flash/nor/nrf5: Fix data types and const correctness
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <target/arm7_9_common.h>
32 #include <target/armv7m.h>
33 #include <target/mips32.h>
34 #include <helper/binarybuffer.h>
35 #include <target/algorithm.h>
36
37 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
38 #define CFI_MAX_INTEL_CODESIZE 256
39
40 /* some id-types with specific handling */
41 #define AT49BV6416 0x00d6
42 #define AT49BV6416T 0x00d2
43
44 static const struct cfi_unlock_addresses cfi_unlock_addresses[] = {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 static const int cfi_status_poll_mask_dq6_dq7 = CFI_STATUS_POLL_MASK_DQ6_DQ7;
50
51 /* CFI fixups forward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param);
56 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param);
57
58 /* fixup after reading cmdset 0002 primary query table */
59 static const struct cfi_fixup cfi_0002_fixups[] = {
60 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses,
61 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses,
63 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses,
65 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
66 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses,
67 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
68 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses,
69 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
70 {CFI_MFR_SST, 0x274b, cfi_fixup_0002_unlock_addresses,
71 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
72 {CFI_MFR_SST, 0x235f, cfi_fixup_0002_polling_bits, /* 39VF3201C */
73 &cfi_status_poll_mask_dq6_dq7},
74 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses,
75 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
76 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
77 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
78 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses,
79 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
80 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses,
81 &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
82 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses,
83 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
84 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses,
85 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
86 {CFI_MFR_EON, 0x225b, cfi_fixup_0002_unlock_addresses,
87 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
88 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses,
89 &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
90 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
91 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL},/* M29W128G */
92 {0, 0, NULL, NULL}
93 };
94
95 /* fixup after reading cmdset 0001 primary query table */
96 static const struct cfi_fixup cfi_0001_fixups[] = {
97 {0, 0, NULL, NULL}
98 };
99
100 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
101 {
102 struct cfi_flash_bank *cfi_info = bank->driver_priv;
103
104 for (const struct cfi_fixup *f = fixups; f->fixup; f++) {
105 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
106 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
107 f->fixup(bank, f->param);
108 }
109 }
110
111 uint32_t cfi_flash_address(struct flash_bank *bank, int sector, uint32_t offset)
112 {
113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
114
115 if (cfi_info->x16_as_x8)
116 offset *= 2;
117
118 /* while the sector list isn't built, only accesses to sector 0 work */
119 if (sector == 0)
120 return bank->base + offset * bank->bus_width;
121 else {
122 if (!bank->sectors) {
123 LOG_ERROR("BUG: sector list not yet built");
124 exit(-1);
125 }
126 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
127 }
128 }
129
130 static int cfi_target_write_memory(struct flash_bank *bank, target_addr_t addr,
131 uint32_t count, const uint8_t *buffer)
132 {
133 struct cfi_flash_bank *cfi_info = bank->driver_priv;
134 if (cfi_info->write_mem) {
135 return cfi_info->write_mem(bank, addr, count, buffer);
136 } else {
137 return target_write_memory(bank->target, addr, bank->bus_width,
138 count, buffer);
139 }
140 }
141
142 int cfi_target_read_memory(struct flash_bank *bank, target_addr_t addr,
143 uint32_t count, uint8_t *buffer)
144 {
145 struct cfi_flash_bank *cfi_info = bank->driver_priv;
146 if (cfi_info->read_mem) {
147 return cfi_info->read_mem(bank, addr, count, buffer);
148 } else {
149 return target_read_memory(bank->target, addr, bank->bus_width,
150 count, buffer);
151 }
152 }
153
154 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
155 {
156 struct cfi_flash_bank *cfi_info = bank->driver_priv;
157
158 /* clear whole buffer, to ensure bits that exceed the bus_width
159 * are set to zero
160 */
161 for (size_t i = 0; i < CFI_MAX_BUS_WIDTH; i++)
162 cmd_buf[i] = 0;
163
164 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
165 for (unsigned int i = bank->bus_width; i > 0; i--)
166 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
167 } else {
168 for (unsigned int i = 1; i <= bank->bus_width; i++)
169 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
170 }
171 }
172
173 int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
174 {
175 uint8_t command[CFI_MAX_BUS_WIDTH];
176
177 cfi_command(bank, cmd, command);
178 return cfi_target_write_memory(bank, address, 1, command);
179 }
180
181 /* read unsigned 8-bit value from the bank
182 * flash banks are expected to be made of similar chips
183 * the query result should be the same for all
184 */
185 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
186 {
187 struct cfi_flash_bank *cfi_info = bank->driver_priv;
188 uint8_t data[CFI_MAX_BUS_WIDTH];
189
190 int retval;
191 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
192 1, data);
193 if (retval != ERROR_OK)
194 return retval;
195
196 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
197 *val = data[0];
198 else
199 *val = data[bank->bus_width - 1];
200
201 return ERROR_OK;
202 }
203
204 /* read unsigned 8-bit value from the bank
205 * in case of a bank made of multiple chips,
206 * the individual values are ORed
207 */
208 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
209 {
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH];
212
213 int retval;
214 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
215 1, data);
216 if (retval != ERROR_OK)
217 return retval;
218
219 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN) {
220 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
221 data[0] |= data[i];
222
223 *val = data[0];
224 } else {
225 uint8_t value = 0;
226 for (unsigned int i = 0; i < bank->bus_width / bank->chip_width; i++)
227 value |= data[bank->bus_width - 1 - i];
228
229 *val = value;
230 }
231 return ERROR_OK;
232 }
233
234 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
235 {
236 struct cfi_flash_bank *cfi_info = bank->driver_priv;
237 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
238 int retval;
239
240 if (cfi_info->x16_as_x8) {
241 for (uint8_t i = 0; i < 2; i++) {
242 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
243 1, &data[i * bank->bus_width]);
244 if (retval != ERROR_OK)
245 return retval;
246 }
247 } else {
248 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
249 2, data);
250 if (retval != ERROR_OK)
251 return retval;
252 }
253
254 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
255 *val = data[0] | data[bank->bus_width] << 8;
256 else
257 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
258
259 return ERROR_OK;
260 }
261
262 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
263 {
264 struct cfi_flash_bank *cfi_info = bank->driver_priv;
265 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
266 int retval;
267
268 if (cfi_info->x16_as_x8) {
269 for (uint8_t i = 0; i < 4; i++) {
270 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset + i),
271 1, &data[i * bank->bus_width]);
272 if (retval != ERROR_OK)
273 return retval;
274 }
275 } else {
276 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, sector, offset),
277 4, data);
278 if (retval != ERROR_OK)
279 return retval;
280 }
281
282 if (cfi_info->endianness == TARGET_LITTLE_ENDIAN)
283 *val = data[0] | data[bank->bus_width] << 8 |
284 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
285 else
286 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8 |
287 data[(3 * bank->bus_width) - 1] << 16 |
288 data[(4 * bank->bus_width) - 1] << 24;
289
290 return ERROR_OK;
291 }
292
293 int cfi_reset(struct flash_bank *bank)
294 {
295 struct cfi_flash_bank *cfi_info = bank->driver_priv;
296 int retval = ERROR_OK;
297
298 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
299 if (retval != ERROR_OK)
300 return retval;
301
302 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
303 if (retval != ERROR_OK)
304 return retval;
305
306 if (cfi_info->manufacturer == 0x20 &&
307 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E)) {
308 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
309 * so we send an extra 0xF0 reset to fix the bug */
310 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x00));
311 if (retval != ERROR_OK)
312 return retval;
313 }
314
315 return retval;
316 }
317
318 static void cfi_intel_clear_status_register(struct flash_bank *bank)
319 {
320 cfi_send_command(bank, 0x50, cfi_flash_address(bank, 0, 0x0));
321 }
322
323 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
324 {
325 uint8_t status;
326
327 int retval = ERROR_OK;
328
329 for (;; ) {
330 if (timeout-- < 0) {
331 LOG_ERROR("timeout while waiting for WSM to become ready");
332 return ERROR_FAIL;
333 }
334
335 retval = cfi_get_u8(bank, 0, 0x0, &status);
336 if (retval != ERROR_OK)
337 return retval;
338
339 if (status & 0x80)
340 break;
341
342 alive_sleep(1);
343 }
344
345 /* mask out bit 0 (reserved) */
346 status = status & 0xfe;
347
348 LOG_DEBUG("status: 0x%x", status);
349
350 if (status != 0x80) {
351 LOG_ERROR("status register: 0x%x", status);
352 if (status & 0x2)
353 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
354 if (status & 0x4)
355 LOG_ERROR("Program suspended");
356 if (status & 0x8)
357 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
358 if (status & 0x10)
359 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
360 if (status & 0x20)
361 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
362 if (status & 0x40)
363 LOG_ERROR("Block Erase Suspended");
364
365 cfi_intel_clear_status_register(bank);
366
367 retval = ERROR_FAIL;
368 }
369
370 *val = status;
371 return retval;
372 }
373
374 int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
375 {
376 uint8_t status, oldstatus;
377 struct cfi_flash_bank *cfi_info = bank->driver_priv;
378 int retval;
379
380 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
381 if (retval != ERROR_OK)
382 return retval;
383
384 do {
385 retval = cfi_get_u8(bank, 0, 0x0, &status);
386
387 if (retval != ERROR_OK)
388 return retval;
389
390 if ((status ^ oldstatus) & 0x40) {
391 if (status & cfi_info->status_poll_mask & 0x20) {
392 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
393 if (retval != ERROR_OK)
394 return retval;
395 retval = cfi_get_u8(bank, 0, 0x0, &status);
396 if (retval != ERROR_OK)
397 return retval;
398 if ((status ^ oldstatus) & 0x40) {
399 LOG_ERROR("dq5 timeout, status: 0x%x", status);
400 return ERROR_FLASH_OPERATION_FAILED;
401 } else {
402 LOG_DEBUG("status: 0x%x", status);
403 return ERROR_OK;
404 }
405 }
406 } else {/* no toggle: finished, OK */
407 LOG_DEBUG("status: 0x%x", status);
408 return ERROR_OK;
409 }
410
411 oldstatus = status;
412 alive_sleep(1);
413 } while (timeout-- > 0);
414
415 LOG_ERROR("timeout, status: 0x%x", status);
416
417 return ERROR_FLASH_BUSY;
418 }
419
420 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
421 {
422 int retval;
423 struct cfi_flash_bank *cfi_info = bank->driver_priv;
424 struct cfi_intel_pri_ext *pri_ext;
425
426 free(cfi_info->pri_ext);
427
428 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
429 if (pri_ext == NULL) {
430 LOG_ERROR("Out of memory");
431 return ERROR_FAIL;
432 }
433 cfi_info->pri_ext = pri_ext;
434
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
436 if (retval != ERROR_OK)
437 return retval;
438 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
439 if (retval != ERROR_OK)
440 return retval;
441 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
442 if (retval != ERROR_OK)
443 return retval;
444
445 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
446 retval = cfi_reset(bank);
447 if (retval != ERROR_OK)
448 return retval;
449 LOG_ERROR("Could not read bank flash bank information");
450 return ERROR_FLASH_BANK_INVALID;
451 }
452
453 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
457 if (retval != ERROR_OK)
458 return retval;
459
460 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
461 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
462
463 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
464 if (retval != ERROR_OK)
465 return retval;
466 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
467 if (retval != ERROR_OK)
468 return retval;
469 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
470 if (retval != ERROR_OK)
471 return retval;
472
473 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
474 "0x%x, blk_status_reg_mask: 0x%x",
475 pri_ext->feature_support,
476 pri_ext->suspend_cmd_support,
477 pri_ext->blk_status_reg_mask);
478
479 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
480 if (retval != ERROR_OK)
481 return retval;
482 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
483 if (retval != ERROR_OK)
484 return retval;
485
486 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
487 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
488 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
489
490 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
491 if (retval != ERROR_OK)
492 return retval;
493 if (pri_ext->num_protection_fields != 1) {
494 LOG_WARNING("expected one protection register field, but found %i",
495 pri_ext->num_protection_fields);
496 }
497
498 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
499 if (retval != ERROR_OK)
500 return retval;
501 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
502 if (retval != ERROR_OK)
503 return retval;
504 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
505 if (retval != ERROR_OK)
506 return retval;
507
508 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
509 "factory pre-programmed: %i, user programmable: %i",
510 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
511 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
512
513 return ERROR_OK;
514 }
515
516 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
517 {
518 int retval;
519 struct cfi_flash_bank *cfi_info = bank->driver_priv;
520 struct cfi_spansion_pri_ext *pri_ext;
521
522 free(cfi_info->pri_ext);
523
524 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
525 if (pri_ext == NULL) {
526 LOG_ERROR("Out of memory");
527 return ERROR_FAIL;
528 }
529 cfi_info->pri_ext = pri_ext;
530
531 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
532 if (retval != ERROR_OK)
533 return retval;
534 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
535 if (retval != ERROR_OK)
536 return retval;
537 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
538 if (retval != ERROR_OK)
539 return retval;
540
541 /* default values for implementation specific workarounds */
542 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
543 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
544 pri_ext->_reversed_geometry = 0;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I')) {
547 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
548 if (retval != ERROR_OK)
549 return retval;
550 LOG_ERROR("Could not read spansion bank information");
551 return ERROR_FLASH_BANK_INVALID;
552 }
553
554 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
555 if (retval != ERROR_OK)
556 return retval;
557 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
558 if (retval != ERROR_OK)
559 return retval;
560
561 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
562 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
563
564 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
565 if (retval != ERROR_OK)
566 return retval;
567 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
568 if (retval != ERROR_OK)
569 return retval;
570 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
571 if (retval != ERROR_OK)
572 return retval;
573 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
574 if (retval != ERROR_OK)
575 return retval;
576 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
577 if (retval != ERROR_OK)
578 return retval;
579 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
580 if (retval != ERROR_OK)
581 return retval;
582 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
583 if (retval != ERROR_OK)
584 return retval;
585 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
586 if (retval != ERROR_OK)
587 return retval;
588 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
589 if (retval != ERROR_OK)
590 return retval;
591 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
592 if (retval != ERROR_OK)
593 return retval;
594 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
595 if (retval != ERROR_OK)
596 return retval;
597
598 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
599 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
600
601 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
602 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
603 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
604
605 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
606
607
608 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
609 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
610 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
611
612 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
613
614 return ERROR_OK;
615 }
616
617 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
618 {
619 int retval;
620 struct cfi_atmel_pri_ext atmel_pri_ext;
621 struct cfi_flash_bank *cfi_info = bank->driver_priv;
622 struct cfi_spansion_pri_ext *pri_ext;
623
624 free(cfi_info->pri_ext);
625
626 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
627 if (pri_ext == NULL) {
628 LOG_ERROR("Out of memory");
629 return ERROR_FAIL;
630 }
631
632 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
633 * but a different primary extended query table.
