driver/ftdi: skip trst in swd mode
[openocd.git] / src / jtag / drivers / ftdi.c
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
17 ***************************************************************************/
18
19 /**
20 * @file
21 * JTAG adapters based on the FT2232 full and high speed USB parts are
22 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
23 * are discrete, but development boards may integrate them as alternatives
24 * to more capable (and expensive) third party JTAG pods.
25 *
26 * JTAG uses only one of the two communications channels ("MPSSE engines")
27 * on these devices. Adapters based on FT4232 parts have four ports/channels
28 * (A/B/C/D), instead of just two (A/B).
29 *
30 * Especially on development boards integrating one of these chips (as
31 * opposed to discrete pods/dongles), the additional channels can be used
32 * for a variety of purposes, but OpenOCD only uses one channel at a time.
33 *
34 * - As a USB-to-serial adapter for the target's console UART ...
35 * which may be able to support ROM boot loaders that load initial
36 * firmware images to flash (or SRAM).
37 *
38 * - On systems which support ARM's SWD in addition to JTAG, or instead
39 * of it, that second port can be used for reading SWV/SWO trace data.
40 *
41 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
42 *
43 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
44 * request/response interactions involve round trips over the USB link.
45 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
46 * can for example poll quickly for a status change (usually taking on the
47 * order of microseconds not milliseconds) before beginning a queued
48 * transaction which require the previous one to have completed.
49 *
50 * There are dozens of adapters of this type, differing in details which
51 * this driver needs to understand. Those "layout" details are required
52 * as part of FT2232 driver configuration.
53 *
54 * This code uses information contained in the MPSSE specification which was
55 * found here:
56 * https://www.ftdichip.com/Support/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
57 * Hereafter this is called the "MPSSE Spec".
58 *
59 * The datasheet for the ftdichip.com's FT2232H part is here:
60 * https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf
61 *
62 * Also note the issue with code 0x4b (clock data to TMS) noted in
63 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
64 * which can affect longer JTAG state paths.
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 /* project specific includes */
72 #include <jtag/drivers/jtag_usb_common.h>
73 #include <jtag/interface.h>
74 #include <jtag/swd.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
77
78 #if IS_CYGWIN == 1
79 #include <windows.h>
80 #endif
81
82 #include <assert.h>
83
84 /* FTDI access library includes */
85 #include "mpsse.h"
86
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
88 #define JTAG_MODE_ALT (LSB_FIRST | NEG_EDGE_IN | NEG_EDGE_OUT)
89 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
90
91 static char *ftdi_device_desc;
92 static char *ftdi_serial;
93 static uint8_t ftdi_channel;
94 static uint8_t ftdi_jtag_mode = JTAG_MODE;
95
96 static bool swd_mode;
97
98 #define MAX_USB_IDS 8
99 /* vid = pid = 0 marks the end of the list */
100 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
101 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
102
103 static struct mpsse_ctx *mpsse_ctx;
104
105 struct signal {
106 const char *name;
107 uint16_t data_mask;
108 uint16_t input_mask;
109 uint16_t oe_mask;
110 bool invert_data;
111 bool invert_input;
112 bool invert_oe;
113 struct signal *next;
114 };
115
116 static struct signal *signals;
117
118 /* FIXME: Where to store per-instance data? We need an SWD context. */
119 static struct swd_cmd_queue_entry {
120 uint8_t cmd;
121 uint32_t *dst;
122 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
123 } *swd_cmd_queue;
124 static size_t swd_cmd_queue_length;
125 static size_t swd_cmd_queue_alloced;
126 static int queued_retval;
127 static int freq;
128
129 static uint16_t output;
130 static uint16_t direction;
131 static uint16_t jtag_output_init;
132 static uint16_t jtag_direction_init;
133
134 static int ftdi_swd_switch_seq(enum swd_special_seq seq);
135
136 static struct signal *find_signal_by_name(const char *name)
137 {
138 for (struct signal *sig = signals; sig; sig = sig->next) {
139 if (strcmp(name, sig->name) == 0)
140 return sig;
141 }
142 return NULL;
143 }
144
145 static struct signal *create_signal(const char *name)
146 {
