arm_adi_v5: report sysmem on class 0x9 ROM tables
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
932
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 */
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
973 {
974 int ap_num;
975
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
978
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
981
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
985
986 retval = dap_run(dap);
987
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
990 */
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
995
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
998 }
999 }
1000
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1003 }
1004
1005 int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1007 {
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1011
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 }
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 }
1029
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1033
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1037
1038 return ERROR_OK;
1039 }
1040
1041 int dap_lookup_cs_component(struct adiv5_ap *ap,
1042 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
1043 {
1044 uint32_t romentry, entry_offset = 0, devtype;
1045 target_addr_t component_base;
1046 int retval;
1047
1048 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1049 *addr = 0;
1050
1051 do {
1052 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1053 entry_offset, &romentry);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1058
1059 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1060 uint32_t c_cid1;
1061 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1062 if (retval != ERROR_OK) {
1063 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1064 ", the corresponding core might be turned off", component_base);
1065 return retval;
1066 }
1067 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1068 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1069 retval = dap_lookup_cs_component(ap, component_base,
1070 type, addr, idx);
1071 if (retval == ERROR_OK)
1072 break;
1073 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1074 return retval;
1075 }
1076
1077 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1081 if (!*idx) {
1082 *addr = component_base;
1083 break;
1084 } else
1085 (*idx)--;
1086 }
1087 }
1088 entry_offset += 4;
1089 } while ((romentry > 0) && (entry_offset < 0xf00));
1090
1091 if (!*addr)
1092 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1093
1094 return ERROR_OK;
1095 }
1096
1097 /** Holds registers of a CoreSight component */
1098 struct cs_component_vals {
1099 uint64_t pid;
1100 uint32_t cid;
1101 uint32_t devarch;
1102 uint32_t devid;
1103 uint32_t devtype_memtype;
1104 };
1105
1106 /**
1107 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1108 *
1109 * @param ap Pointer to AP containing the component.
1110 * @param component_base On MEM-AP access method, base address of the component.
1111 * @param v Pointer to the struct holding the value of registers.
1112 *
1113 * @return ERROR_OK on success, else a fault code.
1114 */
1115 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1116 struct cs_component_vals *v)
1117 {
1118 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1119 assert(ap && v);
1120
1121 uint32_t cid0, cid1, cid2, cid3;
1122 uint32_t pid0, pid1, pid2, pid3, pid4;
1123 int retval = ERROR_OK;
1124
1125 /* sort by offset to gain speed */
1126
1127 /*
1128 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1129 * only, but are at offset above 0xf00, so can be read on any device
1130 * without triggering error. Read them for eventual use on Class 0x9.
1131 */
1132 if (retval == ERROR_OK)
1133 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1134
1135 if (retval == ERROR_OK)
1136 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1137
1138 /* Same address as ARM_CS_C1_MEMTYPE */
1139 if (retval == ERROR_OK)
1140 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1141
1142 if (retval == ERROR_OK)
1143 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1144
1145 if (retval == ERROR_OK)
1146 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1147 if (retval == ERROR_OK)
1148 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1149 if (retval == ERROR_OK)
1150 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1151 if (retval == ERROR_OK)
1152 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1153
1154 if (retval == ERROR_OK)
1155 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1156 if (retval == ERROR_OK)
1157 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1158 if (retval == ERROR_OK)
1159 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1160 if (retval == ERROR_OK)
1161 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1162
1163 if (retval == ERROR_OK)
1164 retval = dap_run(ap->dap);
1165 if (retval != ERROR_OK) {
1166 LOG_DEBUG("Failed read CoreSight registers");
1167 return retval;
1168 }
1169
1170 v->cid = (cid3 & 0xff) << 24
1171 | (cid2 & 0xff) << 16
1172 | (cid1 & 0xff) << 8
1173 | (cid0 & 0xff);
1174 v->pid = (uint64_t)(pid4 & 0xff) << 32
1175 | (pid3 & 0xff) << 24
1176 | (pid2 & 0xff) << 16
1177 | (pid1 & 0xff) << 8
1178 | (pid0 & 0xff);
1179
1180 return ERROR_OK;
1181 }
1182
1183 /* Part number interpretations are from Cortex
1184 * core specs, the CoreSight components TRM
1185 * (ARM DDI 0314H), CoreSight System Design
1186 * Guide (ARM DGI 0012D) and ETM specs; also
1187 * from chip observation (e.g. TI SDTI).
