|NORSTSTNDBY) (RSTSTOP|NORSTSTOP)
2753 Writes the stm32 option byte with the specified values.
2754 The @var{num} parameter is a value shown by @command{flash banks}.
2755 @end deffn
2756 @end deffn
2757
2758 @deffn {Flash Driver} str7x
2759 All members of the STR7 microcontroller family from ST Microelectronics
2760 include internal flash and use ARM7TDMI cores.
2761 The @var{str7x} driver defines one mandatory parameter, @var{variant},
2762 which is either @code{STR71x}, @code{STR73x} or @code{STR75x}.
2763
2764 @example
2765 flash bank str7x 0x40000000 0x00040000 0 0 $_TARGETNAME STR71x
2766 @end example
2767 @end deffn
2768
2769 @deffn {Flash Driver} str9x
2770 Most members of the STR9 microcontroller family from ST Microelectronics
2771 include internal flash and use ARM966E cores.
2772 The str9 needs the flash controller to be configured using
2773 the @command{str9x flash_config} command prior to Flash programming.
2774
2775 @example
2776 flash bank str9x 0x40000000 0x00040000 0 0 $_TARGETNAME
2777 str9x flash_config 0 4 2 0 0x80000
2778 @end example
2779
2780 @deffn Command {str9x flash_config} num bbsr nbbsr bbadr nbbadr
2781 Configures the str9 flash controller.
2782 The @var{num} parameter is a value shown by @command{flash banks}.
2783
2784 @itemize @bullet
2785 @item @var{bbsr} - Boot Bank Size register
2786 @item @var{nbbsr} - Non Boot Bank Size register
2787 @item @var{bbadr} - Boot Bank Start Address register
2788 @item @var{nbbadr} - Boot Bank Start Address register
2789 @end itemize
2790 @end deffn
2791
2792 @end deffn
2793
2794 @deffn {Flash Driver} tms470
2795 Most members of the TMS470 microcontroller family from Texas Instruments
2796 include internal flash and use ARM7TDMI cores.
2797 This driver doesn't require the chip and bus width to be specified.
2798
2799 Some tms470-specific commands are defined:
2800
2801 @deffn Command {tms470 flash_keyset} key0 key1 key2 key3
2802 Saves programming keys in a register, to enable flash erase and write commands.
2803 @end deffn
2804
2805 @deffn Command {tms470 osc_mhz} clock_mhz
2806 Reports the clock speed, which is used to calculate timings.
2807 @end deffn
2808
2809 @deffn Command {tms470 plldis} (0|1)
2810 Disables (@var{1}) or enables (@var{0}) use of the PLL to speed up
2811 the flash clock.
2812 @end deffn
2813 @end deffn
2814
2815 @subsection str9xpec driver
2816 @cindex str9xpec
2817
2818 Here is some background info to help
2819 you better understand how this driver works. OpenOCD has two flash drivers for
2820 the str9:
2821 @enumerate
2822 @item
2823 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2824 flash programming as it is faster than the @option{str9xpec} driver.
2825 @item
2826 Direct programming @option{str9xpec} using the flash controller. This is an
2827 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2828 core does not need to be running to program using this flash driver. Typical use
2829 for this driver is locking/unlocking the target and programming the option bytes.
2830 @end enumerate
2831
2832 Before we run any commands using the @option{str9xpec} driver we must first disable
2833 the str9 core. This example assumes the @option{str9xpec} driver has been
2834 configured for flash bank 0.
2835 @example
2836 # assert srst, we do not want core running
2837 # while accessing str9xpec flash driver
2838 jtag_reset 0 1
2839 # turn off target polling
2840 poll off
2841 # disable str9 core
2842 str9xpec enable_turbo 0
2843 # read option bytes
2844 str9xpec options_read 0
2845 # re-enable str9 core
2846 str9xpec disable_turbo 0
2847 poll on
2848 reset halt
2849 @end example
2850 The above example will read the str9 option bytes.
2851 When performing a unlock remember that you will not be able to halt the str9 - it
2852 has been locked. Halting the core is not required for the @option{str9xpec} driver
2853 as mentioned above, just issue the commands above manually or from a telnet prompt.
2854
2855 @subsubsection str9xpec driver options
2856
2857 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target}>
2858 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2859 @option{enable_turbo} <@var{num>.}
2860
2861 Only use this driver for locking/unlocking the device or configuring the option bytes.
2862 Use the standard str9 driver for programming.
2863
2864 @subsubsection str9xpec specific commands
2865 @cindex str9xpec specific commands
2866 These are flash specific commands when using the str9xpec driver.
2867
2868 @itemize @bullet
2869 @item @b{str9xpec enable_turbo} <@var{num}>
2870 @cindex str9xpec enable_turbo
2871 @*enable turbo mode, will simply remove the str9 from the chain and talk
2872 directly to the embedded flash controller.
2873 @item @b{str9xpec disable_turbo} <@var{num}>
2874 @cindex str9xpec disable_turbo
2875 @*restore the str9 into JTAG chain.
2876 @item @b{str9xpec lock} <@var{num}>
2877 @cindex str9xpec lock
2878 @*lock str9 device. The str9 will only respond to an unlock command that will
2879 erase the device.
2880 @item @b{str9xpec unlock} <@var{num}>
2881 @cindex str9xpec unlock
2882 @*unlock str9 device.
2883 @item @b{str9xpec options_read} <@var{num}>
2884 @cindex str9xpec options_read
2885 @*read str9 option bytes.
2886 @item @b{str9xpec options_write} <@var{num}>
2887 @cindex str9xpec options_write
2888 @*write str9 option bytes.
2889 @end itemize
2890
2891 @subsubsection STR9 option byte configuration
2892 @cindex STR9 option byte configuration
2893
2894 @itemize @bullet
2895 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2896 @cindex str9xpec options_cmap
2897 @*configure str9 boot bank.
2898 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2899 @cindex str9xpec options_lvdthd
2900 @*configure str9 lvd threshold.
2901 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2902 @cindex str9xpec options_lvdsel
2903 @*configure str9 lvd source.
2904 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2905 @cindex str9xpec options_lvdwarn
2906 @*configure str9 lvd reset warning source.
2907 @end itemize
2908
2909 @section mFlash
2910
2911 @subsection mFlash Configuration
2912 @cindex mFlash Configuration
2913 @b{mflash bank} <@var{soc}> <@var{base}> <@var{RST pin}> <@var{target}>
2914 @cindex mflash bank
2915 @*Configures a mflash for <@var{soc}> host bank at
2916 <@var{base}>. Pin number format is dependent on host GPIO calling convention.
2917 Currently, mflash bank support s3c2440 and pxa270.
2918
2919 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1.
2920
2921 @example
2922 mflash bank s3c2440 0x10000000 1b 0
2923 @end example
2924
2925 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43.
2926
2927 @example
2928 mflash bank pxa270 0x08000000 43 0
2929 @end example
2930
2931 @subsection mFlash commands
2932 @cindex mFlash commands
2933
2934 @itemize @bullet
2935 @item @b{mflash probe}
2936 @cindex mflash probe
2937 @*Probe mflash.
2938 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2939 @cindex mflash write
2940 @*Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2941 <@var{offset}> bytes from the beginning of the bank.
2942 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2943 @cindex mflash dump
2944 @*Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2945 to a <@var{file}>.
2946 @item @b{mflash config pll} <@var{frequency}>
2947 @cindex mflash config pll
2948 @*Configure mflash pll. <@var{frequency}> is input frequency of mflash. The order is Hz.
2949 Issuing this command will erase mflash's whole internal nand and write new pll.
2950 After this command, mflash needs power-on-reset for normal operation.
2951 If pll was newly configured, storage and boot(optional) info also need to be update.
2952 @item @b{mflash config boot}
2953 @cindex mflash config boot
2954 @*Configure bootable option. If bootable option is set, mflash offer the first 8 sectors
2955 (4kB) for boot.
2956 @item @b{mflash config storage}
2957 @cindex mflash config storage
2958 @*Configure storage information. For the normal storage operation, this information must be
2959 written.
2960 @end itemize
2961
2962 @node NAND Flash Commands
2963 @chapter NAND Flash Commands
2964 @cindex NAND
2965
2966 Compared to NOR or SPI flash, NAND devices are inexpensive
2967 and high density. Today's NAND chips, and multi-chip modules,
2968 commonly hold multiple GigaBytes of data.
2969
2970 NAND chips consist of a number of ``erase blocks'' of a given
2971 size (such as 128 KBytes), each of which is divided into a
2972 number of pages (of perhaps 512 or 2048 bytes each). Each
2973 page of a NAND flash has an ``out of band'' (OOB) area to hold
2974 Error Correcting Code (ECC) and other metadata, usually 16 bytes
2975 of OOB for every 512 bytes of page data.
2976
2977 One key characteristic of NAND flash is that its error rate
2978 is higher than that of NOR flash. In normal operation, that
2979 ECC is used to correct and detect errors. However, NAND
2980 blocks can also wear out and become unusable; those blocks
2981 are then marked "bad". NAND chips are even shipped from the
2982 manufacturer with a few bad blocks. The highest density chips
2983 use a technology (MLC) that wears out more quickly, so ECC
2984 support is increasingly important as a way to detect blocks
2985 that have begun to fail, and help to preserve data integrity
2986 with techniques such as wear leveling.
2987
2988 Software is used to manage the ECC. Some controllers don't
2989 support ECC directly; in those cases, software ECC is used.
2990 Other controllers speed up the ECC calculations with hardware.
2991 Single-bit error correction hardware is routine. Controllers
2992 geared for newer MLC chips may correct 4 or more errors for
2993 every 512 bytes of data.
2994
2995 You will need to make sure that any data you write using
2996 OpenOCD includes the apppropriate kind of ECC. For example,
2997 that may mean passing the @code{oob_softecc} flag when
2998 writing NAND data, or ensuring that the correct hardware
2999 ECC mode is used.
3000
3001 The basic steps for using NAND devices include:
3002 @enumerate
3003 @item Declare via the command @command{nand device}
3004 @* Do this in a board-specific configuration file,
3005 passing parameters as needed by the controller.
3006 @item Configure each device using @command{nand probe}.
3007 @* Do this only after the associated target is set up,
3008 such as in its reset-init script or in procures defined
3009 to access that device.
