arm_adi_v5: add arm Neoverse N1 part numbers
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 static const struct {
897 enum ap_type type;
898 const char *description;
899 } ap_types[] = {
900 { AP_TYPE_JTAG_AP, "JTAG-AP" },
901 { AP_TYPE_COM_AP, "COM-AP" },
902 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
903 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
904 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
905 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
906 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
907 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
908 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
909 };
910
911 static const char *ap_type_to_description(enum ap_type type)
912 {
913 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
914 if (type == ap_types[i].type)
915 return ap_types[i].description;
916
917 return "Unknown";
918 }
919
920 /*
921 * This function checks the ID for each access port to find the requested Access Port type
922 */
923 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
924 {
925 int ap_num;
926
927 /* Maximum AP number is 255 since the SELECT register is 8 bits */
928 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
929
930 /* read the IDR register of the Access Port */
931 uint32_t id_val = 0;
932
933 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
934 if (retval != ERROR_OK)
935 return retval;
936
937 retval = dap_run(dap);
938
939 /* Reading register for a non-existent AP should not cause an error,
940 * but just to be sure, try to continue searching if an error does happen.
941 */
942 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
943 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
944 ap_type_to_description(type_to_find),
945 ap_num, id_val);
946
947 *ap_out = &dap->ap[ap_num];
948 return ERROR_OK;
949 }
950 }
951
952 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
953 return ERROR_FAIL;
954 }
955
956 int dap_get_debugbase(struct adiv5_ap *ap,
957 target_addr_t *dbgbase, uint32_t *apid)
958 {
959 struct adiv5_dap *dap = ap->dap;
960 int retval;
961 uint32_t baseptr_upper, baseptr_lower;
962
963 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
964 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
965 if (retval != ERROR_OK)
966 return retval;
967 }
968 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
969 if (retval != ERROR_OK)
970 return retval;
971 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
972 if (retval != ERROR_OK)
973 return retval;
974 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
975 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
976 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
977 if (retval != ERROR_OK)
978 return retval;
979 }
980
981 retval = dap_run(dap);
982 if (retval != ERROR_OK)
983 return retval;
984
985 if (!is_64bit_ap(ap))
986 baseptr_upper = 0;
987 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
988
989 return ERROR_OK;
990 }
991
992 int dap_lookup_cs_component(struct adiv5_ap *ap,
993 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
994 {
995 uint32_t romentry, entry_offset = 0, devtype;
996 target_addr_t component_base;
997 int retval;
998
999 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1000 *addr = 0;
1001
1002 do {
1003 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1004 entry_offset, &romentry);
1005 if (retval != ERROR_OK)
1006 return retval;
1007
1008 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1009
1010 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1011 uint32_t c_cid1;
1012 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1013 if (retval != ERROR_OK) {
1014 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1015 ", the corresponding core might be turned off", component_base);
1016 return retval;
1017 }
1018 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1019 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1020 retval = dap_lookup_cs_component(ap, component_base,
1021 type, addr, idx);
1022 if (retval == ERROR_OK)
1023 break;
1024 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1025 return retval;
1026 }
1027
1028 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1029 if (retval != ERROR_OK)
1030 return retval;
1031 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1032 if (!*idx) {
1033 *addr = component_base;
1034 break;
1035 } else
1036 (*idx)--;
1037 }
1038 }
1039 entry_offset += 4;
1040 } while ((romentry > 0) && (entry_offset < 0xf00));
1041
1042 if (!*addr)
1043 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1044
1045 return ERROR_OK;
1046 }
1047
1048 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1049 {
1050 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1051 assert(ap && cid && pid);
1052
1053 uint32_t cid0, cid1, cid2, cid3;
1054 uint32_t pid0, pid1, pid2, pid3, pid4;
1055 int retval;
1056
1057 /* IDs are in last 4K section */
1058 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1062 if (retval != ERROR_OK)
1063 return retval;
1064 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1065 if (retval != ERROR_OK)
1066 return retval;
1067 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1068 if (retval != ERROR_OK)
1069 return retval;
1070 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1071 if (retval != ERROR_OK)
1072 return retval;
1073 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1083 if (retval != ERROR_OK)
1084 return retval;
1085
1086 retval = dap_run(ap->dap);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 *cid = (cid3 & 0xff) << 24
1091 | (cid2 & 0xff) << 16
1092 | (cid1 & 0xff) << 8
1093 | (cid0 & 0xff);
1094 *pid = (uint64_t)(pid4 & 0xff) << 32
1095 | (pid3 & 0xff) << 24
1096 | (pid2 & 0xff) << 16
1097 | (pid1 & 0xff) << 8
1098 | (pid0 & 0xff);
1099
1100 return ERROR_OK;
1101 }
1102
1103 /* Part number interpretations are from Cortex
1104 * core specs, the CoreSight components TRM
1105 * (ARM DDI 0314H), CoreSight System Design
1106 * Guide (ARM DGI 0012D) and ETM specs; also
1107 * from chip observation (e.g. TI SDTI).
