Add the support for the armv7m arch.
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
23 ***************************************************************************/
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include "imp.h"
29 #include "cfi.h"
30 #include "non_cfi.h"
31 #include <target/arm.h>
32 #include <target/armv7m.h>
33 #include <helper/binarybuffer.h>
34 #include <target/algorithm.h>
35
36
37 #define CFI_MAX_BUS_WIDTH 4
38 #define CFI_MAX_CHIP_WIDTH 4
39
40 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
41 #define CFI_MAX_INTEL_CODESIZE 256
42
43 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
44 {
45 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
46 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
47 };
48
49 /* CFI fixups foward declarations */
50 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param);
51 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param);
52 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param);
53 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param);
54
55 /* fixup after reading cmdset 0002 primary query table */
56 static const struct cfi_fixup cfi_0002_fixups[] = {
57 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
58 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
59 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
60 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
61 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
63 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
64 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
65 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
66 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
67 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
68 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
69 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
70 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
71 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL}, /* M29W128G */
72 {0, 0, NULL, NULL}
73 };
74
75 /* fixup after reading cmdset 0001 primary query table */
76 static const struct cfi_fixup cfi_0001_fixups[] = {
77 {0, 0, NULL, NULL}
78 };
79
80 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
81 {
82 struct cfi_flash_bank *cfi_info = bank->driver_priv;
83 const struct cfi_fixup *f;
84
85 for (f = fixups; f->fixup; f++)
86 {
87 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
88 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
89 {
90 f->fixup(bank, f->param);
91 }
92 }
93 }
94
95 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
96 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
97 {
98 struct cfi_flash_bank *cfi_info = bank->driver_priv;
99
100 if (cfi_info->x16_as_x8) offset *= 2;
101
102 /* while the sector list isn't built, only accesses to sector 0 work */
103 if (sector == 0)
104 return bank->base + offset * bank->bus_width;
105 else
106 {
107 if (!bank->sectors)
108 {
109 LOG_ERROR("BUG: sector list not yet built");
110 exit(-1);
111 }
112 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
113 }
114 }
115
116 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
117 {
118 int i;
119
120 /* clear whole buffer, to ensure bits that exceed the bus_width
121 * are set to zero
122 */
123 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
124 cmd_buf[i] = 0;
125
126 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
127 {
128 for (i = bank->bus_width; i > 0; i--)
129 {
130 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
131 }
132 }
133 else
134 {
135 for (i = 1; i <= bank->bus_width; i++)
136 {
137 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
138 }
139 }
140 }
141
142 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
143 {
144 uint8_t command[CFI_MAX_BUS_WIDTH];
145
146 cfi_command(bank, cmd, command);
147 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
148 }
149
150 /* read unsigned 8-bit value from the bank
151 * flash banks are expected to be made of similar chips
152 * the query result should be the same for all
153 */
154 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
155 {
156 struct target *target = bank->target;
157 uint8_t data[CFI_MAX_BUS_WIDTH];
158
159 int retval;
160 retval = target_read_memory(target, flash_address(bank, sector, offset),
161 bank->bus_width, 1, data);
162 if (retval != ERROR_OK)
163 return retval;
164
165 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
166 *val = data[0];
167 else
168 *val = data[bank->bus_width - 1];
169
170 return ERROR_OK;
171 }
172
173 /* read unsigned 8-bit value from the bank
174 * in case of a bank made of multiple chips,
175 * the individual values are ORed
176 */
177 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
178 {
179 struct target *target = bank->target;
180 uint8_t data[CFI_MAX_BUS_WIDTH];
181 int i;
182
183 int retval;
184 retval = target_read_memory(target, flash_address(bank, sector, offset),
185 bank->bus_width, 1, data);
186 if (retval != ERROR_OK)
187 return retval;
188
189 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
190 {
191 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
192 data[0] |= data[i];
193
194 *val = data[0];
195 }
196 else
197 {
198 uint8_t value = 0;
199 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
200 value |= data[bank->bus_width - 1 - i];
201
202 *val = value;
203 }
204 return ERROR_OK;
205 }
206
207 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
208 {
209 struct target *target = bank->target;
210 struct cfi_flash_bank *cfi_info = bank->driver_priv;
211 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
212 int retval;
213
214 if (cfi_info->x16_as_x8)
215 {
216 uint8_t i;
217 for (i = 0;i < 2;i++)
218 {
219 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
220 bank->bus_width, 1, &data[i * bank->bus_width]);
221 if (retval != ERROR_OK)
222 return retval;
223 }
224 } else
225 {
226 retval = target_read_memory(target, flash_address(bank, sector, offset),
227 bank->bus_width, 2, data);
228 if (retval != ERROR_OK)
229 return retval;
230 }
231
232 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
233 *val = data[0] | data[bank->bus_width] << 8;
234 else
235 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
236
237 return ERROR_OK;
238 }
239
240 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
241 {
242 struct target *target = bank->target;
243 struct cfi_flash_bank *cfi_info = bank->driver_priv;
244 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
245 int retval;
246
247 if (cfi_info->x16_as_x8)
248 {
249 uint8_t i;
250 for (i = 0;i < 4;i++)
251 {
252 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
253 bank->bus_width, 1, &data[i * bank->bus_width]);
254 if (retval != ERROR_OK)
255 return retval;
256 }
257 }
258 else
259 {
260 retval = target_read_memory(target, flash_address(bank, sector, offset),
261 bank->bus_width, 4, data);
262 if (retval != ERROR_OK)
263 return retval;
264 }
265
266 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
267 *val = data[0] | data[bank->bus_width] << 8 |
268 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
269 else
270 *val = data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
271 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
272
273 return ERROR_OK;
274 }
275
276 static int cfi_reset(struct flash_bank *bank)
277 {
278 struct cfi_flash_bank *cfi_info = bank->driver_priv;
279 int retval = ERROR_OK;
280
281 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
282 {
283 return retval;
284 }
285
286 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
287 {
288 return retval;
289 }
290
291 if (cfi_info->manufacturer == 0x20 &&
292 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
293 {
294 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
295 * so we send an extra 0xF0 reset to fix the bug */
296 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
297 {
298 return retval;
299 }
300 }
301
302 return retval;
303 }
304
305 static void cfi_intel_clear_status_register(struct flash_bank *bank)
306 {
307 struct target *target = bank->target;
308
309 if (target->state != TARGET_HALTED)
310 {
311 LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
312 exit(-1);
313 }
314
315 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
316 }
317
318 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
319 {
320 uint8_t status;
321
322 int retval = ERROR_OK;
323
324 for (;;)
325 {
326 if (timeout-- < 0)
327 {
328 LOG_ERROR("timeout while waiting for WSM to become ready");
329 return ERROR_FAIL;
330 }
331
332 retval = cfi_get_u8(bank, 0, 0x0, &status);
333 if (retval != ERROR_OK)
334 return retval;
335
336 if (status & 0x80)
337 break;
338
339 alive_sleep(1);
340 }
341
342 /* mask out bit 0 (reserved) */
343 status = status & 0xfe;
344
345 LOG_DEBUG("status: 0x%x", status);
346
347 if (status != 0x80)
348 {
349 LOG_ERROR("status register: 0x%x", status);
350 if (status & 0x2)
351 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
352 if (status & 0x4)
353 LOG_ERROR("Program suspended");
354 if (status & 0x8)
355 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
356 if (status & 0x10)
357 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
358 if (status & 0x20)
359 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
360 if (status & 0x40)
361 LOG_ERROR("Block Erase Suspended");
362
363 cfi_intel_clear_status_register(bank);
364
365 retval = ERROR_FAIL;
366 }
367
368 *val = status;
369 return retval;
370 }
371
372 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
373 {
374 uint8_t status, oldstatus;
375 struct cfi_flash_bank *cfi_info = bank->driver_priv;
376 int retval;
377
378 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
379 if (retval != ERROR_OK)
380 return retval;
381
382 do {
383 retval = cfi_get_u8(bank, 0, 0x0, &status);
384
385 if (retval != ERROR_OK)
386 return retval;
387
388 if ((status ^ oldstatus) & 0x40) {
389 if (status & cfi_info->status_poll_mask & 0x20) {
390 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
391 if (retval != ERROR_OK)
392 return retval;
393 retval = cfi_get_u8(bank, 0, 0x0, &status);
394 if (retval != ERROR_OK)
395 return retval;
396 if ((status ^ oldstatus) & 0x40) {
397 LOG_ERROR("dq5 timeout, status: 0x%x", status);
398 return(ERROR_FLASH_OPERATION_FAILED);
399 } else {
400 LOG_DEBUG("status: 0x%x", status);
401 return(ERROR_OK);
402 }
403 }
404 } else { /* no toggle: finished, OK */
405 LOG_DEBUG("status: 0x%x", status);
406 return(ERROR_OK);
407 }
408
409 oldstatus = status;
410 alive_sleep(1);
411 } while (timeout-- > 0);
412
413 LOG_ERROR("timeout, status: 0x%x", status);
414
415 return(ERROR_FLASH_BUSY);
416 }
417
418 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
419 {
420 int retval;
421 struct cfi_flash_bank *cfi_info = bank->driver_priv;
422 struct cfi_intel_pri_ext *pri_ext;
423
424 if (cfi_info->pri_ext)
425 free(cfi_info->pri_ext);
426
427 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
428 if (pri_ext == NULL)
429 {
430 LOG_ERROR("Out of memory");
431 return ERROR_FAIL;
432 }
433 cfi_info->pri_ext = pri_ext;
434
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
436 if (retval != ERROR_OK)
437 return retval;
438 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
439 if (retval != ERROR_OK)
440 return retval;
441 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
442 if (retval != ERROR_OK)
443 return retval;
444
445 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
446 {
447 if ((retval = cfi_reset(bank)) != ERROR_OK)