3010 @item Operate on the flash via @command{nand subcommand}
3011 @* Often commands to manipulate the flash are typed by a human, or run
3012 via a script in some automated way. Common task include writing a
3013 boot loader, operating system, or other data needed to initialize or
3014 de-brick a board.
3015 @end enumerate
3016
3017 @b{NOTE:} At the time this text was written, the largest NAND
3018 flash fully supported by OpenOCD is 2 GiBytes (16 GiBits).
3019 This is because the variables used to hold offsets and lengths
3020 are only 32 bits wide.
3021 (Larger chips may work in some cases, unless an offset or length
3022 is larger than 0xffffffff, the largest 32-bit unsigned integer.)
3023 Some larger devices will work, since they are actually multi-chip
3024 modules with two smaller chips and individual chipselect lines.
3025
3026 @section NAND Configuration Commands
3027 @cindex NAND configuration
3028
3029 NAND chips must be declared in configuration scripts,
3030 plus some additional configuration that's done after
3031 OpenOCD has initialized.
3032
3033 @deffn {Config Command} {nand device} controller target [configparams...]
3034 Declares a NAND device, which can be read and written to
3035 after it has been configured through @command{nand probe}.
3036 In OpenOCD, devices are single chips; this is unlike some
3037 operating systems, which may manage multiple chips as if
3038 they were a single (larger) device.
3039 In some cases, configuring a device will activate extra
3040 commands; see the controller-specific documentation.
3041
3042 @b{NOTE:} This command is not available after OpenOCD
3043 initialization has completed. Use it in board specific
3044 configuration files, not interactively.
3045
3046 @itemize @bullet
3047 @item @var{controller} ... identifies the controller driver
3048 associated with the NAND device being declared.
3049 @xref{NAND Driver List}.
3050 @item @var{target} ... names the target used when issuing
3051 commands to the NAND controller.
3052 @comment Actually, it's currently a controller-specific parameter...
3053 @item @var{configparams} ... controllers may support, or require,
3054 additional parameters. See the controller-specific documentation
3055 for more information.
3056 @end itemize
3057 @end deffn
3058
3059 @deffn Command {nand list}
3060 Prints a one-line summary of each device declared
3061 using @command{nand device}, numbered from zero.
3062 Note that un-probed devices show no details.
3063 @end deffn
3064
3065 @deffn Command {nand probe} num
3066 Probes the specified device to determine key characteristics
3067 like its page and block sizes, and how many blocks it has.
3068 The @var{num} parameter is the value shown by @command{nand list}.
3069 You must (successfully) probe a device before you can use
3070 it with most other NAND commands.
3071 @end deffn
3072
3073 @section Erasing, Reading, Writing to NAND Flash
3074
3075 @deffn Command {nand dump} num filename offset length [oob_option]
3076 @cindex NAND reading
3077 Reads binary data from the NAND device and writes it to the file,
3078 starting at the specified offset.
3079 The @var{num} parameter is the value shown by @command{nand list}.
3080
3081 Use a complete path name for @var{filename}, so you don't depend
3082 on the directory used to start the OpenOCD server.
3083
3084 The @var{offset} and @var{length} must be exact multiples of the
3085 device's page size. They describe a data region; the OOB data
3086 associated with each such page may also be accessed.
3087
3088 @b{NOTE:} At the time this text was written, no error correction
3089 was done on the data that's read, unless raw access was disabled
3090 and the underlying NAND controller driver had a @code{read_page}
3091 method which handled that error correction.
3092
3093 By default, only page data is saved to the specified file.
3094 Use an @var{oob_option} parameter to save OOB data:
3095 @itemize @bullet
3096 @item no oob_* parameter
3097 @*Output file holds only page data; OOB is discarded.
3098 @item @code{oob_raw}
3099 @*Output file interleaves page data and OOB data;
3100 the file will be longer than "length" by the size of the
3101 spare areas associated with each data page.
3102 Note that this kind of "raw" access is different from
3103 what's implied by @command{nand raw_access}, which just
3104 controls whether a hardware-aware access method is used.
3105 @item @code{oob_only}
3106 @*Output file has only raw OOB data, and will
3107 be smaller than "length" since it will contain only the
3108 spare areas associated with each data page.
3109 @end itemize
3110 @end deffn
3111
3112 @deffn Command {nand erase} num offset length
3113 @cindex NAND erasing
3114 @cindex NAND programming
3115 Erases blocks on the specified NAND device, starting at the
3116 specified @var{offset} and continuing for @var{length} bytes.
3117 Both of those values must be exact multiples of the device's
3118 block size, and the region they specify must fit entirely in the chip.
3119 The @var{num} parameter is the value shown by @command{nand list}.
3120
3121 @b{NOTE:} This command will try to erase bad blocks, when told
3122 to do so, which will probably invalidate the manufacturer's bad
3123 block marker.
3124 For the remainder of the current server session, @command{nand info}
3125 will still report that the block ``is'' bad.
3126 @end deffn
3127
3128 @deffn Command {nand write} num filename offset [option...]
3129 @cindex NAND writing
3130 @cindex NAND programming
3131 Writes binary data from the file into the specified NAND device,
3132 starting at the specified offset. Those pages should already
3133 have been erased; you can't change zero bits to one bits.
3134 The @var{num} parameter is the value shown by @command{nand list}.
3135
3136 Use a complete path name for @var{filename}, so you don't depend
3137 on the directory used to start the OpenOCD server.
3138
3139 The @var{offset} must be an exact multiple of the device's page size.
3140 All data in the file will be written, assuming it doesn't run
3141 past the end of the device.
3142 Only full pages are written, and any extra space in the last
3143 page will be filled with 0xff bytes. (That includes OOB data,
3144 if that's being written.)
3145
3146 @b{NOTE:} At the time this text was written, bad blocks are
3147 ignored. That is, this routine will not skip bad blocks,
3148 but will instead try to write them. This can cause problems.
3149
3150 Provide at most one @var{option} parameter. With some
3151 NAND drivers, the meanings of these parameters may change
3152 if @command{nand raw_access} was used to disable hardware ECC.
3153 @itemize @bullet
3154 @item no oob_* parameter
3155 @*File has only page data, which is written.
3156 If raw acccess is in use, the OOB area will not be written.
3157 Otherwise, if the underlying NAND controller driver has
3158 a @code{write_page} routine, that routine may write the OOB
3159 with hardware-computed ECC data.
3160 @item @code{oob_only}
3161 @*File has only raw OOB data, which is written to the OOB area.
3162 Each page's data area stays untouched. @i{This can be a dangerous
3163 option}, since it can invalidate the ECC data.
3164 You may need to force raw access to use this mode.
3165 @item @code{oob_raw}
3166 @*File interleaves data and OOB data, both of which are written
3167 If raw access is enabled, the data is written first, then the
3168 un-altered OOB.
3169 Otherwise, if the underlying NAND controller driver has
3170 a @code{write_page} routine, that routine may modify the OOB
3171 before it's written, to include hardware-computed ECC data.
3172 @item @code{oob_softecc}
3173 @*File has only page data, which is written.
3174 The OOB area is filled with 0xff, except for a standard 1-bit
3175 software ECC code stored in conventional locations.
3176 You might need to force raw access to use this mode, to prevent
3177 the underlying driver from applying hardware ECC.
3178 @item @code{oob_softecc_kw}
3179 @*File has only page data, which is written.
3180 The OOB area is filled with 0xff, except for a 4-bit software ECC
3181 specific to the boot ROM in Marvell Kirkwood SoCs.
3182 You might need to force raw access to use this mode, to prevent
3183 the underlying driver from applying hardware ECC.
3184 @end itemize
3185 @end deffn
3186
3187 @section Other NAND commands
3188 @cindex NAND other commands
3189
3190 @deffn Command {nand check_bad_blocks} [offset length]
3191 Checks for manufacturer bad block markers on the specified NAND
3192 device. If no parameters are provided, checks the whole
3193 device; otherwise, starts at the specified @var{offset} and
3194 continues for @var{length} bytes.
3195 Both of those values must be exact multiples of the device's
3196 block size, and the region they specify must fit entirely in the chip.
3197 The @var{num} parameter is the value shown by @command{nand list}.
3198
3199 @b{NOTE:} Before using this command you should force raw access
3200 with @command{nand raw_access enable} to ensure that the underlying
3201 driver will not try to apply hardware ECC.
3202 @end deffn
3203
3204 @deffn Command {nand info} num
3205 The @var{num} parameter is the value shown by @command{nand list}.
3206 This prints the one-line summary from "nand list", plus for
3207 devices which have been probed this also prints any known
3208 status for each block.
3209 @end deffn
3210
3211 @deffn Command {nand raw_access} num <enable|disable>
3212 Sets or clears an flag affecting how page I/O is done.
3213 The @var{num} parameter is the value shown by @command{nand list}.
3214
3215 This flag is cleared (disabled) by default, but changing that
3216 value won't affect all NAND devices. The key factor is whether
3217 the underlying driver provides @code{read_page} or @code{write_page}
3218 methods. If it doesn't provide those methods, the setting of
3219 this flag is irrelevant; all access is effectively ``raw''.
3220
3221 When those methods exist, they are normally used when reading
3222 data (@command{nand dump} or reading bad block markers) or
3223 writing it (@command{nand write}). However, enabling
3224 raw access (setting the flag) prevents use of those methods,
3225 bypassing hardware ECC logic.
3226 @i{This can be a dangerous option}, since writing blocks
3227 with the wrong ECC data can cause them to be marked as bad.
3228 @end deffn
3229
3230 @section NAND Drivers, Options, and Commands
3231 @anchor{NAND Driver List}
3232 As noted above, the @command{nand device} command allows
3233 driver-specific options and behaviors.
3234 Some controllers also activate controller-specific commands.
3235
3236 @deffn {NAND Driver} davinci
3237 This driver handles the NAND controllers found on DaVinci family
3238 chips from Texas Instruments.
3239 It takes three extra parameters:
3240 address of the NAND chip;
3241 hardware ECC mode to use (hwecc1, hwecc4, hwecc4_infix);
3242 address of the AEMIF controller on this processor.
3243 @example
3244 nand device davinci dm355.arm 0x02000000 hwecc4 0x01e10000
3245 @end example
3246 All DaVinci processors support the single-bit ECC hardware,
3247 and newer ones also support the four-bit ECC hardware.