1108 */
1109
1110 /* The legacy code only used the part number field to identify CoreSight peripherals.
1111 * This meant that the same part number from two different manufacturers looked the same.
1112 * It is desirable for all future additions to identify with both part number and JEP106.
1113 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1114 */
1115
1116 #define ANY_ID 0x1000
1117
1118 static const struct dap_part_nums {
1119 uint16_t designer_id;
1120 uint16_t part_num;
1121 const char *type;
1122 const char *full;
1123 } dap_part_nums[] = {
1124 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1125 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1126 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1127 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1128 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1129 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1130 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1131 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1132 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1133 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1134 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1135 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1136 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1137 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1138 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1139 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1140 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1141 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1142 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1143 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1144 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1145 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1146 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1147 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1148 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1149 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1150 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1151 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1152 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1153 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1154 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1155 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1156 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1157 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1158 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1159 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1160 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1161 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1162 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1163 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1164 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1165 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1166 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1167 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1168 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1169 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1170 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1171 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1172 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1173 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1174 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1175 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1176 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1177 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1178 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1179 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1180 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1181 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1182 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1183 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1184 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1185 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1186 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1187 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1188 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1189 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1190 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1191 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1192 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1193 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1194 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1195 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1196 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1197 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1198 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1199 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1200 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1201 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1202 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1203 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1204 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1205 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1206 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1207 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1208 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1209 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1210 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1211 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1212 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1213 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1214 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1215 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1216 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1217 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1218 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1219 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1220 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1221 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1222 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1223 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1224 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1225 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1226 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1227 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1228 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1229 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1230 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1231 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1232 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1233 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1234 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1235 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1236 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1237 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1238 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1239 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1240 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1241 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1242 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1243 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1244 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1245 /* legacy comment: 0x113: what? */