147 struct signal **psig = &signals;
148 while (*psig)
149 psig = &(*psig)->next;
150
151 *psig = calloc(1, sizeof(**psig));
152 if (*psig == NULL)
153 return NULL;
154
155 (*psig)->name = strdup(name);
156 if ((*psig)->name == NULL) {
157 free(*psig);
158 *psig = NULL;
159 }
160 return *psig;
161 }
162
163 static int ftdi_set_signal(const struct signal *s, char value)
164 {
165 bool data;
166 bool oe;
167
168 if (s->data_mask == 0 && s->oe_mask == 0) {
169 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
170 return ERROR_FAIL;
171 }
172 switch (value) {
173 case '0':
174 data = s->invert_data;
175 oe = !s->invert_oe;
176 break;
177 case '1':
178 if (s->data_mask == 0) {
179 LOG_ERROR("interface can't drive '%s' high", s->name);
180 return ERROR_FAIL;
181 }
182 data = !s->invert_data;
183 oe = !s->invert_oe;
184 break;
185 case 'z':
186 case 'Z':
187 if (s->oe_mask == 0) {
188 LOG_ERROR("interface can't tri-state '%s'", s->name);
189 return ERROR_FAIL;
190 }
191 data = s->invert_data;
192 oe = s->invert_oe;
193 break;
194 default:
195 assert(0 && "invalid signal level specifier");
196 return ERROR_FAIL;
197 }
198
199 uint16_t old_output = output;
200 uint16_t old_direction = direction;
201
202 output = data ? output | s->data_mask : output & ~s->data_mask;
203 if (s->oe_mask == s->data_mask)
204 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
205 else
206 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
207
208 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
209 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
210 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
211 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
212
213 return ERROR_OK;
214 }
215
216 static int ftdi_get_signal(const struct signal *s, uint16_t *value_out)
217 {
218 uint8_t data_low = 0;
219 uint8_t data_high = 0;
220
221 if (s->input_mask == 0) {
222 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
223 return ERROR_FAIL;
224 }
225
226 if (s->input_mask & 0xff)
227 mpsse_read_data_bits_low_byte(mpsse_ctx, &data_low);
228 if (s->input_mask >> 8)
229 mpsse_read_data_bits_high_byte(mpsse_ctx, &data_high);
230
231 mpsse_flush(mpsse_ctx);
232
233 *value_out = (((uint16_t)data_high) << 8) | data_low;
234
235 if (s->invert_input)
236 *value_out = ~(*value_out);
237
238 *value_out &= s->input_mask;
239
240 return ERROR_OK;
241 }
242
243 /**
244 * Function move_to_state
245 * moves the TAP controller from the current state to a
246 * \a goal_state through a path given by tap_get_tms_path(). State transition
247 * logging is performed by delegation to clock_tms().
248 *
249 * @param goal_state is the destination state for the move.
250 */
251 static void move_to_state(tap_state_t goal_state)
252 {
253 tap_state_t start_state = tap_get_state();
254
255 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
256 lookup of the required TMS pattern to move to this state from the
257 start state.
258 */
259
260 /* do the 2 lookups */
261 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
262 int tms_count = tap_get_tms_path_len(start_state, goal_state);
263 assert(tms_count <= 8);
264
265 LOG_DEBUG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
266
267 /* Track state transitions step by step */
268 for (int i = 0; i < tms_count; i++)
269 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
270
271 mpsse_clock_tms_cs_out(mpsse_ctx,
272 &tms_bits,
273 0,
274 tms_count,
275 false,
276 ftdi_jtag_mode);
277 }
278
279 static int ftdi_speed(int speed)
280 {
281 int retval;
282 retval = mpsse_set_frequency(mpsse_ctx, speed);
283
284 if (retval < 0) {
285 LOG_ERROR("couldn't set FTDI TCK speed");
286 return retval;
287 }
288
289 if (!swd_mode && speed >= 10000000 && ftdi_jtag_mode != JTAG_MODE_ALT)
290 LOG_INFO("ftdi: if you experience problems at higher adapter clocks, try "
291 "the command \"ftdi_tdo_sample_edge falling\"");
292 return ERROR_OK;
293 }
294
295 static int ftdi_speed_div(int speed, int *khz)
296 {
297 *khz = speed / 1000;
298 return ERROR_OK;
299 }
300
301 static int ftdi_khz(int khz, int *jtag_speed)
302 {
303 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
304 LOG_DEBUG("RCLK not supported");
305 return ERROR_FAIL;
306 }
307
308 *jtag_speed = khz * 1000;
309 return ERROR_OK;
310 }
311
312 static void ftdi_end_state(tap_state_t state)
313 {
314 if (tap_is_state_stable(state))
315 tap_set_end_state(state);
316 else {
317 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
318 exit(-1);
319 }
320 }
321
322 static void ftdi_execute_runtest(struct jtag_command *cmd)
323 {
324 int i;
325 uint8_t zero = 0;
326