448 {
449 return retval;
450 }
451 LOG_ERROR("Could not read bank flash bank information");
452 return ERROR_FLASH_BANK_INVALID;
453 }
454
455 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
456 if (retval != ERROR_OK)
457 return retval;
458 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
459 if (retval != ERROR_OK)
460 return retval;
461
462 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
463 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
464
465 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
466 if (retval != ERROR_OK)
467 return retval;
468 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
469 if (retval != ERROR_OK)
470 return retval;
471 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
472 if (retval != ERROR_OK)
473 return retval;
474
475 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
476 "0x%x, blk_status_reg_mask: 0x%x",
477 pri_ext->feature_support,
478 pri_ext->suspend_cmd_support,
479 pri_ext->blk_status_reg_mask);
480
481 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
482 if (retval != ERROR_OK)
483 return retval;
484 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
485 if (retval != ERROR_OK)
486 return retval;
487
488 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
489 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
490 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
491
492 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
493 if (retval != ERROR_OK)
494 return retval;
495 if (pri_ext->num_protection_fields != 1)
496 {
497 LOG_WARNING("expected one protection register field, but found %i",
498 pri_ext->num_protection_fields);
499 }
500
501 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
502 if (retval != ERROR_OK)
503 return retval;
504 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
505 if (retval != ERROR_OK)
506 return retval;
507 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
508 if (retval != ERROR_OK)
509 return retval;
510
511 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
512 "factory pre-programmed: %i, user programmable: %i",
513 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
514 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
515
516 return ERROR_OK;
517 }
518
519 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
520 {
521 int retval;
522 struct cfi_flash_bank *cfi_info = bank->driver_priv;
523 struct cfi_spansion_pri_ext *pri_ext;
524
525 if (cfi_info->pri_ext)
526 free(cfi_info->pri_ext);
527
528 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
529 if (pri_ext == NULL)
530 {
531 LOG_ERROR("Out of memory");
532 return ERROR_FAIL;
533 }
534 cfi_info->pri_ext = pri_ext;
535
536 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
537 if (retval != ERROR_OK)
538 return retval;
539 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
540 if (retval != ERROR_OK)
541 return retval;
542 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
543 if (retval != ERROR_OK)
544 return retval;
545
546 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
547 {
548 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
549 {
550 return retval;
551 }
552 LOG_ERROR("Could not read spansion bank information");
553 return ERROR_FLASH_BANK_INVALID;
554 }
555
556 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
557 if (retval != ERROR_OK)
558 return retval;
559 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
560 if (retval != ERROR_OK)
561 return retval;
562
563 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
564 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
565
566 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
567 if (retval != ERROR_OK)
568 return retval;
569 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
570 if (retval != ERROR_OK)
571 return retval;
572 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
573 if (retval != ERROR_OK)
574 return retval;
575 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
576 if (retval != ERROR_OK)
577 return retval;
578 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
579 if (retval != ERROR_OK)
580 return retval;
581 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
582 if (retval != ERROR_OK)
583 return retval;
584 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
585 if (retval != ERROR_OK)
586 return retval;
587 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
588 if (retval != ERROR_OK)
589 return retval;
590 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
591 if (retval != ERROR_OK)
592 return retval;
593 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
594 if (retval != ERROR_OK)
595 return retval;
596 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
597 if (retval != ERROR_OK)
598 return retval;
599
600 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
601 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
602
603 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
604 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
605 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
606
607 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
608
609
610 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
611 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
612 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
613
614 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
615
616 /* default values for implementation specific workarounds */
617 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
618 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
619 pri_ext->_reversed_geometry = 0;
620
621 return ERROR_OK;
622 }
623
624 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
625 {
626 int retval;
627 struct cfi_atmel_pri_ext atmel_pri_ext;
628 struct cfi_flash_bank *cfi_info = bank->driver_priv;
629 struct cfi_spansion_pri_ext *pri_ext;
630
631 if (cfi_info->pri_ext)
632 free(cfi_info->pri_ext);
633
634 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
635 if (pri_ext == NULL)
636 {
637 LOG_ERROR("Out of memory");
638 return ERROR_FAIL;
639 }
640
641 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
642 * but a different primary extended query table.
643 * We read the atmel table, and prepare a valid AMD/Spansion query table.
644 */
645
646 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
647
648 cfi_info->pri_ext = pri_ext;
649
650 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
651 if (retval != ERROR_OK)
652 return retval;
653 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
654 if (retval != ERROR_OK)
655 return retval;
656 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
657 if (retval != ERROR_OK)
658 return retval;
659
660 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
661 || (atmel_pri_ext.pri[2] != 'I'))
662 {
663 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
664 {
665 return retval;
666 }
667 LOG_ERROR("Could not read atmel bank information");
668 return ERROR_FLASH_BANK_INVALID;
669 }
670
671 pri_ext->pri[0] = atmel_pri_ext.pri[0];
672 pri_ext->pri[1] = atmel_pri_ext.pri[1];
673 pri_ext->pri[2] = atmel_pri_ext.pri[2];
674
675 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
676 if (retval != ERROR_OK)
677 return retval;
678 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
679 if (retval != ERROR_OK)
680 return retval;
681
682 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
683 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
684 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
685
686 pri_ext->major_version = atmel_pri_ext.major_version;
687 pri_ext->minor_version = atmel_pri_ext.minor_version;
688
689 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
690 if (retval != ERROR_OK)
691 return retval;
692 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
693 if (retval != ERROR_OK)
694 return retval;
695 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
696 if (retval != ERROR_OK)
697 return retval;
698 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
699 if (retval != ERROR_OK)
700 return retval;
701
702 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
703 atmel_pri_ext.features, atmel_pri_ext.bottom_boot,
704 atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
705
706 if (atmel_pri_ext.features & 0x02)
707 pri_ext->EraseSuspend = 2;
708
709 if (atmel_pri_ext.bottom_boot)
710 pri_ext->TopBottom = 2;
711 else
712 pri_ext->TopBottom = 3;
713
714 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
715 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
716
717 return ERROR_OK;
718 }
719
720 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
721 {
722 struct cfi_flash_bank *cfi_info = bank->driver_priv;
723
724 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
725 {
726 return cfi_read_atmel_pri_ext(bank);
727 }
728 else
729 {
730 return cfi_read_spansion_pri_ext(bank);
731 }
732 }
733
734 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
735 {
736 int printed;
737 struct cfi_flash_bank *cfi_info = bank->driver_priv;
738 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
739
740 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
741 buf += printed;
742 buf_size -= printed;
743
744 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
745 pri_ext->pri[1], pri_ext->pri[2],
746 pri_ext->major_version, pri_ext->minor_version);
747 buf += printed;
748 buf_size -= printed;
749
750 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
751 (pri_ext->SiliconRevision) >> 2,
752 (pri_ext->SiliconRevision) & 0x03);
753 buf += printed;
754 buf_size -= printed;
755
756 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
757 pri_ext->EraseSuspend,
758 pri_ext->BlkProt);
759 buf += printed;
760 buf_size -= printed;
761
762 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
763 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
764 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
765
766 return ERROR_OK;
767 }
768
769 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
770 {
771 int printed;
772 struct cfi_flash_bank *cfi_info = bank->driver_priv;
773 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
774
775 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
776 buf += printed;
777 buf_size -= printed;
778
779 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
780 pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
781 buf += printed;
782 buf_size -= printed;
783
784 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", "
785 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
786 pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
787 buf += printed;
788 buf_size -= printed;
789
790 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
791 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
792 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
793 buf += printed;
794 buf_size -= printed;
795
796 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
797 "factory pre-programmed: %i, user programmable: %i\n",
798 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
799 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
800
801 return ERROR_OK;
802 }
803
804 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
805 */
806 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
807 {
808 struct cfi_flash_bank *cfi_info;
809
810 if (CMD_ARGC < 6)
811 {
812 LOG_WARNING("incomplete flash_bank cfi configuration");
813 return ERROR_FLASH_BANK_INVALID;
814 }
815
816 /* both widths must:
817 * - not exceed max value;
818 * - not be null;
819 * - be equal to a power of 2.
