8c83d459d58216a5295e72fb4fdd78e74c79b913
[openocd.git] / src / jtag / drivers / ftdi.c
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 /**
20 * @file
21 * JTAG adapters based on the FT2232 full and high speed USB parts are
22 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
23 * are discrete, but development boards may integrate them as alternatives
24 * to more capable (and expensive) third party JTAG pods.
25 *
26 * JTAG uses only one of the two communications channels ("MPSSE engines")
27 * on these devices. Adapters based on FT4232 parts have four ports/channels
28 * (A/B/C/D), instead of just two (A/B).
29 *
30 * Especially on development boards integrating one of these chips (as
31 * opposed to discrete pods/dongles), the additional channels can be used
32 * for a variety of purposes, but OpenOCD only uses one channel at a time.
33 *
34 * - As a USB-to-serial adapter for the target's console UART ...
35 * which may be able to support ROM boot loaders that load initial
36 * firmware images to flash (or SRAM).
37 *
38 * - On systems which support ARM's SWD in addition to JTAG, or instead
39 * of it, that second port can be used for reading SWV/SWO trace data.
40 *
41 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
42 *
43 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
44 * request/response interactions involve round trips over the USB link.
45 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
46 * can for example poll quickly for a status change (usually taking on the
47 * order of microseconds not milliseconds) before beginning a queued
48 * transaction which require the previous one to have completed.
49 *
50 * There are dozens of adapters of this type, differing in details which
51 * this driver needs to understand. Those "layout" details are required
52 * as part of FT2232 driver configuration.
53 *
54 * This code uses information contained in the MPSSE specification which was
55 * found here:
56 * https://www.ftdichip.com/Support/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
57 * Hereafter this is called the "MPSSE Spec".
58 *
59 * The datasheet for the ftdichip.com's FT2232H part is here:
60 * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
61 *
62 * Also note the issue with code 0x4b (clock data to TMS) noted in
63 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
64 * which can affect longer JTAG state paths.
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 /* project specific includes */
72 #include <jtag/drivers/jtag_usb_common.h>
73 #include <jtag/interface.h>
74 #include <jtag/swd.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
77
78 #if IS_CYGWIN == 1
79 #include <windows.h>
80 #endif
81
82 #include <assert.h>
83
84 /* FTDI access library includes */
85 #include "mpsse.h"
86
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
88 #define JTAG_MODE_ALT (LSB_FIRST | NEG_EDGE_IN | NEG_EDGE_OUT)
89 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
90
91 static char *ftdi_device_desc;
92 static char *ftdi_serial;
93 static uint8_t ftdi_channel;
94 static uint8_t ftdi_jtag_mode = JTAG_MODE;
95
96 static bool swd_mode;
97
98 #define MAX_USB_IDS 8
99 /* vid = pid = 0 marks the end of the list */
100 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
101 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
102
103 static struct mpsse_ctx *mpsse_ctx;
104
105 struct signal {
106 const char *name;
107 uint16_t data_mask;
108 uint16_t input_mask;
109 uint16_t oe_mask;
110 bool invert_data;
111 bool invert_input;
112 bool invert_oe;
113 struct signal *next;
114 };
115
116 static struct signal *signals;
117
118 /* FIXME: Where to store per-instance data? We need an SWD context. */
119 static struct swd_cmd_queue_entry {
120 uint8_t cmd;
121 uint32_t *dst;
122 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
123 } *swd_cmd_queue;
124 static size_t swd_cmd_queue_length;
125 static size_t swd_cmd_queue_alloced;
126 static int queued_retval;
127 static int freq;
128
129 static uint16_t output;
130 static uint16_t direction;
131 static uint16_t jtag_output_init;
132 static uint16_t jtag_direction_init;
133
134 static int ftdi_swd_switch_seq(enum swd_special_seq seq);
135
136 static struct signal *find_signal_by_name(const char *name)
137 {
138 for (struct signal *sig = signals; sig; sig = sig->next) {
139 if (strcmp(name, sig->name) == 0)
140 return sig;
141 }
142 return NULL;
143 }
144
145 static struct signal *create_signal(const char *name)
146 {
147 struct signal **psig = &signals;
148 while (*psig)
149 psig = &(*psig)->next;
150
151 *psig = calloc(1, sizeof(**psig));
152 if (*psig == NULL)