1246 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1247 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1248 };
1249
1250 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1251 {
1252 static const struct dap_part_nums unknown = {
1253 .type = "Unrecognized",
1254 .full = "",
1255 };
1256
1257 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++) {
1258 if (dap_part_nums[i].designer_id != designer_id && dap_part_nums[i].designer_id != ANY_ID)
1259 continue;
1260 if (dap_part_nums[i].part_num == part_num)
1261 return &dap_part_nums[i];
1262 }
1263 return &unknown;
1264 }
1265
1266 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1267 {
1268 const char *major = "Reserved", *subtype = "Reserved";
1269 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1270 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1271 switch (devtype_major) {
1272 case 0:
1273 major = "Miscellaneous";
1274 switch (minor) {
1275 case 0:
1276 subtype = "other";
1277 break;
1278 case 4:
1279 subtype = "Validation component";
1280 break;
1281 }
1282 break;
1283 case 1:
1284 major = "Trace Sink";
1285 switch (minor) {
1286 case 0:
1287 subtype = "other";
1288 break;
1289 case 1:
1290 subtype = "Port";
1291 break;
1292 case 2:
1293 subtype = "Buffer";
1294 break;
1295 case 3:
1296 subtype = "Router";
1297 break;
1298 }
1299 break;
1300 case 2:
1301 major = "Trace Link";
1302 switch (minor) {
1303 case 0:
1304 subtype = "other";
1305 break;
1306 case 1:
1307 subtype = "Funnel, router";
1308 break;
1309 case 2:
1310 subtype = "Filter";
1311 break;
1312 case 3:
1313 subtype = "FIFO, buffer";
1314 break;
1315 }
1316 break;
1317 case 3:
1318 major = "Trace Source";
1319 switch (minor) {
1320 case 0:
1321 subtype = "other";
1322 break;
1323 case 1:
1324 subtype = "Processor";
1325 break;
1326 case 2:
1327 subtype = "DSP";
1328 break;
1329 case 3:
1330 subtype = "Engine/Coprocessor";
1331 break;
1332 case 4:
1333 subtype = "Bus";
1334 break;
1335 case 6:
1336 subtype = "Software";
1337 break;
1338 }
1339 break;
1340 case 4:
1341 major = "Debug Control";
1342 switch (minor) {
1343 case 0:
1344 subtype = "other";
1345 break;
1346 case 1:
1347 subtype = "Trigger Matrix";
1348 break;
1349 case 2:
1350 subtype = "Debug Auth";
1351 break;
1352 case 3:
1353 subtype = "Power Requestor";
1354 break;
1355 }
1356 break;
1357 case 5:
1358 major = "Debug Logic";
1359 switch (minor) {
1360 case 0:
1361 subtype = "other";
1362 break;
1363 case 1:
1364 subtype = "Processor";
1365 break;
1366 case 2:
1367 subtype = "DSP";
1368 break;
1369 case 3:
1370 subtype = "Engine/Coprocessor";
1371 break;
1372 case 4:
1373 subtype = "Bus";
1374 break;
1375 case 5:
1376 subtype = "Memory";
1377 break;
1378 }
1379 break;
1380 case 6:
1381 major = "Performance Monitor";
1382 switch (minor) {
1383 case 0:
1384 subtype = "other";
1385 break;
1386 case 1:
1387 subtype = "Processor";
1388 break;
1389 case 2:
1390 subtype = "DSP";
1391 break;
1392 case 3:
1393 subtype = "Engine/Coprocessor";
1394 break;
1395 case 4:
1396 subtype = "Bus";
1397 break;
1398 case 5:
1399 subtype = "Memory";
1400 break;
1401 }
1402 break;
1403 }
1404 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1405 devtype & ARM_CS_C9_DEVTYPE_MASK,
1406 major, subtype);
1407 return ERROR_OK;
1408 }
1409
1410 static int dap_rom_display(struct command_invocation *cmd,
1411 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1412 {
1413 int retval;
1414 uint64_t pid;
1415 uint32_t cid;
1416 char tabs[16] = "";
1417
1418 if (depth > 16) {
1419 command_print(cmd, "\tTables too deep");
1420 return ERROR_FAIL;
1421 }
1422
1423 if (depth)
1424 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1425
1426 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1427 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1428
1429 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1430 if (retval != ERROR_OK) {
1431 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1432 return ERROR_OK; /* Don't abort recursion */
1433 }
1434
1435 if (!is_valid_arm_cs_cidr(cid)) {
1436 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1437 return ERROR_OK; /* Don't abort recursion */
1438 }
1439
1440 /* component may take multiple 4K pages */
1441 uint32_t size = ARM_CS_PIDR_SIZE(pid);
1442 if (size > 0)
1443 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1444
1445 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1446
1447 const unsigned int class = (cid & ARM_CS_CIDR_CLASS_MASK) >> ARM_CS_CIDR_CLASS_SHIFT;
1448 const unsigned int part_num = ARM_CS_PIDR_PART(pid);
1449 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(pid);
1450
1451 if (pid & ARM_CS_PIDR_JEDEC) {
1452 /* JEP106 code */
1453 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1454 designer_id, jep106_manufacturer(designer_id));
1455 } else {
1456 /* Legacy ASCII ID, clear invalid bits */
1457 designer_id &= 0x7f;
1458 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1459 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1460 }
1461
1462 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1463 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1464 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1465
1466 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1467 uint32_t memtype;
1468 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C1_MEMTYPE, &memtype);
1469 if (retval != ERROR_OK)
1470 return retval;
1471
1472 if (memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1473 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1474 else
1475 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1476
1477 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1478 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1479 uint32_t romentry;
1480 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1481 if (retval != ERROR_OK)
1482 return retval;
1483 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1484 tabs, entry_offset, romentry);
1485 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1486 /* Recurse. "romentry" is signed */
1487 retval = dap_rom_display(cmd, ap, base_addr + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK),
1488 depth + 1);
1489 if (retval != ERROR_OK)
1490 return retval;
1491 } else if (romentry != 0) {
1492 command_print(cmd, "\t\tComponent not present");
1493 } else {
1494 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1495 break;
1496 }
1497 }
1498 } else if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1499 uint32_t devtype;
1500 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C9_DEVTYPE, &devtype);
1501 if (retval != ERROR_OK)
1502 return retval;
1503
1504 retval = dap_devtype_display(cmd, devtype);
1505 if (retval != ERROR_OK)
1506 return retval;
1507
1508 /* REVISIT also show ARM_CS_C9_DEVID */
1509 }
1510
1511 return ERROR_OK;
1512 }
1513
1514 int dap_info_command(struct command_invocation *cmd,
1515 struct adiv5_ap *ap)
1516 {
1517 int retval;
1518 uint32_t apid;
1519 target_addr_t dbgbase;
1520 target_addr_t dbgaddr;
1521
1522 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1523 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1524 if (retval != ERROR_OK)
1525 return retval;
1526
1527 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1528 if (apid == 0) {
1529 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1530 return ERROR_FAIL;
1531 }
1532
1533 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1534
1535 /* NOTE: a MEM-AP may have a single CoreSight component that's
1536 * not a ROM table ... or have no such components at all.