327 LOG_DEBUG_IO("runtest %i cycles, end in %s",
328 cmd->cmd.runtest->num_cycles,
329 tap_state_name(cmd->cmd.runtest->end_state));
330
331 if (tap_get_state() != TAP_IDLE)
332 move_to_state(TAP_IDLE);
333
334 /* TODO: Reuse ftdi_execute_stableclocks */
335 i = cmd->cmd.runtest->num_cycles;
336 while (i > 0) {
337 /* there are no state transitions in this code, so omit state tracking */
338 unsigned this_len = i > 7 ? 7 : i;
339 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, ftdi_jtag_mode);
340 i -= this_len;
341 }
342
343 ftdi_end_state(cmd->cmd.runtest->end_state);
344
345 if (tap_get_state() != tap_get_end_state())
346 move_to_state(tap_get_end_state());
347
348 LOG_DEBUG_IO("runtest: %i, end in %s",
349 cmd->cmd.runtest->num_cycles,
350 tap_state_name(tap_get_end_state()));
351 }
352
353 static void ftdi_execute_statemove(struct jtag_command *cmd)
354 {
355 LOG_DEBUG_IO("statemove end in %s",
356 tap_state_name(cmd->cmd.statemove->end_state));
357
358 ftdi_end_state(cmd->cmd.statemove->end_state);
359
360 /* shortest-path move to desired end state */
361 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
362 move_to_state(tap_get_end_state());
363 }
364
365 /**
366 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
367 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
368 */
369 static void ftdi_execute_tms(struct jtag_command *cmd)
370 {
371 LOG_DEBUG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
372
373 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
374 mpsse_clock_tms_cs_out(mpsse_ctx,
375 cmd->cmd.tms->bits,
376 0,
377 cmd->cmd.tms->num_bits,
378 false,
379 ftdi_jtag_mode);
380 }
381
382 static void ftdi_execute_pathmove(struct jtag_command *cmd)
383 {
384 tap_state_t *path = cmd->cmd.pathmove->path;
385 int num_states = cmd->cmd.pathmove->num_states;
386
387 LOG_DEBUG_IO("pathmove: %i states, current: %s end: %s", num_states,
388 tap_state_name(tap_get_state()),
389 tap_state_name(path[num_states-1]));
390
391 int state_count = 0;
392 unsigned bit_count = 0;
393 uint8_t tms_byte = 0;
394
395 LOG_DEBUG_IO("-");
396
397 /* this loop verifies that the path is legal and logs each state in the path */
398 while (num_states--) {
399
400 /* either TMS=0 or TMS=1 must work ... */
401 if (tap_state_transition(tap_get_state(), false)
402 == path[state_count])
403 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
404 else if (tap_state_transition(tap_get_state(), true)
405 == path[state_count]) {
406 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
407
408 /* ... or else the caller goofed BADLY */
409 } else {
410 LOG_ERROR("BUG: %s -> %s isn't a valid "
411 "TAP state transition",
412 tap_state_name(tap_get_state()),
413 tap_state_name(path[state_count]));
414 exit(-1);
415 }
416
417 tap_set_state(path[state_count]);
418 state_count++;
419
420 if (bit_count == 7 || num_states == 0) {
421 mpsse_clock_tms_cs_out(mpsse_ctx,
422 &tms_byte,
423 0,
424 bit_count,
425 false,
426 ftdi_jtag_mode);
427 bit_count = 0;
428 }
429 }
430 tap_set_end_state(tap_get_state());
431 }
432
433 static void ftdi_execute_scan(struct jtag_command *cmd)
434 {
435 LOG_DEBUG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
436 jtag_scan_type(cmd->cmd.scan));
437
438 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
439 while (cmd->cmd.scan->num_fields > 0
440 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
441 cmd->cmd.scan->num_fields--;
442 LOG_DEBUG_IO("discarding trailing empty field");
443 }
444
445 if (cmd->cmd.scan->num_fields == 0) {
446 LOG_DEBUG_IO("empty scan, doing nothing");
447 return;
448 }
449
450 if (cmd->cmd.scan->ir_scan) {
451 if (tap_get_state() != TAP_IRSHIFT)
452 move_to_state(TAP_IRSHIFT);
453 } else {
454 if (tap_get_state() != TAP_DRSHIFT)
455 move_to_state(TAP_DRSHIFT);
456 }
457
458 ftdi_end_state(cmd->cmd.scan->end_state);
459
460 struct scan_field *field = cmd->cmd.scan->fields;
461 unsigned scan_size = 0;
462
463 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
464 scan_size += field->num_bits;
465 LOG_DEBUG_IO("%s%s field %d/%d %d bits",
466 field->in_value ? "in" : "",
467 field->out_value ? "out" : "",
468 i,
469 cmd->cmd.scan->num_fields,
470 field->num_bits);
471
472 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
473 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
474 * movement. This last field can't have length zero, it was checked above. */
475 mpsse_clock_data(mpsse_ctx,
476 field->out_value,
477 0,
478 field->in_value,
479 0,
480 field->num_bits - 1,
481 ftdi_jtag_mode);
482 uint8_t last_bit = 0;
483 if (field->out_value)