3248 The @code{write_page} and @code{read_page} methods are used
3249 to implement those ECC modes, unless they are disabled using
3250 the @command{nand raw_access} command.
3251 @end deffn
3252
3253 @deffn {NAND Driver} lpc3180
3254 These controllers require an extra @command{nand device}
3255 parameter: the clock rate used by the controller.
3256 @deffn Command {lpc3180 select} num [mlc|slc]
3257 Configures use of the MLC or SLC controller mode.
3258 MLC implies use of hardware ECC.
3259 The @var{num} parameter is the value shown by @command{nand list}.
3260 @end deffn
3261
3262 At this writing, this driver includes @code{write_page}
3263 and @code{read_page} methods. Using @command{nand raw_access}
3264 to disable those methods will prevent use of hardware ECC
3265 in the MLC controller mode, but won't change SLC behavior.
3266 @end deffn
3267 @comment current lpc3180 code won't issue 5-byte address cycles
3268
3269 @deffn {NAND Driver} orion
3270 These controllers require an extra @command{nand device}
3271 parameter: the address of the controller.
3272 @example
3273 nand device orion 0xd8000000
3274 @end example
3275 These controllers don't define any specialized commands.
3276 At this writing, their drivers don't include @code{write_page}
3277 or @code{read_page} methods, so @command{nand raw_access} won't
3278 change any behavior.
3279 @end deffn
3280
3281 @deffn {NAND Driver} s3c2410
3282 @deffnx {NAND Driver} s3c2412
3283 @deffnx {NAND Driver} s3c2440
3284 @deffnx {NAND Driver} s3c2443
3285 These S3C24xx family controllers don't have any special
3286 @command{nand device} options, and don't define any
3287 specialized commands.
3288 At this writing, their drivers don't include @code{write_page}
3289 or @code{read_page} methods, so @command{nand raw_access} won't
3290 change any behavior.
3291 @end deffn
3292
3293 @node General Commands
3294 @chapter General Commands
3295 @cindex commands
3296
3297 The commands documented in this chapter here are common commands that
3298 you, as a human, may want to type and see the output of. Configuration type
3299 commands are documented elsewhere.
3300
3301 Intent:
3302 @itemize @bullet
3303 @item @b{Source Of Commands}
3304 @* OpenOCD commands can occur in a configuration script (discussed
3305 elsewhere) or typed manually by a human or supplied programatically,
3306 or via one of several TCP/IP Ports.
3307
3308 @item @b{From the human}
3309 @* A human should interact with the telnet interface (default port: 4444)
3310 or via GDB (default port 3333).
3311
3312 To issue commands from within a GDB session, use the @option{monitor}
3313 command, e.g. use @option{monitor poll} to issue the @option{poll}
3314 command. All output is relayed through the GDB session.
3315
3316 @item @b{Machine Interface}
3317 The Tcl interface's intent is to be a machine interface. The default Tcl
3318 port is 5555.
3319 @end itemize
3320
3321
3322 @section Daemon Commands
3323
3324 @subsection sleep [@var{msec}]
3325 @cindex sleep
3326 @*Wait for n milliseconds before resuming. Useful in connection with script files
3327 (@var{script} command and @var{target_script} configuration).
3328
3329 @subsection shutdown
3330 @cindex shutdown
3331 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
3332
3333 @subsection debug_level [@var{n}]
3334 @cindex debug_level
3335 @anchor{debug_level}
3336 @*Display or adjust debug level to n<0-3>
3337
3338 @subsection fast [@var{enable|disable}]
3339 @cindex fast
3340 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
3341 downloads and fast memory access will work if the JTAG interface isn't too fast and
3342 the core doesn't run at a too low frequency. Note that this option only changes the default
3343 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
3344 individually.
3345
3346 The target specific "dangerous" optimisation tweaking options may come and go
3347 as more robust and user friendly ways are found to ensure maximum throughput
3348 and robustness with a minimum of configuration.
3349
3350 Typically the "fast enable" is specified first on the command line:
3351
3352 @example
3353 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
3354 @end example
3355
3356 @subsection echo <@var{message}>
3357 @cindex echo
3358 @*Output message to stdio. e.g. echo "Programming - please wait"
3359
3360 @subsection log_output <@var{file}>
3361 @cindex log_output
3362 @*Redirect logging to <file> (default: stderr)
3363
3364 @subsection script <@var{file}>
3365 @cindex script
3366 @*Execute commands from <file>
3367 See also: ``source [find FILENAME]''
3368
3369 @section Target state handling
3370 @subsection power <@var{on}|@var{off}>
3371 @cindex reg
3372 @*Turn power switch to target on/off.
3373 No arguments: print status.
3374 Not all interfaces support this.
3375
3376 @subsection reg [@option{#}|@option{name}] [value]
3377 @cindex reg
3378 @*Access a single register by its number[@option{#}] or by its [@option{name}].
3379 No arguments: list all available registers for the current target.
3380 Number or name argument: display a register.
3381 Number or name and value arguments: set register value.
3382
3383 @subsection poll [@option{on}|@option{off}]
3384 @cindex poll
3385 @*Poll the target for its current state. If the target is in debug mode, architecture
3386 specific information about the current state is printed. An optional parameter
3387 allows continuous polling to be enabled and disabled.
3388
3389 @subsection halt [@option{ms}]
3390 @cindex halt
3391 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
3392 Default [@option{ms}] is 5 seconds if no arg given.
3393 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
3394 will stop OpenOCD from waiting.
3395
3396 @subsection wait_halt [@option{ms}]
3397 @cindex wait_halt
3398 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
3399 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
3400 arg is given.
3401
3402 @subsection resume [@var{address}]
3403 @cindex resume
3404 @*Resume the target at its current code position, or at an optional address.
3405 OpenOCD will wait 5 seconds for the target to resume.
3406
3407 @subsection step [@var{address}]
3408 @cindex step
3409 @*Single-step the target at its current code position, or at an optional address.
3410
3411 @anchor{Reset Command}
3412 @subsection reset [@option{run}|@option{halt}|@option{init}]
3413 @cindex reset
3414 @*Perform a hard-reset. The optional parameter specifies what should
3415 happen after the reset.
3416 If there is no parameter, a @command{reset run} is executed.
3417 The other options will not work on all systems.
3418 @xref{Reset Configuration}.
3419 @itemize @minus
3420 @item @b{run}
3421 @cindex reset run
3422 @*Let the target run.
3423 @item @b{halt}
3424 @cindex reset halt
3425 @*Immediately halt the target (works only with certain configurations).
3426 @item @b{init}
3427 @cindex reset init
3428 @*Immediately halt the target, and execute the reset script (works only with certain
3429 configurations)
3430 @end itemize
3431
3432 @subsection soft_reset_halt
3433 @cindex reset
3434 @*Requesting target halt and executing a soft reset. This is often used
3435 when a target cannot be reset and halted. The target, after reset is
3436 released begins to execute code. OpenOCD attempts to stop the CPU and
3437 then sets the program counter back to the reset vector. Unfortunately
3438 the code that was executed may have left the hardware in an unknown
3439 state.
3440
3441
3442 @section Memory access commands
3443 @anchor{Memory access}
3444 @subsection meminfo
3445 display available RAM memory.
3446 @subsection Memory peek/poke type commands
3447 These commands allow accesses of a specific size to the memory
3448 system. Often these are used to configure the current target in some
3449 special way. For example - one may need to write certian values to the
3450 SDRAM controller to enable SDRAM.
3451
3452 @enumerate
3453 @item To change the current target see the ``targets'' (plural) command
3454 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
3455 @end enumerate
3456
3457 @itemize @bullet
3458 @item @b{mdw} <@var{addr}> [@var{count}]
3459 @cindex mdw
3460 @*display memory words (32bit)
3461 @item @b{mdh} <@var{addr}> [@var{count}]
3462 @cindex mdh
3463 @*display memory half-words (16bit)
3464 @item @b{mdb} <@var{addr}> [@var{count}]
3465 @cindex mdb
3466 @*display memory bytes (8bit)
3467 @item @b{mww} <@var{addr}> <@var{value}>
3468 @cindex mww
3469 @*write memory word (32bit)
3470 @item @b{mwh} <@var{addr}> <@var{value}>
3471 @cindex mwh
3472 @*write memory half-word (16bit)
3473 @item @b{mwb} <@var{addr}> <@var{value}>
3474 @cindex mwb
3475 @*write memory byte (8bit)
3476 @end itemize
3477
3478 @section Image loading commands
3479 @anchor{Image access}
3480 @subsection load_image
3481 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3482 @cindex load_image
3483 @anchor{load_image}
3484 @*Load image <@var{file}> to target memory at <@var{address}>
3485 @subsection fast_load_image
3486 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3487 @cindex fast_load_image
3488 @anchor{fast_load_image}
3489 @*Normally you should be using @b{load_image} or GDB load. However, for
3490 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
3491 host), storing the image in memory and uploading the image to the target
3492 can be a way to upload e.g. multiple debug sessions when the binary does not change.
3493 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
3494 memory, i.e. does not affect target. This approach is also useful when profiling
3495 target programming performance as I/O and target programming can easily be profiled
3496 separately.
3497 @subsection fast_load
3498 @b{fast_load}
3499 @cindex fast_image
3500 @anchor{fast_image}
3501 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
3502 @subsection dump_image
3503 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
3504 @cindex dump_image
3505 @anchor{dump_image}
3506 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
3507 (binary) <@var{file}>.
3508 @subsection verify_image
3509 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
3510 @cindex verify_image
3511 @*Verify <@var{file}> against target memory starting at <@var{address}>.
3512 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
3513
3514
3515 @section Breakpoint commands
3516 @cindex Breakpoint commands
3517 @itemize @bullet
3518 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
3519 @cindex bp
3520 @*set breakpoint <address> <length> [hw]
3521 @item @b{rbp} <@var{addr}>
3522 @cindex rbp
3523 @*remove breakpoint <adress>
3524 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
3525 @cindex wp
3526 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
3527 @item @b{rwp} <@var{addr}>
3528 @cindex rwp
3529 @*remove watchpoint <adress>
3530 @end itemize
3531
3532 @section Misc Commands
3533 @cindex Other Target Commands
3534 @itemize
3535 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
3536
3537 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
3538
3539 @end itemize
3540
3541 @section Architecture and Core Specific Commands
3542 @cindex Architecture Specific Commands
3543 @cindex Core Specific Commands
3544
3545 Most CPUs have specialized JTAG operations to support debugging.
3546 OpenOCD packages most such operations in its standard command framework.
3547 Some of those operations don't fit well in that framework, so they are
3548 exposed here using architecture or implementation specific commands.