1537 */
1538 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1539
1540 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1541 if (is_64bit_ap(ap))
1542 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1543 else
1544 dbgaddr = 0xFFFFFFFFul;
1545
1546 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1547
1548 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1549 command_print(cmd, "\tNo ROM table present");
1550 } else {
1551 if (dbgbase & 0x01)
1552 command_print(cmd, "\tValid ROM table present");
1553 else
1554 command_print(cmd, "\tROM table in legacy format");
1555
1556 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1557 }
1558 }
1559
1560 return ERROR_OK;
1561 }
1562
1563 enum adiv5_cfg_param {
1564 CFG_DAP,
1565 CFG_AP_NUM,
1566 CFG_BASEADDR,
1567 CFG_CTIBASE, /* DEPRECATED */
1568 };
1569
1570 static const struct jim_nvp nvp_config_opts[] = {
1571 { .name = "-dap", .value = CFG_DAP },
1572 { .name = "-ap-num", .value = CFG_AP_NUM },
1573 { .name = "-baseaddr", .value = CFG_BASEADDR },
1574 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1575 { .name = NULL, .value = -1 }
1576 };
1577
1578 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1579 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1580 {
1581 if (!goi->argc)
1582 return JIM_OK;
1583
1584 Jim_SetEmptyResult(goi->interp);
1585
1586 struct jim_nvp *n;
1587 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1588 goi->argv[0], &n);
1589 if (e != JIM_OK)
1590 return JIM_CONTINUE;
1591
1592 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1593 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1594 return JIM_CONTINUE;
1595
1596 e = jim_getopt_obj(goi, NULL);
1597 if (e != JIM_OK)
1598 return e;
1599
1600 switch (n->value) {
1601 case CFG_DAP:
1602 if (goi->isconfigure) {
1603 Jim_Obj *o_t;
1604 struct adiv5_dap *dap;
1605 e = jim_getopt_obj(goi, &o_t);
1606 if (e != JIM_OK)
1607 return e;
1608 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1609 if (!dap) {
1610 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1611 return JIM_ERR;
1612 }
1613 if (*dap_p && *dap_p != dap) {
1614 Jim_SetResultString(goi->interp,
1615 "DAP assignment cannot be changed!", -1);
1616 return JIM_ERR;
1617 }
1618 *dap_p = dap;
1619 } else {
1620 if (goi->argc)
1621 goto err_no_param;
1622 if (!*dap_p) {
1623 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1624 return JIM_ERR;
1625 }
1626 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1627 }
1628 break;
1629
1630 case CFG_AP_NUM:
1631 if (goi->isconfigure) {
1632 jim_wide ap_num;
1633 e = jim_getopt_wide(goi, &ap_num);
1634 if (e != JIM_OK)
1635 return e;
1636 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1637 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1638 return JIM_ERR;
1639 }
1640 *ap_num_p = ap_num;
1641 } else {
1642 if (goi->argc)
1643 goto err_no_param;
1644 if (*ap_num_p == DP_APSEL_INVALID) {
1645 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1646 return JIM_ERR;
1647 }
1648 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1649 }
1650 break;
1651
1652 case CFG_CTIBASE:
1653 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1654 /* fall through */
1655 case CFG_BASEADDR:
1656 if (goi->isconfigure) {