484 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
485 uint8_t tms_bits = 0x01;
486 mpsse_clock_tms_cs(mpsse_ctx,
487 &tms_bits,
488 0,
489 field->in_value,
490 field->num_bits - 1,
491 1,
492 last_bit,
493 ftdi_jtag_mode);
494 tap_set_state(tap_state_transition(tap_get_state(), 1));
495 mpsse_clock_tms_cs_out(mpsse_ctx,
496 &tms_bits,
497 1,
498 1,
499 last_bit,
500 ftdi_jtag_mode);
501 tap_set_state(tap_state_transition(tap_get_state(), 0));
502 } else
503 mpsse_clock_data(mpsse_ctx,
504 field->out_value,
505 0,
506 field->in_value,
507 0,
508 field->num_bits,
509 ftdi_jtag_mode);
510 }
511
512 if (tap_get_state() != tap_get_end_state())
513 move_to_state(tap_get_end_state());
514
515 LOG_DEBUG_IO("%s scan, %i bits, end in %s",
516 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
517 tap_state_name(tap_get_end_state()));
518 }
519
520 static int ftdi_reset(int trst, int srst)
521 {
522 struct signal *sig_ntrst = find_signal_by_name("nTRST");
523 struct signal *sig_nsrst = find_signal_by_name("nSRST");
524
525 LOG_DEBUG_IO("reset trst: %i srst %i", trst, srst);
526
527 if (!swd_mode) {
528 if (trst == 1) {
529 if (sig_ntrst)
530 ftdi_set_signal(sig_ntrst, '0');
531 else
532 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
533 } else if (sig_ntrst && jtag_get_reset_config() & RESET_HAS_TRST &&
534 trst == 0) {
535 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
536 ftdi_set_signal(sig_ntrst, 'z');
537 else
538 ftdi_set_signal(sig_ntrst, '1');
539 }
540 }
541
542 if (srst == 1) {
543 if (sig_nsrst)
544 ftdi_set_signal(sig_nsrst, '0');
545 else
546 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
547 } else if (sig_nsrst && jtag_get_reset_config() & RESET_HAS_SRST &&
548 srst == 0) {
549 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
550 ftdi_set_signal(sig_nsrst, '1');
551 else
552 ftdi_set_signal(sig_nsrst, 'z');
553 }
554
555 return mpsse_flush(mpsse_ctx);
556 }
557
558 static void ftdi_execute_sleep(struct jtag_command *cmd)
559 {
560 LOG_DEBUG_IO("sleep %" PRIu32, cmd->cmd.sleep->us);
561
562 mpsse_flush(mpsse_ctx);
563 jtag_sleep(cmd->cmd.sleep->us);
564 LOG_DEBUG_IO("sleep %" PRIu32 " usec while in %s",
565 cmd->cmd.sleep->us,
566 tap_state_name(tap_get_state()));
567 }
568
569 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
570 {
571 /* this is only allowed while in a stable state. A check for a stable
572 * state was done in jtag_add_clocks()
573 */
574 int num_cycles = cmd->cmd.stableclocks->num_cycles;
575
576 /* 7 bits of either ones or zeros. */
577 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
578
579 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
580 * the correct level and remain there during the scan */
581 while (num_cycles > 0) {
582 /* there are no state transitions in this code, so omit state tracking */
583 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
584 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, ftdi_jtag_mode);
585 num_cycles -= this_len;
586 }
587
588 LOG_DEBUG_IO("clocks %i while in %s",
589 cmd->cmd.stableclocks->num_cycles,
590 tap_state_name(tap_get_state()));
591 }
592
593 static void ftdi_execute_command(struct jtag_command *cmd)
594 {
595 switch (cmd->type) {
596 case JTAG_RUNTEST:
597 ftdi_execute_runtest(cmd);
598 break;
599 case JTAG_TLR_RESET:
600 ftdi_execute_statemove(cmd);
601 break;
602 case JTAG_PATHMOVE:
603 ftdi_execute_pathmove(cmd);
604 break;
605 case JTAG_SCAN:
606 ftdi_execute_scan(cmd);
607 break;
608 case JTAG_SLEEP:
609 ftdi_execute_sleep(cmd);
610 break;
611 case JTAG_STABLECLOCKS:
612 ftdi_execute_stableclocks(cmd);
613 break;
614 case JTAG_TMS:
615 ftdi_execute_tms(cmd);
616 break;
617 default:
618 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
619 break;
620 }
621 }
622
623 static int ftdi_execute_queue(void)
624 {
625 /* blink, if the current layout has that feature */
626 struct signal *led = find_signal_by_name("LED");
627 if (led)
628 ftdi_set_signal(led, '1');
629
630 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
631 /* fill the write buffer with the desired command */
632 ftdi_execute_command(cmd);
633 }
634
635 if (led)
636 ftdi_set_signal(led, '0');
637
638 int retval = mpsse_flush(mpsse_ctx);
639 if (retval != ERROR_OK)
640 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
641
642 return retval;
643 }
644
645 static int ftdi_initialize(void)
646 {
647 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
648 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
649 else
650 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
651
652 if (!ftdi_vid[0] && !ftdi_pid[0]) {
