flash/nor/stm32f2x: clean up data types
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33
34 /* Regarding performance:
35 *
36 * Short story - it might be best to leave the performance at
37 * current levels.
38 *
39 * You may see a jump in speed if you change to using
40 * 32bit words for the block programming.
41 *
42 * Its a shame you cannot use the double word as its
43 * even faster - but you require external VPP for that mode.
44 *
45 * Having said all that 16bit writes give us the widest vdd
46 * operating range, so may be worth adding a note to that effect.
47 *
48 */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51 * quite different flash controllers.
52 *
53 * What's more scary is that the names of the registers and their
54 * addresses are the same, but the actual bits and what they do are
55 * can be very different.
56 *
57 * To reduce testing complexity and dangers of regressions,
58 * a separate file is used for stm32fx2x.
59 *
60 * Sector sizes in kiBytes:
61 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62 * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64 * 1 MiByte STM32F42x/43x part with DB1M Option set:
65 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66 *
67 * STM32F7[2|3]
68 * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69 *
70 * STM32F7[4|5]
71 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72 *
73 * STM32F7[6|7]
74 * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75 * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76 * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77 * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78 *
79 * Protection size is sector size.
80 *
81 * Tested with STM3220F-EVAL board.
82 *
83 * STM32F4xx series for reference.
84 *
85 * RM0090
86 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87 *
88 * PM0059
89 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90 * PROGRAMMING_MANUAL/CD00233952.pdf
91 *
92 * STM32F7xx series for reference.
93 *
94 * RM0385
95 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96 *
97 * RM0410
98 * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99 *
100 * RM0430
101 * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102 *
103 * RM0431
104 * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105 *
106 * STM32F1x series - notice that this code was copy, pasted and knocked
107 * into a stm32f2x driver, so in case something has been converted or
108 * bugs haven't been fixed, here are the original manuals:
109 *
110 * RM0008 - Reference manual
111 *
112 * RM0042, the Flash programming manual for low-, medium- high-density and
113 * connectivity line STM32F10x devices
114 *
115 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116 *
117 */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE 0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE 0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE 0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE 0x40023c00
140 #define STM32_FLASH_ACR 0x40023c00
141 #define STM32_FLASH_KEYR 0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR 0x40023c0C
144 #define STM32_FLASH_CR 0x40023c10
145 #define STM32_FLASH_OPTCR 0x40023c14
146 #define STM32_FLASH_OPTCR1 0x40023c18
147 #define STM32_FLASH_OPTCR2 0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG (1 << 0)
151 #define FLASH_SER (1 << 1)
152 #define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT (1 << 16)
155 #define FLASH_PSIZE_8 (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a) ((a) << 3)
161 #define FLASH_LOCK (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY (1 << 16)
165 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR (1 << 4) /* Write protection error */
169 #define FLASH_OPERR (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK (1 << 0)
175 #define OPTCR_START (1 << 1)
176 #define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
177 #define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1 0x45670123
185 #define KEY2 0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1 0x08192A3B
189 #define OPTKEY2 0x4C5D6E7F
190
191 struct stm32x_options {
192 uint8_t RDP;
193 uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
194 uint32_t protection;
195 uint32_t boot_addr;
196 uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200 struct stm32x_options option_bytes;
201 bool probed;
202 bool otp_unlocked;
203 bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
204 bool has_extra_options; /* F42x/43x/469/479/7xx */
205 bool has_boot_addr; /* F7xx */
206 bool has_optcr2_pcrop; /* F72x/73x */
207 unsigned int protection_bits; /* F413/423 */
208 uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213 return bank->base == STM32F2_OTP_BANK_BASE ||
214 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219 return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226 return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233 LOG_INFO("OTP memory bank #%u is disabled for write commands.",
234 bank->bank_number);
235 stm32x_info->otp_unlocked = false;
236 return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243 if (!stm32x_info->otp_unlocked) {
244 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
245 bank->bank_number);
246 stm32x_info->otp_unlocked = true;
247 } else {
248 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
249 bank->bank_number);
250 }
251 return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255 */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258 struct stm32x_flash_bank *stm32x_info;
259
260 if (CMD_ARGC < 6)
261 return ERROR_COMMAND_SYNTAX_ERROR;
262
263 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264 bank->driver_priv = stm32x_info;
265
266 stm32x_info->probed = false;
267 stm32x_info->otp_unlocked = false;
268 stm32x_info->user_bank_size = bank->size;
269
270 return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275 return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280 struct target *target = bank->target;
281 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286 struct target *target = bank->target;
287 uint32_t status;
288 int retval = ERROR_OK;
289
290 /* wait for busy to clear */
291 for (;;) {
292 retval = stm32x_get_flash_status(bank, &status);
293 if (retval != ERROR_OK)
294 return retval;
295 LOG_DEBUG("status: 0x%" PRIx32, status);
296 if ((status & FLASH_BSY) == 0)
297 break;
298 if (timeout-- <= 0) {
299 LOG_ERROR("timed out waiting for flash");
300 return ERROR_FAIL;
301 }
302 alive_sleep(1);
303 }
304
305
306 if (status & FLASH_WRPERR) {
307 LOG_ERROR("stm32x device protected");
308 retval = ERROR_FAIL;
309 }
310
311 /* Clear but report errors */
312 if (status & FLASH_ERROR) {
313 if (retval == ERROR_OK)
314 retval = ERROR_FAIL;
315 /* If this operation fails, we ignore it and report the original
316 * retval
317 */
318 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319 status & FLASH_ERROR);
320 }
321 return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326 uint32_t ctrl;
327
328 /* first check if not already unlocked
329 * otherwise writing on STM32_FLASH_KEYR will fail
330 */
331 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332 if (retval != ERROR_OK)
333 return retval;
334
335 if ((ctrl & FLASH_LOCK) == 0)
336 return ERROR_OK;
337
338 /* unlock flash registers */