153 return NULL;
154
155 (*psig)->name = strdup(name);
156 if ((*psig)->name == NULL) {
157 free(*psig);
158 *psig = NULL;
159 }
160 return *psig;
161 }
162
163 static int ftdi_set_signal(const struct signal *s, char value)
164 {
165 bool data;
166 bool oe;
167
168 if (s->data_mask == 0 && s->oe_mask == 0) {
169 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
170 return ERROR_FAIL;
171 }
172 switch (value) {
173 case '0':
174 data = s->invert_data;
175 oe = !s->invert_oe;
176 break;
177 case '1':
178 if (s->data_mask == 0) {
179 LOG_ERROR("interface can't drive '%s' high", s->name);
180 return ERROR_FAIL;
181 }
182 data = !s->invert_data;
183 oe = !s->invert_oe;
184 break;
185 case 'z':
186 case 'Z':
187 if (s->oe_mask == 0) {
188 LOG_ERROR("interface can't tri-state '%s'", s->name);
189 return ERROR_FAIL;
190 }
191 data = s->invert_data;
192 oe = s->invert_oe;
193 break;
194 default:
195 assert(0 && "invalid signal level specifier");
196 return ERROR_FAIL;
197 }
198
199 uint16_t old_output = output;
200 uint16_t old_direction = direction;
201
202 output = data ? output | s->data_mask : output & ~s->data_mask;
203 if (s->oe_mask == s->data_mask)
204 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
205 else
206 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
207
208 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
209 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
210 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
211 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
212
213 return ERROR_OK;
214 }
215
216 static int ftdi_get_signal(const struct signal *s, uint16_t *value_out)
217 {
218 uint8_t data_low = 0;
219 uint8_t data_high = 0;
220
221 if (s->input_mask == 0) {
222 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
223 return ERROR_FAIL;
224 }
225
226 if (s->input_mask & 0xff)
227 mpsse_read_data_bits_low_byte(mpsse_ctx, &data_low);
228 if (s->input_mask >> 8)
229 mpsse_read_data_bits_high_byte(mpsse_ctx, &data_high);
230
231 mpsse_flush(mpsse_ctx);
232
233 *value_out = (((uint16_t)data_high) << 8) | data_low;
234
235 if (s->invert_input)
236 *value_out = ~(*value_out);
237
238 *value_out &= s->input_mask;
239
240 return ERROR_OK;
241 }
242
243 /**
244 * Function move_to_state
245 * moves the TAP controller from the current state to a
246 * \a goal_state through a path given by tap_get_tms_path(). State transition
247 * logging is performed by delegation to clock_tms().
248 *
249 * @param goal_state is the destination state for the move.
250 */
251 static void move_to_state(tap_state_t goal_state)
252 {
253 tap_state_t start_state = tap_get_state();
254
255 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
256 lookup of the required TMS pattern to move to this state from the
257 start state.
258 */
259
260 /* do the 2 lookups */
261 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
262 int tms_count = tap_get_tms_path_len(start_state, goal_state);
263 assert(tms_count <= 8);
264
265 LOG_DEBUG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
266
267 /* Track state transitions step by step */
268 for (int i = 0; i < tms_count; i++)
269 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
270
271 mpsse_clock_tms_cs_out(mpsse_ctx,
272 &tms_bits,
273 0,
274 tms_count,
275 false,
276 ftdi_jtag_mode);
277 }
278
279 static int ftdi_speed(int speed)
280 {
281 int retval;
282 retval = mpsse_set_frequency(mpsse_ctx, speed);
283
284 if (retval < 0) {
285 LOG_ERROR("couldn't set FTDI TCK speed");
286 return retval;
287 }
288
289 if (!swd_mode && speed >= 10000000 && ftdi_jtag_mode != JTAG_MODE_ALT)
290 LOG_INFO("ftdi: if you experience problems at higher adapter clocks, try "
291 "the command \"ftdi_tdo_sample_edge falling\"");
292 return ERROR_OK;
293 }
294
295 static int ftdi_speed_div(int speed, int *khz)
296 {
297 *khz = speed / 1000;
298 return ERROR_OK;
299 }
300
301 static int ftdi_khz(int khz, int *jtag_speed)
302 {
303 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
304 LOG_DEBUG("RCLK not supported");
305 return ERROR_FAIL;
306 }
307
308 *jtag_speed = khz * 1000;
309 return ERROR_OK;
310 }
311
312 static void ftdi_end_state(tap_state_t state)
313 {
314 if (tap_is_state_stable(state))
315 tap_set_end_state(state);
316 else {
317 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
318 exit(-1);
319 }
320 }
321
322 static void ftdi_execute_runtest(struct jtag_command *cmd)
323 {
324 int i;
325 uint8_t zero = 0;
326
327 LOG_DEBUG_IO("runtest %i cycles, end in %s",
328 cmd->cmd.runtest->num_cycles,
329 tap_state_name(cmd->cmd.runtest->end_state));
330
331 if (tap_get_state() != TAP_IDLE)