634 * We read the atmel table, and prepare a valid AMD/Spansion query table.
635 */
636
637 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
638
639 cfi_info->pri_ext = pri_ext;
640
641 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
642 if (retval != ERROR_OK)
643 return retval;
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
648 if (retval != ERROR_OK)
649 return retval;
650
651 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
652 || (atmel_pri_ext.pri[2] != 'I')) {
653 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
654 if (retval != ERROR_OK)
655 return retval;
656 LOG_ERROR("Could not read atmel bank information");
657 return ERROR_FLASH_BANK_INVALID;
658 }
659
660 pri_ext->pri[0] = atmel_pri_ext.pri[0];
661 pri_ext->pri[1] = atmel_pri_ext.pri[1];
662 pri_ext->pri[2] = atmel_pri_ext.pri[2];
663
664 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
665 if (retval != ERROR_OK)
666 return retval;
667 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
668 if (retval != ERROR_OK)
669 return retval;
670
671 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
672 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
673 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
674
675 pri_ext->major_version = atmel_pri_ext.major_version;
676 pri_ext->minor_version = atmel_pri_ext.minor_version;
677
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
679 if (retval != ERROR_OK)
680 return retval;
681 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
682 if (retval != ERROR_OK)
683 return retval;
684 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
685 if (retval != ERROR_OK)
686 return retval;
687 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
688 if (retval != ERROR_OK)
689 return retval;
690
691 LOG_DEBUG(
692 "features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
693 atmel_pri_ext.features,
694 atmel_pri_ext.bottom_boot,
695 atmel_pri_ext.burst_mode,
696 atmel_pri_ext.page_mode);
697
698 if (atmel_pri_ext.features & 0x02)
699 pri_ext->EraseSuspend = 2;
700
701 /* some chips got it backwards... */
702 if (cfi_info->device_id == AT49BV6416 ||
703 cfi_info->device_id == AT49BV6416T) {
704 if (atmel_pri_ext.bottom_boot)
705 pri_ext->TopBottom = 3;
706 else
707 pri_ext->TopBottom = 2;
708 } else {
709 if (atmel_pri_ext.bottom_boot)
710 pri_ext->TopBottom = 2;
711 else
712 pri_ext->TopBottom = 3;
713 }
714
715 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
716 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
717
718 return ERROR_OK;
719 }
720
721 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
722 {
723 struct cfi_flash_bank *cfi_info = bank->driver_priv;
724
725 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
726 return cfi_read_atmel_pri_ext(bank);
727 else
728 return cfi_read_spansion_pri_ext(bank);
729 }
730
731 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
732 {
733 int printed;
734 struct cfi_flash_bank *cfi_info = bank->driver_priv;
735 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
736
737 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
738 buf += printed;
739 buf_size -= printed;
740
741 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
742 pri_ext->pri[1], pri_ext->pri[2],
743 pri_ext->major_version, pri_ext->minor_version);
744 buf += printed;
745 buf_size -= printed;
746
747 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
748 (pri_ext->SiliconRevision) >> 2,
749 (pri_ext->SiliconRevision) & 0x03);
750 buf += printed;
751 buf_size -= printed;
752
753 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
754 pri_ext->EraseSuspend,
755 pri_ext->BlkProt);
756 buf += printed;
757 buf_size -= printed;
758
759 snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
760 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
761 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
762
763 return ERROR_OK;
764 }
765
766 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
767 {
768 int printed;
769 struct cfi_flash_bank *cfi_info = bank->driver_priv;
770 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
771
772 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
773 buf += printed;
774 buf_size -= printed;
775
776 printed = snprintf(buf,
777 buf_size,
778 "pri: '%c%c%c', version: %c.%c\n",
779 pri_ext->pri[0],
780 pri_ext->pri[1],
781 pri_ext->pri[2],
782 pri_ext->major_version,
783 pri_ext->minor_version);
784 buf += printed;
785 buf_size -= printed;
786
787 printed = snprintf(buf,
788 buf_size,
789 "feature_support: 0x%" PRIx32 ", "
790 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
791 pri_ext->feature_support,
792 pri_ext->suspend_cmd_support,
793 pri_ext->blk_status_reg_mask);
794 buf += printed;
795 buf_size -= printed;
796
797 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
798 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
799 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
800 buf += printed;
801 buf_size -= printed;
802
803 snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
804 "factory pre-programmed: %i, user programmable: %i\n",
805 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
806 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
807
808 return ERROR_OK;
809 }
810
811 int cfi_flash_bank_cmd(struct flash_bank *bank, unsigned int argc, const char **argv)
812 {
813 struct cfi_flash_bank *cfi_info;
814 bool bus_swap = false;
815
816 if (argc < 6)
817 return ERROR_COMMAND_SYNTAX_ERROR;
818
819 /* both widths must:
820 * - not exceed max value;
821 * - not be null;
822 * - be equal to a power of 2.
823 * bus must be wide enough to hold one chip */
824 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
825 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
826 || (bank->chip_width == 0)
827 || (bank->bus_width == 0)
828 || (bank->chip_width & (bank->chip_width - 1))
829 || (bank->bus_width & (bank->bus_width - 1))
830 || (bank->chip_width > bank->bus_width)) {
831 LOG_ERROR("chip and bus width have to specified in bytes");
832 return ERROR_FLASH_BANK_INVALID;
833 }
834
835 cfi_info = calloc(1, sizeof(struct cfi_flash_bank));
836 if (cfi_info == NULL) {
837 LOG_ERROR("No memory for flash bank info");
838 return ERROR_FAIL;
839 }
840 bank->driver_priv = cfi_info;
841
842 for (unsigned i = 6; i < argc; i++) {
843 if (strcmp(argv[i], "x16_as_x8") == 0)
844 cfi_info->x16_as_x8 = true;
845 else if (strcmp(argv[i], "data_swap") == 0)
846 cfi_info->data_swap = true;
847 else if (strcmp(argv[i], "bus_swap") == 0)
848 bus_swap = true;
849 else if (strcmp(argv[i], "jedec_probe") == 0)
850 cfi_info->jedec_probe = true;
851 }
852
853 if (bus_swap)
854 cfi_info->endianness =
855 bank->target->endianness == TARGET_LITTLE_ENDIAN ?
856 TARGET_BIG_ENDIAN : TARGET_LITTLE_ENDIAN;
857 else
858 cfi_info->endianness = bank->target->endianness;
859
860 /* bank wasn't probed yet */
861 cfi_info->qry[0] = 0xff;
862
863 return ERROR_OK;
864 }
865
866 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
867 */
868 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
869 {
870 return cfi_flash_bank_cmd(bank, CMD_ARGC, CMD_ARGV);
871 }
872
873 static int cfi_intel_erase(struct flash_bank *bank, unsigned int first,
874 unsigned int last)
875 {
876 int retval;
877 struct cfi_flash_bank *cfi_info = bank->driver_priv;
878
879 cfi_intel_clear_status_register(bank);
880
881 for (unsigned int i = first; i <= last; i++) {
882 retval = cfi_send_command(bank, 0x20, cfi_flash_address(bank, i, 0x0));
883 if (retval != ERROR_OK)
884 return retval;
885
886 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
887 if (retval != ERROR_OK)
888 return retval;
889
890 uint8_t status;
891 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
892 if (retval != ERROR_OK)
893 return retval;
894
895 if (status == 0x80)
896 bank->sectors[i].is_erased = 1;
897 else {
898 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
899 if (retval != ERROR_OK)
900 return retval;
901
902 LOG_ERROR("couldn't erase block %u of flash bank at base "
903 TARGET_ADDR_FMT, i, bank->base);
904 return ERROR_FLASH_OPERATION_FAILED;
905 }
906 }
907
908 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
909 }
910
911 int cfi_spansion_unlock_seq(struct flash_bank *bank)
912 {
913 int retval;
914 struct cfi_flash_bank *cfi_info = bank->driver_priv;
915 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
916
917 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, pri_ext->_unlock1));
918 if (retval != ERROR_OK)
919 return retval;
920
921 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, pri_ext->_unlock2));
922 if (retval != ERROR_OK)
923 return retval;
924
925 return ERROR_OK;
926 }
927
928 static int cfi_spansion_erase(struct flash_bank *bank, unsigned int first,
929 unsigned int last)
930 {
931 int retval;
932 struct cfi_flash_bank *cfi_info = bank->driver_priv;
933 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
934
935 for (unsigned int i = first; i <= last; i++) {
936 retval = cfi_spansion_unlock_seq(bank);
937 if (retval != ERROR_OK)
938 return retval;
939
940 retval = cfi_send_command(bank, 0x80, cfi_flash_address(bank, 0, pri_ext->_unlock1));
941 if (retval != ERROR_OK)
942 return retval;
943
944 retval = cfi_spansion_unlock_seq(bank);
945 if (retval != ERROR_OK)
946 return retval;
947
948 retval = cfi_send_command(bank, 0x30, cfi_flash_address(bank, i, 0x0));
949 if (retval != ERROR_OK)
950 return retval;
951
952 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
953 bank->sectors[i].is_erased = 1;
954 else {
955 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
956 if (retval != ERROR_OK)
957 return retval;
958
959 LOG_ERROR("couldn't erase block %i of flash bank at base "
960 TARGET_ADDR_FMT, i, bank->base);
961 return ERROR_FLASH_OPERATION_FAILED;
962 }
963 }
964
965 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
966 }
967
968 int cfi_erase(struct flash_bank *bank, unsigned int first,
969 unsigned int last)
970 {
971 struct cfi_flash_bank *cfi_info = bank->driver_priv;
972
973 if (bank->target->state != TARGET_HALTED) {
974 LOG_ERROR("Target not halted");
975 return ERROR_TARGET_NOT_HALTED;
976 }
977
978 if ((last < first) || (last >= bank->num_sectors))
979 return ERROR_FLASH_SECTOR_INVALID;
980
981 if (cfi_info->qry[0] != 'Q')
982 return ERROR_FLASH_BANK_NOT_PROBED;
983
984 switch (cfi_info->pri_id) {
985 case 1:
986 case 3:
987 return cfi_intel_erase(bank, first, last);
988 case 2:
989 return cfi_spansion_erase(bank, first, last);
990 default:
991 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
992 break;
993 }
994
995 return ERROR_OK;
996 }
997
998 static int cfi_intel_protect(struct flash_bank *bank, int set,
999 unsigned int first, unsigned int last)
1000 {
1001 int retval;
1002 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1003 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1004 int retry = 0;
1005
1006 /* if the device supports neither legacy lock/unlock (bit 3) nor
1007 * instant individual block locking (bit 5).