339 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340 if (retval != ERROR_OK)
341 return retval;
342
343 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344 if (retval != ERROR_OK)
345 return retval;
346
347 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348 if (retval != ERROR_OK)
349 return retval;
350
351 if (ctrl & FLASH_LOCK) {
352 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
353 return ERROR_TARGET_FAILURE;
354 }
355
356 return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361 uint32_t ctrl;
362
363 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if ((ctrl & OPTCR_LOCK) == 0)
368 return ERROR_OK;
369
370 /* unlock option registers */
371 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372 if (retval != ERROR_OK)
373 return retval;
374
375 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376 if (retval != ERROR_OK)
377 return retval;
378
379 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380 if (retval != ERROR_OK)
381 return retval;
382
383 if (ctrl & OPTCR_LOCK) {
384 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
385 return ERROR_TARGET_FAILURE;
386 }
387
388 return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393 uint32_t optiondata;
394 struct stm32x_flash_bank *stm32x_info = NULL;
395 struct target *target = bank->target;
396
397 stm32x_info = bank->driver_priv;
398
399 /* read current option bytes */
400 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401 if (retval != ERROR_OK)
402 return retval;
403
404 /* caution: F2 implements 5 bits (WDG_SW only)
405 * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406 stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408 stm32x_info->option_bytes.protection =
409 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411 if (stm32x_info->has_extra_options) {
412 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415 }
416
417 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419 if (retval != ERROR_OK)
420 return retval;
421
422 /* FLASH_OPTCR1 has quite different meanings ... */
423 if (stm32x_info->has_boot_addr) {
424 /* for F7xx it contains boot0 and boot1 */
425 stm32x_info->option_bytes.boot_addr = optiondata;
426 } else {
427 /* for F42x/43x/469/479 it contains 12 additional protection bits */
428 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429 }
430 }
431
432 if (stm32x_info->has_optcr2_pcrop) {
433 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434 if (retval != ERROR_OK)
435 return retval;
436
437 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438 if (stm32x_info->has_optcr2_pcrop &&
439 (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440 LOG_INFO("PCROP Engaged");
441 }
442 } else {
443 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444 }
445
446 if (stm32x_info->option_bytes.RDP != 0xAA)
447 LOG_INFO("Device Security Bit Set");
448
449 return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454 struct stm32x_flash_bank *stm32x_info = NULL;
455 struct target *target = bank->target;
456 uint32_t optiondata, optiondata2;
457
458 stm32x_info = bank->driver_priv;
459
460 int retval = stm32x_unlock_option_reg(target);
461 if (retval != ERROR_OK)
462 return retval;
463
464 /* rebuild option data */
465 optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466 optiondata |= stm32x_info->option_bytes.RDP << 8;
467 optiondata |= (stm32x_info->option_bytes.protection &
468 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470 if (stm32x_info->has_extra_options) {
471 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472 optiondata |= (stm32x_info->option_bytes.user_options &
473 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474 }
475
476 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477 if (stm32x_info->has_boot_addr) {
478 /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479 optiondata2 = stm32x_info->option_bytes.boot_addr;
480 } else {
481 /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482 optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483 }
484
485 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486 if (retval != ERROR_OK)
487 return retval;
488 }
489
490 /* program extra pcrop register */
491 if (stm32x_info->has_optcr2_pcrop) {
492 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493 stm32x_info->option_bytes.optcr2_pcrop);
494 if (retval != ERROR_OK)
495 return retval;
496 }
497
498 /* program options */
499 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500 if (retval != ERROR_OK)
501 return retval;
502
503 /* start programming cycle */
504 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505 if (retval != ERROR_OK)
506 return retval;
507
508 /* wait for completion, this might trigger a security erase and take a while */
509 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510 if (retval != ERROR_OK)
511 return retval;
512
513 /* relock registers */
514 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515 if (retval != ERROR_OK)
516 return retval;
517
518 return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523 struct target *target = bank->target;
524 uint32_t lock_base;
525 int retval;
526 uint8_t lock;
527
528 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529 : STM32F2_OTP_LOCK_BASE;
530
531 for (unsigned int i = 0; i < bank->num_sectors; i++) {
532 retval = target_read_u8(target, lock_base + i, &lock);
533 if (retval != ERROR_OK)
534 return retval;
535 bank->sectors[i].is_protected = !lock;
536 }
537
538 return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
542 unsigned int last)
543 {
544 struct target *target = bank->target;
545 uint32_t lock_base;
546 int i, retval;
547 uint8_t lock;
548
549 assert((first <= last) && (last < bank->num_sectors));
550
551 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
552 : STM32F2_OTP_LOCK_BASE;
553
554 for (i = first; first <= last; i++) {
555 retval = target_read_u8(target, lock_base + i, &lock);
556 if (retval != ERROR_OK)
557 return retval;
558 if (lock)
559 continue;
560
561 lock = 0xff;
562 retval = target_write_u8(target, lock_base + i, lock);
563 if (retval != ERROR_OK)
564 return retval;
565 }
566
567 return ERROR_OK;
568 }
569
570 static int stm32x_protect_check(struct flash_bank *bank)
571 {
572 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
573 struct flash_sector *prot_blocks;
574 unsigned int num_prot_blocks;
575 int retval;
576
577 /* if it's the OTP bank, look at the lock bits there */
578 if (stm32x_is_otp(bank))
579 return stm32x_otp_read_protect(bank);
580
581 /* read write protection settings */
582 retval = stm32x_read_options(bank);
583 if (retval != ERROR_OK) {
584 LOG_DEBUG("unable to read option bytes");
585 return retval;
586 }
587
588 if (bank->prot_blocks) {
589 num_prot_blocks = bank->num_prot_blocks;
590 prot_blocks = bank->prot_blocks;
591 } else {
592 num_prot_blocks = bank->num_sectors;
593 prot_blocks = bank->sectors;
594 }
595
596 for (unsigned int i = 0; i < num_prot_blocks; i++)
597 prot_blocks[i].is_protected =
598 ~(stm32x_info->option_bytes.protection >> i) & 1;
599
600 return ERROR_OK;
601 }
602
603 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
604 unsigned int last)
605 {
606 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607 struct target *target = bank->target;
608
609 if (stm32x_is_otp(bank)) {
610 LOG_ERROR("Cannot erase OTP memory");
611 return ERROR_FAIL;