820 * bus must be wide enought to hold one chip */
821 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
822 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
823 || (bank->chip_width == 0)
824 || (bank->bus_width == 0)
825 || (bank->chip_width & (bank->chip_width - 1))
826 || (bank->bus_width & (bank->bus_width - 1))
827 || (bank->chip_width > bank->bus_width))
828 {
829 LOG_ERROR("chip and bus width have to specified in bytes");
830 return ERROR_FLASH_BANK_INVALID;
831 }
832
833 cfi_info = malloc(sizeof(struct cfi_flash_bank));
834 cfi_info->probed = 0;
835 cfi_info->erase_region_info = NULL;
836 cfi_info->pri_ext = NULL;
837 bank->driver_priv = cfi_info;
838
839 cfi_info->write_algorithm = NULL;
840
841 cfi_info->x16_as_x8 = 0;
842 cfi_info->jedec_probe = 0;
843 cfi_info->not_cfi = 0;
844
845 for (unsigned i = 6; i < CMD_ARGC; i++)
846 {
847 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
848 {
849 cfi_info->x16_as_x8 = 1;
850 }
851 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
852 {
853 cfi_info->jedec_probe = 1;
854 }
855 }
856
857 cfi_info->write_algorithm = NULL;
858
859 /* bank wasn't probed yet */
860 cfi_info->qry[0] = 0xff;
861
862 return ERROR_OK;
863 }
864
865 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
866 {
867 int retval;
868 struct cfi_flash_bank *cfi_info = bank->driver_priv;
869 int i;
870
871 cfi_intel_clear_status_register(bank);
872
873 for (i = first; i <= last; i++)
874 {
875 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
876 {
877 return retval;
878 }
879
880 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
881 {
882 return retval;
883 }
884
885 uint8_t status;
886 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
887 if (retval != ERROR_OK)
888 return retval;
889
890 if (status == 0x80)
891 bank->sectors[i].is_erased = 1;
892 else
893 {
894 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
895 {
896 return retval;
897 }
898
899 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
900 return ERROR_FLASH_OPERATION_FAILED;
901 }
902 }
903
904 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
905 }
906
907 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
908 {
909 int retval;
910 struct cfi_flash_bank *cfi_info = bank->driver_priv;
911 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
912 int i;
913
914 for (i = first; i <= last; i++)
915 {
916 if ((retval = cfi_send_command(bank, 0xaa,
917 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
918 {
919 return retval;
920 }
921
922 if ((retval = cfi_send_command(bank, 0x55,
923 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
924 {
925 return retval;
926 }
927
928 if ((retval = cfi_send_command(bank, 0x80,
929 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
930 {
931 return retval;
932 }
933
934 if ((retval = cfi_send_command(bank, 0xaa,
935 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
936 {
937 return retval;
938 }
939
940 if ((retval = cfi_send_command(bank, 0x55,
941 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
942 {
943 return retval;
944 }
945
946 if ((retval = cfi_send_command(bank, 0x30,
947 flash_address(bank, i, 0x0))) != ERROR_OK)
948 {
949 return retval;
950 }
951
952 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
953 {
954 bank->sectors[i].is_erased = 1;
955 }
956 else
957 {
958 if ((retval = cfi_send_command(bank, 0xf0,
959 flash_address(bank, 0, 0x0))) != ERROR_OK)
960 {
961 return retval;
962 }
963
964 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
965 PRIx32, i, bank->base);
966 return ERROR_FLASH_OPERATION_FAILED;
967 }
968 }
969
970 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
971 }
972
973 static int cfi_erase(struct flash_bank *bank, int first, int last)
974 {
975 struct cfi_flash_bank *cfi_info = bank->driver_priv;
976
977 if (bank->target->state != TARGET_HALTED)
978 {
979 LOG_ERROR("Target not halted");
980 return ERROR_TARGET_NOT_HALTED;
981 }
982
983 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
984 {
985 return ERROR_FLASH_SECTOR_INVALID;
986 }
987
988 if (cfi_info->qry[0] != 'Q')
989 return ERROR_FLASH_BANK_NOT_PROBED;
990
991 switch (cfi_info->pri_id)
992 {
993 case 1:
994 case 3:
995 return cfi_intel_erase(bank, first, last);
996 break;
997 case 2:
998 return cfi_spansion_erase(bank, first, last);
999 break;
1000 default:
1001 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1002 break;
1003 }
1004
1005 return ERROR_OK;
1006 }
1007
1008 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
1009 {
1010 int retval;
1011 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1012 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1013 int retry = 0;
1014 int i;
1015
1016 /* if the device supports neither legacy lock/unlock (bit 3) nor
1017 * instant individual block locking (bit 5).
1018 */
1019 if (!(pri_ext->feature_support & 0x28))
1020 {
1021 LOG_ERROR("lock/unlock not supported on flash");
1022 return ERROR_FLASH_OPERATION_FAILED;
1023 }
1024
1025 cfi_intel_clear_status_register(bank);
1026
1027 for (i = first; i <= last; i++)
1028 {
1029 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
1030 {
1031 return retval;
1032 }
1033 if (set)
1034 {
1035 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
1036 {
1037 return retval;
1038 }
1039 bank->sectors[i].is_protected = 1;
1040 }
1041 else
1042 {
1043 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
1044 {
1045 return retval;
1046 }
1047 bank->sectors[i].is_protected = 0;
1048 }
1049
1050 /* instant individual block locking doesn't require reading of the status register */
1051 if (!(pri_ext->feature_support & 0x20))
1052 {
1053 /* Clear lock bits operation may take up to 1.4s */
1054 uint8_t status;
1055 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1056 if (retval != ERROR_OK)
1057 return retval;
1058 }
1059 else
1060 {
1061 uint8_t block_status;
1062 /* read block lock bit, to verify status */
1063 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
1064 {
1065 return retval;
1066 }
1067 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1068 if (retval != ERROR_OK)
1069 return retval;
1070
1071 if ((block_status & 0x1) != set)
1072 {
1073 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1074 set, block_status);
1075 if ((retval = cfi_send_command(bank, 0x70,
1076 flash_address(bank, 0, 0x55))) != ERROR_OK)
1077 {
1078 return retval;
1079 }
1080 uint8_t status;
1081 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 if (retry > 10)
1086 return ERROR_FLASH_OPERATION_FAILED;
1087 else
1088 {
1089 i--;
1090 retry++;
1091 }
1092 }
1093 }
1094 }
1095
1096 /* if the device doesn't support individual block lock bits set/clear,
1097 * all blocks have been unlocked in parallel, so we set those that should be protected
1098 */
1099 if ((!set) && (!(pri_ext->feature_support & 0x20)))
1100 {
1101 /* FIX!!! this code path is broken!!!
1102 *
1103 * The correct approach is:
1104 *
1105 * 1. read out current protection status
1106 *
1107 * 2. override read out protection status w/unprotected.
1108 *
1109 * 3. re-protect what should be protected.
1110 *
1111 */
1112 for (i = 0; i < bank->num_sectors; i++)
1113 {
1114 if (bank->sectors[i].is_protected == 1)
1115 {
1116 cfi_intel_clear_status_register(bank);
1117
1118 if ((retval = cfi_send_command(bank, 0x60,
1119 flash_address(bank, i, 0x0))) != ERROR_OK)
1120 {
1121 return retval;
1122 }
1123
1124 if ((retval = cfi_send_command(bank, 0x01,
1125 flash_address(bank, i, 0x0))) != ERROR_OK)
1126 {
1127 return retval;
1128 }
1129
1130 uint8_t status;
1131 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1132 if (retval != ERROR_OK)
1133 return retval;
1134 }
1135 }
1136 }
1137
1138 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1139 }
1140
1141 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1142 {
1143 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1144
1145 if (bank->target->state != TARGET_HALTED)
1146 {
1147 LOG_ERROR("Target not halted");
1148 return ERROR_TARGET_NOT_HALTED;
1149 }
1150
1151 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
1152 {
1153 LOG_ERROR("Invalid sector range");
1154 return ERROR_FLASH_SECTOR_INVALID;
1155 }
1156
1157 if (cfi_info->qry[0] != 'Q')
1158 return ERROR_FLASH_BANK_NOT_PROBED;
1159
1160 switch (cfi_info->pri_id)
1161 {
1162 case 1:
1163 case 3:
1164 return cfi_intel_protect(bank, set, first, last);
1165 break;
1166 default:
1167 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1168 return ERROR_OK;
1169 }
1170 }
1171
1172 /* Convert code image to target endian */
1173 /* FIXME create general block conversion fcts in target.c?) */
1174 static void cfi_fix_code_endian(struct target *target, uint8_t *dest,
1175 const uint32_t *src, uint32_t count)
1176 {
1177 uint32_t i;
1178 for (i = 0; i< count; i++)
1179 {
1180 target_buffer_set_u32(target, dest, *src);
1181 dest += 4;
1182 src++;
1183 }
1184 }
1185
1186 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1187 {
1188 struct target *target = bank->target;
1189
1190 uint8_t buf[CFI_MAX_BUS_WIDTH];
1191 cfi_command(bank, cmd, buf);
1192 switch (bank->bus_width)
1193 {
1194 case 1 :
1195 return buf[0];
1196 break;
1197 case 2 :
1198 return target_buffer_get_u16(target, buf);
1199 break;
1200 case 4 :
1201 return target_buffer_get_u32(target, buf);
1202 break;
1203 default :
1204 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1205 return 0;
1206 }
1207 }
1208
1209 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer,
1210 uint32_t address, uint32_t count)
1211 {
1212 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1213 struct target *target = bank->target;
1214 struct reg_param reg_params[7];
1215 struct arm_algorithm armv4_5_info;
1216 struct working_area *source;
1217 uint32_t buffer_size = 32768;
1218 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1219
1220 /* algorithm register usage:
1221 * r0: source address (in RAM)
1222 * r1: target address (in Flash)
1223 * r2: count
1224 * r3: flash write command
1225 * r4: status byte (returned to host)
1226 * r5: busy test pattern
1227 * r6: error test pattern
1228 */
1229
1230 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1231 static const uint32_t word_32_code[] = {
1232 0xe4904004, /* loop: ldr r4, [r0], #4 */
1233 0xe5813000, /* str r3, [r1] */
1234 0xe5814000, /* str r4, [r1] */
1235 0xe5914000, /* busy: ldr r4, [r1] */
1236 0xe0047005, /* and r7, r4, r5 */
1237 0xe1570005, /* cmp r7, r5 */
1238 0x1afffffb, /* bne busy */
1239 0xe1140006, /* tst r4, r6 */
1240 0x1a000003, /* bne done */
1241 0xe2522001, /* subs r2, r2, #1 */
1242 0x0a000001, /* beq done */
1243 0xe2811004, /* add r1, r1 #4 */
1244 0xeafffff2, /* b loop */
1245 0xeafffffe /* done: b -2 */
1246 };
1247
1248 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1249 static const uint32_t word_16_code[] = {
1250 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1251 0xe1c130b0, /* strh r3, [r1] */
1252 0xe1c140b0, /* strh r4, [r1] */
1253 0xe1d140b0, /* busy ldrh r4, [r1] */
1254 0xe0047005, /* and r7, r4, r5 */
1255 0xe1570005, /* cmp r7, r5 */
1256 0x1afffffb, /* bne busy */
1257 0xe1140006, /* tst r4, r6 */
1258 0x1a000003, /* bne done */
1259 0xe2522001, /* subs r2, r2, #1 */
1260 0x0a000001, /* beq done */
1261 0xe2811002, /* add r1, r1 #2 */
1262 0xeafffff2, /* b loop */
1263 0xeafffffe /* done: b -2 */
1264 };
1265
1266 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1267 static const uint32_t word_8_code[] = {
1268 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1269 0xe5c13000, /* strb r3, [r1] */
1270 0xe5c14000, /* strb r4, [r1] */
1271 0xe5d14000, /* busy ldrb r4, [r1] */
1272 0xe0047005, /* and r7, r4, r5 */
1273 0xe1570005, /* cmp r7, r5 */
1274 0x1afffffb, /* bne busy */
1275 0xe1140006, /* tst r4, r6 */
1276 0x1a000003, /* bne done */
1277 0xe2522001, /* subs r2, r2, #1 */
1278 0x0a000001, /* beq done */
1279 0xe2811001, /* add r1, r1 #1 */
1280 0xeafffff2, /* b loop */
1281 0xeafffffe /* done: b -2 */
1282 };
1283 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1284 const uint32_t *target_code_src;
1285 uint32_t target_code_size;
1286 int retval = ERROR_OK;
1287
1288
1289 cfi_intel_clear_status_register(bank);
1290
1291 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1292 armv4_5_info.core_mode = ARM_MODE_SVC;
1293 armv4_5_info.core_state = ARM_STATE_ARM;
1294
1295 /* If we are setting up the write_algorith, we need target_code_src */
1296 /* if not we only need target_code_size. */
1297
1298 /* However, we don't want to create multiple code paths, so we */
1299 /* do the unecessary evaluation of target_code_src, which the */
1300 /* compiler will probably nicely optimize away if not needed */
1301
1302 /* prepare algorithm code for target endian */
1303 switch (bank->bus_width)
1304 {
1305 case 1 :
1306 target_code_src = word_8_code;
1307 target_code_size = sizeof(word_8_code);
1308 break;
1309 case 2 :
1310 target_code_src = word_16_code;
1311 target_code_size = sizeof(word_16_code);
1312 break;
1313 case 4 :
1314 target_code_src = word_32_code;
1315 target_code_size = sizeof(word_32_code);
1316 break;
1317 default:
1318 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1319 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1320 }
1321
1322 /* flash write code */
1323 if (!cfi_info->write_algorithm)
1324 {
1325 if (target_code_size > sizeof(target_code))
1326 {
1327 LOG_WARNING("Internal error - target code buffer to small. "
1328 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1329 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1330 }
1331 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1332
1333 /* Get memory for block write handler */
1334 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1335 if (retval != ERROR_OK)
1336 {
1337 LOG_WARNING("No working area available, can't do block memory writes");
1338 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1339 };
1340
1341 /* write algorithm code to working area */
1342 retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1343 target_code_size, target_code);
1344 if (retval != ERROR_OK)
1345 {
1346 LOG_ERROR("Unable to write block write code to target");
1347 goto cleanup;
1348 }
1349 }
1350
1351 /* Get a workspace buffer for the data to flash starting with 32k size.