653 LOG_ERROR("Please specify ftdi_vid_pid");
654 return ERROR_JTAG_INIT_FAILED;
655 }
656
657 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
658 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
659 ftdi_serial, jtag_usb_get_location(), ftdi_channel);
660 if (mpsse_ctx)
661 break;
662 }
663
664 if (!mpsse_ctx)
665 return ERROR_JTAG_INIT_FAILED;
666
667 output = jtag_output_init;
668 direction = jtag_direction_init;
669
670 if (swd_mode) {
671 struct signal *sig = find_signal_by_name("SWD_EN");
672 if (!sig) {
673 LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
674 return ERROR_JTAG_INIT_FAILED;
675 }
676 /* A dummy SWD_EN would have zero mask */
677 if (sig->data_mask)
678 ftdi_set_signal(sig, '1');
679 }
680
681 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
682 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
683
684 mpsse_loopback_config(mpsse_ctx, false);
685
686 freq = mpsse_set_frequency(mpsse_ctx, jtag_get_speed_khz() * 1000);
687
688 return mpsse_flush(mpsse_ctx);
689 }
690
691 static int ftdi_quit(void)
692 {
693 mpsse_close(mpsse_ctx);
694
695 struct signal *sig = signals;
696 while (sig) {
697 struct signal *next = sig->next;
698 free((void *)sig->name);
699 free(sig);
700 sig = next;
701 }
702
703 free(ftdi_device_desc);
704 free(ftdi_serial);
705
706 free(swd_cmd_queue);
707
708 return ERROR_OK;
709 }
710
711 COMMAND_HANDLER(ftdi_handle_device_desc_command)
712 {
713 if (CMD_ARGC == 1) {
714 free(ftdi_device_desc);
715 ftdi_device_desc = strdup(CMD_ARGV[0]);
716 } else {
717 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
718 }
719
720 return ERROR_OK;
721 }
722
723 COMMAND_HANDLER(ftdi_handle_serial_command)
724 {
725 if (CMD_ARGC == 1) {
726 free(ftdi_serial);
727 ftdi_serial = strdup(CMD_ARGV[0]);
728 } else {
729 return ERROR_COMMAND_SYNTAX_ERROR;
730 }
731
732 return ERROR_OK;
733 }
734
735 COMMAND_HANDLER(ftdi_handle_channel_command)
736 {
737 if (CMD_ARGC == 1)
738 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
739 else
740 return ERROR_COMMAND_SYNTAX_ERROR;
741
742 return ERROR_OK;
743 }
744
745 COMMAND_HANDLER(ftdi_handle_layout_init_command)
746 {
747 if (CMD_ARGC != 2)
748 return ERROR_COMMAND_SYNTAX_ERROR;
749
750 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
751 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
752
753 return ERROR_OK;
754 }
755
756 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
757 {
758 if (CMD_ARGC < 1)
759 return ERROR_COMMAND_SYNTAX_ERROR;
760
761 bool invert_data = false;
762 uint16_t data_mask = 0;
763 bool invert_input = false;
764 uint16_t input_mask = 0;
765 bool invert_oe = false;
766 uint16_t oe_mask = 0;
767 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
768 if (strcmp("-data", CMD_ARGV[i]) == 0) {
769 invert_data = false;
770 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
771 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
772 invert_data = true;
773 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
774 } else if (strcmp("-input", CMD_ARGV[i]) == 0) {
775 invert_input = false;
776 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
777 } else if (strcmp("-ninput", CMD_ARGV[i]) == 0) {
778 invert_input = true;
779 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], input_mask);
780 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
781 invert_oe = false;
782 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
783 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
784 invert_oe = true;
785 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
786 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
787 !strcmp("-nalias", CMD_ARGV[i])) {
788 if (!strcmp("-nalias", CMD_ARGV[i])) {
789 invert_data = true;
790 invert_input = true;
791 }
792 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
793 if (!sig) {
794 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
795 return ERROR_FAIL;
796 }
797 data_mask = sig->data_mask;
798 input_mask = sig->input_mask;
799 oe_mask = sig->oe_mask;
800 invert_input ^= sig->invert_input;
801 invert_oe = sig->invert_oe;
802 invert_data ^= sig->invert_data;
803 } else {
804 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
805 return ERROR_COMMAND_SYNTAX_ERROR;
806 }
807 }
808
809 struct signal *sig;
810 sig = find_signal_by_name(CMD_ARGV[0]);
811 if (!sig)
812 sig = create_signal(CMD_ARGV[0]);
813 if (!sig) {
814 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
815 return ERROR_FAIL;
816 }
817
818 sig->invert_data = invert_data;
819 sig->data_mask = data_mask;
820 sig->invert_input = invert_input;