612 }
613
614 assert((first <= last) && (last < bank->num_sectors));
615
616 if (bank->target->state != TARGET_HALTED) {
617 LOG_ERROR("Target not halted");
618 return ERROR_TARGET_NOT_HALTED;
619 }
620
621 int retval;
622 retval = stm32x_unlock_reg(target);
623 if (retval != ERROR_OK)
624 return retval;
625
626 /*
627 Sector Erase
628 To erase a sector, follow the procedure below:
629 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
630 FLASH_SR register
631 2. Set the SER bit and select the sector
632 you wish to erase (SNB) in the FLASH_CR register
633 3. Set the STRT bit in the FLASH_CR register
634 4. Wait for the BSY bit to be cleared
635 */
636
637 for (unsigned int i = first; i <= last; i++) {
638 unsigned int snb;
639 if (stm32x_info->has_large_mem && i >= 12)
640 snb = (i - 12) | 0x10;
641 else
642 snb = i;
643
644 retval = target_write_u32(target,
645 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
646 if (retval != ERROR_OK)
647 return retval;
648
649 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
650 if (retval != ERROR_OK)
651 return retval;
652
653 bank->sectors[i].is_erased = 1;
654 }
655
656 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
657 if (retval != ERROR_OK)
658 return retval;
659
660 return ERROR_OK;
661 }
662
663 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
664 unsigned int last)
665 {
666 struct target *target = bank->target;
667 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
668
669 if (target->state != TARGET_HALTED) {
670 LOG_ERROR("Target not halted");
671 return ERROR_TARGET_NOT_HALTED;
672 }
673
674 if (stm32x_is_otp(bank)) {
675 if (!set)
676 return ERROR_COMMAND_ARGUMENT_INVALID;
677
678 return stm32x_otp_protect(bank, first, last);
679 }
680
681 /* read protection settings */
682 int retval = stm32x_read_options(bank);
683 if (retval != ERROR_OK) {
684 LOG_DEBUG("unable to read option bytes");
685 return retval;
686 }
687
688 for (unsigned int i = first; i <= last; i++) {
689 if (set)
690 stm32x_info->option_bytes.protection &= ~(1 << i);
691 else
692 stm32x_info->option_bytes.protection |= (1 << i);
693 }
694
695 retval = stm32x_write_options(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 return ERROR_OK;
700 }
701
702 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
703 uint32_t offset, uint32_t count)
704 {
705 struct target *target = bank->target;
706 uint32_t buffer_size = 16384;
707 struct working_area *write_algorithm;
708 struct working_area *source;
709 uint32_t address = bank->base + offset;
710 struct reg_param reg_params[5];
711 struct armv7m_algorithm armv7m_info;
712 int retval = ERROR_OK;
713
714 static const uint8_t stm32x_flash_write_code[] = {
715 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
716 };
717
718 if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
719 LOG_ERROR("OTP memory bank is disabled for write commands.");
720 return ERROR_FAIL;
721 }
722
723 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
724 &write_algorithm) != ERROR_OK) {
725 LOG_WARNING("no working area available, can't do block memory writes");
726 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
727 }
728
729 retval = target_write_buffer(target, write_algorithm->address,
730 sizeof(stm32x_flash_write_code),
731 stm32x_flash_write_code);
732 if (retval != ERROR_OK) {
733 target_free_working_area(target, write_algorithm);
734 return retval;
735 }
736
737 /* memory buffer */
738 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
739 buffer_size /= 2;
740 if (buffer_size <= 256) {
741 /* we already allocated the writing code, but failed to get a
742 * buffer, free the algorithm */
743 target_free_working_area(target, write_algorithm);
744
745 LOG_WARNING("no large enough working area available, can't do block memory writes");
746 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
747 }
748 }
749
750 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
751 armv7m_info.core_mode = ARM_MODE_THREAD;
752
753 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
754 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
755 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
756 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
757 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
758
759 buf_set_u32(reg_params[0].value, 0, 32, source->address);
760 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
761 buf_set_u32(reg_params[2].value, 0, 32, address);
762 buf_set_u32(reg_params[3].value, 0, 32, count);
763 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
764
765 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
766 0, NULL,
767 5, reg_params,
768 source->address, source->size,
769 write_algorithm->address, 0,
770 &armv7m_info);
771
772 if (retval == ERROR_FLASH_OPERATION_FAILED) {
773 LOG_ERROR("error executing stm32x flash write algorithm");
774
775 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
776
777 if (error & FLASH_WRPERR)
778 LOG_ERROR("flash memory write protected");
779
780 if (error != 0) {
781 LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
782 /* Clear but report errors */
783 target_write_u32(target, STM32_FLASH_SR, error);
784 retval = ERROR_FAIL;
785 }
786 }
787
788 target_free_working_area(target, source);
789 target_free_working_area(target, write_algorithm);
790
791 destroy_reg_param(&reg_params[0]);
792 destroy_reg_param(&reg_params[1]);
793 destroy_reg_param(&reg_params[2]);
794 destroy_reg_param(&reg_params[3]);
795 destroy_reg_param(&reg_params[4]);
796
797 return retval;
798 }
799
800 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
801 uint32_t offset, uint32_t count)
802 {
803 struct target *target = bank->target;
804 uint32_t words_remaining = (count / 2);
805 uint32_t bytes_remaining = (count & 0x00000001);
806 uint32_t address = bank->base + offset;
807 uint32_t bytes_written = 0;
808 int retval;
809
810 if (bank->target->state != TARGET_HALTED) {
811 LOG_ERROR("Target not halted");
812 return ERROR_TARGET_NOT_HALTED;
813 }
814
815 if (offset & 0x1) {
816 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
817 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
818 }
819
820 retval = stm32x_unlock_reg(target);
821 if (retval != ERROR_OK)
822 return retval;
823
824 /* multiple half words (2-byte) to be programmed? */
825 if (words_remaining > 0) {
826 /* try using a block write */
827 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
828 if (retval != ERROR_OK) {
829 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
830 /* if block write failed (no sufficient working area),
831 * we use normal (slow) single dword accesses */
832 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
833 }
834 } else {
835 buffer += words_remaining * 2;
836 address += words_remaining * 2;
837 words_remaining = 0;
838 }
839 }
840
841 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
842 return retval;
843
844 /*
845 Standard programming
846 The Flash memory programming sequence is as follows:
847 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
848 FLASH_SR register.
849 2. Set the PG bit in the FLASH_CR register
850 3. Perform the data write operation(s) to the desired memory address (inside main
851 memory block or OTP area):
852 – – Half-word access in case of x16 parallelism
853 – Word access in case of x32 parallelism
854 –
855 4.