332 move_to_state(TAP_IDLE);
333
334 /* TODO: Reuse ftdi_execute_stableclocks */
335 i = cmd->cmd.runtest->num_cycles;
336 while (i > 0) {
337 /* there are no state transitions in this code, so omit state tracking */
338 unsigned this_len = i > 7 ? 7 : i;
339 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, ftdi_jtag_mode);
340 i -= this_len;
341 }
342
343 ftdi_end_state(cmd->cmd.runtest->end_state);
344
345 if (tap_get_state() != tap_get_end_state())
346 move_to_state(tap_get_end_state());
347
348 LOG_DEBUG_IO("runtest: %i, end in %s",
349 cmd->cmd.runtest->num_cycles,
350 tap_state_name(tap_get_end_state()));
351 }
352
353 static void ftdi_execute_statemove(struct jtag_command *cmd)
354 {
355 LOG_DEBUG_IO("statemove end in %s",
356 tap_state_name(cmd->cmd.statemove->end_state));
357
358 ftdi_end_state(cmd->cmd.statemove->end_state);
359
360 /* shortest-path move to desired end state */
361 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
362 move_to_state(tap_get_end_state());
363 }
364
365 /**
366 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
367 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
368 */
369 static void ftdi_execute_tms(struct jtag_command *cmd)
370 {
371 LOG_DEBUG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
372
373 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
374 mpsse_clock_tms_cs_out(mpsse_ctx,
375 cmd->cmd.tms->bits,
376 0,
377 cmd->cmd.tms->num_bits,
378 false,
379 ftdi_jtag_mode);
380 }
381
382 static void ftdi_execute_pathmove(struct jtag_command *cmd)
383 {
384 tap_state_t *path = cmd->cmd.pathmove->path;
385 int num_states = cmd->cmd.pathmove->num_states;
386
387 LOG_DEBUG_IO("pathmove: %i states, current: %s end: %s", num_states,
388 tap_state_name(tap_get_state()),
389 tap_state_name(path[num_states-1]));
390
391 int state_count = 0;
392 unsigned bit_count = 0;
393 uint8_t tms_byte = 0;
394
395 LOG_DEBUG_IO("-");
396
397 /* this loop verifies that the path is legal and logs each state in the path */
398 while (num_states--) {
399
400 /* either TMS=0 or TMS=1 must work ... */
401 if (tap_state_transition(tap_get_state(), false)
402 == path[state_count])
403 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
404 else if (tap_state_transition(tap_get_state(), true)
405 == path[state_count]) {
406 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
407
408 /* ... or else the caller goofed BADLY */
409 } else {
410 LOG_ERROR("BUG: %s -> %s isn't a valid "
411 "TAP state transition",
412 tap_state_name(tap_get_state()),
413 tap_state_name(path[state_count]));
414 exit(-1);
415 }
416
417 tap_set_state(path[state_count]);
418 state_count++;
419
420 if (bit_count == 7 || num_states == 0) {
421 mpsse_clock_tms_cs_out(mpsse_ctx,
422 &tms_byte,
423 0,
424 bit_count,
425 false,
426 ftdi_jtag_mode);
427 bit_count = 0;
428 }
429 }
430 tap_set_end_state(tap_get_state());
431 }
432
433 static void ftdi_execute_scan(struct jtag_command *cmd)
434 {
435 LOG_DEBUG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
436 jtag_scan_type(cmd->cmd.scan));
437
438 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
439 while (cmd->cmd.scan->num_fields > 0
440 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
441 cmd->cmd.scan->num_fields--;
442 LOG_DEBUG_IO("discarding trailing empty field");
443 }
444
445 if (cmd->cmd.scan->num_fields == 0) {
446 LOG_DEBUG_IO("empty scan, doing nothing");
447 return;
448 }
449
450 if (cmd->cmd.scan->ir_scan) {
451 if (tap_get_state() != TAP_IRSHIFT)
452 move_to_state(TAP_IRSHIFT);
453 } else {
454 if (tap_get_state() != TAP_DRSHIFT)
455 move_to_state(TAP_DRSHIFT);
456 }
457
458 ftdi_end_state(cmd->cmd.scan->end_state);
459
460 struct scan_field *field = cmd->cmd.scan->fields;
461 unsigned scan_size = 0;
462
463 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
464 scan_size += field->num_bits;
465 LOG_DEBUG_IO("%s%s field %d/%d %d bits",
466 field->in_value ? "in" : "",
467 field->out_value ? "out" : "",
468 i,
469 cmd->cmd.scan->num_fields,
470 field->num_bits);
471
472 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
473 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
474 * movement. This last field can't have length zero, it was checked above. */
475 mpsse_clock_data(mpsse_ctx,
476 field->out_value,
477 0,
478 field->in_value,
479 0,
480 field->num_bits - 1,
481 ftdi_jtag_mode);
482 uint8_t last_bit = 0;
483 if (field->out_value)
484 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
485
486 /* If endstate is TAP_IDLE, clock out 1-1-0 (->EXIT1 ->UPDATE ->IDLE)
487 * Otherwise, clock out 1-0 (->EXIT1 ->PAUSE)
488 */
489 uint8_t tms_bits = 0x03;