1008 */
1009 if (!(pri_ext->feature_support & 0x28)) {
1010 LOG_ERROR("lock/unlock not supported on flash");
1011 return ERROR_FLASH_OPERATION_FAILED;
1012 }
1013
1014 cfi_intel_clear_status_register(bank);
1015
1016 for (unsigned int i = first; i <= last; i++) {
1017 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1018 if (retval != ERROR_OK)
1019 return retval;
1020 if (set) {
1021 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1022 if (retval != ERROR_OK)
1023 return retval;
1024 bank->sectors[i].is_protected = 1;
1025 } else {
1026 retval = cfi_send_command(bank, 0xd0, cfi_flash_address(bank, i, 0x0));
1027 if (retval != ERROR_OK)
1028 return retval;
1029 bank->sectors[i].is_protected = 0;
1030 }
1031
1032 /* instant individual block locking doesn't require reading of the status register
1033 **/
1034 if (!(pri_ext->feature_support & 0x20)) {
1035 /* Clear lock bits operation may take up to 1.4s */
1036 uint8_t status;
1037 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1038 if (retval != ERROR_OK)
1039 return retval;
1040 } else {
1041 uint8_t block_status;
1042 /* read block lock bit, to verify status */
1043 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
1044 if (retval != ERROR_OK)
1045 return retval;
1046 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1047 if (retval != ERROR_OK)
1048 return retval;
1049
1050 if ((block_status & 0x1) != set) {
1051 LOG_ERROR(
1052 "couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1053 set, block_status);
1054 retval = cfi_send_command(bank, 0x70, cfi_flash_address(bank, 0, 0x55));
1055 if (retval != ERROR_OK)
1056 return retval;
1057 uint8_t status;
1058 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1059 if (retval != ERROR_OK)
1060 return retval;
1061
1062 if (retry > 10)
1063 return ERROR_FLASH_OPERATION_FAILED;
1064 else {
1065 i--;
1066 retry++;
1067 }
1068 }
1069 }
1070 }
1071
1072 /* if the device doesn't support individual block lock bits set/clear,
1073 * all blocks have been unlocked in parallel, so we set those that should be protected
1074 */
1075 if ((!set) && (!(pri_ext->feature_support & 0x20))) {
1076 /* FIX!!! this code path is broken!!!
1077 *
1078 * The correct approach is:
1079 *
1080 * 1. read out current protection status
1081 *
1082 * 2. override read out protection status w/unprotected.
1083 *
1084 * 3. re-protect what should be protected.
1085 *
1086 */
1087 for (unsigned int i = 0; i < bank->num_sectors; i++) {
1088 if (bank->sectors[i].is_protected == 1) {
1089 cfi_intel_clear_status_register(bank);
1090
1091 retval = cfi_send_command(bank, 0x60, cfi_flash_address(bank, i, 0x0));
1092 if (retval != ERROR_OK)
1093 return retval;
1094
1095 retval = cfi_send_command(bank, 0x01, cfi_flash_address(bank, i, 0x0));
1096 if (retval != ERROR_OK)
1097 return retval;
1098
1099 uint8_t status;
1100 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1101 if (retval != ERROR_OK)
1102 return retval;
1103 }
1104 }
1105 }
1106
1107 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
1108 }
1109
1110 int cfi_protect(struct flash_bank *bank, int set, unsigned int first,
1111 unsigned int last)
1112 {
1113 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1114
1115 if (bank->target->state != TARGET_HALTED) {
1116 LOG_ERROR("Target not halted");
1117 return ERROR_TARGET_NOT_HALTED;
1118 }
1119
1120 if (cfi_info->qry[0] != 'Q')
1121 return ERROR_FLASH_BANK_NOT_PROBED;
1122
1123 switch (cfi_info->pri_id) {
1124 case 1:
1125 case 3:
1126 return cfi_intel_protect(bank, set, first, last);
1127 default:
1128 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1129 return ERROR_OK;
1130 }
1131 }
1132
1133 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1134 {
1135 struct target *target = bank->target;
1136
1137 uint8_t buf[CFI_MAX_BUS_WIDTH];
1138 cfi_command(bank, cmd, buf);
1139 switch (bank->bus_width) {
1140 case 1:
1141 return buf[0];
1142 case 2:
1143 return target_buffer_get_u16(target, buf);
1144 case 4:
1145 return target_buffer_get_u32(target, buf);
1146 default:
1147 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1148 bank->bus_width);
1149 return 0;
1150 }
1151 }
1152
1153 static int cfi_intel_write_block(struct flash_bank *bank, const uint8_t *buffer,
1154 uint32_t address, uint32_t count)
1155 {
1156 struct target *target = bank->target;
1157 struct reg_param reg_params[7];
1158 struct arm_algorithm arm_algo;
1159 struct working_area *write_algorithm;
1160 struct working_area *source = NULL;
1161 uint32_t buffer_size = 32768;
1162 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1163
1164 /* algorithm register usage:
1165 * r0: source address (in RAM)
1166 * r1: target address (in Flash)
1167 * r2: count
1168 * r3: flash write command
1169 * r4: status byte (returned to host)
1170 * r5: busy test pattern
1171 * r6: error test pattern
1172 */
1173
1174 /* see contrib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1175 static const uint32_t word_32_code[] = {
1176 0xe4904004, /* loop: ldr r4, [r0], #4 */
1177 0xe5813000, /* str r3, [r1] */
1178 0xe5814000, /* str r4, [r1] */
1179 0xe5914000, /* busy: ldr r4, [r1] */
1180 0xe0047005, /* and r7, r4, r5 */
1181 0xe1570005, /* cmp r7, r5 */
1182 0x1afffffb, /* bne busy */
1183 0xe1140006, /* tst r4, r6 */
1184 0x1a000003, /* bne done */
1185 0xe2522001, /* subs r2, r2, #1 */
1186 0x0a000001, /* beq done */
1187 0xe2811004, /* add r1, r1 #4 */
1188 0xeafffff2, /* b loop */
1189 0xeafffffe /* done: b -2 */
1190 };
1191
1192 /* see contrib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1193 static const uint32_t word_16_code[] = {
1194 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1195 0xe1c130b0, /* strh r3, [r1] */
1196 0xe1c140b0, /* strh r4, [r1] */
1197 0xe1d140b0, /* busy ldrh r4, [r1] */
1198 0xe0047005, /* and r7, r4, r5 */
1199 0xe1570005, /* cmp r7, r5 */
1200 0x1afffffb, /* bne busy */
1201 0xe1140006, /* tst r4, r6 */
1202 0x1a000003, /* bne done */
1203 0xe2522001, /* subs r2, r2, #1 */
1204 0x0a000001, /* beq done */
1205 0xe2811002, /* add r1, r1 #2 */
1206 0xeafffff2, /* b loop */
1207 0xeafffffe /* done: b -2 */
1208 };
1209
1210 /* see contrib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1211 static const uint32_t word_8_code[] = {
1212 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1213 0xe5c13000, /* strb r3, [r1] */
1214 0xe5c14000, /* strb r4, [r1] */
1215 0xe5d14000, /* busy ldrb r4, [r1] */
1216 0xe0047005, /* and r7, r4, r5 */
1217 0xe1570005, /* cmp r7, r5 */
1218 0x1afffffb, /* bne busy */
1219 0xe1140006, /* tst r4, r6 */
1220 0x1a000003, /* bne done */
1221 0xe2522001, /* subs r2, r2, #1 */
1222 0x0a000001, /* beq done */
1223 0xe2811001, /* add r1, r1 #1 */
1224 0xeafffff2, /* b loop */
1225 0xeafffffe /* done: b -2 */
1226 };
1227 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1228 const uint32_t *target_code_src;
1229 uint32_t target_code_size;
1230 int retval = ERROR_OK;
1231
1232 /* check we have a supported arch */
1233 if (is_arm(target_to_arm(target))) {
1234 /* All other ARM CPUs have 32 bit instructions */
1235 arm_algo.common_magic = ARM_COMMON_MAGIC;
1236 arm_algo.core_mode = ARM_MODE_SVC;
1237 arm_algo.core_state = ARM_STATE_ARM;
1238 } else {
1239 LOG_ERROR("Unknown architecture");
1240 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1241 }
1242
1243 cfi_intel_clear_status_register(bank);
1244
1245 /* If we are setting up the write_algorithm, we need target_code_src
1246 * if not we only need target_code_size. */
1247
1248 /* However, we don't want to create multiple code paths, so we
1249 * do the unnecessary evaluation of target_code_src, which the
1250 * compiler will probably nicely optimize away if not needed */
1251
1252 /* prepare algorithm code for target endian */
1253 switch (bank->bus_width) {
1254 case 1:
1255 target_code_src = word_8_code;
1256 target_code_size = sizeof(word_8_code);
1257 break;
1258 case 2:
1259 target_code_src = word_16_code;
1260 target_code_size = sizeof(word_16_code);
1261 break;
1262 case 4:
1263 target_code_src = word_32_code;
1264 target_code_size = sizeof(word_32_code);
1265 break;
1266 default:
1267 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1268 bank->bus_width);
1269 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1270 }
1271
1272 /* flash write code */
1273 if (target_code_size > sizeof(target_code)) {
1274 LOG_WARNING("Internal error - target code buffer to small. "
1275 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1276 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1277 }
1278
1279 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1280
1281 /* Get memory for block write handler */
1282 retval = target_alloc_working_area(target,
1283 target_code_size,
1284 &write_algorithm);
1285 if (retval != ERROR_OK) {
1286 LOG_WARNING("No working area available, can't do block memory writes");
1287 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1288 }
1289
1290 /* write algorithm code to working area */
1291 retval = target_write_buffer(target, write_algorithm->address,
1292 target_code_size, target_code);
1293 if (retval != ERROR_OK) {
1294 LOG_ERROR("Unable to write block write code to target");
1295 goto cleanup;
1296 }
1297
1298 /* Get a workspace buffer for the data to flash starting with 32k size.