856 Byte access in case of x8 parallelism
857 Double word access in case of x64 parallelism
858 Wait for the BSY bit to be cleared
859 */
860 while (words_remaining > 0) {
861 uint16_t value;
862 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
863
864 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
865 FLASH_PG | FLASH_PSIZE_16);
866 if (retval != ERROR_OK)
867 return retval;
868
869 retval = target_write_u16(target, address, value);
870 if (retval != ERROR_OK)
871 return retval;
872
873 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
874 if (retval != ERROR_OK)
875 return retval;
876
877 bytes_written += 2;
878 words_remaining--;
879 address += 2;
880 }
881
882 if (bytes_remaining) {
883 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
884 FLASH_PG | FLASH_PSIZE_8);
885 if (retval != ERROR_OK)
886 return retval;
887 retval = target_write_u8(target, address, buffer[bytes_written]);
888 if (retval != ERROR_OK)
889 return retval;
890
891 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
892 if (retval != ERROR_OK)
893 return retval;
894 }
895
896 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
897 }
898
899 static void setup_sector(struct flash_bank *bank, unsigned int i,
900 unsigned int size)
901 {
902 assert(i < bank->num_sectors);
903 bank->sectors[i].offset = bank->size;
904 bank->sectors[i].size = size;
905 bank->size += bank->sectors[i].size;
906 LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
907 }
908
909 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
910 {
911 if (i < 4)
912 return max_sector_size_in_kb / 8;
913 if (i == 4)
914 return max_sector_size_in_kb / 2;
915 return max_sector_size_in_kb;
916 }
917
918 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
919 uint16_t flash_size_in_kb,
920 uint16_t max_sector_size_in_kb)
921 {
922 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
923 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
924 unsigned int nr_sectors;
925
926 /* Dual Bank Flash has two identically-arranged banks of sectors. */
927 if (stm32x_info->has_large_mem)
928 remaining_flash_size_in_kb /= 2;
929
930 for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
931 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
932 if (size_in_kb > remaining_flash_size_in_kb) {
933 LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
934 stm32x_info->has_large_mem ? "Dual" : "Single",
935 flash_size_in_kb, remaining_flash_size_in_kb);
936 remaining_flash_size_in_kb = 0;
937 } else {
938 remaining_flash_size_in_kb -= size_in_kb;
939 }
940 }
941
942 return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
943 }
944
945 static void setup_bank(struct flash_bank *bank, unsigned int start,
946 uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
947 {
948 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
949 unsigned int sector_index = 0;
950 while (remaining_flash_size_in_kb > 0) {
951 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
952 if (size_in_kb > remaining_flash_size_in_kb) {
953 /* Clip last sector. Already warned in
954 * calculate_number_of_sectors. */
955 size_in_kb = remaining_flash_size_in_kb;
956 }
957 setup_sector(bank, start + sector_index, size_in_kb * 1024);
958 remaining_flash_size_in_kb -= size_in_kb;
959 sector_index++;
960 }
961 }
962
963 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
964 {
965 /* this checks for a stm32f4x errata issue where a
966 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
967 * If the issue is detected target is forced to stm32f4x Rev A.
968 * Only effects Rev A silicon */
969
970 struct target *target = bank->target;
971 uint32_t cpuid;
972
973 /* read stm32 device id register */
974 int retval = target_read_u32(target, 0xE0042000, device_id);
975 if (retval != ERROR_OK)
976 return retval;
977
978 if ((*device_id & 0xfff) == 0x411) {
979 /* read CPUID reg to check core type */
980 retval = target_read_u32(target, 0xE000ED00, &cpuid);
981 if (retval != ERROR_OK)
982 return retval;
983
984 /* check for cortex_m4 */
985 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
986 *device_id &= ~((0xFFFF << 16) | 0xfff);
987 *device_id |= (0x1000 << 16) | 0x413;
988 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
989 }
990 }
991 return retval;
992 }
993
994 static int stm32x_probe(struct flash_bank *bank)
995 {
996 struct target *target = bank->target;
997 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
998 unsigned int num_prot_blocks, num_sectors;
999 uint16_t flash_size_in_kb;
1000 uint16_t otp_size_in_b;
1001 uint16_t otp_sector_size;
1002 uint32_t flash_size_reg = 0x1FFF7A22;
1003 uint16_t max_sector_size_in_kb = 128;
1004 uint16_t max_flash_size_in_kb;
1005 uint32_t device_id;
1006 uint32_t base_address = 0x08000000;
1007
1008 stm32x_info->probed = false;
1009 stm32x_info->has_large_mem = false;
1010 stm32x_info->has_boot_addr = false;
1011 stm32x_info->has_extra_options = false;
1012 stm32x_info->has_optcr2_pcrop = false;
1013 stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1014 num_prot_blocks = 0;
1015
1016 if (bank->sectors) {
1017 free(bank->sectors);
1018 bank->num_sectors = 0;
1019 bank->sectors = NULL;
1020 }
1021
1022 if (bank->prot_blocks) {
1023 free(bank->prot_blocks);
1024 bank->num_prot_blocks = 0;
1025 bank->prot_blocks = NULL;
1026 }
1027
1028 /* if explicitly called out as OTP bank, short circuit probe */
1029 if (stm32x_is_otp(bank)) {
1030 if (stm32x_otp_is_f7(bank)) {
1031 otp_size_in_b = STM32F7_OTP_SIZE;
1032 otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1033 } else {
1034 otp_size_in_b = STM32F2_OTP_SIZE;