1352 Half size until buffer would be smaller 256 Bytem then fail back */
1353 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1354 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1355 {
1356 buffer_size /= 2;
1357 if (buffer_size <= 256)
1358 {
1359 LOG_WARNING("no large enough working area available, can't do block memory writes");
1360 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361 goto cleanup;
1362 }
1363 };
1364
1365 /* setup algo registers */
1366 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1367 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1368 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1369 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1370 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1371 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1372 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1373
1374 /* prepare command and status register patterns */
1375 write_command_val = cfi_command_val(bank, 0x40);
1376 busy_pattern_val = cfi_command_val(bank, 0x80);
1377 error_pattern_val = cfi_command_val(bank, 0x7e);
1378
1379 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
1380 source->address, buffer_size);
1381
1382 /* Programming main loop */
1383 while (count > 0)
1384 {
1385 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1386 uint32_t wsm_error;
1387
1388 if ((retval = target_write_buffer(target, source->address,
1389 thisrun_count, buffer)) != ERROR_OK)
1390 {
1391 goto cleanup;
1392 }
1393
1394 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1395 buf_set_u32(reg_params[1].value, 0, 32, address);
1396 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1397
1398 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1399 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1400 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1401
1402 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1403
1404 /* Execute algorithm, assume breakpoint for last instruction */
1405 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1406 cfi_info->write_algorithm->address,
1407 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1408 10000, /* 10s should be enough for max. 32k of data */
1409 &armv4_5_info);
1410
1411 /* On failure try a fall back to direct word writes */
1412 if (retval != ERROR_OK)
1413 {
1414 cfi_intel_clear_status_register(bank);
1415 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1416 retval = ERROR_FLASH_OPERATION_FAILED;
1417 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1418 /* FIXME To allow fall back or recovery, we must save the actual status
1419 * somewhere, so that a higher level code can start recovery. */
1420 goto cleanup;
1421 }
1422
1423 /* Check return value from algo code */
1424 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1425 if (wsm_error)
1426 {
1427 /* read status register (outputs debug inforation) */
1428 uint8_t status;
1429 cfi_intel_wait_status_busy(bank, 100, &status);
1430 cfi_intel_clear_status_register(bank);
1431 retval = ERROR_FLASH_OPERATION_FAILED;
1432 goto cleanup;
1433 }
1434
1435 buffer += thisrun_count;
1436 address += thisrun_count;
1437 count -= thisrun_count;
1438
1439 keep_alive();
1440 }
1441
1442 /* free up resources */
1443 cleanup:
1444 if (source)
1445 target_free_working_area(target, source);
1446
1447 if (cfi_info->write_algorithm)
1448 {
1449 target_free_working_area(target, cfi_info->write_algorithm);
1450 cfi_info->write_algorithm = NULL;
1451 }
1452
1453 destroy_reg_param(&reg_params[0]);
1454 destroy_reg_param(&reg_params[1]);
1455 destroy_reg_param(&reg_params[2]);
1456 destroy_reg_param(&reg_params[3]);
1457 destroy_reg_param(&reg_params[4]);
1458 destroy_reg_param(&reg_params[5]);
1459 destroy_reg_param(&reg_params[6]);
1460
1461 return retval;
1462 }
1463
1464 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer,
1465 uint32_t address, uint32_t count)
1466 {
1467 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1468 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1469 struct target *target = bank->target;
1470 struct reg_param reg_params[10];
1471 struct arm_algorithm armv4_5_info;
1472 struct working_area *source;
1473 uint32_t buffer_size = 32768;
1474 uint32_t status;
1475 int retval = ERROR_OK;
1476
1477 /* input parameters - */
1478 /* R0 = source address */
1479 /* R1 = destination address */
1480 /* R2 = number of writes */
1481 /* R3 = flash write command */
1482 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1483 /* output parameters - */
1484 /* R5 = 0x80 ok 0x00 bad */
1485 /* temp registers - */
1486 /* R6 = value read from flash to test status */
1487 /* R7 = holding register */
1488 /* unlock registers - */
1489 /* R8 = unlock1_addr */
1490 /* R9 = unlock1_cmd */
1491 /* R10 = unlock2_addr */
1492 /* R11 = unlock2_cmd */
1493
1494 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1495 static const uint32_t armv4_5_word_32_code[] = {
1496 /* 00008100 <sp_32_code>: */
1497 0xe4905004, /* ldr r5, [r0], #4 */
1498 0xe5889000, /* str r9, [r8] */
1499 0xe58ab000, /* str r11, [r10] */
1500 0xe5883000, /* str r3, [r8] */
1501 0xe5815000, /* str r5, [r1] */
1502 0xe1a00000, /* nop */
1503 /* */
1504 /* 00008110 <sp_32_busy>: */
1505 0xe5916000, /* ldr r6, [r1] */
1506 0xe0257006, /* eor r7, r5, r6 */
1507 0xe0147007, /* ands r7, r4, r7 */
1508 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1509 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1510 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1511 0xe5916000, /* ldr r6, [r1] */
1512 0xe0257006, /* eor r7, r5, r6 */
1513 0xe0147007, /* ands r7, r4, r7 */
1514 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1515 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1516 0x1a000004, /* bne 8154 <sp_32_done> */
1517 /* */
1518 /* 00008140 <sp_32_cont>: */
1519 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1520 0x03a05080, /* moveq r5, #128 ; 0x80 */
1521 0x0a000001, /* beq 8154 <sp_32_done> */
1522 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1523 0xeaffffe8, /* b 8100 <sp_32_code> */
1524 /* */
1525 /* 00008154 <sp_32_done>: */
1526 0xeafffffe /* b 8154 <sp_32_done> */
1527 };
1528
1529 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1530 static const uint32_t armv4_5_word_16_code[] = {
1531 /* 00008158 <sp_16_code>: */
1532 0xe0d050b2, /* ldrh r5, [r0], #2 */
1533 0xe1c890b0, /* strh r9, [r8] */
1534 0xe1cab0b0, /* strh r11, [r10] */
1535 0xe1c830b0, /* strh r3, [r8] */
1536 0xe1c150b0, /* strh r5, [r1] */
1537 0xe1a00000, /* nop (mov r0,r0) */
1538 /* */
1539 /* 00008168 <sp_16_busy>: */
1540 0xe1d160b0, /* ldrh r6, [r1] */
1541 0xe0257006, /* eor r7, r5, r6 */
1542 0xe0147007, /* ands r7, r4, r7 */
1543 0x0a000007, /* beq 8198 <sp_16_cont> */
1544 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1545 0x0afffff9, /* beq 8168 <sp_16_busy> */
1546 0xe1d160b0, /* ldrh r6, [r1] */
1547 0xe0257006, /* eor r7, r5, r6 */
1548 0xe0147007, /* ands r7, r4, r7 */
1549 0x0a000001, /* beq 8198 <sp_16_cont> */
1550 0xe3a05000, /* mov r5, #0 ; 0x0 */
1551 0x1a000004, /* bne 81ac <sp_16_done> */
1552 /* */
1553 /* 00008198 <sp_16_cont>: */
1554 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1555 0x03a05080, /* moveq r5, #128 ; 0x80 */
1556 0x0a000001, /* beq 81ac <sp_16_done> */
1557 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1558 0xeaffffe8, /* b 8158 <sp_16_code> */
1559 /* */
1560 /* 000081ac <sp_16_done>: */
1561 0xeafffffe /* b 81ac <sp_16_done> */
1562 };
1563
1564 /* see contib/loaders/flash/armv7m_cfi_span_16.s for src */
1565 static const uint32_t armv7m_word_16_code[] = {
1566 0x5B02F830,
1567 0x9000F8A8,
1568 0xB000F8AA,
1569 0x3000F8A8,
1570 0xBF00800D,
1571 0xEA85880E,
1572 0x40270706,
1573 0xEA16D00A,
1574 0xD0F70694,
1575 0xEA85880E,
1576 0x40270706,
1577 0xF04FD002,
1578 0xD1070500,
1579 0xD0023A01,
1580 0x0102F101,
1581 0xF04FE7E0,
1582 0xE7FF0580,
1583 0x0000BE00
1584 };
1585
1586 /* see contib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1587 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1588 /* <sp_16_code>: */
1589 0xe0d050b2, /* ldrh r5, [r0], #2 */
1590 0xe1c890b0, /* strh r9, [r8] */
1591 0xe1cab0b0, /* strh r11, [r10] */
1592 0xe1c830b0, /* strh r3, [r8] */
1593 0xe1c150b0, /* strh r5, [r1] */
1594 0xe1a00000, /* nop (mov r0,r0) */
1595 /* */
1596 /* <sp_16_busy>: */
1597 0xe1d160b0, /* ldrh r6, [r1] */
1598 0xe0257006, /* eor r7, r5, r6 */
1599 0xe2177080, /* ands r7, #0x80 */
1600 0x1afffffb, /* bne 8168 <sp_16_busy> */
1601 /* */
1602 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1603 0x03a05080, /* moveq r5, #128 ; 0x80 */
1604 0x0a000001, /* beq 81ac <sp_16_done> */
1605 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1606 0xeafffff0, /* b 8158 <sp_16_code> */
1607 /* */
1608 /* 000081ac <sp_16_done>: */
1609 0xeafffffe /* b 81ac <sp_16_done> */
1610 };
1611
1612 /* see contib/loaders/flash/armv4_5_cfi_span_8.s for src */
1613 static const uint32_t armv4_5_word_8_code[] = {