490 mpsse_clock_tms_cs(mpsse_ctx,
491 &tms_bits,
492 0,
493 field->in_value,
494 field->num_bits - 1,
495 1,
496 last_bit,
497 ftdi_jtag_mode);
498 tap_set_state(tap_state_transition(tap_get_state(), 1));
499 if (tap_get_end_state() == TAP_IDLE) {
500 mpsse_clock_tms_cs_out(mpsse_ctx,
501 &tms_bits,
502 1,
503 2,
504 last_bit,
505 ftdi_jtag_mode);
506 tap_set_state(tap_state_transition(tap_get_state(), 1));
507 tap_set_state(tap_state_transition(tap_get_state(), 0));
508 } else {
509 mpsse_clock_tms_cs_out(mpsse_ctx,
510 &tms_bits,
511 2,
512 1,
513 last_bit,
514 ftdi_jtag_mode);
515 tap_set_state(tap_state_transition(tap_get_state(), 0));
516 }
517 } else
518 mpsse_clock_data(mpsse_ctx,
519 field->out_value,
520 0,
521 field->in_value,
522 0,
523 field->num_bits,
524 ftdi_jtag_mode);
525 }
526
527 if (tap_get_state() != tap_get_end_state())
528 move_to_state(tap_get_end_state());
529
530 LOG_DEBUG_IO("%s scan, %i bits, end in %s",
531 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
532 tap_state_name(tap_get_end_state()));
533 }
534
535 static int ftdi_reset(int trst, int srst)
536 {
537 struct signal *sig_ntrst = find_signal_by_name("nTRST");
538 struct signal *sig_nsrst = find_signal_by_name("nSRST");
539
540 LOG_DEBUG_IO("reset trst: %i srst %i", trst, srst);
541
542 if (!swd_mode) {
543 if (trst == 1) {
544 if (sig_ntrst)
545 ftdi_set_signal(sig_ntrst, '0');
546 else
547 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
548 } else if (sig_ntrst && jtag_get_reset_config() & RESET_HAS_TRST &&
549 trst == 0) {
550 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
551 ftdi_set_signal(sig_ntrst, 'z');
552 else
553 ftdi_set_signal(sig_ntrst, '1');
554 }
555 }
556
557 if (srst == 1) {
558 if (sig_nsrst)
559 ftdi_set_signal(sig_nsrst, '0');
560 else
561 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
562 } else if (sig_nsrst && jtag_get_reset_config() & RESET_HAS_SRST &&
563 srst == 0) {
564 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
565 ftdi_set_signal(sig_nsrst, '1');
566 else
567 ftdi_set_signal(sig_nsrst, 'z');
568 }
569
570 return mpsse_flush(mpsse_ctx);
571 }
572
573 static void ftdi_execute_sleep(struct jtag_command *cmd)
574 {
575 LOG_DEBUG_IO("sleep %" PRIu32, cmd->cmd.sleep->us);
576
577 mpsse_flush(mpsse_ctx);
578 jtag_sleep(cmd->cmd.sleep->us);
579 LOG_DEBUG_IO("sleep %" PRIu32 " usec while in %s",
580 cmd->cmd.sleep->us,
581 tap_state_name(tap_get_state()));
582 }
583
584 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
585 {
586 /* this is only allowed while in a stable state. A check for a stable
587 * state was done in jtag_add_clocks()
588 */
589 int num_cycles = cmd->cmd.stableclocks->num_cycles;
590
591 /* 7 bits of either ones or zeros. */
592 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
593
594 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
595 * the correct level and remain there during the scan */
596 while (num_cycles > 0) {
597 /* there are no state transitions in this code, so omit state tracking */
598 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
599 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, ftdi_jtag_mode);
600 num_cycles -= this_len;
601 }
602
603 LOG_DEBUG_IO("clocks %i while in %s",
604 cmd->cmd.stableclocks->num_cycles,
605 tap_state_name(tap_get_state()));
606 }
607
608 static void ftdi_execute_command(struct jtag_command *cmd)
609 {
610 switch (cmd->type) {
611 case JTAG_RUNTEST:
612 ftdi_execute_runtest(cmd);
613 break;
614 case JTAG_TLR_RESET:
615 ftdi_execute_statemove(cmd);
616 break;
617 case JTAG_PATHMOVE:
618 ftdi_execute_pathmove(cmd);
619 break;
620 case JTAG_SCAN:
621 ftdi_execute_scan(cmd);
622 break;
623 case JTAG_SLEEP:
624 ftdi_execute_sleep(cmd);
625 break;
626 case JTAG_STABLECLOCKS:
627 ftdi_execute_stableclocks(cmd);
628 break;
629 case JTAG_TMS:
630 ftdi_execute_tms(cmd);
631 break;
632 default:
633 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
634 break;
635 }
636 }
637
638 static int ftdi_execute_queue(void)
639 {
640 /* blink, if the current layout has that feature */
641 struct signal *led = find_signal_by_name("LED");
642 if (led)
643 ftdi_set_signal(led, '1');
644
645 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
646 /* fill the write buffer with the desired command */
647 ftdi_execute_command(cmd);
648 }
649
650 if (led)
651 ftdi_set_signal(led, '0');
652
653 int retval = mpsse_flush(mpsse_ctx);
654 if (retval != ERROR_OK)
655 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
656
657 return retval;
658 }
659
660 static int ftdi_initialize(void)
661 {
662 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