1657 jim_wide base;
1658 e = jim_getopt_wide(goi, &base);
1659 if (e != JIM_OK)
1660 return e;
1661 *base_p = (uint32_t)base;
1662 } else {
1663 if (goi->argc)
1664 goto err_no_param;
1665 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1666 }
1667 break;
1668 };
1669
1670 return JIM_OK;
1671
1672 err_no_param:
1673 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1674 return JIM_ERR;
1675 }
1676
1677 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1678 {
1679 struct adiv5_private_config *pc;
1680 int e;
1681
1682 pc = (struct adiv5_private_config *)target->private_config;
1683 if (!pc) {
1684 pc = calloc(1, sizeof(struct adiv5_private_config));
1685 pc->ap_num = DP_APSEL_INVALID;
1686 target->private_config = pc;
1687 }
1688
1689 target->has_dap = true;
1690
1691 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1692 if (e != JIM_OK)
1693 return e;
1694
1695 if (pc->dap && !target->dap_configured) {
1696 if (target->tap_configured) {
1697 pc->dap = NULL;
1698 Jim_SetResultString(goi->interp,
1699 "-chain-position and -dap configparams are mutually exclusive!", -1);
1700 return JIM_ERR;
1701 }
1702 target->tap = pc->dap->tap;
1703 target->dap_configured = true;
1704 }
1705
1706 return JIM_OK;
1707 }
1708
1709 int adiv5_verify_config(struct adiv5_private_config *pc)
1710 {
1711 if (!pc)
1712 return ERROR_FAIL;
1713
1714 if (!pc->dap)
1715 return ERROR_FAIL;
1716
1717 return ERROR_OK;
1718 }
1719
1720 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1721 struct jim_getopt_info *goi)
1722 {
1723 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1724 }
1725
1726 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1727 {
1728 p->dap = NULL;
1729 p->ap_num = DP_APSEL_INVALID;
1730 p->base = 0;
1731 return ERROR_OK;
1732 }
1733
1734 COMMAND_HANDLER(handle_dap_info_command)
1735 {
1736 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1737 uint32_t apsel;
1738
1739 switch (CMD_ARGC) {
1740 case 0:
1741 apsel = dap->apsel;
1742 break;
1743 case 1:
1744 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1745 if (apsel > DP_APSEL_MAX) {
1746 command_print(CMD, "Invalid AP number");
1747 return ERROR_COMMAND_ARGUMENT_INVALID;
1748 }
1749 break;
1750 default:
1751 return ERROR_COMMAND_SYNTAX_ERROR;
1752 }
1753
1754 return dap_info_command(CMD, &dap->ap[apsel]);
1755 }
1756
1757 COMMAND_HANDLER(dap_baseaddr_command)
1758 {
1759 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1760 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1761 struct adiv5_ap *ap;
1762 target_addr_t baseaddr;
1763 int retval;
1764
1765 baseaddr_upper = 0;
1766
1767 switch (CMD_ARGC) {
1768 case 0:
1769 apsel = dap->apsel;
1770 break;
1771 case 1:
1772 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1773 /* AP address is in bits 31:24 of DP_SELECT */
1774 if (apsel > DP_APSEL_MAX) {
1775 command_print(CMD, "Invalid AP number");
1776 return ERROR_COMMAND_ARGUMENT_INVALID;
1777 }
1778 break;
1779 default:
1780 return ERROR_COMMAND_SYNTAX_ERROR;
1781 }
1782
1783 /* NOTE: assumes we're talking to a MEM-AP, which
1784 * has a base address. There are other kinds of AP,
1785 * though they're not common for now. This should
1786 * use the ID register to verify it's a MEM-AP.