1035 otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1036 }
1037
1038 num_sectors = otp_size_in_b / otp_sector_size;
1039 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1040
1041 assert(num_sectors > 0);
1042
1043 bank->num_sectors = num_sectors;
1044 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1045
1046 if (stm32x_otp_is_f7(bank))
1047 bank->size = STM32F7_OTP_SIZE;
1048 else
1049 bank->size = STM32F2_OTP_SIZE;
1050
1051 for (unsigned int i = 0; i < num_sectors; i++) {
1052 bank->sectors[i].offset = i * otp_sector_size;
1053 bank->sectors[i].size = otp_sector_size;
1054 bank->sectors[i].is_erased = 1;
1055 bank->sectors[i].is_protected = 0;
1056 }
1057
1058 stm32x_info->probed = true;
1059 return ERROR_OK;
1060 }
1061
1062 /* read stm32 device id register */
1063 int retval = stm32x_get_device_id(bank, &device_id);
1064 if (retval != ERROR_OK)
1065 return retval;
1066 LOG_INFO("device id = 0x%08" PRIx32, device_id);
1067 device_id &= 0xfff; /* only bits 0-11 are used further on */
1068
1069 /* set max flash size depending on family, id taken from AN2606 */
1070 switch (device_id) {
1071 case 0x411: /* F20x/21x */
1072 case 0x413: /* F40x/41x */
1073 max_flash_size_in_kb = 1024;
1074 break;
1075
1076 case 0x419: /* F42x/43x */
1077 case 0x434: /* F469/479 */
1078 stm32x_info->has_extra_options = true;
1079 max_flash_size_in_kb = 2048;
1080 break;
1081
1082 case 0x423: /* F401xB/C */
1083 max_flash_size_in_kb = 256;
1084 break;
1085
1086 case 0x421: /* F446 */
1087 case 0x431: /* F411 */
1088 case 0x433: /* F401xD/E */
1089 case 0x441: /* F412 */
1090 max_flash_size_in_kb = 512;
1091 break;
1092
1093 case 0x458: /* F410 */
1094 max_flash_size_in_kb = 128;
1095 break;
1096
1097 case 0x449: /* F74x/75x */
1098 max_flash_size_in_kb = 1024;
1099 max_sector_size_in_kb = 256;
1100 flash_size_reg = 0x1FF0F442;
1101 stm32x_info->has_extra_options = true;
1102 stm32x_info->has_boot_addr = true;
1103 break;
1104
1105 case 0x451: /* F76x/77x */
1106 max_flash_size_in_kb = 2048;
1107 max_sector_size_in_kb = 256;
1108 flash_size_reg = 0x1FF0F442;
1109 stm32x_info->has_extra_options = true;
1110 stm32x_info->has_boot_addr = true;
1111 break;
1112
1113 case 0x452: /* F72x/73x */
1114 max_flash_size_in_kb = 512;
1115 flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1116 stm32x_info->has_extra_options = true;
1117 stm32x_info->has_boot_addr = true;
1118 stm32x_info->has_optcr2_pcrop = true;
1119 break;
1120
1121 case 0x463: /* F413x/423x */
1122 max_flash_size_in_kb = 1536;
1123 stm32x_info->has_extra_options = true;
1124 stm32x_info->protection_bits = 15;
1125 num_prot_blocks = 15;
1126 break;
1127
1128 default:
1129 LOG_WARNING("Cannot identify target as a STM32 family.");
1130 return ERROR_FAIL;
1131 }
1132
1133 /* get flash size from target. */
1134 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1135
1136 /* failed reading flash size or flash size invalid (early silicon),
1137 * default to max target family */
1138 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1139 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1140 max_flash_size_in_kb);
1141 flash_size_in_kb = max_flash_size_in_kb;
1142 }
1143
1144 /* if the user sets the size manually then ignore the probed value
1145 * this allows us to work around devices that have a invalid flash size register value */
1146 if (stm32x_info->user_bank_size) {
1147 LOG_INFO("ignoring flash probed value, using configured bank size");
1148 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1149 }
1150
1151 LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
1152
1153 /* did we assign flash size? */
1154 assert(flash_size_in_kb != 0xffff);
1155
1156 /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1157 if ((device_id == 0x419) || (device_id == 0x434)) {
1158 uint32_t optiondata;
1159 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1160 if (retval != ERROR_OK) {
1161 LOG_DEBUG("unable to read option bytes");
1162 return retval;
1163 }
1164 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1165 stm32x_info->has_large_mem = true;
1166 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1167 } else {
1168 stm32x_info->has_large_mem = false;
1169 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1170 }
1171 }
1172
1173 /* F76x/77x devices have a dual bank option */
1174 if (device_id == 0x451) {
1175 uint32_t optiondata;
1176 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1177 if (retval != ERROR_OK) {
1178 LOG_DEBUG("unable to read option bytes");
1179 return retval;
1180 }
1181 if (optiondata & OPTCR_NDBANK) {
1182 stm32x_info->has_large_mem = false;
1183 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1184 } else {
1185 stm32x_info->has_large_mem = true;
1186 max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1187 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1188 }
1189 }
1190
1191 /* calculate numbers of pages */
1192 unsigned int num_pages = calculate_number_of_sectors(
1193 bank, flash_size_in_kb, max_sector_size_in_kb);
1194
1195 bank->base = base_address;
1196 bank->num_sectors = num_pages;
1197 bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1198 for (unsigned int i = 0; i < num_pages; i++) {
1199 bank->sectors[i].is_erased = -1;
1200 bank->sectors[i].is_protected = 0;
1201 }
1202 bank->size = 0;
1203 LOG_DEBUG("allocated %u sectors", num_pages);
1204
1205 /* F76x/77x in dual bank mode */
1206 if ((device_id == 0x451) && stm32x_info->has_large_mem)
1207 num_prot_blocks = num_pages >> 1;
1208
1209 if (num_prot_blocks) {