663 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
664 else
665 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
666
667 if (!ftdi_vid[0] && !ftdi_pid[0]) {
668 LOG_ERROR("Please specify ftdi_vid_pid");
669 return ERROR_JTAG_INIT_FAILED;
670 }
671
672 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
673 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
674 ftdi_serial, jtag_usb_get_location(), ftdi_channel);
675 if (mpsse_ctx)
676 break;
677 }
678
679 if (!mpsse_ctx)
680 return ERROR_JTAG_INIT_FAILED;
681
682 output = jtag_output_init;
683 direction = jtag_direction_init;
684
685 if (swd_mode) {
686 struct signal *sig = find_signal_by_name("SWD_EN");
687 if (!sig) {
688 LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
689 return ERROR_JTAG_INIT_FAILED;
690 }
691 /* A dummy SWD_EN would have zero mask */
692 if (sig->data_mask)
693 ftdi_set_signal(sig, '1');
694 }
695
696 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
697 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
698
699 mpsse_loopback_config(mpsse_ctx, false);
700
701 freq = mpsse_set_frequency(mpsse_ctx, jtag_get_speed_khz() * 1000);
702
703 return mpsse_flush(mpsse_ctx);
704 }
705
706 static int ftdi_quit(void)
707 {
708 mpsse_close(mpsse_ctx);
709
710 struct signal *sig = signals;
711 while (sig) {
712 struct signal *next = sig->next;
713 free((void *)sig->name);
714 free(sig);
715 sig = next;
716 }
717
718 free(ftdi_device_desc);
719 free(ftdi_serial);
720
721 free(swd_cmd_queue);
722
723 return ERROR_OK;
724 }
725
726 COMMAND_HANDLER(ftdi_handle_device_desc_command)
727 {
728 if (CMD_ARGC == 1) {
729 free(ftdi_device_desc);
730 ftdi_device_desc = strdup(CMD_ARGV[0]);
731 } else {
732 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
733 }
734
735 return ERROR_OK;
736 }
737
738 COMMAND_HANDLER(ftdi_handle_serial_command)
739 {
740 if (CMD_ARGC == 1) {
741 free(ftdi_serial);
742 ftdi_serial = strdup(CMD_ARGV[0]);
743 } else {
744 return ERROR_COMMAND_SYNTAX_ERROR;
745 }
746
747 return ERROR_OK;
748 }
749
750 COMMAND_HANDLER(ftdi_handle_channel_command)
751 {
752 if (CMD_ARGC == 1)
753 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
754 else
755 return ERROR_COMMAND_SYNTAX_ERROR;
756
757 return ERROR_OK;
758 }
759
760 COMMAND_HANDLER(ftdi_handle_layout_init_command)
761 {
762 if (CMD_ARGC != 2)
763 return ERROR_COMMAND_SYNTAX_ERROR;
764
765 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
766 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
767
768 return ERROR_OK;
769 }
770
771 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
772 {
773 if (CMD_ARGC < 1)
774 return ERROR_COMMAND_SYNTAX_ERROR;
775
776 bool invert_data = false;
777 uint16_t data_mask = 0;
778 bool invert_input = false;
779 uint16_t input_mask = 0;
780 bool invert_oe = false;
781 uint16_t oe_mask = 0;
782 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
783 if (strcmp("-data", CMD_ARGV[i]) == 0) {
784 invert_data = false;
785 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
786 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
787 invert_data = true;
788 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
789 } else if (strcmp("-input", CMD_ARGV[i]) == 0) {
790 invert_input = false;
791 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
792 } else if (strcmp("-ninput", CMD_ARGV[i]) == 0) {
793 invert_input = true;
794 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
795 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
796 invert_oe = false;
797 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
798 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
799 invert_oe = true;
800 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
801 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
802 !strcmp("-nalias", CMD_ARGV[i])) {
803 if (!strcmp("-nalias", CMD_ARGV[i])) {
804 invert_data = true;
805 invert_input = true;
806 }
807 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
808 if (!sig) {
809 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
810 return ERROR_FAIL;
811 }
812 data_mask = sig->data_mask;
813 input_mask = sig->input_mask;
814 oe_mask = sig->oe_mask;
815 invert_input ^= sig->invert_input;
816 invert_oe = sig->invert_oe;
817 invert_data ^= sig->invert_data;
818 } else {
819 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
820 return ERROR_COMMAND_SYNTAX_ERROR;
821 }
822 }
823
824 struct signal *sig;
825 sig = find_signal_by_name(CMD_ARGV[0]);
826 if (!sig)
827 sig = create_signal(CMD_ARGV[0]);
828 if (!sig) {
829 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
830 return ERROR_FAIL;
831 }
832
833 sig->invert_data = invert_data;