1787 */
1788
1789 ap = dap_ap(dap, apsel);
1790 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1791
1792 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1793 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1794
1795 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1796 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1797 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1798 }
1799
1800 if (retval == ERROR_OK)
1801 retval = dap_run(dap);
1802 if (retval != ERROR_OK)
1803 return retval;
1804
1805 if (is_64bit_ap(ap)) {
1806 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1807 command_print(CMD, "0x%016" PRIx64, baseaddr);
1808 } else
1809 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1810
1811 return ERROR_OK;
1812 }
1813
1814 COMMAND_HANDLER(dap_memaccess_command)
1815 {
1816 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1817 uint32_t memaccess_tck;
1818
1819 switch (CMD_ARGC) {
1820 case 0:
1821 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1822 break;
1823 case 1:
1824 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1825 break;
1826 default:
1827 return ERROR_COMMAND_SYNTAX_ERROR;
1828 }
1829 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1830
1831 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1832 dap->ap[dap->apsel].memaccess_tck);
1833
1834 return ERROR_OK;
1835 }
1836
1837 COMMAND_HANDLER(dap_apsel_command)
1838 {
1839 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1840 uint32_t apsel;
1841
1842 switch (CMD_ARGC) {
1843 case 0:
1844 command_print(CMD, "%" PRIu32, dap->apsel);
1845 return ERROR_OK;
1846 case 1:
1847 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1848 /* AP address is in bits 31:24 of DP_SELECT */
1849 if (apsel > DP_APSEL_MAX) {
1850 command_print(CMD, "Invalid AP number");
1851 return ERROR_COMMAND_ARGUMENT_INVALID;
1852 }
1853 break;
1854 default:
1855 return ERROR_COMMAND_SYNTAX_ERROR;
1856 }
1857
1858 dap->apsel = apsel;
1859 return ERROR_OK;
1860 }
1861
1862 COMMAND_HANDLER(dap_apcsw_command)
1863 {
1864 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1865 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1866 uint32_t csw_val, csw_mask;
1867
1868 switch (CMD_ARGC) {
1869 case 0:
1870 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1871 dap->apsel, apcsw);
1872 return ERROR_OK;
1873 case 1:
1874 if (strcmp(CMD_ARGV[0], "default") == 0)
1875 csw_val = CSW_AHB_DEFAULT;
1876 else
1877 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1878
1879 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1880 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1881 return ERROR_COMMAND_ARGUMENT_INVALID;
1882 }
1883 apcsw = csw_val;
1884 break;
1885 case 2:
1886 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1887 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1888 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1889 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1890 return ERROR_COMMAND_ARGUMENT_INVALID;
1891 }
1892 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1893 break;
1894 default:
1895 return ERROR_COMMAND_SYNTAX_ERROR;
1896 }
1897 dap->ap[dap->apsel].csw_default = apcsw;
1898
1899 return 0;
1900 }
1901
1902
1903
1904 COMMAND_HANDLER(dap_apid_command)
1905 {
1906 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1907 uint32_t apsel, apid;
1908 int retval;
1909
1910 switch (CMD_ARGC) {
1911 case 0:
1912 apsel = dap->apsel;
1913 break;
1914 case 1:
1915 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1916 /* AP address is in bits 31:24 of DP_SELECT */
1917 if (apsel > DP_APSEL_MAX) {
1918 command_print(CMD, "Invalid AP number");
1919 return ERROR_COMMAND_ARGUMENT_INVALID;
1920 }
1921 break;
1922 default:
1923 return ERROR_COMMAND_SYNTAX_ERROR;
1924 }
1925
1926 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1927 if (retval != ERROR_OK)
1928 return retval;
1929 retval = dap_run(dap);
1930 if (retval != ERROR_OK)
1931 return retval;
1932
1933 command_print(CMD, "0x%8.8" PRIx32, apid);
1934
1935 return retval;
1936 }
1937
1938 COMMAND_HANDLER(dap_apreg_command)
1939 {
1940 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1941 uint32_t apsel, reg, value;
1942 struct adiv5_ap *ap;
1943 int retval;
1944
1945 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1946 return ERROR_COMMAND_SYNTAX_ERROR;
1947
1948 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1949 /* AP address is in bits 31:24 of DP_SELECT */
1950 if (apsel > DP_APSEL_MAX) {
1951 command_print(CMD, "Invalid AP number");
1952 return ERROR_COMMAND_ARGUMENT_INVALID;
1953 }
1954
1955 ap = dap_ap(dap, apsel);
1956
1957 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1958 if (reg >= 256 || (reg & 3)) {