1614 /* 000081b0 <sp_16_code_end>: */
1615 0xe4d05001, /* ldrb r5, [r0], #1 */
1616 0xe5c89000, /* strb r9, [r8] */
1617 0xe5cab000, /* strb r11, [r10] */
1618 0xe5c83000, /* strb r3, [r8] */
1619 0xe5c15000, /* strb r5, [r1] */
1620 0xe1a00000, /* nop (mov r0,r0) */
1621 /* */
1622 /* 000081c0 <sp_8_busy>: */
1623 0xe5d16000, /* ldrb r6, [r1] */
1624 0xe0257006, /* eor r7, r5, r6 */
1625 0xe0147007, /* ands r7, r4, r7 */
1626 0x0a000007, /* beq 81f0 <sp_8_cont> */
1627 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1628 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1629 0xe5d16000, /* ldrb r6, [r1] */
1630 0xe0257006, /* eor r7, r5, r6 */
1631 0xe0147007, /* ands r7, r4, r7 */
1632 0x0a000001, /* beq 81f0 <sp_8_cont> */
1633 0xe3a05000, /* mov r5, #0 ; 0x0 */
1634 0x1a000004, /* bne 8204 <sp_8_done> */
1635 /* */
1636 /* 000081f0 <sp_8_cont>: */
1637 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1638 0x03a05080, /* moveq r5, #128 ; 0x80 */
1639 0x0a000001, /* beq 8204 <sp_8_done> */
1640 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1641 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1642 /* */
1643 /* 00008204 <sp_8_done>: */
1644 0xeafffffe /* b 8204 <sp_8_done> */
1645 };
1646
1647 if(strcmp("cortex_m3", target_type_name(target)) == 0) /* Cortex-M3 target */
1648 {
1649 armv4_5_info.common_magic = ARMV7M_COMMON_MAGIC;
1650 armv4_5_info.core_mode = ARMV7M_MODE_HANDLER;
1651 armv4_5_info.core_state = ARM_STATE_ARM;
1652 }
1653 else /* right now is only armv4_5 target */
1654 {
1655 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1656 armv4_5_info.core_mode = ARM_MODE_SVC;
1657 armv4_5_info.core_state = ARM_STATE_ARM;
1658 }
1659
1660 int target_code_size;
1661 const uint32_t *target_code_src;
1662
1663 switch (bank->bus_width)
1664 {
1665 case 1 :
1666 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) /* armv4_5 target */
1667 {
1668 target_code_src = armv4_5_word_8_code;
1669 target_code_size = sizeof(armv4_5_word_8_code);
1670 }
1671 break;
1672 case 2 :
1673 /* Check for DQ5 support */
1674 if( cfi_info->status_poll_mask & (1 << 5) )
1675 {
1676 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) /* armv4_5 target */
1677 {
1678 target_code_src = armv4_5_word_16_code;
1679 target_code_size = sizeof(armv4_5_word_16_code);
1680 }
1681 else if (armv4_5_info.common_magic == ARMV7M_COMMON_MAGIC) /* cortex-m3 target */
1682 {
1683 target_code_src = armv7m_word_16_code;
1684 target_code_size = sizeof(armv7m_word_16_code);
1685 }
1686 }
1687 else
1688 {
1689 /* No DQ5 support. Use DQ7 DATA# polling only. */
1690 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) // armv4_5 target
1691 {
1692 target_code_src = armv4_5_word_16_code_dq7only;
1693 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1694 }
1695 }
1696 break;
1697 case 4 :
1698 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) // armv4_5 target
1699 {
1700 target_code_src = armv4_5_word_32_code;
1701 target_code_size = sizeof(armv4_5_word_32_code);
1702 }
1703 break;
1704 default:
1705 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1706 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1707 }
1708
1709 /* flash write code */
1710 if (!cfi_info->write_algorithm)
1711 {
1712 uint8_t *target_code;
1713
1714 /* convert bus-width dependent algorithm code to correct endiannes */
1715 target_code = malloc(target_code_size);
1716 if (target_code == NULL)
1717 {
1718 LOG_ERROR("Out of memory");
1719 return ERROR_FAIL;
1720 }
1721 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1722
1723 /* allocate working area */
1724 retval = target_alloc_working_area(target, target_code_size,
1725 &cfi_info->write_algorithm);
1726 if (retval != ERROR_OK)
1727 {
1728 free(target_code);
1729 return retval;
1730 }
1731
1732 /* write algorithm code to working area */
1733 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1734 target_code_size, target_code)) != ERROR_OK)
1735 {
1736 free(target_code);
1737 return retval;
1738 }
1739
1740 free(target_code);
1741 }
1742 /* the following code still assumes target code is fixed 24*4 bytes */
1743
1744 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1745 {
1746 buffer_size /= 2;
1747 if (buffer_size <= 256)
1748 {
1749 /* if we already allocated the writing code, but failed to get a
1750 * buffer, free the algorithm */
1751 if (cfi_info->write_algorithm)
1752 target_free_working_area(target, cfi_info->write_algorithm);
1753
1754 LOG_WARNING("not enough working area available, can't do block memory writes");
1755 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1756 }
1757 };
1758
1759 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1760 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1761 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1762 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1763 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1764 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1765 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1766 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1767 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1768 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1769
1770 while (count > 0)
1771 {
1772 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1773
1774 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1775 if (retval != ERROR_OK)
1776 {
1777 break;
1778 }
1779
1780 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1781 buf_set_u32(reg_params[1].value, 0, 32, address);
1782 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1783 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1784 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1785 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1786 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1787 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1788 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1789
1790 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1791 cfi_info->write_algorithm->address,
1792 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1793 10000, &armv4_5_info);
1794 if (retval != ERROR_OK)
1795 {
1796 break;
1797 }
1798
1799 status = buf_get_u32(reg_params[5].value, 0, 32);
1800 if (status != 0x80)
1801 {
1802 LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status);
1803 retval = ERROR_FLASH_OPERATION_FAILED;
1804 break;
1805 }
1806
1807 buffer += thisrun_count;
1808 address += thisrun_count;
1809 count -= thisrun_count;
1810 }
1811
1812 target_free_all_working_areas(target);
1813
1814 destroy_reg_param(&reg_params[0]);
1815 destroy_reg_param(&reg_params[1]);
1816 destroy_reg_param(&reg_params[2]);
1817 destroy_reg_param(&reg_params[3]);
1818 destroy_reg_param(&reg_params[4]);
1819 destroy_reg_param(&reg_params[5]);
1820 destroy_reg_param(&reg_params[6]);
1821 destroy_reg_param(&reg_params[7]);
1822 destroy_reg_param(&reg_params[8]);
1823 destroy_reg_param(&reg_params[9]);
1824
1825 return retval;
1826 }
1827
1828 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1829 {
1830 int retval;
1831 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1832 struct target *target = bank->target;
1833
1834 cfi_intel_clear_status_register(bank);
1835 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
1836 {
1837 return retval;
1838 }
1839
1840 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1841 {
1842 return retval;
1843 }
1844
1845 uint8_t status;
1846 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
1847 if (retval != 0x80)
1848 {
1849 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1850 {
1851 return retval;
1852 }
1853
1854 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
1855 bank->base, address);
1856 return ERROR_FLASH_OPERATION_FAILED;
1857 }
1858
1859 return ERROR_OK;
1860 }
1861
1862 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word,
1863 uint32_t wordcount, uint32_t address)
1864 {
1865 int retval;
1866 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1867 struct target *target = bank->target;
1868
1869 /* Calculate buffer size and boundary mask */
1870 /* buffersize is (buffer size per chip) * (number of chips) */
1871 /* bufferwsize is buffersize in words */
1872 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1873 uint32_t buffermask = buffersize-1;
1874 uint32_t bufferwsize = buffersize / bank->bus_width;
1875
1876 /* Check for valid range */
1877 if (address & buffermask)
1878 {
1879 LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
1880 " not aligned to 2^%d boundary",
1881 bank->base, address, cfi_info->max_buf_write_size);
1882 return ERROR_FLASH_OPERATION_FAILED;
1883 }
1884
1885 /* Check for valid size */
1886 if (wordcount > bufferwsize)
1887 {
1888 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
1889 wordcount, buffersize);
1890 return ERROR_FLASH_OPERATION_FAILED;
1891 }
1892
1893 /* Write to flash buffer */
1894 cfi_intel_clear_status_register(bank);
1895
1896 /* Initiate buffer operation _*/