3549
3550 @subsection ARMv4 and ARMv5 Architecture
3551 @cindex ARMv4 specific commands
3552 @cindex ARMv5 specific commands
3553
3554 These commands are specific to ARM architecture v4 and v5,
3555 including all ARM7 or ARM9 systems and Intel XScale.
3556 They are available in addition to other core-specific
3557 commands that may be available.
3558
3559 @deffn Command {armv4_5 core_state} [arm|thumb]
3560 Displays the core_state, optionally changing it to process
3561 either @option{arm} or @option{thumb} instructions.
3562 The target may later be resumed in the currently set core_state.
3563 (Processors may also support the Jazelle state, but
3564 that is not currently supported in OpenOCD.)
3565 @end deffn
3566
3567 @deffn Command {armv4_5 disassemble} address count [thumb]
3568 @cindex disassemble
3569 Disassembles @var{count} instructions starting at @var{address}.
3570 If @option{thumb} is specified, Thumb (16-bit) instructions are used;
3571 else ARM (32-bit) instructions are used.
3572 (Processors may also support the Jazelle state, but
3573 those instructions are not currently understood by OpenOCD.)
3574 @end deffn
3575
3576 @deffn Command {armv4_5 reg}
3577 Display a list of all banked core registers, fetching the current value from every
3578 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
3579 register value.
3580 @end deffn
3581
3582 @subsubsection ARM7 and ARM9 specific commands
3583 @cindex ARM7 specific commands
3584 @cindex ARM9 specific commands
3585
3586 These commands are specific to ARM7 and ARM9 cores, like ARM7TDMI, ARM720T,
3587 ARM9TDMI, ARM920T or ARM926EJ-S.
3588 They are available in addition to the ARMv4/5 commands,
3589 and any other core-specific commands that may be available.
3590
3591 @deffn Command {arm7_9 dbgrq} (enable|disable)
3592 Control use of the EmbeddedIce DBGRQ signal to force entry into debug mode,
3593 instead of breakpoints. This should be
3594 safe for all but ARM7TDMI--S cores (like Philips LPC).
3595 @end deffn
3596
3597 @deffn Command {arm7_9 dcc_downloads} (enable|disable)
3598 @cindex DCC
3599 Control the use of the debug communications channel (DCC) to write larger (>128 byte)
3600 amounts of memory. DCC downloads offer a huge speed increase, but might be
3601 unsafe, especially with targets running at very low speeds. This command was introduced
3602 with OpenOCD rev. 60, and requires a few bytes of working area.
3603 @end deffn
3604
3605 @anchor{arm7_9 fast_memory_access}
3606 @deffn Command {arm7_9 fast_memory_access} (enable|disable)
3607 Enable or disable memory writes and reads that don't check completion of
3608 the operation. This provides a huge speed increase, especially with USB JTAG
3609 cables (FT2232), but might be unsafe if used with targets running at very low
3610 speeds, like the 32kHz startup clock of an AT91RM9200.
3611 @end deffn
3612
3613 @deffn {Debug Command} {arm7_9 write_core_reg} num mode word
3614 @emph{This is intended for use while debugging OpenOCD; you probably
3615 shouldn't use it.}
3616
3617 Writes a 32-bit @var{word} to register @var{num} (from 0 to 16)
3618 as used in the specified @var{mode}
3619 (where e.g. mode 16 is "user" and mode 19 is "supervisor";
3620 the M4..M0 bits of the PSR).
3621 Registers 0..15 are the normal CPU registers such as r0(0), r1(1) ... pc(15).
3622 Register 16 is the mode-specific SPSR,
3623 unless the specified mode is 0xffffffff (32-bit all-ones)
3624 in which case register 16 is the CPSR.
3625 The write goes directly to the CPU, bypassing the register cache.
3626 @end deffn
3627
3628 @deffn {Debug Command} {arm7_9 write_xpsr} word (0|1)
3629 @emph{This is intended for use while debugging OpenOCD; you probably
3630 shouldn't use it.}
3631
3632 If the second parameter is zero, writes @var{word} to the
3633 Current Program Status register (CPSR).
3634 Else writes @var{word} to the current mode's Saved PSR (SPSR).
3635 In both cases, this bypasses the register cache.
3636 @end deffn
3637
3638 @deffn {Debug Command} {arm7_9 write_xpsr_im8} byte rotate (0|1)
3639 @emph{This is intended for use while debugging OpenOCD; you probably
3640 shouldn't use it.}
3641
3642 Writes eight bits to the CPSR or SPSR,
3643 first rotating them by @math{2*rotate} bits,
3644 and bypassing the register cache.
3645 This has lower JTAG overhead than writing the entire CPSR or SPSR
3646 with @command{arm7_9 write_xpsr}.
3647 @end deffn
3648
3649 @subsubsection ARM720T specific commands
3650 @cindex ARM720T specific commands
3651
3652 These commands are available to ARM720T based CPUs,
3653 which are implementations of the ARMv4T architecture
3654 based on the ARM7TDMI-S integer core.
3655 They are available in addition to the ARMv4/5 and ARM7/ARM9 commands.
3656
3657 @deffn Command {arm720t cp15} regnum [value]
3658 Display cp15 register @var{regnum};
3659 else if a @var{value} is provided, that value is written to that register.
3660 @end deffn
3661
3662 @deffn Command {arm720t mdw_phys} addr [count]
3663 @deffnx Command {arm720t mdh_phys} addr [count]
3664 @deffnx Command {arm720t mdb_phys} addr [count]
3665 Display contents of physical address @var{addr}, as
3666 32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
3667 or 8-bit bytes (@command{mdb_phys}).
3668 If @var{count} is specified, displays that many units.
3669 @end deffn
3670
3671 @deffn Command {arm720t mww_phys} addr word
3672 @deffnx Command {arm720t mwh_phys} addr halfword
3673 @deffnx Command {arm720t mwb_phys} addr byte
3674 Writes the specified @var{word} (32 bits),
3675 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
3676 at the specified physical address @var{addr}.
3677 @end deffn
3678
3679 @deffn Command {arm720t virt2phys} va
3680 Translate a virtual address @var{va} to a physical address
3681 and display the result.
3682 @end deffn
3683
3684 @subsubsection ARM9TDMI specific commands
3685 @cindex ARM9TDMI specific commands
3686
3687 Many ARM9-family CPUs are built around ARM9TDMI integer cores,
3688 or processors resembling ARM9TDMI, and can use these commands.
3689 Such cores include the ARM920T, ARM926EJ-S, and ARM966.
3690
3691 @deffn Command {arm9tdmi vector_catch} (all|none|list)
3692 Catch arm9 interrupt vectors, can be @option{all}, @option{none},
3693 or a list with one or more of the following:
3694 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
3695 @option{irq} @option{fiq}.
3696 @end deffn
3697
3698 @subsubsection ARM920T specific commands
3699 @cindex ARM920T specific commands
3700
3701 These commands are available to ARM920T based CPUs,
3702 which are implementations of the ARMv4T architecture
3703 built using the ARM9TDMI integer core.
3704 They are available in addition to the ARMv4/5, ARM7/ARM9,
3705 and ARM9TDMI commands.
3706
3707 @deffn Command {arm920t cache_info}
3708 Print information about the caches found. This allows to see whether your target
3709 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
3710 @end deffn
3711
3712 @deffn Command {arm920t cp15} regnum [value]
3713 Display cp15 register @var{regnum};
3714 else if a @var{value} is provided, that value is written to that register.
3715 @end deffn
3716
3717 @deffn Command {arm920t cp15i} opcode [value [address]]
3718 Interpreted access using cp15 @var{opcode}.
3719 If no @var{value} is provided, the result is displayed.
3720 Else if that value is written using the specified @var{address},
3721 or using zero if no other address is not provided.
3722 @end deffn
3723
3724 @deffn Command {arm920t mdw_phys} addr [count]
3725 @deffnx Command {arm920t mdh_phys} addr [count]
3726 @deffnx Command {arm920t mdb_phys} addr [count]
3727 Display contents of physical address @var{addr}, as
3728 32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
3729 or 8-bit bytes (@command{mdb_phys}).
3730 If @var{count} is specified, displays that many units.
3731 @end deffn
3732
3733 @deffn Command {arm920t mww_phys} addr word
3734 @deffnx Command {arm920t mwh_phys} addr halfword
3735 @deffnx Command {arm920t mwb_phys} addr byte
3736 Writes the specified @var{word} (32 bits),
3737 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
3738 at the specified physical address @var{addr}.
3739 @end deffn
3740
3741 @deffn Command {arm920t read_cache} filename
3742 Dump the content of ICache and DCache to a file named @file{filename}.
3743 @end deffn
3744
3745 @deffn Command {arm920t read_mmu} filename
3746 Dump the content of the ITLB and DTLB to a file named @file{filename}.
3747 @end deffn
3748
3749 @deffn Command {arm920t virt2phys} @var{va}
3750 Translate a virtual address @var{va} to a physical address
3751 and display the result.
3752 @end deffn
3753
3754 @subsubsection ARM926EJ-S specific commands
3755 @cindex ARM926EJ-S specific commands
3756
3757 These commands are available to ARM926EJ-S based CPUs,
3758 which are implementations of the ARMv5TEJ architecture
3759 based on the ARM9EJ-S integer core.
3760 They are available in addition to the ARMv4/5, ARM7/ARM9,
3761 and ARM9TDMI commands.
3762
3763 @deffn Command {arm926ejs cache_info}
3764 Print information about the caches found.
3765 @end deffn
3766
3767 @deffn Command {arm926ejs cp15} opcode1 opcode2 CRn CRm regnum [value]
3768 Accesses cp15 register @var{regnum} using
3769 @var{opcode1}, @var{opcode2}, @var{CRn}, and @var{CRm}.
3770 If a @var{value} is provided, that value is written to that register.
3771 Else that register is read and displayed.
3772 @end deffn
3773
3774 @deffn Command {arm926ejs mdw_phys} addr [count]
3775 @deffnx Command {arm926ejs mdh_phys} addr [count]
3776 @deffnx Command {arm926ejs mdb_phys} addr [count]
3777 Display contents of physical address @var{addr}, as
3778 32-bit words (@command{mdw_phys}), 16-bit halfwords (@command{mdh_phys}),
3779 or 8-bit bytes (@command{mdb_phys}).