1299 * Half size until buffer would be smaller 256 Bytes then fail back */
1300 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1301 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1302 buffer_size /= 2;
1303 if (buffer_size <= 256) {
1304 LOG_WARNING(
1305 "no large enough working area available, can't do block memory writes");
1306 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1307 goto cleanup;
1308 }
1309 }
1310
1311 /* setup algo registers */
1312 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1313 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1314 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1315 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1316 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1317 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1318 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1319
1320 /* prepare command and status register patterns */
1321 write_command_val = cfi_command_val(bank, 0x40);
1322 busy_pattern_val = cfi_command_val(bank, 0x80);
1323 error_pattern_val = cfi_command_val(bank, 0x7e);
1324
1325 LOG_DEBUG("Using target buffer at " TARGET_ADDR_FMT " and of size 0x%04" PRIx32,
1326 source->address, buffer_size);
1327
1328 /* Programming main loop */
1329 while (count > 0) {
1330 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1331 uint32_t wsm_error;
1332
1333 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1334 if (retval != ERROR_OK)
1335 goto cleanup;
1336
1337 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1338 buf_set_u32(reg_params[1].value, 0, 32, address);
1339 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1340
1341 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1342 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1343 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1344
1345 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32,
1346 thisrun_count, address);
1347
1348 /* Execute algorithm, assume breakpoint for last instruction */
1349 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1350 write_algorithm->address,
1351 write_algorithm->address + target_code_size -
1352 sizeof(uint32_t),
1353 10000, /* 10s should be enough for max. 32k of data */
1354 &arm_algo);
1355
1356 /* On failure try a fall back to direct word writes */
1357 if (retval != ERROR_OK) {
1358 cfi_intel_clear_status_register(bank);
1359 LOG_ERROR(
1360 "Execution of flash algorithm failed. Can't fall back. Please report.");
1361 retval = ERROR_FLASH_OPERATION_FAILED;
1362 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1363 /* FIXME To allow fall back or recovery, we must save the actual status
1364 * somewhere, so that a higher level code can start recovery. */
1365 goto cleanup;
1366 }
1367
1368 /* Check return value from algo code */
1369 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1370 if (wsm_error) {
1371 /* read status register (outputs debug information) */
1372 uint8_t status;
1373 cfi_intel_wait_status_busy(bank, 100, &status);
1374 cfi_intel_clear_status_register(bank);
1375 retval = ERROR_FLASH_OPERATION_FAILED;
1376 goto cleanup;
1377 }
1378
1379 buffer += thisrun_count;
1380 address += thisrun_count;
1381 count -= thisrun_count;
1382
1383 keep_alive();
1384 }
1385
1386 /* free up resources */
1387 cleanup:
1388 if (source)
1389 target_free_working_area(target, source);
1390
1391 target_free_working_area(target, write_algorithm);
1392
1393 destroy_reg_param(&reg_params[0]);
1394 destroy_reg_param(&reg_params[1]);
1395 destroy_reg_param(&reg_params[2]);
1396 destroy_reg_param(&reg_params[3]);
1397 destroy_reg_param(&reg_params[4]);
1398 destroy_reg_param(&reg_params[5]);
1399 destroy_reg_param(&reg_params[6]);
1400
1401 return retval;
1402 }
1403
1404 static int cfi_spansion_write_block_mips(struct flash_bank *bank, const uint8_t *buffer,
1405 uint32_t address, uint32_t count)
1406 {
1407 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1408 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1409 struct target *target = bank->target;
1410 struct reg_param reg_params[10];
1411 struct mips32_algorithm mips32_info;
1412 struct working_area *write_algorithm;
1413 struct working_area *source;
1414 uint32_t buffer_size = 32768;
1415 uint32_t status;
1416 int retval = ERROR_OK;
1417
1418 /* input parameters -
1419 * 4 A0 = source address
1420 * 5 A1 = destination address
1421 * 6 A2 = number of writes
1422 * 7 A3 = flash write command
1423 * 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift)
1424 * output parameters -
1425 * 9 T1 = 0x80 ok 0x00 bad
1426 * temp registers -
1427 * 10 T2 = value read from flash to test status
1428 * 11 T3 = holding register
1429 * unlock registers -
1430 * 12 T4 = unlock1_addr
1431 * 13 T5 = unlock1_cmd
1432 * 14 T6 = unlock2_addr
1433 * 15 T7 = unlock2_cmd */
1434
1435 static const uint32_t mips_word_16_code[] = {
1436 /* start: */
1437 MIPS32_LHU(0, 9, 0, 4), /* lhu $t1, ($a0) ; out = &saddr */
1438 MIPS32_ADDI(0, 4, 4, 2), /* addi $a0, $a0, 2 ; saddr += 2 */
1439 MIPS32_SH(0, 13, 0, 12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1440 MIPS32_SH(0, 15, 0, 14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1441 MIPS32_SH(0, 7, 0, 12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1442 MIPS32_SH(0, 9, 0, 5), /* sh $t1, ($a1) ; *daddr = out */
1443 MIPS32_NOP, /* nop */
1444 /* busy: */
1445 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1446 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1447 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1448 MIPS32_BNE(0, 11, 8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1449 MIPS32_NOP, /* nop */
1450
1451 MIPS32_SRL(0, 10, 8, 2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1452 MIPS32_AND(0, 11, 10, 11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1453 MIPS32_BNE(0, 11, 10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1454 MIPS32_NOP, /* nop */
1455
1456 MIPS32_LHU(0, 10, 0, 5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1457 MIPS32_XOR(0, 11, 9, 10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1458 MIPS32_AND(0, 11, 8, 11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1459 MIPS32_BNE(0, 11, 8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1460 MIPS32_NOP, /* nop */
1461
1462 MIPS32_XOR(0, 9, 9, 9), /* xor $t1, $t1, $t1 ; out = 0 */
1463 MIPS32_BEQ(0, 9, 0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1464 MIPS32_NOP, /* nop */
1465 /* cont: */
1466 MIPS32_ADDI(0, 6, 6, NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1467 MIPS32_BNE(0, 6, 0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1468 MIPS32_NOP, /* nop */
1469
1470 MIPS32_LUI(0, 9, 0), /* lui $t1, 0 */
1471 MIPS32_ORI(0, 9, 9, 0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1472
1473 MIPS32_B(0, 4), /* b done ; goto done */
1474 MIPS32_NOP, /* nop */
1475 /* cont2: */
1476 MIPS32_ADDI(0, 5, 5, 2), /* addi $a0, $a0, 2 ; daddr += 2 */
1477 MIPS32_B(0, NEG16(33)), /* b start ; goto start */
1478 MIPS32_NOP, /* nop */
1479 /* done: */
1480 MIPS32_SDBBP(0), /* sdbbp ; break(); */
1481 };
1482
1483 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1484 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1485
1486 int target_code_size = 0;
1487 const uint32_t *target_code_src = NULL;
1488
1489 switch (bank->bus_width) {
1490 case 2:
1491 /* Check for DQ5 support */
1492 if (cfi_info->status_poll_mask & (1 << 5)) {
1493 target_code_src = mips_word_16_code;
1494 target_code_size = sizeof(mips_word_16_code);
1495 } else {
1496 LOG_ERROR("Need DQ5 support");
1497 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1498 /* target_code_src = mips_word_16_code_dq7only; */
1499 /* target_code_size = sizeof(mips_word_16_code_dq7only); */
1500 }
1501 break;
1502 default:
1503 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1504 bank->bus_width);
1505 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1506 }
1507
1508 /* flash write code */
1509 uint8_t *target_code;
1510
1511 /* convert bus-width dependent algorithm code to correct endianness */
1512 target_code = malloc(target_code_size);
1513 if (target_code == NULL) {
1514 LOG_ERROR("Out of memory");
1515 return ERROR_FAIL;
1516 }
1517
1518 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1519
1520 /* allocate working area */
1521 retval = target_alloc_working_area(target, target_code_size,
1522 &write_algorithm);
1523 if (retval != ERROR_OK) {
1524 free(target_code);
1525 return retval;
1526 }
1527
1528 /* write algorithm code to working area */
1529 retval = target_write_buffer(target, write_algorithm->address,
1530 target_code_size, target_code);
1531 if (retval != ERROR_OK) {
1532 free(target_code);
1533 return retval;
1534 }
1535
1536 free(target_code);
1537
1538 /* the following code still assumes target code is fixed 24*4 bytes */
1539
1540 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1541 buffer_size /= 2;
1542 if (buffer_size <= 256) {
1543 /* we already allocated the writing code, but failed to get a
1544 * buffer, free the algorithm */
1545 target_free_working_area(target, write_algorithm);
1546
1547 LOG_WARNING(
1548 "not enough working area available, can't do block memory writes");
1549 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1550 }
1551 }
1552
1553 init_reg_param(&reg_params[0], "r4", 32, PARAM_OUT);
1554 init_reg_param(&reg_params[1], "r5", 32, PARAM_OUT);
1555 init_reg_param(&reg_params[2], "r6", 32, PARAM_OUT);
1556 init_reg_param(&reg_params[3], "r7", 32, PARAM_OUT);
1557 init_reg_param(&reg_params[4], "r8", 32, PARAM_OUT);
1558 init_reg_param(&reg_params[5], "r9", 32, PARAM_IN);
1559 init_reg_param(&reg_params[6], "r12", 32, PARAM_OUT);
1560 init_reg_param(&reg_params[7], "r13", 32, PARAM_OUT);
1561 init_reg_param(&reg_params[8], "r14", 32, PARAM_OUT);
1562 init_reg_param(&reg_params[9], "r15", 32, PARAM_OUT);
1563
1564 while (count > 0) {
1565 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1566
1567 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1568 if (retval != ERROR_OK)
1569 break;
1570
1571 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1572 buf_set_u32(reg_params[1].value, 0, 32, address);
1573 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1574 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1575 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1576 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1577 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1578 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1579 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1580
1581 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1582 write_algorithm->address,
1583 write_algorithm->address + ((target_code_size) - 4),
1584 10000, &mips32_info);
1585 if (retval != ERROR_OK)
1586 break;
1587
1588 status = buf_get_u32(reg_params[5].value, 0, 32);
1589 if (status != 0x80) {
1590 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1591 retval = ERROR_FLASH_OPERATION_FAILED;
1592 break;
1593 }
1594
1595 buffer += thisrun_count;
1596 address += thisrun_count;
1597 count -= thisrun_count;
1598 }
1599
1600 target_free_all_working_areas(target);
1601
1602 destroy_reg_param(&reg_params[0]);
1603 destroy_reg_param(&reg_params[1]);
1604 destroy_reg_param(&reg_params[2]);
1605 destroy_reg_param(&reg_params[3]);
1606 destroy_reg_param(&reg_params[4]);
1607 destroy_reg_param(&reg_params[5]);
1608 destroy_reg_param(&reg_params[6]);
1609 destroy_reg_param(&reg_params[7]);