821 sig->input_mask = input_mask;
822 sig->invert_oe = invert_oe;
823 sig->oe_mask = oe_mask;
824
825 return ERROR_OK;
826 }
827
828 COMMAND_HANDLER(ftdi_handle_set_signal_command)
829 {
830 if (CMD_ARGC < 2)
831 return ERROR_COMMAND_SYNTAX_ERROR;
832
833 struct signal *sig;
834 sig = find_signal_by_name(CMD_ARGV[0]);
835 if (!sig) {
836 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
837 return ERROR_FAIL;
838 }
839
840 switch (*CMD_ARGV[1]) {
841 case '0':
842 case '1':
843 case 'z':
844 case 'Z':
845 /* single character level specifier only */
846 if (CMD_ARGV[1][1] == '\0') {
847 ftdi_set_signal(sig, *CMD_ARGV[1]);
848 break;
849 }
850 /* fallthrough */
851 default:
852 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
853 return ERROR_COMMAND_SYNTAX_ERROR;
854 }
855
856 return mpsse_flush(mpsse_ctx);
857 }
858
859 COMMAND_HANDLER(ftdi_handle_get_signal_command)
860 {
861 if (CMD_ARGC < 1)
862 return ERROR_COMMAND_SYNTAX_ERROR;
863
864 struct signal *sig;
865 uint16_t sig_data = 0;
866 sig = find_signal_by_name(CMD_ARGV[0]);
867 if (!sig) {
868 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
869 return ERROR_FAIL;
870 }
871
872 int ret = ftdi_get_signal(sig, &sig_data);
873 if (ret != ERROR_OK)
874 return ret;
875
876 LOG_USER("Signal %s = %#06x", sig->name, sig_data);
877
878 return ERROR_OK;
879 }
880
881 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
882 {
883 if (CMD_ARGC > MAX_USB_IDS * 2) {
884 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
885 "(maximum is %d pairs)", MAX_USB_IDS);
886 CMD_ARGC = MAX_USB_IDS * 2;
887 }
888 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
889 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
890 if (CMD_ARGC < 2)
891 return ERROR_COMMAND_SYNTAX_ERROR;
892 /* remove the incomplete trailing id */
893 CMD_ARGC -= 1;
894 }
895
896 unsigned i;
897 for (i = 0; i < CMD_ARGC; i += 2) {
898 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
899 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
900 }
901
902 /*
903 * Explicitly terminate, in case there are multiples instances of
904 * ftdi_vid_pid.
905 */
906 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
907
908 return ERROR_OK;
909 }
910
911 COMMAND_HANDLER(ftdi_handle_tdo_sample_edge_command)
912 {
913 Jim_Nvp *n;
914 static const Jim_Nvp nvp_ftdi_jtag_modes[] = {
915 { .name = "rising", .value = JTAG_MODE },
916 { .name = "falling", .value = JTAG_MODE_ALT },
917 { .name = NULL, .value = -1 },
918 };
919
920 if (CMD_ARGC > 0) {
921 n = Jim_Nvp_name2value_simple(nvp_ftdi_jtag_modes, CMD_ARGV[0]);
922 if (n->name == NULL)
923 return ERROR_COMMAND_SYNTAX_ERROR;
924 ftdi_jtag_mode = n->value;
925
926 }
927
928 n = Jim_Nvp_value2name_simple(nvp_ftdi_jtag_modes, ftdi_jtag_mode);
929 command_print(CMD, "ftdi samples TDO on %s edge of TCK", n->name);
930
931 return ERROR_OK;
932 }
933
934 static const struct command_registration ftdi_command_handlers[] = {
935 {
936 .name = "ftdi_device_desc",
937 .handler = &ftdi_handle_device_desc_command,
938 .mode = COMMAND_CONFIG,
939 .help = "set the USB device description of the FTDI device",
940 .usage = "description_string",
941 },
942 {
943 .name = "ftdi_serial",
944 .handler = &ftdi_handle_serial_command,
945 .mode = COMMAND_CONFIG,
946 .help = "set the serial number of the FTDI device",
947 .usage = "serial_string",
948 },
949 {
950 .name = "ftdi_channel",
951 .handler = &ftdi_handle_channel_command,
952 .mode = COMMAND_CONFIG,
953 .help = "set the channel of the FTDI device that is used as JTAG",
954 .usage = "(0-3)",
955 },
956 {
957 .name = "ftdi_layout_init",
958 .handler = &ftdi_handle_layout_init_command,
959 .mode = COMMAND_CONFIG,
960 .help = "initialize the FTDI GPIO signals used "
961 "to control output-enables and reset signals",
962 .usage = "data direction",
963 },
964 {
965 .name = "ftdi_layout_signal",
966 .handler = &ftdi_handle_layout_signal_command,
967 .mode = COMMAND_ANY,
968 .help = "define a signal controlled by one or more FTDI GPIO as data "
969 "and/or output enable",
970 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
971 },
972 {
973 .name = "ftdi_set_signal",
974 .handler = &ftdi_handle_set_signal_command,
975 .mode = COMMAND_EXEC,
976 .help = "control a layout-specific signal",
977 .usage = "name (1|0|z)",
978 },
979 {
980 .name = "ftdi_get_signal",
981 .handler = &ftdi_handle_get_signal_command,
982 .mode = COMMAND_EXEC,
983 .help = "read the value of a layout-specific signal",
984 .usage = "name",
985 },
986 {
987 .name = "ftdi_vid_pid",
988 .handler = &ftdi_handle_vid_pid_command,
989 .mode = COMMAND_CONFIG,