834 sig->data_mask = data_mask;
835 sig->invert_input = invert_input;
836 sig->input_mask = input_mask;
837 sig->invert_oe = invert_oe;
838 sig->oe_mask = oe_mask;
839
840 return ERROR_OK;
841 }
842
843 COMMAND_HANDLER(ftdi_handle_set_signal_command)
844 {
845 if (CMD_ARGC < 2)
846 return ERROR_COMMAND_SYNTAX_ERROR;
847
848 struct signal *sig;
849 sig = find_signal_by_name(CMD_ARGV[0]);
850 if (!sig) {
851 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
852 return ERROR_FAIL;
853 }
854
855 switch (*CMD_ARGV[1]) {
856 case '0':
857 case '1':
858 case 'z':
859 case 'Z':
860 /* single character level specifier only */
861 if (CMD_ARGV[1][1] == '\0') {
862 ftdi_set_signal(sig, *CMD_ARGV[1]);
863 break;
864 }
865 /* fallthrough */
866 default:
867 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
868 return ERROR_COMMAND_SYNTAX_ERROR;
869 }
870
871 return mpsse_flush(mpsse_ctx);
872 }
873
874 COMMAND_HANDLER(ftdi_handle_get_signal_command)
875 {
876 if (CMD_ARGC < 1)
877 return ERROR_COMMAND_SYNTAX_ERROR;
878
879 struct signal *sig;
880 uint16_t sig_data = 0;
881 sig = find_signal_by_name(CMD_ARGV[0]);
882 if (!sig) {
883 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
884 return ERROR_FAIL;
885 }
886
887 int ret = ftdi_get_signal(sig, &sig_data);
888 if (ret != ERROR_OK)
889 return ret;
890
891 LOG_USER("Signal %s = %#06x", sig->name, sig_data);
892
893 return ERROR_OK;
894 }
895
896 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
897 {
898 if (CMD_ARGC > MAX_USB_IDS * 2) {
899 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
900 "(maximum is %d pairs)", MAX_USB_IDS);
901 CMD_ARGC = MAX_USB_IDS * 2;
902 }
903 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
904 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
905 if (CMD_ARGC < 2)
906 return ERROR_COMMAND_SYNTAX_ERROR;
907 /* remove the incomplete trailing id */
908 CMD_ARGC -= 1;
909 }
910
911 unsigned i;
912 for (i = 0; i < CMD_ARGC; i += 2) {
913 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
914 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
915 }
916
917 /*
918 * Explicitly terminate, in case there are multiples instances of
919 * ftdi_vid_pid.
920 */
921 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
922
923 return ERROR_OK;
924 }
925
926 COMMAND_HANDLER(ftdi_handle_tdo_sample_edge_command)
927 {
928 Jim_Nvp *n;
929 static const Jim_Nvp nvp_ftdi_jtag_modes[] = {
930 { .name = "rising", .value = JTAG_MODE },
931 { .name = "falling", .value = JTAG_MODE_ALT },
932 { .name = NULL, .value = -1 },
933 };
934
935 if (CMD_ARGC > 0) {
936 n = Jim_Nvp_name2value_simple(nvp_ftdi_jtag_modes, CMD_ARGV[0]);
937 if (n->name == NULL)
938 return ERROR_COMMAND_SYNTAX_ERROR;
939 ftdi_jtag_mode = n->value;
940
941 }
942
943 n = Jim_Nvp_value2name_simple(nvp_ftdi_jtag_modes, ftdi_jtag_mode);
944 command_print(CMD, "ftdi samples TDO on %s edge of TCK", n->name);
945
946 return ERROR_OK;
947 }
948
949 static const struct command_registration ftdi_command_handlers[] = {
950 {
951 .name = "ftdi_device_desc",
952 .handler = &ftdi_handle_device_desc_command,
953 .mode = COMMAND_CONFIG,
954 .help = "set the USB device description of the FTDI device",
955 .usage = "description_string",
956 },
957 {
958 .name = "ftdi_serial",
959 .handler = &ftdi_handle_serial_command,
960 .mode = COMMAND_CONFIG,
961 .help = "set the serial number of the FTDI device",
962 .usage = "serial_string",
963 },
964 {
965 .name = "ftdi_channel",
966 .handler = &ftdi_handle_channel_command,
967 .mode = COMMAND_CONFIG,
968 .help = "set the channel of the FTDI device that is used as JTAG",
969 .usage = "(0-3)",
970 },
971 {
972 .name = "ftdi_layout_init",
973 .handler = &ftdi_handle_layout_init_command,
974 .mode = COMMAND_CONFIG,
975 .help = "initialize the FTDI GPIO signals used "
976 "to control output-enables and reset signals",
977 .usage = "data direction",
978 },
979 {
980 .name = "ftdi_layout_signal",
981 .handler = &ftdi_handle_layout_signal_command,
982 .mode = COMMAND_ANY,
983 .help = "define a signal controlled by one or more FTDI GPIO as data "
984 "and/or output enable",
985 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
986 },
987 {
988 .name = "ftdi_set_signal",
989 .handler = &ftdi_handle_set_signal_command,
990 .mode = COMMAND_EXEC,
991 .help = "control a layout-specific signal",
992 .usage = "name (1|0|z)",
993 },
994 {
995 .name = "ftdi_get_signal",
996 .handler = &ftdi_handle_get_signal_command,
997 .mode = COMMAND_EXEC,
998 .help = "read the value of a layout-specific signal",
999 .usage = "name",
1000 },
1001 {
1002 .name = "ftdi_vid_pid",
1003 .handler = &ftdi_handle_vid_pid_command,