1610 destroy_reg_param(&reg_params[8]);
1611 destroy_reg_param(&reg_params[9]);
1612
1613 return retval;
1614 }
1615
1616 static int cfi_spansion_write_block(struct flash_bank *bank, const uint8_t *buffer,
1617 uint32_t address, uint32_t count)
1618 {
1619 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1620 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1621 struct target *target = bank->target;
1622 struct reg_param reg_params[10];
1623 void *arm_algo;
1624 struct arm_algorithm armv4_5_algo;
1625 struct armv7m_algorithm armv7m_algo;
1626 struct working_area *write_algorithm;
1627 struct working_area *source;
1628 uint32_t buffer_size = 32768;
1629 uint32_t status;
1630 int retval = ERROR_OK;
1631
1632 /* input parameters -
1633 * R0 = source address
1634 * R1 = destination address
1635 * R2 = number of writes
1636 * R3 = flash write command
1637 * R4 = constant to mask DQ7 bits (also used for Dq5 with shift)
1638 * output parameters -
1639 * R5 = 0x80 ok 0x00 bad
1640 * temp registers -
1641 * R6 = value read from flash to test status
1642 * R7 = holding register
1643 * unlock registers -
1644 * R8 = unlock1_addr
1645 * R9 = unlock1_cmd
1646 * R10 = unlock2_addr
1647 * R11 = unlock2_cmd */
1648
1649 /* see contrib/loaders/flash/armv4_5_cfi_span_32.s for src */
1650 static const uint32_t armv4_5_word_32_code[] = {
1651 /* 00008100 <sp_32_code>: */
1652 0xe4905004, /* ldr r5, [r0], #4 */
1653 0xe5889000, /* str r9, [r8] */
1654 0xe58ab000, /* str r11, [r10] */
1655 0xe5883000, /* str r3, [r8] */
1656 0xe5815000, /* str r5, [r1] */
1657 0xe1a00000, /* nop */
1658 /* 00008110 <sp_32_busy>: */
1659 0xe5916000, /* ldr r6, [r1] */
1660 0xe0257006, /* eor r7, r5, r6 */
1661 0xe0147007, /* ands r7, r4, r7 */
1662 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1663 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1664 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1665 0xe5916000, /* ldr r6, [r1] */
1666 0xe0257006, /* eor r7, r5, r6 */
1667 0xe0147007, /* ands r7, r4, r7 */
1668 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1669 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1670 0x1a000004, /* bne 8154 <sp_32_done> */
1671 /* 00008140 <sp_32_cont>: */
1672 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1673 0x03a05080, /* moveq r5, #128 ; 0x80 */
1674 0x0a000001, /* beq 8154 <sp_32_done> */
1675 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1676 0xeaffffe8, /* b 8100 <sp_32_code> */
1677 /* 00008154 <sp_32_done>: */
1678 0xeafffffe /* b 8154 <sp_32_done> */
1679 };
1680
1681 /* see contrib/loaders/flash/armv4_5_cfi_span_16.s for src */
1682 static const uint32_t armv4_5_word_16_code[] = {
1683 /* 00008158 <sp_16_code>: */
1684 0xe0d050b2, /* ldrh r5, [r0], #2 */
1685 0xe1c890b0, /* strh r9, [r8] */
1686 0xe1cab0b0, /* strh r11, [r10] */
1687 0xe1c830b0, /* strh r3, [r8] */
1688 0xe1c150b0, /* strh r5, [r1] */
1689 0xe1a00000, /* nop (mov r0,r0) */
1690 /* 00008168 <sp_16_busy>: */
1691 0xe1d160b0, /* ldrh r6, [r1] */
1692 0xe0257006, /* eor r7, r5, r6 */
1693 0xe0147007, /* ands r7, r4, r7 */
1694 0x0a000007, /* beq 8198 <sp_16_cont> */
1695 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1696 0x0afffff9, /* beq 8168 <sp_16_busy> */
1697 0xe1d160b0, /* ldrh r6, [r1] */
1698 0xe0257006, /* eor r7, r5, r6 */
1699 0xe0147007, /* ands r7, r4, r7 */
1700 0x0a000001, /* beq 8198 <sp_16_cont> */
1701 0xe3a05000, /* mov r5, #0 ; 0x0 */
1702 0x1a000004, /* bne 81ac <sp_16_done> */
1703 /* 00008198 <sp_16_cont>: */
1704 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1705 0x03a05080, /* moveq r5, #128 ; 0x80 */
1706 0x0a000001, /* beq 81ac <sp_16_done> */
1707 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1708 0xeaffffe8, /* b 8158 <sp_16_code> */
1709 /* 000081ac <sp_16_done>: */
1710 0xeafffffe /* b 81ac <sp_16_done> */
1711 };
1712
1713 /* see contrib/loaders/flash/armv7m_cfi_span_16.s for src */
1714 static const uint32_t armv7m_word_16_code[] = {
1715 0x5B02F830,
1716 0x9000F8A8,
1717 0xB000F8AA,
1718 0x3000F8A8,
1719 0xBF00800D,
1720 0xEA85880E,
1721 0x40270706,
1722 0xEA16D00A,
1723 0xD0F70694,
1724 0xEA85880E,
1725 0x40270706,
1726 0xF04FD002,
1727 0xD1070500,
1728 0xD0023A01,
1729 0x0102F101,
1730 0xF04FE7E0,
1731 0xE7FF0580,
1732 0x0000BE00
1733 };
1734
1735 /* see contrib/loaders/flash/armv7m_cfi_span_16_dq7.s for src */
1736 static const uint32_t armv7m_word_16_code_dq7only[] = {
1737 /* 00000000 <code>: */
1738 0x5B02F830, /* ldrh.w r5, [r0], #2 */
1739 0x9000F8A8, /* strh.w r9, [r8] */
1740 0xB000F8AA, /* strh.w fp, [sl] */
1741 0x3000F8A8, /* strh.w r3, [r8] */
1742 0xBF00800D, /* strh r5, [r1, #0] */
1743 /* nop */
1744
1745 /* 00000014 <busy>: */
1746 0xEA85880E, /* ldrh r6, [r1, #0] */
1747 /* eor.w r7, r5, r6 */
1748 0x40270706, /* ands r7, r4 */
1749 0x3A01D1FA, /* bne.n 14 <busy> */
1750 /* subs r2, #1 */
1751 0xF101D002, /* beq.n 28 <success> */
1752 0xE7EB0102, /* add.w r1, r1, #2 */
1753 /* b.n 0 <code> */
1754
1755 /* 00000028 <success>: */
1756 0x0580F04F, /* mov.w r5, #128 */
1757 0xBF00E7FF, /* b.n 30 <done> */
1758 /* nop (for alignment purposes) */
1759
1760 /* 00000030 <done>: */
1761 0x0000BE00 /* bkpt 0x0000 */
1762 };
1763
1764 /* see contrib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1765 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1766 /* <sp_16_code>: */
1767 0xe0d050b2, /* ldrh r5, [r0], #2 */
1768 0xe1c890b0, /* strh r9, [r8] */
1769 0xe1cab0b0, /* strh r11, [r10] */
1770 0xe1c830b0, /* strh r3, [r8] */
1771 0xe1c150b0, /* strh r5, [r1] */
1772 0xe1a00000, /* nop (mov r0,r0) */
1773 /* <sp_16_busy>: */
1774 0xe1d160b0, /* ldrh r6, [r1] */
1775 0xe0257006, /* eor r7, r5, r6 */
1776 0xe2177080, /* ands r7, #0x80 */
1777 0x1afffffb, /* bne 8168 <sp_16_busy> */
1778 /* */
1779 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1780 0x03a05080, /* moveq r5, #128 ; 0x80 */
1781 0x0a000001, /* beq 81ac <sp_16_done> */
1782 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1783 0xeafffff0, /* b 8158 <sp_16_code> */
1784 /* 000081ac <sp_16_done>: */
1785 0xeafffffe /* b 81ac <sp_16_done> */
1786 };
1787
1788 /* see contrib/loaders/flash/armv4_5_cfi_span_8.s for src */
1789 static const uint32_t armv4_5_word_8_code[] = {
1790 /* 000081b0 <sp_16_code_end>: */
1791 0xe4d05001, /* ldrb r5, [r0], #1 */
1792 0xe5c89000, /* strb r9, [r8] */
1793 0xe5cab000, /* strb r11, [r10] */
1794 0xe5c83000, /* strb r3, [r8] */
1795 0xe5c15000, /* strb r5, [r1] */
1796 0xe1a00000, /* nop (mov r0,r0) */
1797 /* 000081c0 <sp_8_busy>: */
1798 0xe5d16000, /* ldrb r6, [r1] */
1799 0xe0257006, /* eor r7, r5, r6 */
1800 0xe0147007, /* ands r7, r4, r7 */
1801 0x0a000007, /* beq 81f0 <sp_8_cont> */
1802 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1803 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1804 0xe5d16000, /* ldrb r6, [r1] */
1805 0xe0257006, /* eor r7, r5, r6 */
1806 0xe0147007, /* ands r7, r4, r7 */
1807 0x0a000001, /* beq 81f0 <sp_8_cont> */
1808 0xe3a05000, /* mov r5, #0 ; 0x0 */
1809 0x1a000004, /* bne 8204 <sp_8_done> */
1810 /* 000081f0 <sp_8_cont>: */
1811 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1812 0x03a05080, /* moveq r5, #128 ; 0x80 */
1813 0x0a000001, /* beq 8204 <sp_8_done> */
1814 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1815 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1816 /* 00008204 <sp_8_done>: */
1817 0xeafffffe /* b 8204 <sp_8_done> */
1818 };
1819
1820 if (strncmp(target_type_name(target), "mips_m4k", 8) == 0)
1821 return cfi_spansion_write_block_mips(bank, buffer, address, count);
1822
1823 if (is_armv7m(target_to_armv7m(target))) { /* armv7m target */
1824 armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
1825 armv7m_algo.core_mode = ARM_MODE_THREAD;
1826 arm_algo = &armv7m_algo;
1827 } else if (is_arm(target_to_arm(target))) {
1828 /* All other ARM CPUs have 32 bit instructions */
1829 armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
1830 armv4_5_algo.core_mode = ARM_MODE_SVC;
1831 armv4_5_algo.core_state = ARM_STATE_ARM;
1832 arm_algo = &armv4_5_algo;
1833 } else {
1834 LOG_ERROR("Unknown architecture");
1835 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1836 }
1837
1838 int target_code_size = 0;
1839 const uint32_t *target_code_src = NULL;
1840
1841 switch (bank->bus_width) {
1842 case 1:
1843 if (is_armv7m(target_to_armv7m(target))) {
1844 LOG_ERROR("Unknown ARM architecture");
1845 return ERROR_FAIL;
1846 }
1847 target_code_src = armv4_5_word_8_code;
1848 target_code_size = sizeof(armv4_5_word_8_code);
1849 break;
1850 case 2:
1851 /* Check for DQ5 support */
1852 if (cfi_info->status_poll_mask & (1 << 5)) {
1853 if (is_armv7m(target_to_armv7m(target))) {
1854 /* armv7m target */
1855 target_code_src = armv7m_word_16_code;
1856 target_code_size = sizeof(armv7m_word_16_code);
1857 } else { /* armv4_5 target */
1858 target_code_src = armv4_5_word_16_code;
1859 target_code_size = sizeof(armv4_5_word_16_code);
1860 }
1861 } else {
1862 /* No DQ5 support. Use DQ7 DATA# polling only. */
1863 if (is_armv7m(target_to_armv7m(target))) {
1864 /* armv7m target */
1865 target_code_src = armv7m_word_16_code_dq7only;
1866 target_code_size = sizeof(armv7m_word_16_code_dq7only);
1867 } else { /* armv4_5 target */
1868 target_code_src = armv4_5_word_16_code_dq7only;
1869 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1870 }
1871 }
1872 break;
1873 case 4:
1874 if (is_armv7m(target_to_armv7m(target))) {
1875 LOG_ERROR("Unknown ARM architecture");
1876 return ERROR_FAIL;
1877 }
1878 target_code_src = armv4_5_word_32_code;
1879 target_code_size = sizeof(armv4_5_word_32_code);
1880 break;
1881 default:
1882 LOG_ERROR("Unsupported bank buswidth %u, can't do block memory writes",
1883 bank->bus_width);
1884 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1885 }
1886
1887 /* flash write code */
1888 uint8_t *target_code;
1889
1890 /* convert bus-width dependent algorithm code to correct endianness */
1891 target_code = malloc(target_code_size);
1892 if (target_code == NULL) {
1893 LOG_ERROR("Out of memory");
1894 return ERROR_FAIL;
1895 }
1896
1897 target_buffer_set_u32_array(target, target_code, target_code_size / 4, target_code_src);
1898
1899 /* allocate working area */
1900 retval = target_alloc_working_area(target, target_code_size,
1901 &write_algorithm);
1902 if (retval != ERROR_OK) {
1903 free(target_code);
1904 return retval;
1905 }
1906
1907 /* write algorithm code to working area */
1908 retval = target_write_buffer(target, write_algorithm->address,
1909 target_code_size, target_code);
1910 if (retval != ERROR_OK) {
1911 free(target_code);
1912 return retval;
1913 }
1914
1915 free(target_code);
1916
1917 /* the following code still assumes target code is fixed 24*4 bytes */
1918
1919 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
1920 buffer_size /= 2;
1921 if (buffer_size <= 256) {
1922 /* we already allocated the writing code, but failed to get a
1923 * buffer, free the algorithm */
1924 target_free_working_area(target, write_algorithm);
1925
1926 LOG_WARNING(
1927 "not enough working area available, can't do block memory writes");
1928 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1929 }
1930 }
1931