1897 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
1898 {
1899 return retval;
1900 }
1901 uint8_t status;
1902 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
1903 if (retval != ERROR_OK)
1904 return retval;
1905 if (status != 0x80)
1906 {
1907 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1908 {
1909 return retval;
1910 }
1911
1912 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
1913 bank->base, address);
1914 return ERROR_FLASH_OPERATION_FAILED;
1915 }
1916
1917 /* Write buffer wordcount-1 and data words */
1918 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1919 {
1920 return retval;
1921 }
1922
1923 if ((retval = target_write_memory(target,
1924 address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1925 {
1926 return retval;
1927 }
1928
1929 /* Commit write operation */
1930 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
1931 {
1932 return retval;
1933 }
1934
1935 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
1936 if (retval != ERROR_OK)
1937 return retval;
1938
1939 if (status != 0x80)
1940 {
1941 if ((retval = cfi_send_command(bank, 0xff,
1942 flash_address(bank, 0, 0x0))) != ERROR_OK)
1943 {
1944 return retval;
1945 }
1946
1947 LOG_ERROR("Buffer write at base 0x%" PRIx32
1948 ", address 0x%" PRIx32 " failed.", bank->base, address);
1949 return ERROR_FLASH_OPERATION_FAILED;
1950 }
1951
1952 return ERROR_OK;
1953 }
1954
1955 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1956 {
1957 int retval;
1958 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1959 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1960 struct target *target = bank->target;
1961
1962 if ((retval = cfi_send_command(bank, 0xaa,
1963 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1964 {
1965 return retval;
1966 }
1967
1968 if ((retval = cfi_send_command(bank, 0x55,
1969 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1970 {
1971 return retval;
1972 }
1973
1974 if ((retval = cfi_send_command(bank, 0xa0,
1975 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1976 {
1977 return retval;
1978 }
1979
1980 if ((retval = target_write_memory(target,
1981 address, bank->bus_width, 1, word)) != ERROR_OK)
1982 {
1983 return retval;
1984 }
1985
1986 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK)
1987 {
1988 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1989 {
1990 return retval;
1991 }
1992
1993 LOG_ERROR("couldn't write word at base 0x%" PRIx32
1994 ", address 0x%" PRIx32 , bank->base, address);
1995 return ERROR_FLASH_OPERATION_FAILED;
1996 }
1997
1998 return ERROR_OK;
1999 }
2000
2001 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word,
2002 uint32_t wordcount, uint32_t address)
2003 {
2004 int retval;
2005 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2006 struct target *target = bank->target;
2007 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2008
2009 /* Calculate buffer size and boundary mask */
2010 /* buffersize is (buffer size per chip) * (number of chips) */
2011 /* bufferwsize is buffersize in words */
2012 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2013 uint32_t buffermask = buffersize-1;
2014 uint32_t bufferwsize = buffersize / bank->bus_width;
2015
2016 /* Check for valid range */
2017 if (address & buffermask)
2018 {
2019 LOG_ERROR("Write address at base 0x%" PRIx32
2020 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2021 bank->base, address, cfi_info->max_buf_write_size);
2022 return ERROR_FLASH_OPERATION_FAILED;
2023 }
2024
2025 /* Check for valid size */
2026 if (wordcount > bufferwsize)
2027 {
2028 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2029 PRId32, wordcount, buffersize);
2030 return ERROR_FLASH_OPERATION_FAILED;
2031 }
2032
2033 /* Unlock */
2034 if ((retval = cfi_send_command(bank, 0xaa,
2035 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2036 {
2037 return retval;
2038 }
2039
2040 if ((retval = cfi_send_command(bank, 0x55,
2041 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2042 {
2043 return retval;
2044 }
2045
2046 /* Buffer load command */
2047 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
2048 {
2049 return retval;
2050 }
2051
2052 /* Write buffer wordcount-1 and data words */
2053 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
2054 {
2055 return retval;
2056 }
2057
2058 if ((retval = target_write_memory(target,
2059 address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
2060 {
2061 return retval;
2062 }
2063
2064 /* Commit write operation */
2065 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
2066 {
2067 return retval;
2068 }
2069
2070 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK)
2071 {
2072 if ((retval = cfi_send_command(bank, 0xf0,
2073 flash_address(bank, 0, 0x0))) != ERROR_OK)
2074 {
2075 return retval;
2076 }
2077
2078 LOG_ERROR("couldn't write block at base 0x%" PRIx32
2079 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address, bufferwsize);
2080 return ERROR_FLASH_OPERATION_FAILED;
2081 }
2082
2083 return ERROR_OK;
2084 }
2085
2086 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2087 {
2088 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2089
2090 switch (cfi_info->pri_id)
2091 {
2092 case 1:
2093 case 3:
2094 return cfi_intel_write_word(bank, word, address);
2095 break;
2096 case 2:
2097 return cfi_spansion_write_word(bank, word, address);
2098 break;
2099 default:
2100 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2101 break;
2102 }
2103
2104 return ERROR_FLASH_OPERATION_FAILED;
2105 }
2106
2107 static int cfi_write_words(struct flash_bank *bank, uint8_t *word,
2108 uint32_t wordcount, uint32_t address)
2109 {
2110 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2111
2112 if (cfi_info->buf_write_timeout_typ == 0)
2113 {
2114 /* buffer writes are not supported */
2115 LOG_DEBUG("Buffer Writes Not Supported");
2116 return ERROR_FLASH_OPER_UNSUPPORTED;
2117 }
2118
2119 switch (cfi_info->pri_id)
2120 {
2121 case 1:
2122 case 3:
2123 return cfi_intel_write_words(bank, word, wordcount, address);
2124 break;
2125 case 2:
2126 return cfi_spansion_write_words(bank, word, wordcount, address);
2127 break;
2128 default:
2129 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2130 break;
2131 }
2132
2133 return ERROR_FLASH_OPERATION_FAILED;
2134 }
2135
2136 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2137 {
2138 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2139 struct target *target = bank->target;
2140 uint32_t address = bank->base + offset;
2141 uint32_t read_p;
2142 int align; /* number of unaligned bytes */
2143 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2144 int i;
2145 int retval;
2146
2147 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2148 (int)count, (unsigned)offset);
2149
2150 if (bank->target->state != TARGET_HALTED)
2151 {
2152 LOG_ERROR("Target not halted");
2153 return ERROR_TARGET_NOT_HALTED;
2154 }
2155
2156 if (offset + count > bank->size)
2157 return ERROR_FLASH_DST_OUT_OF_BANK;
2158
2159 if (cfi_info->qry[0] != 'Q')
2160 return ERROR_FLASH_BANK_NOT_PROBED;
2161
2162 /* start at the first byte of the first word (bus_width size) */
2163 read_p = address & ~(bank->bus_width - 1);
2164 if ((align = address - read_p) != 0)
2165 {
2166 LOG_INFO("Fixup %d unaligned read head bytes", align);
2167
2168 /* read a complete word from flash */
2169 if ((retval = target_read_memory(target, read_p,
2170 bank->bus_width, 1, current_word)) != ERROR_OK)
2171 return retval;
2172
2173 /* take only bytes we need */
2174 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2175 *buffer++ = current_word[i];
2176
2177 read_p += bank->bus_width;
2178 }
2179
2180 align = count / bank->bus_width;
2181 if (align)
2182 {
2183 if ((retval = target_read_memory(target, read_p,
2184 bank->bus_width, align, buffer)) != ERROR_OK)
2185 return retval;
2186
2187 read_p += align * bank->bus_width;
2188 buffer += align * bank->bus_width;
2189 count -= align * bank->bus_width;
2190 }
2191
2192 if (count)
2193 {
2194 LOG_INFO("Fixup %d unaligned read tail bytes", count);
2195
2196 /* read a complete word from flash */
2197 if ((retval = target_read_memory(target, read_p,
2198 bank->bus_width, 1, current_word)) != ERROR_OK)
2199 return retval;
2200
2201 /* take only bytes we need */
2202 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2203 *buffer++ = current_word[i];
2204 }
2205
2206 return ERROR_OK;
2207 }
2208
2209 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2210 {
2211 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2212 struct target *target = bank->target;
2213 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2214 uint32_t write_p;
2215 int align; /* number of unaligned bytes */
2216 int blk_count; /* number of bus_width bytes for block copy */
2217 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
2218 int i;
2219 int retval;
2220
2221 if (bank->target->state != TARGET_HALTED)
2222 {
2223 LOG_ERROR("Target not halted");
2224 return ERROR_TARGET_NOT_HALTED;
2225 }