3780 If @var{count} is specified, displays that many units.
3781 @end deffn
3782
3783 @deffn Command {arm926ejs mww_phys} addr word
3784 @deffnx Command {arm926ejs mwh_phys} addr halfword
3785 @deffnx Command {arm926ejs mwb_phys} addr byte
3786 Writes the specified @var{word} (32 bits),
3787 @var{halfword} (16 bits), or @var{byte} (8-bit) pattern,
3788 at the specified physical address @var{addr}.
3789 @end deffn
3790
3791 @deffn Command {arm926ejs virt2phys} @var{va}
3792 Translate a virtual address @var{va} to a physical address
3793 and display the result.
3794 @end deffn
3795
3796 @subsubsection ARM966E specific commands
3797 @cindex ARM966E specific commands
3798
3799 These commands are available to ARM966 based CPUs,
3800 which are implementations of the ARMv5TE architecture.
3801 They are available in addition to the ARMv4/5, ARM7/ARM9,
3802 and ARM9TDMI commands.
3803
3804 @deffn Command {arm966e cp15} regnum [value]
3805 Display cp15 register @var{regnum};
3806 else if a @var{value} is provided, that value is written to that register.
3807 @end deffn
3808
3809 @subsubsection XScale specific commands
3810 @cindex XScale specific commands
3811
3812 These commands are available to XScale based CPUs,
3813 which are implementations of the ARMv5TE architecture.
3814
3815 @deffn Command {xscale analyze_trace}
3816 Displays the contents of the trace buffer.
3817 @end deffn
3818
3819 @deffn Command {xscale cache_clean_address} address
3820 Changes the address used when cleaning the data cache.
3821 @end deffn
3822
3823 @deffn Command {xscale cache_info}
3824 Displays information about the CPU caches.
3825 @end deffn
3826
3827 @deffn Command {xscale cp15} regnum [value]
3828 Display cp15 register @var{regnum};
3829 else if a @var{value} is provided, that value is written to that register.
3830 @end deffn
3831
3832 @deffn Command {xscale debug_handler} target address
3833 Changes the address used for the specified target's debug handler.
3834 @end deffn
3835
3836 @deffn Command {xscale dcache} (enable|disable)
3837 Enables or disable the CPU's data cache.
3838 @end deffn
3839
3840 @deffn Command {xscale dump_trace} filename
3841 Dumps the raw contents of the trace buffer to @file{filename}.
3842 @end deffn
3843
3844 @deffn Command {xscale icache} (enable|disable)
3845 Enables or disable the CPU's instruction cache.
3846 @end deffn
3847
3848 @deffn Command {xscale mmu} (enable|disable)
3849 Enables or disable the CPU's memory management unit.
3850 @end deffn
3851
3852 @deffn Command {xscale trace_buffer} (enable|disable) [fill [n] | wrap]
3853 Enables or disables the trace buffer,
3854 and controls how it is emptied.
3855 @end deffn
3856
3857 @deffn Command {xscale trace_image} filename [offset [type]]
3858 Opens a trace image from @file{filename}, optionally rebasing
3859 its segment addresses by @var{offset}.
3860 The image @var{type} may be one of
3861 @option{bin} (binary), @option{ihex} (Intel hex),
3862 @option{elf} (ELF file), @option{s19} (Motorola s19),
3863 @option{mem}, or @option{builder}.
3864 @end deffn
3865
3866 @deffn Command {xscale vector_catch} mask
3867 Provide a bitmask showing the vectors to catch.
3868 @end deffn
3869
3870 @subsection ARMv6 Architecture
3871
3872 @subsubsection ARM11 specific commands
3873 @cindex ARM11 specific commands
3874
3875 @deffn Command {arm11 mcr} p1 p2 p3 p4 p5
3876 Read coprocessor register
3877 @end deffn
3878
3879 @deffn Command {arm11 memwrite burst} [value]
3880 Displays the value of the memwrite burst-enable flag,
3881 which is enabled by default.
3882 If @var{value} is defined, first assigns that.
3883 @end deffn
3884
3885 @deffn Command {arm11 memwrite error_fatal} [value]
3886 Displays the value of the memwrite error_fatal flag,
3887 which is enabled by default.
3888 If @var{value} is defined, first assigns that.
3889 @end deffn
3890
3891 @deffn Command {arm11 mrc} p1 p2 p3 p4 p5 value
3892 Write coprocessor register
3893 @end deffn
3894
3895 @deffn Command {arm11 no_increment} [value]
3896 Displays the value of the flag controlling whether
3897 some read or write operations increment the pointer
3898 (the default behavior) or not (acting like a FIFO).
3899 If @var{value} is defined, first assigns that.
3900 @end deffn
3901
3902 @deffn Command {arm11 step_irq_enable} [value]
3903 Displays the value of the flag controlling whether
3904 IRQs are enabled during single stepping;
3905 they is disabled by default.
3906 If @var{value} is defined, first assigns that.
3907 @end deffn
3908
3909 @subsection ARMv7 Architecture
3910
3911 @subsubsection Cortex-M3 specific commands
3912 @cindex Cortex-M3 specific commands
3913
3914 @deffn Command {cortex_m3 maskisr} (on|off)
3915 Control masking (disabling) interrupts during target step/resume.
3916 @end deffn
3917
3918 @section Target DCC Requests
3919 @cindex Linux-ARM DCC support
3920 @cindex libdcc
3921 @cindex DCC
3922 OpenOCD can handle certain target requests; currently debugmsgs
3923 @command{target_request debugmsgs}
3924 are only supported for arm7_9 and cortex_m3.
3925
3926 See libdcc in the contrib dir for more details.
3927 Linux-ARM kernels have a ``Kernel low-level debugging
3928 via EmbeddedICE DCC channel'' option (CONFIG_DEBUG_ICEDCC,
3929 depends on CONFIG_DEBUG_LL) which uses this mechanism to
3930 deliver messages before a serial console can be activated.
3931
3932 @deffn Command {target_request debugmsgs} [enable|disable|charmsg]
3933 Displays current handling of target DCC message requests.
3934 These messages may be sent to the debugger while the target is running.
3935 The optional @option{enable} and @option{charmsg} parameters are
3936 equivalent; both enable the messages, @option{disable} disables them.
3937 @end deffn
3938
3939 @node JTAG Commands
3940 @chapter JTAG Commands
3941 @cindex JTAG Commands
3942 Generally most people will not use the bulk of these commands. They
3943 are mostly used by the OpenOCD developers or those who need to
3944 directly manipulate the JTAG taps.
3945
3946 In general these commands control JTAG taps at a very low level. For
3947 example if you need to control a JTAG Route Controller (i.e.: the
3948 OMAP3530 on the Beagle Board has one) you might use these commands in
3949 a script or an event procedure.
3950 @section Commands
3951 @cindex Commands
3952 @itemize @bullet
3953 @item @b{scan_chain}
3954 @cindex scan_chain
3955 @*Print current scan chain configuration.
3956 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
3957 @cindex jtag_reset
3958 @*Toggle reset lines.
3959 @item @b{endstate} <@var{tap_state}>
3960 @cindex endstate
3961 @*Finish JTAG operations in <@var{tap_state}>.
3962 @item @b{runtest} <@var{num_cycles}>
3963 @cindex runtest
3964 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
3965 @item @b{statemove} [@var{tap_state}]
3966 @cindex statemove
3967 @*Move to current endstate or [@var{tap_state}]
3968 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
3969 @cindex irscan
3970 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
3971 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
3972 @cindex drscan
3973 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
3974 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
3975 @cindex verify_ircapture
3976 @*Verify value captured during Capture-IR. Default is enabled.
3977 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
3978 @cindex var
3979 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
3980 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
3981 @cindex field
3982 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
3983 @end itemize
3984
3985 @section Tap states
3986 @cindex Tap states
3987 Available tap_states are:
3988 @itemize @bullet
3989 @item @b{RESET}
3990 @cindex RESET
3991 @item @b{IDLE}
3992 @cindex IDLE
3993 @item @b{DRSELECT}
3994 @cindex DRSELECT
3995 @item @b{DRCAPTURE}
3996 @cindex DRCAPTURE
3997 @item @b{DRSHIFT}
3998 @cindex DRSHIFT
3999 @item @b{DREXIT1}
4000 @cindex DREXIT1
4001 @item @b{DRPAUSE}
4002 @cindex DRPAUSE
4003 @item @b{DREXIT2}
4004 @cindex DREXIT2
4005 @item @b{DRUPDATE}
4006 @cindex DRUPDATE
4007 @item @b{IRSELECT}
4008 @cindex IRSELECT
4009 @item @b{IRCAPTURE}
4010 @cindex IRCAPTURE
4011 @item @b{IRSHIFT}
4012 @cindex IRSHIFT
4013 @item @b{IREXIT1}
4014 @cindex IREXIT1
4015 @item @b{IRPAUSE}
4016 @cindex IRPAUSE
4017 @item @b{IREXIT2}
4018 @cindex IREXIT2
4019 @item @b{IRUPDATE}
4020 @cindex IRUPDATE
4021 @end itemize
4022
4023
4024 @node TFTP
4025 @chapter TFTP
4026 @cindex TFTP
4027 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
4028 be used to access files on PCs (either the developer's PC or some other PC).
4029
4030 The way this works on the ZY1000 is to prefix a filename by
4031 "/tftp/ip/" and append the TFTP path on the TFTP
4032 server (tftpd). For example,
4033
4034 @example
4035 load_image /tftp/10.0.0.96/c:\temp\abc.elf
4036 @end example
4037
4038 will load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
4039 if the file was hosted on the embedded host.
4040
4041 In order to achieve decent performance, you must choose a TFTP server
4042 that supports a packet size bigger than the default packet size (512 bytes). There
4043 are numerous TFTP servers out there (free and commercial) and you will have to do
4044 a bit of googling to find something that fits your requirements.