1004 .mode = COMMAND_CONFIG,
1005 .help = "the vendor ID and product ID of the FTDI device",
1006 .usage = "(vid pid)* ",
1007 },
1008 {
1009 .name = "ftdi_tdo_sample_edge",
1010 .handler = &ftdi_handle_tdo_sample_edge_command,
1011 .mode = COMMAND_ANY,
1012 .help = "set which TCK clock edge is used for sampling TDO "
1013 "- default is rising-edge (Setting to falling-edge may "
1014 "allow signalling speed increase)",
1015 .usage = "(rising|falling)",
1016 },
1017 COMMAND_REGISTRATION_DONE
1018 };
1019
1020 static int create_default_signal(const char *name, uint16_t data_mask)
1021 {
1022 struct signal *sig = create_signal(name);
1023 if (!sig) {
1024 LOG_ERROR("failed to create signal %s", name);
1025 return ERROR_FAIL;
1026 }
1027 sig->invert_data = false;
1028 sig->data_mask = data_mask;
1029 sig->invert_oe = false;
1030 sig->oe_mask = 0;
1031
1032 return ERROR_OK;
1033 }
1034
1035 static int create_signals(void)
1036 {
1037 if (create_default_signal("TCK", 0x01) != ERROR_OK)
1038 return ERROR_FAIL;
1039 if (create_default_signal("TDI", 0x02) != ERROR_OK)
1040 return ERROR_FAIL;
1041 if (create_default_signal("TDO", 0x04) != ERROR_OK)
1042 return ERROR_FAIL;
1043 if (create_default_signal("TMS", 0x08) != ERROR_OK)
1044 return ERROR_FAIL;
1045 return ERROR_OK;
1046 }
1047
1048 static int ftdi_swd_init(void)
1049 {
1050 LOG_INFO("FTDI SWD mode enabled");
1051 swd_mode = true;
1052
1053 if (create_signals() != ERROR_OK)
1054 return ERROR_FAIL;
1055
1056 swd_cmd_queue_alloced = 10;
1057 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
1058
1059 return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
1060 }
1061
1062 static void ftdi_swd_swdio_en(bool enable)
1063 {
1064 struct signal *oe = find_signal_by_name("SWDIO_OE");
1065 if (oe) {
1066 if (oe->data_mask)
1067 ftdi_set_signal(oe, enable ? '1' : '0');
1068 else {
1069 /* Sets TDI/DO pin to input during rx when both pins are connected
1070 to SWDIO */
1071 if (enable)
1072 direction |= jtag_direction_init & 0x0002U;
1073 else
1074 direction &= ~0x0002U;
1075 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
1076 }
1077 }
1078 }
1079
1080 /**
1081 * Flush the MPSSE queue and process the SWD transaction queue
1082 * @return
1083 */
1084 static int ftdi_swd_run_queue(void)
1085 {
1086 LOG_DEBUG_IO("Executing %zu queued transactions", swd_cmd_queue_length);
1087 int retval;
1088 struct signal *led = find_signal_by_name("LED");
1089
1090 if (queued_retval != ERROR_OK) {
1091 LOG_DEBUG_IO("Skipping due to previous errors: %d", queued_retval);
1092 goto skip;
1093 }
1094
1095 /* A transaction must be followed by another transaction or at least 8 idle cycles to
1096 * ensure that data is clocked through the AP. */
1097 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
1098
1099 /* Terminate the "blink", if the current layout has that feature */
1100 if (led)
1101 ftdi_set_signal(led, '0');
1102
1103 queued_retval = mpsse_flush(mpsse_ctx);
1104 if (queued_retval != ERROR_OK) {
1105 LOG_ERROR("MPSSE failed");
1106 goto skip;
1107 }
1108
1109 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
1110 int ack = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
1111
1112 LOG_DEBUG_IO("%s %s %s reg %X = %08"PRIx32,
1113 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
1114 swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
1115 swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
1116 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
1117 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
1118 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
1119
1120 if (ack != SWD_ACK_OK) {
1121 queued_retval = ack == SWD_ACK_WAIT ? ERROR_WAIT : ERROR_FAIL;
1122 goto skip;
1123
1124 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1125 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
1126 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
1127
1128 if (parity != parity_u32(data)) {
1129 LOG_ERROR("SWD Read data parity mismatch");
1130 queued_retval = ERROR_FAIL;
1131 goto skip;
1132 }
1133
1134 if (swd_cmd_queue[i].dst != NULL)
1135 *swd_cmd_queue[i].dst = data;
1136 }
1137 }
1138
1139 skip:
1140 swd_cmd_queue_length = 0;
1141 retval = queued_retval;
1142 queued_retval = ERROR_OK;
1143
1144 /* Queue a new "blink" */
1145 if (led && retval == ERROR_OK)
1146 ftdi_set_signal(led, '1');
1147
1148 return retval;
1149 }
1150
1151 static void ftdi_swd_queue_cmd(uint8_t cmd, uint32_t *dst, uint32_t data, uint32_t ap_delay_clk)
1152 {
1153 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
1154 /* Not enough room in the queue. Run the queue and increase its size for next time.