990 .help = "the vendor ID and product ID of the FTDI device",
991 .usage = "(vid pid)* ",
992 },
993 {
994 .name = "ftdi_tdo_sample_edge",
995 .handler = &ftdi_handle_tdo_sample_edge_command,
996 .mode = COMMAND_ANY,
997 .help = "set which TCK clock edge is used for sampling TDO "
998 "- default is rising-edge (Setting to falling-edge may "
999 "allow signalling speed increase)",
1000 .usage = "(rising|falling)",
1001 },
1002 COMMAND_REGISTRATION_DONE
1003 };
1004
1005 static int create_default_signal(const char *name, uint16_t data_mask)
1006 {
1007 struct signal *sig = create_signal(name);
1008 if (!sig) {
1009 LOG_ERROR("failed to create signal %s", name);
1010 return ERROR_FAIL;
1011 }
1012 sig->invert_data = false;
1013 sig->data_mask = data_mask;
1014 sig->invert_oe = false;
1015 sig->oe_mask = 0;
1016
1017 return ERROR_OK;
1018 }
1019
1020 static int create_signals(void)
1021 {
1022 if (create_default_signal("TCK", 0x01) != ERROR_OK)
1023 return ERROR_FAIL;
1024 if (create_default_signal("TDI", 0x02) != ERROR_OK)
1025 return ERROR_FAIL;
1026 if (create_default_signal("TDO", 0x04) != ERROR_OK)
1027 return ERROR_FAIL;
1028 if (create_default_signal("TMS", 0x08) != ERROR_OK)
1029 return ERROR_FAIL;
1030 return ERROR_OK;
1031 }
1032
1033 static int ftdi_swd_init(void)
1034 {
1035 LOG_INFO("FTDI SWD mode enabled");
1036 swd_mode = true;
1037
1038 if (create_signals() != ERROR_OK)
1039 return ERROR_FAIL;
1040
1041 swd_cmd_queue_alloced = 10;
1042 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
1043
1044 return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
1045 }
1046
1047 static void ftdi_swd_swdio_en(bool enable)
1048 {
1049 struct signal *oe = find_signal_by_name("SWDIO_OE");
1050 if (oe) {
1051 if (oe->data_mask)
1052 ftdi_set_signal(oe, enable ? '1' : '0');
1053 else {
1054 /* Sets TDI/DO pin to input during rx when both pins are connected
1055 to SWDIO */
1056 if (enable)
1057 direction |= jtag_direction_init & 0x0002U;
1058 else
1059 direction &= ~0x0002U;
1060 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
1061 }
1062 }
1063 }
1064
1065 /**
1066 * Flush the MPSSE queue and process the SWD transaction queue
1067 * @return
1068 */
1069 static int ftdi_swd_run_queue(void)
1070 {
1071 LOG_DEBUG_IO("Executing %zu queued transactions", swd_cmd_queue_length);
1072 int retval;
1073 struct signal *led = find_signal_by_name("LED");
1074
1075 if (queued_retval != ERROR_OK) {
1076 LOG_DEBUG_IO("Skipping due to previous errors: %d", queued_retval);
1077 goto skip;
1078 }
1079
1080 /* A transaction must be followed by another transaction or at least 8 idle cycles to
1081 * ensure that data is clocked through the AP. */
1082 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
1083
1084 /* Terminate the "blink", if the current layout has that feature */
1085 if (led)
1086 ftdi_set_signal(led, '0');
1087
1088 queued_retval = mpsse_flush(mpsse_ctx);
1089 if (queued_retval != ERROR_OK) {
1090 LOG_ERROR("MPSSE failed");
1091 goto skip;
1092 }
1093
1094 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
1095 int ack = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
1096
1097 LOG_DEBUG_IO("%s %s %s reg %X = %08"PRIx32,
1098 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
1099 swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
1100 swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
1101 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
1102 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
1103 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
1104
1105 if (ack != SWD_ACK_OK) {
1106 queued_retval = ack == SWD_ACK_WAIT ? ERROR_WAIT : ERROR_FAIL;
1107 goto skip;
1108
1109 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1110 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
1111 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
1112
1113 if (parity != parity_u32(data)) {
1114 LOG_ERROR("SWD Read data parity mismatch");
1115 queued_retval = ERROR_FAIL;
1116 goto skip;
1117 }
1118
1119 if (swd_cmd_queue[i].dst != NULL)
1120 *swd_cmd_queue[i].dst = data;
1121 }
1122 }
1123
1124 skip:
1125 swd_cmd_queue_length = 0;
1126 retval = queued_retval;
1127 queued_retval = ERROR_OK;
1128
1129 /* Queue a new "blink" */
1130 if (led && retval == ERROR_OK)
1131 ftdi_set_signal(led, '1');
1132
1133 return retval;
1134 }
1135
1136 static void ftdi_swd_queue_cmd(uint8_t cmd, uint32_t *dst, uint32_t data, uint32_t ap_delay_clk)
1137 {
1138 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
1139 /* Not enough room in the queue. Run the queue and increase its size for next time.