4045
4046 @node Sample Scripts
4047 @chapter Sample Scripts
4048 @cindex scripts
4049
4050 This page shows how to use the Target Library.
4051
4052 The configuration script can be divided into the following sections:
4053 @itemize @bullet
4054 @item Daemon configuration
4055 @item Interface
4056 @item JTAG scan chain
4057 @item Target configuration
4058 @item Flash configuration
4059 @end itemize
4060
4061 Detailed information about each section can be found at OpenOCD configuration.
4062
4063 @section AT91R40008 example
4064 @cindex AT91R40008 example
4065 To start OpenOCD with a target script for the AT91R40008 CPU and reset
4066 the CPU upon startup of the OpenOCD daemon.
4067 @example
4068 openocd -f interface/parport.cfg -f target/at91r40008.cfg \
4069 -c "init" -c "reset"
4070 @end example
4071
4072
4073 @node GDB and OpenOCD
4074 @chapter GDB and OpenOCD
4075 @cindex GDB
4076 OpenOCD complies with the remote gdbserver protocol, and as such can be used
4077 to debug remote targets.
4078
4079 @section Connecting to GDB
4080 @cindex Connecting to GDB
4081 @anchor{Connecting to GDB}
4082 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
4083 instance GDB 6.3 has a known bug that produces bogus memory access
4084 errors, which has since been fixed: look up 1836 in
4085 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
4086
4087 OpenOCD can communicate with GDB in two ways:
4088
4089 @enumerate
4090 @item
4091 A socket (TCP/IP) connection is typically started as follows:
4092 @example
4093 target remote localhost:3333
4094 @end example
4095 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
4096 @item
4097 A pipe connection is typically started as follows:
4098 @example
4099 target remote | openocd --pipe
4100 @end example
4101 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
4102 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
4103 session.
4104 @end enumerate
4105
4106 To list the available OpenOCD commands type @command{monitor help} on the
4107 GDB command line.
4108
4109 OpenOCD supports the gdb @option{qSupported} packet, this enables information
4110 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
4111 packet size and the device's memory map.
4112
4113 Previous versions of OpenOCD required the following GDB options to increase
4114 the packet size and speed up GDB communication:
4115 @example
4116 set remote memory-write-packet-size 1024
4117 set remote memory-write-packet-size fixed
4118 set remote memory-read-packet-size 1024
4119 set remote memory-read-packet-size fixed
4120 @end example
4121 This is now handled in the @option{qSupported} PacketSize and should not be required.
4122
4123 @section Programming using GDB
4124 @cindex Programming using GDB
4125
4126 By default the target memory map is sent to GDB. This can be disabled by
4127 the following OpenOCD configuration option:
4128 @example
4129 gdb_memory_map disable
4130 @end example
4131 For this to function correctly a valid flash configuration must also be set
4132 in OpenOCD. For faster performance you should also configure a valid
4133 working area.
4134
4135 Informing GDB of the memory map of the target will enable GDB to protect any
4136 flash areas of the target and use hardware breakpoints by default. This means
4137 that the OpenOCD option @command{gdb_breakpoint_override} is not required when
4138 using a memory map. @xref{gdb_breakpoint_override}.
4139
4140 To view the configured memory map in GDB, use the GDB command @option{info mem}
4141 All other unassigned addresses within GDB are treated as RAM.
4142
4143 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
4144 This can be changed to the old behaviour by using the following GDB command
4145 @example
4146 set mem inaccessible-by-default off
4147 @end example
4148
4149 If @command{gdb_flash_program enable} is also used, GDB will be able to
4150 program any flash memory using the vFlash interface.
4151
4152 GDB will look at the target memory map when a load command is given, if any
4153 areas to be programmed lie within the target flash area the vFlash packets
4154 will be used.
4155
4156 If the target needs configuring before GDB programming, an event
4157 script can be executed:
4158 @example
4159 $_TARGETNAME configure -event EVENTNAME BODY
4160 @end example
4161
4162 To verify any flash programming the GDB command @option{compare-sections}
4163 can be used.
4164
4165 @node Tcl Scripting API
4166 @chapter Tcl Scripting API
4167 @cindex Tcl Scripting API
4168 @cindex Tcl scripts
4169 @section API rules
4170
4171 The commands are stateless. E.g. the telnet command line has a concept
4172 of currently active target, the Tcl API proc's take this sort of state
4173 information as an argument to each proc.
4174
4175 There are three main types of return values: single value, name value
4176 pair list and lists.
4177
4178 Name value pair. The proc 'foo' below returns a name/value pair
4179 list.
4180
4181 @verbatim
4182
4183 > set foo(me) Duane
4184 > set foo(you) Oyvind
4185 > set foo(mouse) Micky
4186 > set foo(duck) Donald
4187
4188 If one does this:
4189
4190 > set foo
4191
4192 The result is:
4193
4194 me Duane you Oyvind mouse Micky duck Donald
4195
4196 Thus, to get the names of the associative array is easy:
4197
4198 foreach { name value } [set foo] {
4199 puts "Name: $name, Value: $value"
4200 }
4201 @end verbatim
4202
4203 Lists returned must be relatively small. Otherwise a range
4204 should be passed in to the proc in question.
4205
4206 @section Internal low-level Commands
4207
4208 By low-level, the intent is a human would not directly use these commands.
4209
4210 Low-level commands are (should be) prefixed with "ocd_", e.g.
4211 @command{ocd_flash_banks}
4212 is the low level API upon which @command{flash banks} is implemented.
4213
4214 @itemize @bullet
4215 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
4216
4217 Read memory and return as a Tcl array for script processing
4218 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
4219
4220 Convert a Tcl array to memory locations and write the values
4221 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
4222
4223 Return information about the flash banks
4224 @end itemize
4225
4226 OpenOCD commands can consist of two words, e.g. "flash banks". The
4227 startup.tcl "unknown" proc will translate this into a Tcl proc
4228 called "flash_banks".
4229
4230 @section OpenOCD specific Global Variables
4231
4232 @subsection HostOS
4233
4234 Real Tcl has ::tcl_platform(), and platform::identify, and many other
4235 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
4236 holds one of the following values:
4237
4238 @itemize @bullet
4239 @item @b{winxx} Built using Microsoft Visual Studio
4240 @item @b{linux} Linux is the underlying operating sytem
4241 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
4242 @item @b{cygwin} Running under Cygwin
4243 @item @b{mingw32} Running under MingW32
4244 @item @b{other} Unknown, none of the above.
4245 @end itemize
4246
4247 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
4248
4249 @quotation Note
4250 We should add support for a variable like Tcl variable
4251 @code{tcl_platform(platform)}, it should be called
4252 @code{jim_platform} (because it
4253 is jim, not real tcl).
4254 @end quotation
4255
4256 @node Upgrading
4257 @chapter Deprecated/Removed Commands
4258 @cindex Deprecated/Removed Commands
4259 Certain OpenOCD commands have been deprecated/removed during the various revisions.
4260
4261 @itemize @bullet
4262 @item @b{arm7_9 fast_writes}
4263 @cindex arm7_9 fast_writes
4264 @*Use @command{arm7_9 fast_memory_access} instead.
4265 @xref{arm7_9 fast_memory_access}.
4266 @item @b{arm7_9 force_hw_bkpts}
4267 @cindex arm7_9 force_hw_bkpts
4268 @*Use @command{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
4269 for flash if the GDB memory map has been set up(default when flash is declared in
4270 target configuration). @xref{gdb_breakpoint_override}.
4271 @item @b{arm7_9 sw_bkpts}
4272 @cindex arm7_9 sw_bkpts
4273 @*On by default. @xref{gdb_breakpoint_override}.
4274 @item @b{daemon_startup}
4275 @cindex daemon_startup
4276 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
4277 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
4278 and @option{target cortex_m3 little reset_halt 0}.
4279 @item @b{dump_binary}
4280 @cindex dump_binary
4281 @*use @option{dump_image} command with same args. @xref{dump_image}.
4282 @item @b{flash erase}
4283 @cindex flash erase
4284 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
4285 @item @b{flash write}
4286 @cindex flash write
4287 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
4288 @item @b{flash write_binary}
4289 @cindex flash write_binary
4290 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
4291 @item @b{flash auto_erase}
4292 @cindex flash auto_erase
4293 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
4294
4295 @item @b{jtag_speed} value
4296 @*@xref{JTAG Speed}.
4297 Usually, a value of zero means maximum
4298 speed. The actual effect of this option depends on the JTAG interface used.
4299 @itemize @minus
4300 @item wiggler: maximum speed / @var{number}
4301 @item ft2232: 6MHz / (@var{number}+1)
4302 @item amt jtagaccel: 8 / 2**@var{number}
4303 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
4304 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
4305 @comment end speed list.
4306 @end itemize
4307
4308 @item @b{load_binary}
4309 @cindex load_binary
4310 @*use @option{load_image} command with same args. @xref{load_image}.
4311 @item @b{run_and_halt_time}
4312 @cindex run_and_halt_time
4313 @*This command has been removed for simpler reset behaviour, it can be simulated with the
4314 following commands:
4315 @smallexample
4316 reset run
4317 sleep 100
4318 halt
4319 @end smallexample
4320 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
4321 @cindex target
4322 @*use the create subcommand of @option{target}.
4323 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
4324 @cindex target_script
4325 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
4326 @item @b{working_area}
4327 @cindex working_area
4328 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
4329 @end itemize
4330
4331 @node FAQ
4332 @chapter FAQ
4333 @cindex faq
4334 @enumerate
4335 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
4336 @anchor{FAQ RTCK}
4337 @cindex RTCK
4338 @cindex adaptive clocking
4339 @*
4340
4341 In digital circuit design it is often refered to as ``clock
4342 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
4343 operating at some speed, your target is operating at another. The two
4344 clocks are not synchronised, they are ``asynchronous''
4345
4346 In order for the two to work together they must be synchronised. Otherwise
4347 the two systems will get out of sync with each other and nothing will
4348 work. There are 2 basic options:
4349 @enumerate
4350 @item
4351 Use a special circuit.
4352 @item
4353 One clock must be some multiple slower than the other.
4354 @end enumerate
4355
4356 @b{Does this really matter?} For some chips and some situations, this
4357 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
4358 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
4359 program/enable the oscillators and eventually the main clock. It is in
4360 those critical times you must slow the JTAG clock to sometimes 1 to
4361 4kHz.
4362
4363 Imagine debugging a 500MHz ARM926 hand held battery powered device
4364 that ``deep sleeps'' at 32kHz between every keystroke. It can be
4365 painful.
4366
4367 @b{Solution #1 - A special circuit}
4368
4369 In order to make use of this, your JTAG dongle must support the RTCK
4370 feature. Not all dongles support this - keep reading!