1155 * Note that it's not possible to avoid running the queue here, because mpsse contains
1156 * pointers into the queue which may be invalid after the realloc. */
1157 queued_retval = ftdi_swd_run_queue();
1158 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1159 if (q != NULL) {
1160 swd_cmd_queue = q;
1161 swd_cmd_queue_alloced *= 2;
1162 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1163 }
1164 }
1165
1166 if (queued_retval != ERROR_OK)
1167 return;
1168
1169 size_t i = swd_cmd_queue_length++;
1170 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1171
1172 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1173
1174 if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1175 /* Queue a read transaction */
1176 swd_cmd_queue[i].dst = dst;
1177
1178 ftdi_swd_swdio_en(false);
1179 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1180 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1181 ftdi_swd_swdio_en(true);
1182 } else {
1183 /* Queue a write transaction */
1184 ftdi_swd_swdio_en(false);
1185
1186 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1187 0, 1 + 3 + 1, SWD_MODE);
1188
1189 ftdi_swd_swdio_en(true);
1190
1191 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1192 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1193
1194 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1195 1 + 3 + 1, 32 + 1, SWD_MODE);
1196 }
1197
1198 /* Insert idle cycles after AP accesses to avoid WAIT */
1199 if (cmd & SWD_CMD_APnDP)
1200 mpsse_clock_data_out(mpsse_ctx, NULL, 0, ap_delay_clk, SWD_MODE);
1201
1202 }
1203
1204 static void ftdi_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
1205 {
1206 assert(cmd & SWD_CMD_RnW);
1207 ftdi_swd_queue_cmd(cmd, value, 0, ap_delay_clk);
1208 }
1209
1210 static void ftdi_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
1211 {
1212 assert(!(cmd & SWD_CMD_RnW));
1213 ftdi_swd_queue_cmd(cmd, NULL, value, ap_delay_clk);
1214 }
1215
1216 static int ftdi_swd_switch_seq(enum swd_special_seq seq)
1217 {
1218 switch (seq) {
1219 case LINE_RESET:
1220 LOG_DEBUG("SWD line reset");
1221 ftdi_swd_swdio_en(true);
1222 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1223 break;
1224 case JTAG_TO_SWD:
1225 LOG_DEBUG("JTAG-to-SWD");
1226 ftdi_swd_swdio_en(true);
1227 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1228 break;
1229 case SWD_TO_JTAG:
1230 LOG_DEBUG("SWD-to-JTAG");
1231 ftdi_swd_swdio_en(true);
1232 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1233 break;
1234 default:
1235 LOG_ERROR("Sequence %d not supported", seq);
1236 return ERROR_FAIL;
1237 }
1238
1239 return ERROR_OK;
1240 }
1241
1242 static const struct swd_driver ftdi_swd = {
1243 .init = ftdi_swd_init,
1244 .switch_seq = ftdi_swd_switch_seq,
1245 .read_reg = ftdi_swd_read_reg,
1246 .write_reg = ftdi_swd_write_reg,
1247 .run = ftdi_swd_run_queue,
1248 };
1249
1250 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1251
1252 static struct jtag_interface ftdi_interface = {
1253 .supported = DEBUG_CAP_TMS_SEQ,
1254 .execute_queue = ftdi_execute_queue,
1255 };
1256
1257 struct adapter_driver ftdi_adapter_driver = {
1258 .name = "ftdi",
1259 .transports = ftdi_transports,
1260 .commands = ftdi_command_handlers,
1261
1262 .init = ftdi_initialize,
1263 .quit = ftdi_quit,
1264 .reset = ftdi_reset,
1265 .speed = ftdi_speed,
1266 .khz = ftdi_khz,
1267 .speed_div = ftdi_speed_div,
1268
1269 .jtag_ops = &ftdi_interface,
1270 .swd_ops = &ftdi_swd,
1271 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)