2226
2227 if (offset + count > bank->size)
2228 return ERROR_FLASH_DST_OUT_OF_BANK;
2229
2230 if (cfi_info->qry[0] != 'Q')
2231 return ERROR_FLASH_BANK_NOT_PROBED;
2232
2233 /* start at the first byte of the first word (bus_width size) */
2234 write_p = address & ~(bank->bus_width - 1);
2235 if ((align = address - write_p) != 0)
2236 {
2237 LOG_INFO("Fixup %d unaligned head bytes", align);
2238
2239 /* read a complete word from flash */
2240 if ((retval = target_read_memory(target, write_p,
2241 bank->bus_width, 1, current_word)) != ERROR_OK)
2242 return retval;
2243
2244 /* replace only bytes that must be written */
2245 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2246 current_word[i] = *buffer++;
2247
2248 retval = cfi_write_word(bank, current_word, write_p);
2249 if (retval != ERROR_OK)
2250 return retval;
2251 write_p += bank->bus_width;
2252 }
2253
2254 /* handle blocks of bus_size aligned bytes */
2255 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2256 switch (cfi_info->pri_id)
2257 {
2258 /* try block writes (fails without working area) */
2259 case 1:
2260 case 3:
2261 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2262 break;
2263 case 2:
2264 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2265 break;
2266 default:
2267 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2268 retval = ERROR_FLASH_OPERATION_FAILED;
2269 break;
2270 }
2271 if (retval == ERROR_OK)
2272 {
2273 /* Increment pointers and decrease count on succesful block write */
2274 buffer += blk_count;
2275 write_p += blk_count;
2276 count -= blk_count;
2277 }
2278 else
2279 {
2280 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
2281 {
2282 /* Calculate buffer size and boundary mask */
2283 /* buffersize is (buffer size per chip) * (number of chips) */
2284 /* bufferwsize is buffersize in words */
2285 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2286 uint32_t buffermask = buffersize-1;
2287 uint32_t bufferwsize = buffersize / bank->bus_width;
2288
2289 /* fall back to memory writes */
2290 while (count >= (uint32_t)bank->bus_width)
2291 {
2292 int fallback;
2293 if ((write_p & 0xff) == 0)
2294 {
2295 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2296 PRIx32 " bytes remaining", write_p, count);
2297 }
2298 fallback = 1;
2299 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
2300 {
2301 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2302 if (retval == ERROR_OK)
2303 {
2304 buffer += buffersize;
2305 write_p += buffersize;
2306 count -= buffersize;
2307 fallback = 0;
2308 }
2309 else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2310 return retval;
2311 }
2312 /* try the slow way? */
2313 if (fallback)
2314 {
2315 for (i = 0; i < bank->bus_width; i++)
2316 current_word[i] = *buffer++;
2317
2318 retval = cfi_write_word(bank, current_word, write_p);
2319 if (retval != ERROR_OK)
2320 return retval;
2321
2322 write_p += bank->bus_width;
2323 count -= bank->bus_width;
2324 }
2325 }
2326 }
2327 else
2328 return retval;
2329 }
2330
2331 /* return to read array mode, so we can read from flash again for padding */
2332 if ((retval = cfi_reset(bank)) != ERROR_OK)
2333 {
2334 return retval;
2335 }
2336
2337 /* handle unaligned tail bytes */
2338 if (count > 0)
2339 {
2340 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2341
2342 /* read a complete word from flash */
2343 if ((retval = target_read_memory(target, write_p,
2344 bank->bus_width, 1, current_word)) != ERROR_OK)
2345 return retval;
2346
2347 /* replace only bytes that must be written */
2348 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2349 current_word[i] = *buffer++;
2350
2351 retval = cfi_write_word(bank, current_word, write_p);
2352 if (retval != ERROR_OK)
2353 return retval;
2354 }
2355
2356 /* return to read array mode */
2357 return cfi_reset(bank);
2358 }
2359
2360 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param)
2361 {
2362 (void) param;
2363 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2364 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2365
2366 pri_ext->_reversed_geometry = 1;
2367 }
2368
2369 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2370 {
2371 int i;
2372 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2373 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2374 (void) param;
2375
2376 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2377 {
2378 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2379
2380 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2381 {
2382 int j = (cfi_info->num_erase_regions - 1) - i;
2383 uint32_t swap;
2384
2385 swap = cfi_info->erase_region_info[i];
2386 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2387 cfi_info->erase_region_info[j] = swap;
2388 }
2389 }
2390 }
2391
2392 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2393 {
2394 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2395 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2396 struct cfi_unlock_addresses *unlock_addresses = param;
2397
2398 pri_ext->_unlock1 = unlock_addresses->unlock1;
2399 pri_ext->_unlock2 = unlock_addresses->unlock2;
2400 }
2401
2402
2403 static int cfi_query_string(struct flash_bank *bank, int address)
2404 {
2405 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2406 int retval;
2407
2408 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2409 {
2410 return retval;
2411 }
2412
2413 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2414 if (retval != ERROR_OK)
2415 return retval;
2416 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2417 if (retval != ERROR_OK)
2418 return retval;
2419 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2420 if (retval != ERROR_OK)
2421 return retval;
2422
2423 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2424 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2425
2426 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2427 {
2428 if ((retval = cfi_reset(bank)) != ERROR_OK)
2429 {
2430 return retval;
2431 }
2432 LOG_ERROR("Could not probe bank: no QRY");
2433 return ERROR_FLASH_BANK_INVALID;
2434 }
2435
2436 return ERROR_OK;
2437 }
2438
2439 static int cfi_probe(struct flash_bank *bank)
2440 {
2441 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2442 struct target *target = bank->target;
2443 int num_sectors = 0;
2444 int i;
2445 int sector = 0;
2446 uint32_t unlock1 = 0x555;
2447 uint32_t unlock2 = 0x2aa;
2448 int retval;
2449 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2450
2451 if (bank->target->state != TARGET_HALTED)
2452 {
2453 LOG_ERROR("Target not halted");
2454 return ERROR_TARGET_NOT_HALTED;
2455 }
2456
2457 cfi_info->probed = 0;
2458 if (bank->sectors)
2459 {
2460 free(bank->sectors);
2461 bank->sectors = NULL;
2462 }
2463 if(cfi_info->erase_region_info)
2464 {
2465 free(cfi_info->erase_region_info);
2466 cfi_info->erase_region_info = NULL;
2467 }
2468
2469 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2470 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2471 */
2472 if (cfi_info->jedec_probe)
2473 {
2474 unlock1 = 0x5555;
2475 unlock2 = 0x2aaa;
2476 }
2477
2478 /* switch to read identifier codes mode ("AUTOSELECT") */
2479 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2480 {
2481 return retval;
2482 }
2483 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2484 {
2485 return retval;
2486 }
2487 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2488 {
2489 return retval;
2490 }
2491
2492 if ((retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2493 bank->bus_width, 1, value_buf0)) != ERROR_OK)
2494 {
2495 return retval;
2496 }
2497 if ((retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2498 bank->bus_width, 1, value_buf1)) != ERROR_OK)
2499 {
2500 return retval;
2501 }
2502 switch (bank->chip_width) {
2503 case 1:
2504 cfi_info->manufacturer = *value_buf0;
2505 cfi_info->device_id = *value_buf1;
2506 break;
2507 case 2:
2508 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2509 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2510 break;
2511 case 4:
2512 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2513 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2514 break;
2515 default:
2516 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory", bank->chip_width);
2517 return ERROR_FLASH_OPERATION_FAILED;
2518 }
2519
2520 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2521 cfi_info->manufacturer, cfi_info->device_id);
2522 /* switch back to read array mode */
2523 if ((retval = cfi_reset(bank)) != ERROR_OK)
2524 {
2525 return retval;
2526 }
2527
2528 /* check device/manufacturer ID for known non-CFI flashes. */
2529 cfi_fixup_non_cfi(bank);
2530
2531 /* query only if this is a CFI compatible flash,
2532 * otherwise the relevant info has already been filled in
2533 */
2534 if (cfi_info->not_cfi == 0)
2535 {
2536 /* enter CFI query mode
2537 * according to JEDEC Standard No. 68.01,
2538 * a single bus sequence with address = 0x55, data = 0x98 should put
2539 * the device into CFI query mode.