1210 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1211 for (unsigned int i = 0; i < num_prot_blocks; i++)
1212 bank->prot_blocks[i].is_protected = 0;
1213 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1214 }
1215
1216 if (stm32x_info->has_large_mem) {
1217 /* dual-bank */
1218 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1219 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1220 max_sector_size_in_kb);
1221
1222 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1223 if (device_id == 0x451) {
1224 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1225 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1226 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1227 + bank->sectors[(i << 1) + 1].size;
1228 }
1229 }
1230 } else {
1231 /* single-bank */
1232 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1233
1234 /* F413/F423, sectors 14 and 15 share one common protection bit */
1235 if (device_id == 0x463) {
1236 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1237 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1238 bank->prot_blocks[i].size = bank->sectors[i].size;
1239 }
1240 bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1241 }
1242 }
1243 bank->num_prot_blocks = num_prot_blocks;
1244 assert((bank->size >> 10) == flash_size_in_kb);
1245
1246 stm32x_info->probed = true;
1247 return ERROR_OK;
1248 }
1249
1250 static int stm32x_auto_probe(struct flash_bank *bank)
1251 {
1252 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1253 if (stm32x_info->probed)
1254 return ERROR_OK;
1255 return stm32x_probe(bank);
1256 }
1257
1258 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1259 {
1260 uint32_t dbgmcu_idcode;
1261
1262 /* read stm32 device id register */
1263 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1264 if (retval != ERROR_OK)
1265 return retval;
1266
1267 uint16_t device_id = dbgmcu_idcode & 0xfff;
1268 uint16_t rev_id = dbgmcu_idcode >> 16;
1269 const char *device_str;
1270 const char *rev_str = NULL;
1271
1272 switch (device_id) {
1273 case 0x411:
1274 device_str = "STM32F2xx";
1275
1276 switch (rev_id) {
1277 case 0x1000:
1278 rev_str = "A";
1279 break;
1280
1281 case 0x2000:
1282 rev_str = "B";
1283 break;
1284
1285 case 0x1001:
1286 rev_str = "Z";
1287 break;
1288
1289 case 0x2001:
1290 rev_str = "Y";
1291 break;
1292
1293 case 0x2003:
1294 rev_str = "X";
1295 break;
1296
1297 case 0x2007:
1298 rev_str = "1";
1299 break;
1300
1301 case 0x200F:
1302 rev_str = "V";
1303 break;
1304
1305 case 0x201F:
1306 rev_str = "2";
1307 break;
1308 }
1309 break;
1310
1311 case 0x413:
1312 case 0x419:
1313 case 0x434:
1314 device_str = "STM32F4xx";
1315
1316 switch (rev_id) {
1317 case 0x1000:
1318 rev_str = "A";
1319 break;
1320
1321 case 0x1001:
1322 rev_str = "Z";
1323 break;
1324
1325 case 0x1003:
1326 rev_str = "Y";
1327 break;
1328
1329 case 0x1007:
1330 rev_str = "1";
1331 break;
1332
1333 case 0x2001:
1334 rev_str = "3";
1335 break;
1336 }
1337 break;
1338
1339 case 0x421:
1340 device_str = "STM32F446";
1341
1342 switch (rev_id) {
1343 case 0x1000:
1344 rev_str = "A";
1345 break;
1346 }
1347 break;
1348
1349 case 0x423:
1350 case 0x431:
1351 case 0x433:
1352 case 0x458:
1353 case 0x441:
1354 device_str = "STM32F4xx (Low Power)";
1355
1356 switch (rev_id) {
1357 case 0x1000:
1358 rev_str = "A";
1359 break;
1360
1361 case 0x1001:
1362 rev_str = "Z";
1363 break;
1364
1365 case 0x2000:
1366 rev_str = "B";
1367 break;
1368
1369 case 0x3000:
1370 rev_str = "C";
1371 break;
1372 }
1373 break;
1374
1375 case 0x449:
1376 device_str = "STM32F7[4|5]x";
1377
1378 switch (rev_id) {
1379 case 0x1000:
1380 rev_str = "A";
1381 break;
1382
1383 case 0x1001:
1384 rev_str = "Z";
1385 break;
1386 }
1387 break;
1388
1389 case 0x451:
1390 device_str = "STM32F7[6|7]x";
1391
1392 switch (rev_id) {
1393 case 0x1000:
1394 rev_str = "A";
1395 break;
1396 case 0x1001:
1397 rev_str = "Z";
1398 break;
1399 }
1400 break;
1401
1402 case 0x452:
1403 device_str = "STM32F7[2|3]x";
1404
1405 switch (rev_id) {
1406 case 0x1000:
1407 rev_str = "A";
1408 break;
1409 }
1410 break;
1411
1412 case 0x463:
1413 device_str = "STM32F4[1|2]3";
1414
1415 switch (rev_id) {
1416 case 0x1000:
1417 rev_str = "A";
1418 break;
1419 }
1420 break;
1421
1422 default:
1423 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1424 return ERROR_FAIL;
1425 }
1426
1427 if (rev_str != NULL)
1428 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1429 else
1430 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1431
1432 return ERROR_OK;
1433 }
1434
1435 COMMAND_HANDLER(stm32x_handle_lock_command)
1436 {
1437 struct target *target = NULL;
1438 struct stm32x_flash_bank *stm32x_info = NULL;
1439
1440 if (CMD_ARGC < 1)
1441 return ERROR_COMMAND_SYNTAX_ERROR;
1442
1443 struct flash_bank *bank;
1444 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1445 if (ERROR_OK != retval)
1446 return retval;
1447
1448 stm32x_info = bank->driver_priv;
1449 target = bank->target;
1450
1451 if (target->state != TARGET_HALTED) {
1452 LOG_INFO("Target not halted");
1453 /* return ERROR_TARGET_NOT_HALTED; */
1454 }
1455
1456 if (stm32x_read_options(bank) != ERROR_OK) {
1457 command_print(CMD, "%s failed to read options", bank->driver->name);
1458 return ERROR_OK;
1459 }
1460
1461 /* set readout protection */
1462 stm32x_info->option_bytes.RDP = 0;
1463
1464 if (stm32x_write_options(bank) != ERROR_OK) {
1465 command_print(CMD, "%s failed to lock device", bank->driver->name);
1466 return ERROR_OK;
1467 }
1468
1469 command_print(CMD, "%s locked", bank->driver->name);
1470
1471 return ERROR_OK;
1472 }
1473