1959 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1960 return ERROR_COMMAND_ARGUMENT_INVALID;
1961 }
1962
1963 if (CMD_ARGC == 3) {
1964 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1965 switch (reg) {
1966 case MEM_AP_REG_CSW:
1967 ap->csw_value = 0; /* invalid, in case write fails */
1968 retval = dap_queue_ap_write(ap, reg, value);
1969 if (retval == ERROR_OK)
1970 ap->csw_value = value;
1971 break;
1972 case MEM_AP_REG_TAR:
1973 retval = dap_queue_ap_write(ap, reg, value);
1974 if (retval == ERROR_OK)
1975 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
1976 else {
1977 /* To track independent writes to TAR and TAR64, two tar_valid flags */
1978 /* should be used. To keep it simple, tar_valid is only invalidated on a */
1979 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
1980 /* if tar_valid is false. */
1981 ap->tar_valid = false;
1982 }
1983 break;
1984 case MEM_AP_REG_TAR64:
1985 retval = dap_queue_ap_write(ap, reg, value);
1986 if (retval == ERROR_OK)
1987 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
1988 else {
1989 /* See above comment for the MEM_AP_REG_TAR failed write case */
1990 ap->tar_valid = false;
1991 }
1992 break;
1993 default:
1994 retval = dap_queue_ap_write(ap, reg, value);
1995 break;
1996 }
1997 } else {
1998 retval = dap_queue_ap_read(ap, reg, &value);
1999 }
2000 if (retval == ERROR_OK)
2001 retval = dap_run(dap);
2002
2003 if (retval != ERROR_OK)
2004 return retval;
2005
2006 if (CMD_ARGC == 2)
2007 command_print(CMD, "0x%08" PRIx32, value);
2008
2009 return retval;
2010 }
2011
2012 COMMAND_HANDLER(dap_dpreg_command)
2013 {
2014 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2015 uint32_t reg, value;
2016 int retval;
2017
2018 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2019 return ERROR_COMMAND_SYNTAX_ERROR;
2020
2021 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2022 if (reg >= 256 || (reg & 3)) {
2023 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2024 return ERROR_COMMAND_ARGUMENT_INVALID;
2025 }
2026
2027 if (CMD_ARGC == 2) {
2028 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2029 retval = dap_queue_dp_write(dap, reg, value);
2030 } else {
2031 retval = dap_queue_dp_read(dap, reg, &value);
2032 }
2033 if (retval == ERROR_OK)
2034 retval = dap_run(dap);
2035
2036 if (retval != ERROR_OK)
2037 return retval;
2038
2039 if (CMD_ARGC == 1)
2040 command_print(CMD, "0x%08" PRIx32, value);
2041
2042 return retval;
2043 }
2044
2045 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2046 {
2047 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2048 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2049 "TI BE-32 quirks mode");
2050 }
2051
2052 const struct command_registration dap_instance_commands[] = {
2053 {
2054 .name = "info",
2055 .handler = handle_dap_info_command,
2056 .mode = COMMAND_EXEC,
2057 .help = "display ROM table for MEM-AP "
2058 "(default currently selected AP)",
2059 .usage = "[ap_num]",
2060 },
2061 {
2062 .name = "apsel",
2063 .handler = dap_apsel_command,
2064 .mode = COMMAND_ANY,
2065 .help = "Set the currently selected AP (default 0) "
2066 "and display the result",
2067 .usage = "[ap_num]",
2068 },
2069 {
2070 .name = "apcsw",
2071 .handler = dap_apcsw_command,
2072 .mode = COMMAND_ANY,
2073 .help = "Set CSW default bits",
2074 .usage = "[value [mask]]",
2075 },
2076
2077 {
2078 .name = "apid",
2079 .handler = dap_apid_command,
2080 .mode = COMMAND_EXEC,
2081 .help = "return ID register from AP "
2082 "(default currently selected AP)",
2083 .usage = "[ap_num]",
2084 },
2085 {
2086 .name = "apreg",
2087 .handler = dap_apreg_command,
2088 .mode = COMMAND_EXEC,
2089 .help = "read/write a register from AP "
2090 "(reg is byte address of a word register, like 0 4 8...)",
2091 .usage = "ap_num reg [value]",
2092 },
2093 {
2094 .name = "dpreg",
2095 .handler = dap_dpreg_command,
2096 .mode = COMMAND_EXEC,
2097 .help = "read/write a register from DP "
2098 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2099 .usage = "reg [value]",
2100 },
2101 {
2102 .name = "baseaddr",
2103 .handler = dap_baseaddr_command,
2104 .mode = COMMAND_EXEC,
2105 .help = "return debug base address from MEM-AP "
2106 "(default currently selected AP)",
2107 .usage = "[ap_num]",
2108 },
2109 {
2110 .name = "memaccess",
2111 .handler = dap_memaccess_command,
2112 .mode = COMMAND_EXEC,
2113 .help = "set/get number of extra tck for MEM-AP memory "
2114 "bus access [0-255]",
2115 .usage = "[cycles]",
2116 },
2117 {
2118 .name = "ti_be_32_quirks",
2119 .handler = dap_ti_be_32_quirks_command,
2120 .mode = COMMAND_CONFIG,
2121 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2122 .usage = "[enable]",
2123 },
2124 COMMAND_REGISTRATION_DONE
2125 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)