1140 * Note that it's not possible to avoid running the queue here, because mpsse contains
1141 * pointers into the queue which may be invalid after the realloc. */
1142 queued_retval = ftdi_swd_run_queue();
1143 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1144 if (q != NULL) {
1145 swd_cmd_queue = q;
1146 swd_cmd_queue_alloced *= 2;
1147 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1148 }
1149 }
1150
1151 if (queued_retval != ERROR_OK)
1152 return;
1153
1154 size_t i = swd_cmd_queue_length++;
1155 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1156
1157 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1158
1159 if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1160 /* Queue a read transaction */
1161 swd_cmd_queue[i].dst = dst;
1162
1163 ftdi_swd_swdio_en(false);
1164 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1165 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1166 ftdi_swd_swdio_en(true);
1167 } else {
1168 /* Queue a write transaction */
1169 ftdi_swd_swdio_en(false);
1170
1171 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1172 0, 1 + 3 + 1, SWD_MODE);
1173
1174 ftdi_swd_swdio_en(true);
1175
1176 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1177 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1178
1179 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1180 1 + 3 + 1, 32 + 1, SWD_MODE);
1181 }
1182
1183 /* Insert idle cycles after AP accesses to avoid WAIT */
1184 if (cmd & SWD_CMD_APnDP)
1185 mpsse_clock_data_out(mpsse_ctx, NULL, 0, ap_delay_clk, SWD_MODE);
1186
1187 }
1188
1189 static void ftdi_swd_read_reg(uint8_t cmd, uint32_t *value, uint32_t ap_delay_clk)
1190 {
1191 assert(cmd & SWD_CMD_RnW);
1192 ftdi_swd_queue_cmd(cmd, value, 0, ap_delay_clk);
1193 }
1194
1195 static void ftdi_swd_write_reg(uint8_t cmd, uint32_t value, uint32_t ap_delay_clk)
1196 {
1197 assert(!(cmd & SWD_CMD_RnW));
1198 ftdi_swd_queue_cmd(cmd, NULL, value, ap_delay_clk);
1199 }
1200
1201 static int ftdi_swd_switch_seq(enum swd_special_seq seq)
1202 {
1203 switch (seq) {
1204 case LINE_RESET:
1205 LOG_DEBUG("SWD line reset");
1206 ftdi_swd_swdio_en(true);
1207 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1208 break;
1209 case JTAG_TO_SWD:
1210 LOG_DEBUG("JTAG-to-SWD");
1211 ftdi_swd_swdio_en(true);
1212 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1213 break;
1214 case SWD_TO_JTAG:
1215 LOG_DEBUG("SWD-to-JTAG");
1216 ftdi_swd_swdio_en(true);
1217 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1218 break;
1219 default:
1220 LOG_ERROR("Sequence %d not supported", seq);
1221 return ERROR_FAIL;
1222 }
1223
1224 return ERROR_OK;
1225 }
1226
1227 static const struct swd_driver ftdi_swd = {
1228 .init = ftdi_swd_init,
1229 .switch_seq = ftdi_swd_switch_seq,
1230 .read_reg = ftdi_swd_read_reg,
1231 .write_reg = ftdi_swd_write_reg,
1232 .run = ftdi_swd_run_queue,
1233 };
1234
1235 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1236
1237 static struct jtag_interface ftdi_interface = {
1238 .supported = DEBUG_CAP_TMS_SEQ,
1239 .execute_queue = ftdi_execute_queue,
1240 };
1241
1242 struct adapter_driver ftdi_adapter_driver = {
1243 .name = "ftdi",
1244 .transports = ftdi_transports,
1245 .commands = ftdi_command_handlers,
1246
1247 .init = ftdi_initialize,
1248 .quit = ftdi_quit,
1249 .reset = ftdi_reset,
1250 .speed = ftdi_speed,
1251 .khz = ftdi_khz,
1252 .speed_div = ftdi_speed_div,
1253
1254 .jtag_ops = &ftdi_interface,
1255 .swd_ops = &ftdi_swd,
1256 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)