1474 COMMAND_HANDLER(stm32x_handle_unlock_command)
1475 {
1476 struct target *target = NULL;
1477 struct stm32x_flash_bank *stm32x_info = NULL;
1478
1479 if (CMD_ARGC < 1)
1480 return ERROR_COMMAND_SYNTAX_ERROR;
1481
1482 struct flash_bank *bank;
1483 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1484 if (ERROR_OK != retval)
1485 return retval;
1486
1487 stm32x_info = bank->driver_priv;
1488 target = bank->target;
1489
1490 if (target->state != TARGET_HALTED) {
1491 LOG_INFO("Target not halted");
1492 /* return ERROR_TARGET_NOT_HALTED; */
1493 }
1494
1495 if (stm32x_read_options(bank) != ERROR_OK) {
1496 command_print(CMD, "%s failed to read options", bank->driver->name);
1497 return ERROR_OK;
1498 }
1499
1500 /* clear readout protection and complementary option bytes
1501 * this will also force a device unlock if set */
1502 stm32x_info->option_bytes.RDP = 0xAA;
1503 if (stm32x_info->has_optcr2_pcrop) {
1504 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1505 }
1506
1507 if (stm32x_write_options(bank) != ERROR_OK) {
1508 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1509 return ERROR_OK;
1510 }
1511
1512 command_print(CMD, "%s unlocked.\n"
1513 "INFO: a reset or power cycle is required "
1514 "for the new settings to take effect.", bank->driver->name);
1515
1516 return ERROR_OK;
1517 }
1518
1519 static int stm32x_mass_erase(struct flash_bank *bank)
1520 {
1521 int retval;
1522 uint32_t flash_mer;
1523 struct target *target = bank->target;
1524 struct stm32x_flash_bank *stm32x_info = NULL;
1525
1526 if (target->state != TARGET_HALTED) {
1527 LOG_ERROR("Target not halted");
1528 return ERROR_TARGET_NOT_HALTED;
1529 }
1530
1531 stm32x_info = bank->driver_priv;
1532
1533 retval = stm32x_unlock_reg(target);
1534 if (retval != ERROR_OK)
1535 return retval;
1536
1537 /* mass erase flash memory */
1538 if (stm32x_info->has_large_mem)
1539 flash_mer = FLASH_MER | FLASH_MER1;
1540 else
1541 flash_mer = FLASH_MER;
1542
1543 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1544 if (retval != ERROR_OK)
1545 return retval;
1546 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1547 flash_mer | FLASH_STRT);
1548 if (retval != ERROR_OK)
1549 return retval;
1550
1551 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1552 if (retval != ERROR_OK)
1553 return retval;
1554
1555 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1556 if (retval != ERROR_OK)
1557 return retval;
1558
1559 return ERROR_OK;
1560 }
1561
1562 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1563 {
1564 if (CMD_ARGC < 1) {
1565 command_print(CMD, "stm32x mass_erase <bank>");
1566 return ERROR_COMMAND_SYNTAX_ERROR;
1567 }
1568
1569 struct flash_bank *bank;
1570 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1571 if (ERROR_OK != retval)
1572 return retval;
1573
1574 retval = stm32x_mass_erase(bank);
1575 if (retval == ERROR_OK) {
1576 /* set all sectors as erased */
1577 for (unsigned int i = 0; i < bank->num_sectors; i++)
1578 bank->sectors[i].is_erased = 1;
1579
1580 command_print(CMD, "stm32x mass erase complete");
1581 } else {
1582 command_print(CMD, "stm32x mass erase failed");
1583 }
1584
1585 return retval;
1586 }
1587
1588 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1589 {
1590 int retval;
1591 struct flash_bank *bank;
1592 struct stm32x_flash_bank *stm32x_info = NULL;
1593
1594 if (CMD_ARGC != 1) {
1595 command_print(CMD, "stm32f2x options_read <bank>");
1596 return ERROR_COMMAND_SYNTAX_ERROR;
1597 }
1598
1599 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1600 if (ERROR_OK != retval)
1601 return retval;
1602
1603 retval = stm32x_read_options(bank);
1604 if (ERROR_OK != retval)
1605 return retval;
1606
1607 stm32x_info = bank->driver_priv;
1608 if (stm32x_info->has_extra_options) {
1609 if (stm32x_info->has_boot_addr) {
1610 uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1611
1612 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1613 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1614 stm32x_info->option_bytes.user_options,
1615 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1616 if (stm32x_info->has_optcr2_pcrop) {
1617 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1618 stm32x_info->option_bytes.optcr2_pcrop);
1619 }
1620 } else {
1621 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1622 stm32x_info->option_bytes.user_options);
1623 }
1624 } else {
1625 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1626 stm32x_info->option_bytes.user_options);
1627
1628 }
1629
1630 return retval;
1631 }
1632
1633 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1634 {
1635 int retval;
1636 struct flash_bank *bank;
1637 struct stm32x_flash_bank *stm32x_info = NULL;
1638 uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1639
1640 if (CMD_ARGC < 1) {
1641 command_print(CMD, "stm32f2x options_write <bank> ...");
1642 return ERROR_COMMAND_SYNTAX_ERROR;
1643 }
1644
1645 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1646 if (ERROR_OK != retval)
1647 return retval;
1648
1649 retval = stm32x_read_options(bank);
1650 if (ERROR_OK != retval)
1651 return retval;
1652
1653 stm32x_info = bank->driver_priv;
1654 if (stm32x_info->has_boot_addr) {
1655 if (CMD_ARGC != 4) {
1656 command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1657 " <boot_addr0> <boot_addr1>");
1658 return ERROR_COMMAND_SYNTAX_ERROR;
1659 }
1660 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1661 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1662 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1663 } else {
1664 if (CMD_ARGC != 2) {