4371
4372 The RTCK signal often found in some ARM chips is used to help with
4373 this problem. ARM has a good description of the problem described at
4374 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
4375 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
4376 work? / how does adaptive clocking work?''.
4377
4378 The nice thing about adaptive clocking is that ``battery powered hand
4379 held device example'' - the adaptiveness works perfectly all the
4380 time. One can set a break point or halt the system in the deep power
4381 down code, slow step out until the system speeds up.
4382
4383 @b{Solution #2 - Always works - but may be slower}
4384
4385 Often this is a perfectly acceptable solution.
4386
4387 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
4388 the target clock speed. But what that ``magic division'' is varies
4389 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
4390 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
4391 1/12 the clock speed.
4392
4393 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
4394
4395 You can still debug the 'low power' situations - you just need to
4396 manually adjust the clock speed at every step. While painful and
4397 tedious, it is not always practical.
4398
4399 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
4400 have a special debug mode in your application that does a ``high power
4401 sleep''. If you are careful - 98% of your problems can be debugged
4402 this way.
4403
4404 To set the JTAG frequency use the command:
4405
4406 @example
4407 # Example: 1.234MHz
4408 jtag_khz 1234
4409 @end example
4410
4411
4412 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
4413
4414 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
4415 around Windows filenames.
4416
4417 @example
4418 > echo \a
4419
4420 > echo @{\a@}
4421 \a
4422 > echo "\a"
4423
4424 >
4425 @end example
4426
4427
4428 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
4429
4430 Make sure you have Cygwin installed, or at least a version of OpenOCD that
4431 claims to come with all the necessary DLLs. When using Cygwin, try launching
4432 OpenOCD from the Cygwin shell.
4433
4434 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
4435 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
4436 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
4437
4438 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
4439 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
4440 software breakpoints consume one of the two available hardware breakpoints.
4441
4442 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
4443
4444 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
4445 clock at the time you're programming the flash. If you've specified the crystal's
4446 frequency, make sure the PLL is disabled. If you've specified the full core speed
4447 (e.g. 60MHz), make sure the PLL is enabled.
4448
4449 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
4450 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
4451 out while waiting for end of scan, rtck was disabled".
4452
4453 Make sure your PC's parallel port operates in EPP mode. You might have to try several
4454 settings in your PC BIOS (ECP, EPP, and different versions of those).
4455
4456 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
4457 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
4458 memory read caused data abort".
4459
4460 The errors are non-fatal, and are the result of GDB trying to trace stack frames
4461 beyond the last valid frame. It might be possible to prevent this by setting up
4462 a proper "initial" stack frame, if you happen to know what exactly has to
4463 be done, feel free to add this here.
4464
4465 @b{Simple:} In your startup code - push 8 registers of zeros onto the
4466 stack before calling main(). What GDB is doing is ``climbing'' the run
4467 time stack by reading various values on the stack using the standard
4468 call frame for the target. GDB keeps going - until one of 2 things
4469 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
4470 stackframes have been processed. By pushing zeros on the stack, GDB
4471 gracefully stops.
4472
4473 @b{Debugging Interrupt Service Routines} - In your ISR before you call
4474 your C code, do the same - artifically push some zeros onto the stack,
4475 remember to pop them off when the ISR is done.
4476
4477 @b{Also note:} If you have a multi-threaded operating system, they
4478 often do not @b{in the intrest of saving memory} waste these few
4479 bytes. Painful...
4480
4481
4482 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
4483 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
4484
4485 This warning doesn't indicate any serious problem, as long as you don't want to
4486 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
4487 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
4488 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
4489 independently. With this setup, it's not possible to halt the core right out of
4490 reset, everything else should work fine.
4491
4492 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
4493 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
4494 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
4495 quit with an error message. Is there a stability issue with OpenOCD?
4496
4497 No, this is not a stability issue concerning OpenOCD. Most users have solved
4498 this issue by simply using a self-powered USB hub, which they connect their
4499 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
4500 supply stable enough for the Amontec JTAGkey to be operated.
4501
4502 @b{Laptops running on battery have this problem too...}
4503
4504 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
4505 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
4506 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
4507 What does that mean and what might be the reason for this?
4508
4509 First of all, the reason might be the USB power supply. Try using a self-powered
4510 hub instead of a direct connection to your computer. Secondly, the error code 4
4511 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
4512 chip ran into some sort of error - this points us to a USB problem.
4513
4514 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
4515 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
4516 What does that mean and what might be the reason for this?
4517
4518 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
4519 has closed the connection to OpenOCD. This might be a GDB issue.
4520
4521 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
4522 are described, there is a parameter for specifying the clock frequency
4523 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
4524 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
4525 specified in kilohertz. However, I do have a quartz crystal of a
4526 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
4527 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
4528 clock frequency?
4529
4530 No. The clock frequency specified here must be given as an integral number.
4531 However, this clock frequency is used by the In-Application-Programming (IAP)
4532 routines of the LPC2000 family only, which seems to be very tolerant concerning
4533 the given clock frequency, so a slight difference between the specified clock
4534 frequency and the actual clock frequency will not cause any trouble.
4535
4536 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
4537
4538 Well, yes and no. Commands can be given in arbitrary order, yet the
4539 devices listed for the JTAG scan chain must be given in the right
4540 order (jtag newdevice), with the device closest to the TDO-Pin being
4541 listed first. In general, whenever objects of the same type exist
4542 which require an index number, then these objects must be given in the
4543 right order (jtag newtap, targets and flash banks - a target
4544 references a jtag newtap and a flash bank references a target).
4545
4546 You can use the ``scan_chain'' command to verify and display the tap order.
4547
4548 Also, some commands can't execute until after @command{init} has been
4549 processed. Such commands include @command{nand probe} and everything
4550 else that needs to write to controller registers, perhaps for setting
4551 up DRAM and loading it with code.
4552
4553 @item @b{JTAG Tap Order} JTAG tap order - command order
4554
4555 Many newer devices have multiple JTAG taps. For example: ST
4556 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
4557 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
4558 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
4559 connected to the boundary scan tap, which then connects to the
4560 Cortex-M3 tap, which then connects to the TDO pin.
4561
4562 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
4563 (2) The boundary scan tap. If your board includes an additional JTAG
4564 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
4565 place it before or after the STM32 chip in the chain. For example:
4566
4567 @itemize @bullet
4568 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
4569 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
4570 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
4571 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
4572 @item Xilinx TDO Pin -> OpenOCD TDO (input)
4573 @end itemize
4574
4575 The ``jtag device'' commands would thus be in the order shown below. Note:
4576
4577 @itemize @bullet
4578 @item jtag newtap Xilinx tap -irlen ...
4579 @item jtag newtap stm32 cpu -irlen ...
4580 @item jtag newtap stm32 bs -irlen ...
4581 @item # Create the debug target and say where it is
4582 @item target create stm32.cpu -chain-position stm32.cpu ...
4583 @end itemize
4584
4585
4586 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
4587 log file, I can see these error messages: Error: arm7_9_common.c:561
4588 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
4589
4590 TODO.
4591
4592 @end enumerate
4593
4594 @node Tcl Crash Course
4595 @chapter Tcl Crash Course
4596 @cindex Tcl
4597
4598 Not everyone knows Tcl - this is not intended to be a replacement for
4599 learning Tcl, the intent of this chapter is to give you some idea of
4600 how the Tcl scripts work.
4601
4602 This chapter is written with two audiences in mind. (1) OpenOCD users
4603 who need to understand a bit more of how JIM-Tcl works so they can do
4604 something useful, and (2) those that want to add a new command to
4605 OpenOCD.
4606
4607 @section Tcl Rule #1
4608 There is a famous joke, it goes like this:
4609 @enumerate
4610 @item Rule #1: The wife is always correct
4611 @item Rule #2: If you think otherwise, See Rule #1
4612 @end enumerate
4613
4614 The Tcl equal is this:
4615
4616 @enumerate
4617 @item Rule #1: Everything is a string
4618 @item Rule #2: If you think otherwise, See Rule #1
4619 @end enumerate
4620
4621 As in the famous joke, the consequences of Rule #1 are profound. Once
4622 you understand Rule #1, you will understand Tcl.
4623
4624 @section Tcl Rule #1b
4625 There is a second pair of rules.
4626 @enumerate
4627 @item Rule #1: Control flow does not exist. Only commands
4628 @* For example: the classic FOR loop or IF statement is not a control
4629 flow item, they are commands, there is no such thing as control flow
4630 in Tcl.
4631 @item Rule #2: If you think otherwise, See Rule #1
4632 @* Actually what happens is this: There are commands that by
4633 convention, act like control flow key words in other languages. One of
4634 those commands is the word ``for'', another command is ``if''.
4635 @end enumerate
4636
4637 @section Per Rule #1 - All Results are strings
4638 Every Tcl command results in a string. The word ``result'' is used
4639 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
4640 Everything is a string}
4641
4642 @section Tcl Quoting Operators
4643 In life of a Tcl script, there are two important periods of time, the
4644 difference is subtle.
4645 @enumerate
4646 @item Parse Time
4647 @item Evaluation Time
4648 @end enumerate
4649
4650 The two key items here are how ``quoted things'' work in Tcl. Tcl has
4651 three primary quoting constructs, the [square-brackets] the
4652 @{curly-braces@} and ``double-quotes''
4653
4654 By now you should know $VARIABLES always start with a $DOLLAR
4655 sign. BTW: To set a variable, you actually use the command ``set'', as
4656 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
4657 = 1'' statement, but without the equal sign.
4658
4659 @itemize @bullet
4660 @item @b{[square-brackets]}
4661 @* @b{[square-brackets]} are command substitutions. It operates much
4662 like Unix Shell `back-ticks`. The result of a [square-bracket]
4663 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
4664 string}. These two statements are roughly identical:
4665 @example
4666 # bash example
4667 X=`date`
4668 echo "The Date is: $X"
4669 # Tcl example
4670 set X [date]
4671 puts "The Date is: $X"
4672 @end example
4673 @item @b{``double-quoted-things''}
4674 @* @b{``double-quoted-things''} are just simply quoted
4675 text. $VARIABLES and [square-brackets] are expanded in place - the
4676 result however is exactly 1 string. @i{Remember Rule #1 - Everything
4677 is a string}
4678 @example
4679 set x "Dinner"
4680 puts "It is now \"[date]\", $x is in 1 hour"
4681 @end example
4682 @item @b{@{Curly-Braces@}}
4683 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
4684 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
4685 'single-quote' operators in BASH shell scripts, with the added
4686 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
4687 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
4688 28/nov/2008, Jim/OpenOCD does not have a date command.