1932 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1933 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1934 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1935 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1936 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1937 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1938 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1939 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1940 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1941 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1942
1943 while (count > 0) {
1944 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1945
1946 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1947 if (retval != ERROR_OK)
1948 break;
1949
1950 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1951 buf_set_u32(reg_params[1].value, 0, 32, address);
1952 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1953 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1954 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1955 buf_set_u32(reg_params[6].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock1));
1956 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1957 buf_set_u32(reg_params[8].value, 0, 32, cfi_flash_address(bank, 0, pri_ext->_unlock2));
1958 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1959
1960 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1961 write_algorithm->address,
1962 write_algorithm->address + ((target_code_size) - 4),
1963 10000, arm_algo);
1964 if (retval != ERROR_OK)
1965 break;
1966
1967 status = buf_get_u32(reg_params[5].value, 0, 32);
1968 if (status != 0x80) {
1969 LOG_ERROR("flash write block failed status: 0x%" PRIx32, status);
1970 retval = ERROR_FLASH_OPERATION_FAILED;
1971 break;
1972 }
1973
1974 buffer += thisrun_count;
1975 address += thisrun_count;
1976 count -= thisrun_count;
1977 }
1978
1979 target_free_all_working_areas(target);
1980
1981 destroy_reg_param(&reg_params[0]);
1982 destroy_reg_param(&reg_params[1]);
1983 destroy_reg_param(&reg_params[2]);
1984 destroy_reg_param(&reg_params[3]);
1985 destroy_reg_param(&reg_params[4]);
1986 destroy_reg_param(&reg_params[5]);
1987 destroy_reg_param(&reg_params[6]);
1988 destroy_reg_param(&reg_params[7]);
1989 destroy_reg_param(&reg_params[8]);
1990 destroy_reg_param(&reg_params[9]);
1991
1992 return retval;
1993 }
1994
1995 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1996 {
1997 int retval;
1998 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1999
2000 cfi_intel_clear_status_register(bank);
2001 retval = cfi_send_command(bank, 0x40, address);
2002 if (retval != ERROR_OK)
2003 return retval;
2004
2005 retval = cfi_target_write_memory(bank, address, 1, word);
2006 if (retval != ERROR_OK)
2007 return retval;
2008
2009 uint8_t status;
2010 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2011 if (retval != ERROR_OK)
2012 return retval;
2013 if (status != 0x80) {
2014 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2015 if (retval != ERROR_OK)
2016 return retval;
2017
2018 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2019 ", address 0x%" PRIx32,
2020 bank->base, address);
2021 return ERROR_FLASH_OPERATION_FAILED;
2022 }
2023
2024 return ERROR_OK;
2025 }
2026
2027 static int cfi_intel_write_words(struct flash_bank *bank, const uint8_t *word,
2028 uint32_t wordcount, uint32_t address)
2029 {
2030 int retval;
2031 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2032
2033 /* Calculate buffer size and boundary mask
2034 * buffersize is (buffer size per chip) * (number of chips)
2035 * bufferwsize is buffersize in words */
2036 uint32_t buffersize =
2037 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2038 uint32_t buffermask = buffersize-1;
2039 uint32_t bufferwsize = buffersize / bank->bus_width;
2040
2041 /* Check for valid range */
2042 if (address & buffermask) {
2043 LOG_ERROR("Write address at base " TARGET_ADDR_FMT ", address 0x%"
2044 PRIx32 " not aligned to 2^%d boundary",
2045 bank->base, address, cfi_info->max_buf_write_size);
2046 return ERROR_FLASH_OPERATION_FAILED;
2047 }
2048
2049 /* Check for valid size */
2050 if (wordcount > bufferwsize) {
2051 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %" PRIu32,
2052 wordcount, buffersize);
2053 return ERROR_FLASH_OPERATION_FAILED;
2054 }
2055
2056 /* Write to flash buffer */
2057 cfi_intel_clear_status_register(bank);
2058
2059 /* Initiate buffer operation _*/
2060 retval = cfi_send_command(bank, 0xe8, address);
2061 if (retval != ERROR_OK)
2062 return retval;
2063 uint8_t status;
2064 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2065 if (retval != ERROR_OK)
2066 return retval;
2067 if (status != 0x80) {
2068 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2069 if (retval != ERROR_OK)
2070 return retval;
2071
2072 LOG_ERROR(
2073 "couldn't start buffer write operation at base " TARGET_ADDR_FMT
2074 ", address 0x%" PRIx32,
2075 bank->base,
2076 address);
2077 return ERROR_FLASH_OPERATION_FAILED;
2078 }
2079
2080 /* Write buffer wordcount-1 and data words */
2081 retval = cfi_send_command(bank, bufferwsize-1, address);
2082 if (retval != ERROR_OK)
2083 return retval;
2084
2085 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2086 if (retval != ERROR_OK)
2087 return retval;
2088
2089 /* Commit write operation */
2090 retval = cfi_send_command(bank, 0xd0, address);
2091 if (retval != ERROR_OK)
2092 return retval;
2093
2094 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2095 if (retval != ERROR_OK)
2096 return retval;
2097
2098 if (status != 0x80) {
2099 retval = cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2100 if (retval != ERROR_OK)
2101 return retval;
2102
2103 LOG_ERROR("Buffer write at base " TARGET_ADDR_FMT
2104 ", address 0x%" PRIx32 " failed.", bank->base, address);
2105 return ERROR_FLASH_OPERATION_FAILED;
2106 }
2107
2108 return ERROR_OK;
2109 }
2110
2111 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2112 {
2113 int retval;
2114 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2115 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2116
2117 retval = cfi_spansion_unlock_seq(bank);
2118 if (retval != ERROR_OK)
2119 return retval;
2120
2121 retval = cfi_send_command(bank, 0xa0, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2122 if (retval != ERROR_OK)
2123 return retval;
2124
2125 retval = cfi_target_write_memory(bank, address, 1, word);
2126 if (retval != ERROR_OK)
2127 return retval;
2128
2129 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK) {
2130 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2131 if (retval != ERROR_OK)
2132 return retval;
2133
2134 LOG_ERROR("couldn't write word at base " TARGET_ADDR_FMT
2135 ", address 0x%" PRIx32, bank->base, address);
2136 return ERROR_FLASH_OPERATION_FAILED;
2137 }
2138
2139 return ERROR_OK;
2140 }
2141
2142 static int cfi_spansion_write_words(struct flash_bank *bank, const uint8_t *word,
2143 uint32_t wordcount, uint32_t address)
2144 {
2145 int retval;
2146 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2147
2148 /* Calculate buffer size and boundary mask
2149 * buffersize is (buffer size per chip) * (number of chips)
2150 * bufferwsize is buffersize in words */
2151 uint32_t buffersize =
2152 (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2153 uint32_t buffermask = buffersize-1;
2154 uint32_t bufferwsize = buffersize / bank->bus_width;
2155
2156 /* Check for valid range */
2157 if (address & buffermask) {
2158 LOG_ERROR("Write address at base " TARGET_ADDR_FMT
2159 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2160 bank->base, address, cfi_info->max_buf_write_size);
2161 return ERROR_FLASH_OPERATION_FAILED;
2162 }
2163
2164 /* Check for valid size */
2165 if (wordcount > bufferwsize) {
2166 LOG_ERROR("Number of data words %" PRIu32 " exceeds available buffersize %"
2167 PRIu32, wordcount, buffersize);
2168 return ERROR_FLASH_OPERATION_FAILED;
2169 }
2170
2171 /* Unlock */
2172 retval = cfi_spansion_unlock_seq(bank);
2173 if (retval != ERROR_OK)
2174 return retval;
2175
2176 /* Buffer load command */
2177 retval = cfi_send_command(bank, 0x25, address);
2178 if (retval != ERROR_OK)
2179 return retval;
2180
2181 /* Write buffer wordcount-1 and data words */
2182 retval = cfi_send_command(bank, bufferwsize-1, address);
2183 if (retval != ERROR_OK)
2184 return retval;
2185
2186 retval = cfi_target_write_memory(bank, address, bufferwsize, word);
2187 if (retval != ERROR_OK)
2188 return retval;
2189
2190 /* Commit write operation */
2191 retval = cfi_send_command(bank, 0x29, address);
2192 if (retval != ERROR_OK)
2193 return retval;
2194
2195 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK) {
2196 retval = cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2197 if (retval != ERROR_OK)
2198 return retval;
2199
2200 LOG_ERROR("couldn't write block at base " TARGET_ADDR_FMT
2201 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address,
2202 bufferwsize);
2203 return ERROR_FLASH_OPERATION_FAILED;
2204 }
2205
2206 return ERROR_OK;
2207 }
2208
2209 int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2210 {
2211 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2212
2213 switch (cfi_info->pri_id) {
2214 case 1:
2215 case 3:
2216 return cfi_intel_write_word(bank, word, address);
2217 case 2:
2218 return cfi_spansion_write_word(bank, word, address);
2219 default:
2220 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2221 break;
2222 }
2223
2224 return ERROR_FLASH_OPERATION_FAILED;
2225 }
2226
2227 static int cfi_write_words(struct flash_bank *bank, const uint8_t *word,
2228 uint32_t wordcount, uint32_t address)
2229 {
2230 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2231
2232 if (cfi_info->buf_write_timeout_typ == 0) {
2233 /* buffer writes are not supported */
2234 LOG_DEBUG("Buffer Writes Not Supported");
2235 return ERROR_FLASH_OPER_UNSUPPORTED;
2236 }
2237
2238 switch (cfi_info->pri_id) {
2239 case 1:
2240 case 3:
2241 return cfi_intel_write_words(bank, word, wordcount, address);
2242 case 2:
2243 return cfi_spansion_write_words(bank, word, wordcount, address);
2244 default:
2245 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2246 break;
2247 }
2248
2249 return ERROR_FLASH_OPERATION_FAILED;
2250 }
2251
2252 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2253 {
2254 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2255 uint32_t address = bank->base + offset;
2256 uint32_t read_p;
2257 int align; /* number of unaligned bytes */
2258 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2259 int retval;
2260
2261 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2262 (int)count, (unsigned)offset);
2263
2264 if (bank->target->state != TARGET_HALTED) {
2265 LOG_ERROR("Target not halted");
2266 return ERROR_TARGET_NOT_HALTED;
2267 }
2268
2269 if (offset + count > bank->size)
2270 return ERROR_FLASH_DST_OUT_OF_BANK;
2271
2272 if (cfi_info->qry[0] != 'Q')
2273 return ERROR_FLASH_BANK_NOT_PROBED;
2274
2275 /* start at the first byte of the first word (bus_width size) */
2276 read_p = address & ~(bank->bus_width - 1);
2277 align = address - read_p;
2278 if (align != 0) {
2279 LOG_INFO("Fixup %d unaligned read head bytes", align);
2280
2281 /* read a complete word from flash */
2282 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2283 if (retval != ERROR_OK)
2284 return retval;
2285
2286 /* take only bytes we need */
2287 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2288 *buffer++ = current_word[i];
2289
2290 read_p += bank->bus_width;
2291 }
2292
2293 align = count / bank->bus_width;
2294 if (align) {
2295 retval = cfi_target_read_memory(bank, read_p, align, buffer);
2296 if (retval != ERROR_OK)
2297 return retval;