1665 command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1666 return ERROR_COMMAND_SYNTAX_ERROR;
1667 }
1668 }
1669
1670 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1671 options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1672 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1673 if (user_options & options_mask) {
1674 command_print(CMD, "stm32f2x invalid user_options");
1675 return ERROR_COMMAND_ARGUMENT_INVALID;
1676 }
1677
1678 stm32x_info->option_bytes.user_options = user_options;
1679
1680 if (stm32x_write_options(bank) != ERROR_OK) {
1681 command_print(CMD, "stm32f2x failed to write options");
1682 return ERROR_OK;
1683 }
1684
1685 /* switching between single- and dual-bank modes requires re-probe */
1686 /* ... and reprogramming of whole flash */
1687 stm32x_info->probed = false;
1688
1689 command_print(CMD, "stm32f2x write options complete.\n"
1690 "INFO: a reset or power cycle is required "
1691 "for the new settings to take effect.");
1692 return retval;
1693 }
1694
1695 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1696 {
1697 int retval;
1698 struct flash_bank *bank;
1699 struct stm32x_flash_bank *stm32x_info = NULL;
1700 uint32_t optcr2_pcrop;
1701
1702 if (CMD_ARGC != 2) {
1703 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1704 return ERROR_COMMAND_SYNTAX_ERROR;
1705 }
1706
1707 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1708 if (ERROR_OK != retval)
1709 return retval;
1710
1711 stm32x_info = bank->driver_priv;
1712 if (!stm32x_info->has_optcr2_pcrop) {
1713 command_print(CMD, "no optcr2 register");
1714 return ERROR_COMMAND_ARGUMENT_INVALID;
1715 }
1716
1717 command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1718 " with PCROPi bits STILL SET, then\nlock device and"
1719 " finally unlock it. Clears PCROP and mass erases flash.");
1720
1721 retval = stm32x_read_options(bank);
1722 if (ERROR_OK != retval)
1723 return retval;
1724
1725 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1726 stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1727
1728 if (stm32x_write_options(bank) != ERROR_OK) {
1729 command_print(CMD, "stm32f2x failed to write options");
1730 return ERROR_OK;
1731 }
1732
1733 command_print(CMD, "stm32f2x optcr2_write complete.");
1734 return retval;
1735 }
1736
1737 COMMAND_HANDLER(stm32x_handle_otp_command)
1738 {
1739 if (CMD_ARGC < 2) {
1740 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1741 return ERROR_COMMAND_SYNTAX_ERROR;
1742 }
1743
1744 struct flash_bank *bank;
1745 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1746 if (ERROR_OK != retval)
1747 return retval;
1748 if (stm32x_is_otp(bank)) {
1749 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1750 stm32x_otp_enable(bank);
1751 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1752 stm32x_otp_disable(bank);
1753 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1754 command_print(CMD,
1755 "OTP memory bank #%u is %s for write commands.",
1756 bank->bank_number,
1757 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1758 } else {
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1760 }
1761 } else {
1762 command_print(CMD, "Failed: not an OTP bank.");
1763 }
1764
1765 return retval;
1766 }
1767
1768 static const struct command_registration stm32x_exec_command_handlers[] = {
1769 {
1770 .name = "lock",
1771 .handler = stm32x_handle_lock_command,
1772 .mode = COMMAND_EXEC,
1773 .usage = "bank_id",
1774 .help = "Lock entire flash device.",
1775 },
1776 {
1777 .name = "unlock",
1778 .handler = stm32x_handle_unlock_command,
1779 .mode = COMMAND_EXEC,
1780 .usage = "bank_id",
1781 .help = "Unlock entire protected flash device.",
1782 },
1783 {
1784 .name = "mass_erase",
1785 .handler = stm32x_handle_mass_erase_command,
1786 .mode = COMMAND_EXEC,
1787 .usage = "bank_id",
1788 .help = "Erase entire flash device.",
1789 },
1790 {
1791 .name = "options_read",
1792 .handler = stm32f2x_handle_options_read_command,
1793 .mode = COMMAND_EXEC,
1794 .usage = "bank_id",
1795 .help = "Read and display device option bytes.",
1796 },
1797 {
1798 .name = "options_write",
1799 .handler = stm32f2x_handle_options_write_command,
1800 .mode = COMMAND_EXEC,
1801 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1802 .help = "Write option bytes",
1803 },
1804 {
1805 .name = "optcr2_write",
1806 .handler = stm32f2x_handle_optcr2_write_command,
1807 .mode = COMMAND_EXEC,
1808 .usage = "bank_id optcr2",
1809 .help = "Write optcr2 word",
1810 },
1811 {
1812 .name = "otp",
1813 .handler = stm32x_handle_otp_command,
1814 .mode = COMMAND_EXEC,
1815 .usage = "bank_id",
1816 .help = "OTP (One Time Programmable) memory write enable/disable.",
1817 },
1818 COMMAND_REGISTRATION_DONE
1819 };
1820
1821 static const struct command_registration stm32x_command_handlers[] = {
1822 {
1823 .name = "stm32f2x",
1824 .mode = COMMAND_ANY,
1825 .help = "stm32f2x flash command group",
1826 .usage = "",
1827 .chain = stm32x_exec_command_handlers,
1828 },
1829 COMMAND_REGISTRATION_DONE
1830 };
1831
1832 const struct flash_driver stm32f2x_flash = {
1833 .name = "stm32f2x",
1834 .commands = stm32x_command_handlers,
1835 .flash_bank_command = stm32x_flash_bank_command,
1836 .erase = stm32x_erase,
1837 .protect = stm32x_protect,
1838 .write = stm32x_write,
1839 .read = default_flash_read,
1840 .probe = stm32x_probe,
1841 .auto_probe = stm32x_auto_probe,
1842 .erase_check = default_flash_blank_check,
1843 .protect_check = stm32x_protect_check,
1844 .info = get_stm32x_info,
1845 .free_driver_priv = default_flash_free_driver_priv,
1846 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)