2540 *
2541 * SST flashes clearly violate this, and we will consider them incompatbile for now
2542 */
2543
2544 retval = cfi_query_string(bank, 0x55);
2545 if (retval != ERROR_OK)
2546 {
2547 /*
2548 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2549 * be harmless enough:
2550 *
2551 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2552 */
2553 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2554 retval = cfi_query_string(bank, 0x555);
2555 }
2556 if (retval != ERROR_OK)
2557 return retval;
2558
2559 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2560 if (retval != ERROR_OK)
2561 return retval;
2562 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2563 if (retval != ERROR_OK)
2564 return retval;
2565 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2566 if (retval != ERROR_OK)
2567 return retval;
2568 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2569 if (retval != ERROR_OK)
2570 return retval;
2571
2572 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2573 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2574 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2575 cfi_info->alt_id, cfi_info->alt_addr);
2576
2577 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2578 if (retval != ERROR_OK)
2579 return retval;
2580 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2581 if (retval != ERROR_OK)
2582 return retval;
2583 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2584 if (retval != ERROR_OK)
2585 return retval;
2586 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2587 if (retval != ERROR_OK)
2588 return retval;
2589
2590 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2591 if (retval != ERROR_OK)
2592 return retval;
2593 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2594 if (retval != ERROR_OK)
2595 return retval;
2596 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2597 if (retval != ERROR_OK)
2598 return retval;
2599 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2600 if (retval != ERROR_OK)
2601 return retval;
2602 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2603 if (retval != ERROR_OK)
2604 return retval;
2605 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2606 if (retval != ERROR_OK)
2607 return retval;
2608 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2609 if (retval != ERROR_OK)
2610 return retval;
2611 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2612 if (retval != ERROR_OK)
2613 return retval;
2614
2615 uint8_t data;
2616 retval = cfi_query_u8(bank, 0, 0x27, &data);
2617 if (retval != ERROR_OK)
2618 return retval;
2619 cfi_info->dev_size = 1 << data;
2620
2621 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2622 if (retval != ERROR_OK)
2623 return retval;
2624 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2625 if (retval != ERROR_OK)
2626 return retval;
2627 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2628 if (retval != ERROR_OK)
2629 return retval;
2630
2631 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2632 cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2633
2634 if (cfi_info->num_erase_regions)
2635 {
2636 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2637 * cfi_info->num_erase_regions);
2638 for (i = 0; i < cfi_info->num_erase_regions; i++)
2639 {
2640 retval = cfi_query_u32(bank, 0, 0x2d + (4 * i), &cfi_info->erase_region_info[i]);
2641 if (retval != ERROR_OK)
2642 return retval;
2643 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "", i,
2644 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2645 (cfi_info->erase_region_info[i] >> 16) * 256);
2646 }
2647 }
2648 else
2649 {
2650 cfi_info->erase_region_info = NULL;
2651 }
2652
2653 /* We need to read the primary algorithm extended query table before calculating
2654 * the sector layout to be able to apply fixups
2655 */
2656 switch (cfi_info->pri_id)
2657 {
2658 /* Intel command set (standard and extended) */
2659 case 0x0001:
2660 case 0x0003:
2661 cfi_read_intel_pri_ext(bank);
2662 break;
2663 /* AMD/Spansion, Atmel, ... command set */
2664 case 0x0002:
2665 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2666 cfi_read_0002_pri_ext(bank);
2667 break;
2668 default:
2669 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2670 break;
2671 }
2672
2673 /* return to read array mode
2674 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2675 */
2676 if ((retval = cfi_reset(bank)) != ERROR_OK)
2677 {
2678 return retval;
2679 }
2680 } /* end CFI case */
2681
2682 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2683 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2684 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2685 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2686 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2687
2688 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2689 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2690 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2691 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2692
2693 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2694 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2695 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2696 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2697 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2698 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2699
2700 /* convert timeouts to real values in ms */
2701 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2702 (1L << cfi_info->word_write_timeout_max), 1000);
2703 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2704 (1L << cfi_info->buf_write_timeout_max), 1000);
2705 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2706 (1L << cfi_info->block_erase_timeout_max);
2707 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2708 (1L << cfi_info->chip_erase_timeout_max);
2709
2710 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2711 "block erase timeout: %u ms, chip erase timeout: %u ms",
2712 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2713 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2714
2715 /* apply fixups depending on the primary command set */
2716 switch (cfi_info->pri_id)
2717 {
2718 /* Intel command set (standard and extended) */
2719 case 0x0001:
2720 case 0x0003:
2721 cfi_fixup(bank, cfi_0001_fixups);
2722 break;
2723 /* AMD/Spansion, Atmel, ... command set */
2724 case 0x0002:
2725 cfi_fixup(bank, cfi_0002_fixups);
2726 break;
2727 default:
2728 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2729 break;
2730 }
2731
2732 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2733 {
2734 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2735 " size flash was found", bank->size, cfi_info->dev_size);
2736 }
2737
2738 if (cfi_info->num_erase_regions == 0)
2739 {
2740 /* a device might have only one erase block, spanning the whole device */
2741 bank->num_sectors = 1;
2742 bank->sectors = malloc(sizeof(struct flash_sector));
2743
2744 bank->sectors[sector].offset = 0x0;
2745 bank->sectors[sector].size = bank->size;
2746 bank->sectors[sector].is_erased = -1;
2747 bank->sectors[sector].is_protected = -1;
2748 }
2749 else
2750 {
2751 uint32_t offset = 0;
2752
2753 for (i = 0; i < cfi_info->num_erase_regions; i++)
2754 {
2755 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2756 }
2757
2758 bank->num_sectors = num_sectors;
2759 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2760
2761 for (i = 0; i < cfi_info->num_erase_regions; i++)
2762 {
2763 uint32_t j;
2764 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2765 {
2766 bank->sectors[sector].offset = offset;
2767 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256)
2768 * bank->bus_width / bank->chip_width;
2769 offset += bank->sectors[sector].size;
2770 bank->sectors[sector].is_erased = -1;
2771 bank->sectors[sector].is_protected = -1;
2772 sector++;
2773 }
2774 }
2775 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
2776 {
2777 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2778 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
2779 }
2780 }
2781
2782 cfi_info->probed = 1;
2783
2784 return ERROR_OK;
2785 }
2786
2787 static int cfi_auto_probe(struct flash_bank *bank)
2788 {
2789 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2790 if (cfi_info->probed)
2791 return ERROR_OK;
2792 return cfi_probe(bank);
2793 }
2794
2795 static int cfi_intel_protect_check(struct flash_bank *bank)
2796 {
2797 int retval;
2798 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2799 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2800 int i;
2801
2802 /* check if block lock bits are supported on this device */
2803 if (!(pri_ext->blk_status_reg_mask & 0x1))
2804 return ERROR_FLASH_OPERATION_FAILED;
2805
2806 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
2807 {
2808 return retval;
2809 }
2810
2811 for (i = 0; i < bank->num_sectors; i++)
2812 {
2813 uint8_t block_status;
2814 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2815 if (retval != ERROR_OK)
2816 return retval;
2817
2818 if (block_status & 1)
2819 bank->sectors[i].is_protected = 1;
2820 else
2821 bank->sectors[i].is_protected = 0;
2822 }
2823
2824 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2825 }
2826
2827 static int cfi_spansion_protect_check(struct flash_bank *bank)
2828 {
2829 int retval;
2830 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2831 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2832 int i;
2833
2834 if ((retval = cfi_send_command(bank, 0xaa,
2835 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2836 {
2837 return retval;
2838 }
2839
2840 if ((retval = cfi_send_command(bank, 0x55,
2841 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2842 {
2843 return retval;
2844 }
2845
2846 if ((retval = cfi_send_command(bank, 0x90,
2847 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2848 {
2849 return retval;
2850 }
2851
2852 for (i = 0; i < bank->num_sectors; i++)
2853 {
2854 uint8_t block_status;
2855 retval = cfi_get_u8(bank, i, 0x2, &block_status);
2856 if (retval != ERROR_OK)
2857 return retval;
2858
2859 if (block_status & 1)
2860 bank->sectors[i].is_protected = 1;
2861 else
2862 bank->sectors[i].is_protected = 0;
2863 }
2864
2865 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2866 }
2867
2868 static int cfi_protect_check(struct flash_bank *bank)
2869 {
2870 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2871
2872 if (bank->target->state != TARGET_HALTED)
2873 {
2874 LOG_ERROR("Target not halted");
2875 return ERROR_TARGET_NOT_HALTED;
2876 }
2877
2878 if (cfi_info->qry[0] != 'Q')
2879 return ERROR_FLASH_BANK_NOT_PROBED;
2880
2881 switch (cfi_info->pri_id)
2882 {
2883 case 1:
2884 case 3:
2885 return cfi_intel_protect_check(bank);
2886 break;
2887 case 2:
2888 return cfi_spansion_protect_check(bank);
2889 break;
2890 default:
2891 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2892 break;
2893 }
2894
2895 return ERROR_OK;
2896 }
2897
2898 static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2899 {
2900 int printed;
2901 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2902
2903 if (cfi_info->qry[0] == 0xff)
2904 {
2905 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2906 return ERROR_OK;
2907 }
2908
2909 if (cfi_info->not_cfi == 0)
2910 printed = snprintf(buf, buf_size, "\nCFI flash: ");
2911 else
2912 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
2913 buf += printed;
2914 buf_size -= printed;
2915
2916 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
2917 cfi_info->manufacturer, cfi_info->device_id);
2918 buf += printed;
2919 buf_size -= printed;
2920
2921 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
2922 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
2923 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
2924 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2925 buf += printed;
2926 buf_size -= printed;
2927
2928 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
2929 "Vpp min: %u.%x, Vpp max: %u.%x\n",
2930 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2931 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2932 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2933 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2934 buf += printed;
2935 buf_size -= printed;
2936
2937 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
2938 "typ. buf write timeout: %u us, "
2939 "typ. block erase timeout: %u ms, "
2940 "typ. chip erase timeout: %u ms\n",
2941 1 << cfi_info->word_write_timeout_typ,
2942 1 << cfi_info->buf_write_timeout_typ,
2943 1 << cfi_info->block_erase_timeout_typ,
2944 1 << cfi_info->chip_erase_timeout_typ);
2945 buf += printed;
2946 buf_size -= printed;
2947
2948 printed = snprintf(buf, buf_size, "max. word write timeout: %u us, "
2949 "max. buf write timeout: %u us, max. "
2950 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
2951 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2952 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2953 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2954 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2955 buf += printed;
2956 buf_size -= printed;
2957
2958 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
2959 "max buffer write size: 0x%x\n",
2960 cfi_info->dev_size,
2961 cfi_info->interface_desc,
2962 1 << cfi_info->max_buf_write_size);
2963 buf += printed;
2964 buf_size -= printed;
2965
2966 switch (cfi_info->pri_id)
2967 {
2968 case 1:
2969 case 3:
2970 cfi_intel_info(bank, buf, buf_size);
2971 break;
2972 case 2:
2973 cfi_spansion_info(bank, buf, buf_size);
2974 break;
2975 default:
2976 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2977 break;
2978 }
2979
2980 return ERROR_OK;
2981 }
2982
2983 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param)
2984 {
2985 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2986
2987 /* disable write buffer for M29W128G */
2988 cfi_info->buf_write_timeout_typ = 0;
2989 }
2990
2991 struct flash_driver cfi_flash = {
2992 .name = "cfi",
2993 .flash_bank_command = cfi_flash_bank_command,
2994 .erase = cfi_erase,
2995 .protect = cfi_protect,
2996 .write = cfi_write,
2997 .read = cfi_read,
2998 .probe = cfi_probe,
2999 .auto_probe = cfi_auto_probe,
3000 /* FIXME: access flash at bus_width size */
3001 .erase_check = default_flash_blank_check,
3002 .protect_check = cfi_protect_check,
3003 .info = get_cfi_info,
3004 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)