2298
2299 read_p += align * bank->bus_width;
2300 buffer += align * bank->bus_width;
2301 count -= align * bank->bus_width;
2302 }
2303
2304 if (count) {
2305 LOG_INFO("Fixup %" PRIu32 " unaligned read tail bytes", count);
2306
2307 /* read a complete word from flash */
2308 retval = cfi_target_read_memory(bank, read_p, 1, current_word);
2309 if (retval != ERROR_OK)
2310 return retval;
2311
2312 /* take only bytes we need */
2313 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2314 *buffer++ = current_word[i];
2315 }
2316
2317 return ERROR_OK;
2318 }
2319
2320 static int cfi_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count)
2321 {
2322 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2323 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2324 uint32_t write_p;
2325 int align; /* number of unaligned bytes */
2326 int blk_count; /* number of bus_width bytes for block copy */
2327 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being
2328 *programmed */
2329 uint8_t *swapped_buffer = NULL;
2330 const uint8_t *real_buffer = NULL;
2331 int retval;
2332
2333 if (bank->target->state != TARGET_HALTED) {
2334 LOG_ERROR("Target not halted");
2335 return ERROR_TARGET_NOT_HALTED;
2336 }
2337
2338 if (offset + count > bank->size)
2339 return ERROR_FLASH_DST_OUT_OF_BANK;
2340
2341 if (cfi_info->qry[0] != 'Q')
2342 return ERROR_FLASH_BANK_NOT_PROBED;
2343
2344 /* start at the first byte of the first word (bus_width size) */
2345 write_p = address & ~(bank->bus_width - 1);
2346 align = address - write_p;
2347 if (align != 0) {
2348 LOG_INFO("Fixup %d unaligned head bytes", align);
2349
2350 /* read a complete word from flash */
2351 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2352 if (retval != ERROR_OK)
2353 return retval;
2354
2355 /* replace only bytes that must be written */
2356 for (unsigned int i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2357 if (cfi_info->data_swap)
2358 /* data bytes are swapped (reverse endianness) */
2359 current_word[bank->bus_width - i] = *buffer++;
2360 else
2361 current_word[i] = *buffer++;
2362
2363 retval = cfi_write_word(bank, current_word, write_p);
2364 if (retval != ERROR_OK)
2365 return retval;
2366 write_p += bank->bus_width;
2367 }
2368
2369 if (cfi_info->data_swap && count) {
2370 swapped_buffer = malloc(count & ~(bank->bus_width - 1));
2371 switch (bank->bus_width) {
2372 case 2:
2373 buf_bswap16(swapped_buffer, buffer,
2374 count & ~(bank->bus_width - 1));
2375 break;
2376 case 4:
2377 buf_bswap32(swapped_buffer, buffer,
2378 count & ~(bank->bus_width - 1));
2379 break;
2380 }
2381 real_buffer = buffer;
2382 buffer = swapped_buffer;
2383 }
2384
2385 /* handle blocks of bus_size aligned bytes */
2386 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2387 switch (cfi_info->pri_id) {
2388 /* try block writes (fails without working area) */
2389 case 1:
2390 case 3:
2391 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2392 break;
2393 case 2:
2394 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2395 break;
2396 default:
2397 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2398 retval = ERROR_FLASH_OPERATION_FAILED;
2399 break;
2400 }
2401 if (retval == ERROR_OK) {
2402 /* Increment pointers and decrease count on successful block write */
2403 buffer += blk_count;
2404 write_p += blk_count;
2405 count -= blk_count;
2406 } else {
2407 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
2408 /* Calculate buffer size and boundary mask
2409 * buffersize is (buffer size per chip) * (number of chips)
2410 * bufferwsize is buffersize in words */
2411 uint32_t buffersize =
2412 (1UL <<
2413 cfi_info->max_buf_write_size) *
2414 (bank->bus_width / bank->chip_width);
2415 uint32_t buffermask = buffersize-1;
2416 uint32_t bufferwsize = buffersize / bank->bus_width;
2417
2418 /* fall back to memory writes */
2419 while (count >= (uint32_t)bank->bus_width) {
2420 bool fallback;
2421 if ((write_p & 0xff) == 0) {
2422 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2423 PRIx32 " bytes remaining", write_p, count);
2424 }
2425 fallback = true;
2426 if ((bufferwsize > 0) && (count >= buffersize) &&
2427 !(write_p & buffermask)) {
2428 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2429 if (retval == ERROR_OK) {
2430 buffer += buffersize;
2431 write_p += buffersize;
2432 count -= buffersize;
2433 fallback = false;
2434 } else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2435 return retval;
2436 }
2437 /* try the slow way? */
2438 if (fallback) {
2439 for (unsigned int i = 0; i < bank->bus_width; i++)
2440 current_word[i] = *buffer++;
2441
2442 retval = cfi_write_word(bank, current_word, write_p);
2443 if (retval != ERROR_OK)
2444 return retval;
2445
2446 write_p += bank->bus_width;
2447 count -= bank->bus_width;
2448 }
2449 }
2450 } else
2451 return retval;
2452 }
2453
2454 if (swapped_buffer) {
2455 buffer = real_buffer + (buffer - swapped_buffer);
2456 free(swapped_buffer);
2457 }
2458
2459 /* return to read array mode, so we can read from flash again for padding */
2460 retval = cfi_reset(bank);
2461 if (retval != ERROR_OK)
2462 return retval;
2463
2464 /* handle unaligned tail bytes */
2465 if (count > 0) {
2466 LOG_INFO("Fixup %" PRIu32 " unaligned tail bytes", count);
2467
2468 /* read a complete word from flash */
2469 retval = cfi_target_read_memory(bank, write_p, 1, current_word);
2470 if (retval != ERROR_OK)
2471 return retval;
2472
2473 /* replace only bytes that must be written */
2474 for (unsigned int i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2475 if (cfi_info->data_swap)
2476 /* data bytes are swapped (reverse endianness) */
2477 current_word[bank->bus_width - i] = *buffer++;
2478 else
2479 current_word[i] = *buffer++;
2480
2481 retval = cfi_write_word(bank, current_word, write_p);
2482 if (retval != ERROR_OK)
2483 return retval;
2484 }
2485
2486 /* return to read array mode */
2487 return cfi_reset(bank);
2488 }
2489
2490 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, const void *param)
2491 {
2492 (void) param;
2493 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2494 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2495
2496 pri_ext->_reversed_geometry = 1;
2497 }
2498
2499 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, const void *param)
2500 {
2501 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2502 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2503 (void) param;
2504
2505 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3)) {
2506 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2507
2508 for (unsigned int i = 0; i < cfi_info->num_erase_regions / 2; i++) {
2509 int j = (cfi_info->num_erase_regions - 1) - i;
2510 uint32_t swap;
2511
2512 swap = cfi_info->erase_region_info[i];
2513 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2514 cfi_info->erase_region_info[j] = swap;
2515 }
2516 }
2517 }
2518
2519 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, const void *param)
2520 {
2521 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2522 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2523 const struct cfi_unlock_addresses *unlock_addresses = param;
2524
2525 pri_ext->_unlock1 = unlock_addresses->unlock1;
2526 pri_ext->_unlock2 = unlock_addresses->unlock2;
2527 }
2528
2529 static void cfi_fixup_0002_polling_bits(struct flash_bank *bank, const void *param)
2530 {
2531 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2532 const int *status_poll_mask = param;
2533
2534 cfi_info->status_poll_mask = *status_poll_mask;
2535 }
2536
2537
2538 static int cfi_query_string(struct flash_bank *bank, int address)
2539 {
2540 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2541 int retval;
2542
2543 retval = cfi_send_command(bank, 0x98, cfi_flash_address(bank, 0, address));
2544 if (retval != ERROR_OK)
2545 return retval;
2546
2547 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2548 if (retval != ERROR_OK)
2549 return retval;
2550 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2551 if (retval != ERROR_OK)
2552 return retval;
2553 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2554 if (retval != ERROR_OK)
2555 return retval;
2556
2557 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2558 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2559
2560 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y')) {
2561 retval = cfi_reset(bank);
2562 if (retval != ERROR_OK)
2563 return retval;
2564 LOG_ERROR("Could not probe bank: no QRY");
2565 return ERROR_FLASH_BANK_INVALID;
2566 }
2567
2568 return ERROR_OK;
2569 }
2570
2571 int cfi_probe(struct flash_bank *bank)
2572 {
2573 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2574 struct target *target = bank->target;
2575 unsigned int num_sectors = 0;
2576 int sector = 0;
2577 uint32_t unlock1 = 0x555;
2578 uint32_t unlock2 = 0x2aa;
2579 int retval;
2580 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2581
2582 if (bank->target->state != TARGET_HALTED) {
2583 LOG_ERROR("Target not halted");
2584 return ERROR_TARGET_NOT_HALTED;
2585 }
2586
2587 cfi_info->probed = false;
2588 cfi_info->num_erase_regions = 0;
2589
2590 free(bank->sectors);
2591 bank->sectors = NULL;
2592
2593 free(cfi_info->erase_region_info);
2594 cfi_info->erase_region_info = NULL;
2595
2596 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2597 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2598 */
2599 if (cfi_info->jedec_probe) {
2600 unlock1 = 0x5555;
2601 unlock2 = 0x2aaa;
2602 }
2603
2604 /* switch to read identifier codes mode ("AUTOSELECT") */
2605 retval = cfi_send_command(bank, 0xaa, cfi_flash_address(bank, 0, unlock1));
2606 if (retval != ERROR_OK)
2607 return retval;
2608 retval = cfi_send_command(bank, 0x55, cfi_flash_address(bank, 0, unlock2));
2609 if (retval != ERROR_OK)
2610 return retval;
2611 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, unlock1));
2612 if (retval != ERROR_OK)
2613 return retval;
2614
2615 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x00),
2616 1, value_buf0);
2617 if (retval != ERROR_OK)
2618 return retval;
2619 retval = cfi_target_read_memory(bank, cfi_flash_address(bank, 0, 0x01),
2620 1, value_buf1);
2621 if (retval != ERROR_OK)
2622 return retval;
2623 switch (bank->chip_width) {
2624 case 1:
2625 cfi_info->manufacturer = *value_buf0;
2626 cfi_info->device_id = *value_buf1;
2627 break;
2628 case 2:
2629 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2630 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2631 break;
2632 case 4:
2633 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2634 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2635 break;
2636 default:
2637 LOG_ERROR("Unsupported bank chipwidth %u, can't probe memory",
2638 bank->chip_width);
2639 return ERROR_FLASH_OPERATION_FAILED;
2640 }
2641
2642 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2643 cfi_info->manufacturer, cfi_info->device_id);
2644 /* switch back to read array mode */
2645 retval = cfi_reset(bank);
2646 if (retval != ERROR_OK)
2647 return retval;
2648
2649 /* check device/manufacturer ID for known non-CFI flashes. */
2650 cfi_fixup_non_cfi(bank);
2651
2652 /* query only if this is a CFI compatible flash,
2653 * otherwise the relevant info has already been filled in
2654 */
2655 if (!cfi_info->not_cfi) {
2656 /* enter CFI query mode
2657 * according to JEDEC Standard No. 68.01,
2658 * a single bus sequence with address = 0x55, data = 0x98 should put
2659 * the device into CFI query mode.