4689 @end itemize
4690
4691 @section Consequences of Rule 1/2/3/4
4692
4693 The consequences of Rule 1 are profound.
4694
4695 @subsection Tokenisation & Execution.
4696
4697 Of course, whitespace, blank lines and #comment lines are handled in
4698 the normal way.
4699
4700 As a script is parsed, each (multi) line in the script file is
4701 tokenised and according to the quoting rules. After tokenisation, that
4702 line is immedatly executed.
4703
4704 Multi line statements end with one or more ``still-open''
4705 @{curly-braces@} which - eventually - closes a few lines later.
4706
4707 @subsection Command Execution
4708
4709 Remember earlier: There are no ``control flow''
4710 statements in Tcl. Instead there are COMMANDS that simply act like
4711 control flow operators.
4712
4713 Commands are executed like this:
4714
4715 @enumerate
4716 @item Parse the next line into (argc) and (argv[]).
4717 @item Look up (argv[0]) in a table and call its function.
4718 @item Repeat until End Of File.
4719 @end enumerate
4720
4721 It sort of works like this:
4722 @example
4723 for(;;)@{
4724 ReadAndParse( &argc, &argv );
4725
4726 cmdPtr = LookupCommand( argv[0] );
4727
4728 (*cmdPtr->Execute)( argc, argv );
4729 @}
4730 @end example
4731
4732 When the command ``proc'' is parsed (which creates a procedure
4733 function) it gets 3 parameters on the command line. @b{1} the name of
4734 the proc (function), @b{2} the list of parameters, and @b{3} the body
4735 of the function. Not the choice of words: LIST and BODY. The PROC
4736 command stores these items in a table somewhere so it can be found by
4737 ``LookupCommand()''
4738
4739 @subsection The FOR command
4740
4741 The most interesting command to look at is the FOR command. In Tcl,
4742 the FOR command is normally implemented in C. Remember, FOR is a
4743 command just like any other command.
4744
4745 When the ascii text containing the FOR command is parsed, the parser
4746 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
4747 are:
4748
4749 @enumerate 0
4750 @item The ascii text 'for'
4751 @item The start text
4752 @item The test expression
4753 @item The next text
4754 @item The body text
4755 @end enumerate
4756
4757 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
4758 Remember @i{Rule #1 - Everything is a string.} The key point is this:
4759 Often many of those parameters are in @{curly-braces@} - thus the
4760 variables inside are not expanded or replaced until later.
4761
4762 Remember that every Tcl command looks like the classic ``main( argc,
4763 argv )'' function in C. In JimTCL - they actually look like this:
4764
4765 @example
4766 int
4767 MyCommand( Jim_Interp *interp,
4768 int *argc,
4769 Jim_Obj * const *argvs );
4770 @end example
4771
4772 Real Tcl is nearly identical. Although the newer versions have
4773 introduced a byte-code parser and intepreter, but at the core, it
4774 still operates in the same basic way.
4775
4776 @subsection FOR command implementation
4777
4778 To understand Tcl it is perhaps most helpful to see the FOR
4779 command. Remember, it is a COMMAND not a control flow structure.
4780
4781 In Tcl there are two underlying C helper functions.
4782
4783 Remember Rule #1 - You are a string.
4784
4785 The @b{first} helper parses and executes commands found in an ascii
4786 string. Commands can be seperated by semicolons, or newlines. While
4787 parsing, variables are expanded via the quoting rules.
4788
4789 The @b{second} helper evaluates an ascii string as a numerical
4790 expression and returns a value.
4791
4792 Here is an example of how the @b{FOR} command could be
4793 implemented. The pseudo code below does not show error handling.
4794 @example
4795 void Execute_AsciiString( void *interp, const char *string );
4796
4797 int Evaluate_AsciiExpression( void *interp, const char *string );
4798
4799 int
4800 MyForCommand( void *interp,
4801 int argc,
4802 char **argv )
4803 @{
4804 if( argc != 5 )@{
4805 SetResult( interp, "WRONG number of parameters");
4806 return ERROR;
4807 @}
4808
4809 // argv[0] = the ascii string just like C
4810
4811 // Execute the start statement.
4812 Execute_AsciiString( interp, argv[1] );
4813
4814 // Top of loop test
4815 for(;;)@{
4816 i = Evaluate_AsciiExpression(interp, argv[2]);
4817 if( i == 0 )
4818 break;
4819
4820 // Execute the body
4821 Execute_AsciiString( interp, argv[3] );
4822
4823 // Execute the LOOP part
4824 Execute_AsciiString( interp, argv[4] );
4825 @}
4826
4827 // Return no error
4828 SetResult( interp, "" );
4829 return SUCCESS;
4830 @}
4831 @end example
4832
4833 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
4834 in the same basic way.
4835
4836 @section OpenOCD Tcl Usage
4837
4838 @subsection source and find commands
4839 @b{Where:} In many configuration files
4840 @* Example: @b{ source [find FILENAME] }
4841 @*Remember the parsing rules
4842 @enumerate
4843 @item The FIND command is in square brackets.
4844 @* The FIND command is executed with the parameter FILENAME. It should
4845 find the full path to the named file. The RESULT is a string, which is
4846 substituted on the orginal command line.
4847 @item The command source is executed with the resulting filename.
4848 @* SOURCE reads a file and executes as a script.
4849 @end enumerate
4850 @subsection format command
4851 @b{Where:} Generally occurs in numerous places.
4852 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
4853 @b{sprintf()}.
4854 @b{Example}
4855 @example
4856 set x 6
4857 set y 7
4858 puts [format "The answer: %d" [expr $x * $y]]
4859 @end example
4860 @enumerate
4861 @item The SET command creates 2 variables, X and Y.
4862 @item The double [nested] EXPR command performs math
4863 @* The EXPR command produces numerical result as a string.
4864 @* Refer to Rule #1
4865 @item The format command is executed, producing a single string
4866 @* Refer to Rule #1.
4867 @item The PUTS command outputs the text.
4868 @end enumerate
4869 @subsection Body or Inlined Text
4870 @b{Where:} Various TARGET scripts.
4871 @example
4872 #1 Good
4873 proc someproc @{@} @{
4874 ... multiple lines of stuff ...
4875 @}
4876 $_TARGETNAME configure -event FOO someproc
4877 #2 Good - no variables
4878 $_TARGETNAME confgure -event foo "this ; that;"
4879 #3 Good Curly Braces
4880 $_TARGETNAME configure -event FOO @{
4881 puts "Time: [date]"
4882 @}
4883 #4 DANGER DANGER DANGER
4884 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
4885 @end example
4886 @enumerate
4887 @item The $_TARGETNAME is an OpenOCD variable convention.
4888 @*@b{$_TARGETNAME} represents the last target created, the value changes
4889 each time a new target is created. Remember the parsing rules. When
4890 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
4891 the name of the target which happens to be a TARGET (object)
4892 command.
4893 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
4894 @*There are 4 examples:
4895 @enumerate
4896 @item The TCLBODY is a simple string that happens to be a proc name
4897 @item The TCLBODY is several simple commands seperated by semicolons
4898 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
4899 @item The TCLBODY is a string with variables that get expanded.
4900 @end enumerate
4901
4902 In the end, when the target event FOO occurs the TCLBODY is
4903 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
4904 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
4905
4906 Remember the parsing rules. In case #3, @{curly-braces@} mean the
4907 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
4908 and the text is evaluated. In case #4, they are replaced before the
4909 ``Target Object Command'' is executed. This occurs at the same time
4910 $_TARGETNAME is replaced. In case #4 the date will never
4911 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
4912 Jim/OpenOCD does not have a date command@}
4913 @end enumerate
4914 @subsection Global Variables
4915 @b{Where:} You might discover this when writing your own procs @* In
4916 simple terms: Inside a PROC, if you need to access a global variable
4917 you must say so. See also ``upvar''. Example:
4918 @example
4919 proc myproc @{ @} @{
4920 set y 0 #Local variable Y
4921 global x #Global variable X
4922 puts [format "X=%d, Y=%d" $x $y]
4923 @}
4924 @end example
4925 @section Other Tcl Hacks
4926 @b{Dynamic variable creation}
4927 @example
4928 # Dynamically create a bunch of variables.
4929 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
4930 # Create var name
4931 set vn [format "BIT%d" $x]
4932 # Make it a global
4933 global $vn
4934 # Set it.
4935 set $vn [expr (1 << $x)]
4936 @}
4937 @end example
4938 @b{Dynamic proc/command creation}
4939 @example
4940 # One "X" function - 5 uart functions.
4941 foreach who @{A B C D E@}
4942 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
4943 @}
4944 @end example
4945
4946 @node Target Library
4947 @chapter Target Library
4948 @cindex Target Library
4949
4950 OpenOCD comes with a target configuration script library. These scripts can be
4951 used as-is or serve as a starting point.
4952
4953 The target library is published together with the OpenOCD executable and
4954 the path to the target library is in the OpenOCD script search path.
4955 Similarly there are example scripts for configuring the JTAG interface.
4956
4957 The command line below uses the example parport configuration script
4958 that ship with OpenOCD, then configures the str710.cfg target and
4959 finally issues the init and reset commands. The communication speed
4960 is set to 10kHz for reset and 8MHz for post reset.
4961
4962 @example
4963 openocd -f interface/parport.cfg -f target/str710.cfg \
4964 -c "init" -c "reset"
4965 @end example
4966
4967 To list the target scripts available:
4968
4969 @example
4970 $ ls /usr/local/lib/openocd/target
4971
4972 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
4973 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
4974 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
4975 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
4976 @end example
4977
4978 @include fdl.texi
4979
4980 @node OpenOCD Concept Index
4981 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
4982 @comment case issue with ``Index.html'' and ``index.html''
4983 @comment Occurs when creating ``--html --no-split'' output
4984 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
4985 @unnumbered OpenOCD Concept Index
4986
4987 @printindex cp
4988
4989 @node Command and Driver Index
4990 @unnumbered Command and Driver Index
4991 @printindex fn
4992
4993 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)