2660 *
2661 * SST flashes clearly violate this, and we will consider them incompatible for now
2662 */
2663
2664 retval = cfi_query_string(bank, 0x55);
2665 if (retval != ERROR_OK) {
2666 /*
2667 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2668 * be harmless enough:
2669 *
2670 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2671 */
2672 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2673 retval = cfi_query_string(bank, 0x555);
2674 }
2675 if (retval != ERROR_OK)
2676 return retval;
2677
2678 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2679 if (retval != ERROR_OK)
2680 return retval;
2681 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2682 if (retval != ERROR_OK)
2683 return retval;
2684 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2685 if (retval != ERROR_OK)
2686 return retval;
2687 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2688 if (retval != ERROR_OK)
2689 return retval;
2690
2691 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2692 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2693 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2694 cfi_info->alt_id, cfi_info->alt_addr);
2695
2696 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2697 if (retval != ERROR_OK)
2698 return retval;
2699 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2700 if (retval != ERROR_OK)
2701 return retval;
2702 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2703 if (retval != ERROR_OK)
2704 return retval;
2705 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2706 if (retval != ERROR_OK)
2707 return retval;
2708
2709 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2710 if (retval != ERROR_OK)
2711 return retval;
2712 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2713 if (retval != ERROR_OK)
2714 return retval;
2715 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2716 if (retval != ERROR_OK)
2717 return retval;
2718 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2719 if (retval != ERROR_OK)
2720 return retval;
2721 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2722 if (retval != ERROR_OK)
2723 return retval;
2724 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2725 if (retval != ERROR_OK)
2726 return retval;
2727 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2728 if (retval != ERROR_OK)
2729 return retval;
2730 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2731 if (retval != ERROR_OK)
2732 return retval;
2733
2734 uint8_t data;
2735 retval = cfi_query_u8(bank, 0, 0x27, &data);
2736 if (retval != ERROR_OK)
2737 return retval;
2738 cfi_info->dev_size = 1 << data;
2739
2740 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2741 if (retval != ERROR_OK)
2742 return retval;
2743 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2744 if (retval != ERROR_OK)
2745 return retval;
2746 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2747 if (retval != ERROR_OK)
2748 return retval;
2749
2750 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2751 cfi_info->dev_size, cfi_info->interface_desc,
2752 (1 << cfi_info->max_buf_write_size));
2753
2754 if (cfi_info->num_erase_regions) {
2755 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2756 * cfi_info->num_erase_regions);
2757 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2758 retval = cfi_query_u32(bank,
2759 0,
2760 0x2d + (4 * i),
2761 &cfi_info->erase_region_info[i]);
2762 if (retval != ERROR_OK)
2763 return retval;
2764 LOG_DEBUG(
2765 "erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2766 i,
2767 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2768 (cfi_info->erase_region_info[i] >> 16) * 256);
2769 }
2770 } else
2771 cfi_info->erase_region_info = NULL;
2772
2773 /* We need to read the primary algorithm extended query table before calculating
2774 * the sector layout to be able to apply fixups
2775 */
2776 switch (cfi_info->pri_id) {
2777 /* Intel command set (standard and extended) */
2778 case 0x0001:
2779 case 0x0003:
2780 cfi_read_intel_pri_ext(bank);
2781 break;
2782 /* AMD/Spansion, Atmel, ... command set */
2783 case 0x0002:
2784 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /*
2785 *default
2786 *for
2787 *all
2788 *CFI
2789 *flashes
2790 **/
2791 cfi_read_0002_pri_ext(bank);
2792 break;
2793 default:
2794 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2795 break;
2796 }
2797
2798 /* return to read array mode
2799 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2800 */
2801 retval = cfi_reset(bank);
2802 if (retval != ERROR_OK)
2803 return retval;
2804 } /* end CFI case */
2805
2806 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2807 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2808 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2809 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2810 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2811
2812 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2813 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2814 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2815 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2816
2817 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2818 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2819 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2820 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2821 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2822 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2823
2824 /* convert timeouts to real values in ms */
2825 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2826 (1L << cfi_info->word_write_timeout_max), 1000);
2827 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2828 (1L << cfi_info->buf_write_timeout_max), 1000);
2829 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2830 (1L << cfi_info->block_erase_timeout_max);
2831 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2832 (1L << cfi_info->chip_erase_timeout_max);
2833
2834 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2835 "block erase timeout: %u ms, chip erase timeout: %u ms",
2836 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2837 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2838
2839 /* apply fixups depending on the primary command set */
2840 switch (cfi_info->pri_id) {
2841 /* Intel command set (standard and extended) */
2842 case 0x0001:
2843 case 0x0003:
2844 cfi_fixup(bank, cfi_0001_fixups);
2845 break;
2846 /* AMD/Spansion, Atmel, ... command set */
2847 case 0x0002:
2848 cfi_fixup(bank, cfi_0002_fixups);
2849 break;
2850 default:
2851 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2852 break;
2853 }
2854
2855 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size) {
2856 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2857 " size flash was found", bank->size, cfi_info->dev_size);
2858 }
2859
2860 if (cfi_info->num_erase_regions == 0) {
2861 /* a device might have only one erase block, spanning the whole device */
2862 bank->num_sectors = 1;
2863 bank->sectors = malloc(sizeof(struct flash_sector));
2864
2865 bank->sectors[sector].offset = 0x0;
2866 bank->sectors[sector].size = bank->size;
2867 bank->sectors[sector].is_erased = -1;
2868 bank->sectors[sector].is_protected = -1;
2869 } else {
2870 uint32_t offset = 0;
2871
2872 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++)
2873 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2874
2875 bank->num_sectors = num_sectors;
2876 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2877
2878 for (unsigned int i = 0; i < cfi_info->num_erase_regions; i++) {
2879 for (uint32_t j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++) {
2880 bank->sectors[sector].offset = offset;
2881 bank->sectors[sector].size =
2882 ((cfi_info->erase_region_info[i] >> 16) * 256)
2883 * bank->bus_width / bank->chip_width;
2884 offset += bank->sectors[sector].size;
2885 bank->sectors[sector].is_erased = -1;
2886 bank->sectors[sector].is_protected = -1;
2887 sector++;
2888 }
2889 }
2890 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width)) {
2891 LOG_WARNING(
2892 "CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "",
2893 (cfi_info->dev_size * bank->bus_width / bank->chip_width),
2894 offset);
2895 }
2896 }
2897
2898 cfi_info->probed = true;
2899
2900 return ERROR_OK;
2901 }
2902
2903 int cfi_auto_probe(struct flash_bank *bank)
2904 {
2905 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2906 if (cfi_info->probed)
2907 return ERROR_OK;
2908 return cfi_probe(bank);
2909 }
2910
2911 static int cfi_intel_protect_check(struct flash_bank *bank)
2912 {
2913 int retval;
2914 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2915 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2916
2917 /* check if block lock bits are supported on this device */
2918 if (!(pri_ext->blk_status_reg_mask & 0x1))
2919 return ERROR_FLASH_OPERATION_FAILED;
2920
2921 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, 0x55));
2922 if (retval != ERROR_OK)
2923 return retval;
2924
2925 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2926 uint8_t block_status;
2927 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2928 if (retval != ERROR_OK)
2929 return retval;
2930
2931 if (block_status & 1)
2932 bank->sectors[i].is_protected = 1;
2933 else
2934 bank->sectors[i].is_protected = 0;
2935 }
2936
2937 return cfi_send_command(bank, 0xff, cfi_flash_address(bank, 0, 0x0));
2938 }
2939
2940 static int cfi_spansion_protect_check(struct flash_bank *bank)
2941 {
2942 int retval;
2943 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2944 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2945
2946 retval = cfi_spansion_unlock_seq(bank);
2947 if (retval != ERROR_OK)
2948 return retval;
2949
2950 retval = cfi_send_command(bank, 0x90, cfi_flash_address(bank, 0, pri_ext->_unlock1));
2951 if (retval != ERROR_OK)
2952 return retval;
2953
2954 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2955 uint8_t block_status;
2956 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2957 if (retval != ERROR_OK)
2958 return retval;
2959
2960 if (block_status & 1)
2961 bank->sectors[i].is_protected = 1;
2962 else
2963 bank->sectors[i].is_protected = 0;
2964 }
2965
2966 return cfi_send_command(bank, 0xf0, cfi_flash_address(bank, 0, 0x0));
2967 }
2968
2969 int cfi_protect_check(struct flash_bank *bank)
2970 {
2971 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2972
2973 if (bank->target->state != TARGET_HALTED) {
2974 LOG_ERROR("Target not halted");
2975 return ERROR_TARGET_NOT_HALTED;
2976 }
2977
2978 if (cfi_info->qry[0] != 'Q')
2979 return ERROR_FLASH_BANK_NOT_PROBED;
2980
2981 switch (cfi_info->pri_id) {
2982 case 1:
2983 case 3:
2984 return cfi_intel_protect_check(bank);
2985 case 2:
2986 return cfi_spansion_protect_check(bank);
2987 default:
2988 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2989 break;
2990 }
2991
2992 return ERROR_OK;
2993 }
2994
2995 int cfi_get_info(struct flash_bank *bank, char *buf, int buf_size)
2996 {
2997 int printed;
2998 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2999
3000 if (cfi_info->qry[0] == 0xff) {
3001 snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
3002 return ERROR_OK;
3003 }
3004
3005 if (!cfi_info->not_cfi)
3006 printed = snprintf(buf, buf_size, "\nCFI flash: ");
3007 else
3008 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
3009 buf += printed;
3010 buf_size -= printed;
3011
3012 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3013 cfi_info->manufacturer, cfi_info->device_id);
3014 buf += printed;
3015 buf_size -= printed;
3016
3017 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3018 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3019 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3020 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3021 buf += printed;
3022 buf_size -= printed;
3023
3024 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3025 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3026 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3027 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3028 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3029 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3030 buf += printed;
3031 buf_size -= printed;
3032
3033 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3034 "typ. buf write timeout: %u us, "
3035 "typ. block erase timeout: %u ms, "
3036 "typ. chip erase timeout: %u ms\n",
3037 1 << cfi_info->word_write_timeout_typ,
3038 1 << cfi_info->buf_write_timeout_typ,
3039 1 << cfi_info->block_erase_timeout_typ,
3040 1 << cfi_info->chip_erase_timeout_typ);
3041 buf += printed;
3042 buf_size -= printed;
3043
3044 printed = snprintf(buf,
3045 buf_size,
3046 "max. word write timeout: %u us, "
3047 "max. buf write timeout: %u us, max. "
3048 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3049 (1 <<
3050 cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3051 (1 <<
3052 cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3053 (1 <<
3054 cfi_info->block_erase_timeout_max) *
3055 (1 << cfi_info->block_erase_timeout_typ),
3056 (1 <<
3057 cfi_info->chip_erase_timeout_max) *
3058 (1 << cfi_info->chip_erase_timeout_typ));
3059 buf += printed;
3060 buf_size -= printed;
3061
3062 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3063 "max buffer write size: 0x%x\n",
3064 cfi_info->dev_size,
3065 cfi_info->interface_desc,
3066 1 << cfi_info->max_buf_write_size);
3067 buf += printed;
3068 buf_size -= printed;
3069
3070 switch (cfi_info->pri_id) {
3071 case 1:
3072 case 3:
3073 cfi_intel_info(bank, buf, buf_size);
3074 break;
3075 case 2:
3076 cfi_spansion_info(bank, buf, buf_size);
3077 break;
3078 default:
3079 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3080 break;
3081 }
3082
3083 return ERROR_OK;
3084 }
3085
3086 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, const void *param)
3087 {
3088 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3089
3090 /* disable write buffer for M29W128G */
3091 cfi_info->buf_write_timeout_typ = 0;
3092 }
3093
3094 const struct flash_driver cfi_flash = {
3095 .name = "cfi",
3096 .flash_bank_command = cfi_flash_bank_command,
3097 .erase = cfi_erase,
3098 .protect = cfi_protect,
3099 .write = cfi_write,
3100 .read = cfi_read,
3101 .probe = cfi_probe,
3102 .auto_probe = cfi_auto_probe,
3103 /* FIXME: access flash at bus_width size */
3104 .erase_check = default_flash_blank_check,
3105 .protect_check = cfi_protect_check,
3106 .info = cfi_get_info,
3107 .free_driver_priv = default_flash_free_driver_priv,
3108 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)