1188 */
1189
1190 static const struct dap_part_nums {
1191 uint16_t designer_id;
1192 uint16_t part_num;
1193 const char *type;
1194 const char *full;
1195 } dap_part_nums[] = {
1196 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1197 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1198 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1199 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1200 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1201 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1202 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1203 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1204 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1205 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1206 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1207 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1208 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1209 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1210 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1211 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1212 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1213 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1214 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1215 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1216 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1217 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1218 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1219 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1220 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1221 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1222 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1223 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1224 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1225 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1226 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1227 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1228 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1229 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1230 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1231 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1232 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1233 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1234 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1235 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1236 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1237 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1238 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1239 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1240 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1241 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1242 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1243 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1244 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1245 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1246 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1247 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1248 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1249 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1250 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1251 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1252 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1253 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1254 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1255 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1256 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1257 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1258 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1259 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1260 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1261 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1262 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1263 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1264 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1265 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1266 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1267 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1268 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1269 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1270 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1271 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1272 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1273 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1274 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1275 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1276 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1277 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1278 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1279 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1280 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1281 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1282 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1283 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1284 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1285 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1286 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1287 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1288 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1289 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1290 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1291 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1292 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1293 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1294 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1295 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1296 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1297 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1298 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1299 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1300 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1301 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1302 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1303 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1304 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1305 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1306 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1307 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1308 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1309 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1310 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1311 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1312 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1313 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1314 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1315 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1316 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1317 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1318 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1319 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1320 };
1321
1322 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1323 {
1324 static const struct dap_part_nums unknown = {
1325 .type = "Unrecognized",
1326 .full = "",
1327 };
1328
1329 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1330 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1331 return &dap_part_nums[i];
1332
1333 return &unknown;
1334 }
1335
1336 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1337 {
1338 const char *major = "Reserved", *subtype = "Reserved";
1339 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1340 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1341 switch (devtype_major) {
1342 case 0:
1343 major = "Miscellaneous";
1344 switch (minor) {
1345 case 0:
1346 subtype = "other";
1347 break;
1348 case 4:
1349 subtype = "Validation component";
1350 break;
1351 }
1352 break;
1353 case 1:
1354 major = "Trace Sink";
1355 switch (minor) {
1356 case 0:
1357 subtype = "other";
1358 break;
1359 case 1:
1360 subtype = "Port";
1361 break;
1362 case 2:
1363 subtype = "Buffer";
1364 break;
1365 case 3:
1366 subtype = "Router";
1367 break;
1368 }
1369 break;
1370 case 2:
1371 major = "Trace Link";
1372 switch (minor) {
1373 case 0:
1374 subtype = "other";
1375 break;
1376 case 1:
1377 subtype = "Funnel, router";
1378 break;
1379 case 2:
1380 subtype = "Filter";
1381 break;
1382 case 3:
1383 subtype = "FIFO, buffer";
1384 break;
1385 }
1386 break;
1387 case 3:
1388 major = "Trace Source";
1389 switch (minor) {
1390 case 0:
1391 subtype = "other";
1392 break;
1393 case 1:
1394 subtype = "Processor";
1395 break;
1396 case 2:
1397 subtype = "DSP";
1398 break;
1399 case 3:
1400 subtype = "Engine/Coprocessor";
1401 break;
1402 case 4:
1403 subtype = "Bus";
1404 break;
1405 case 6:
1406 subtype = "Software";
1407 break;
1408 }
1409 break;
1410 case 4:
1411 major = "Debug Control";
1412 switch (minor) {
1413 case 0:
1414 subtype = "other";
1415 break;
1416 case 1:
1417 subtype = "Trigger Matrix";
1418 break;
1419 case 2:
1420 subtype = "Debug Auth";
1421 break;
1422 case 3:
1423 subtype = "Power Requestor";
1424 break;
1425 }
1426 break;
1427 case 5:
1428 major = "Debug Logic";
1429 switch (minor) {
1430 case 0:
1431 subtype = "other";
1432 break;
1433 case 1:
1434 subtype = "Processor";
1435 break;
1436 case 2:
1437 subtype = "DSP";
1438 break;
1439 case 3:
1440 subtype = "Engine/Coprocessor";
1441 break;
1442 case 4:
1443 subtype = "Bus";
1444 break;
1445 case 5:
1446 subtype = "Memory";
1447 break;
1448 }
1449 break;
1450 case 6:
1451 major = "Performance Monitor";
1452 switch (minor) {
1453 case 0:
1454 subtype = "other";
1455 break;
1456 case 1:
1457 subtype = "Processor";
1458 break;
1459 case 2:
1460 subtype = "DSP";
1461 break;
1462 case 3:
1463 subtype = "Engine/Coprocessor";
1464 break;
1465 case 4:
1466 subtype = "Bus";
1467 break;
1468 case 5:
1469 subtype = "Memory";
1470 break;
1471 }
1472 break;
1473 }
1474 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1475 devtype & ARM_CS_C9_DEVTYPE_MASK,
1476 major, subtype);
1477 return ERROR_OK;
1478 }
1479
1480 static int rtp_cs_component(struct command_invocation *cmd,
1481 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1482
1483 static int rtp_rom_loop(struct command_invocation *cmd,
1484 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1485 unsigned int max_entries)
1486 {
1487 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1488
1489 char tabs[16] = "";
1490
1491 if (depth)
1492 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1493
1494 unsigned int offset = 0;
1495 while (max_entries--) {
1496 uint32_t romentry;
1497 unsigned int saved_offset = offset;
1498
1499 int retval = mem_ap_read_atomic_u32(ap, base_address + offset, &romentry);
1500 offset += 4;
1501 if (retval != ERROR_OK) {
1502 LOG_DEBUG("Failed read ROM table entry");
1503 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, saved_offset);
1504 command_print(cmd, "\t\tUnable to continue");
1505 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1506 return retval;
1507 }
1508
1509 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx32,
1510 tabs, saved_offset, romentry);
1511
1512 if (romentry == 0) {
1513 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1514 break;
1515 }
1516
1517 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1518 command_print(cmd, "\t\tComponent not present");
1519 continue;
1520 }
1521
1522 /* Recurse. "romentry" is signed */
1523 target_addr_t component_base = base_address + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1524 retval = rtp_cs_component(cmd, ap, component_base, depth + 1);
1525 if (retval != ERROR_OK)
1526 return retval;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 static int rtp_cs_component(struct command_invocation *cmd,
1533 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1534 {
1535 struct cs_component_vals v;
1536 int retval;
1537 char tabs[16] = "";
1538
1539 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1540
1541 if (depth > 16) {
1542 command_print(cmd, "\tTables too deep");
1543 return ERROR_FAIL;
1544 }
1545
1546 if (depth)
1547 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1548
1549 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_address);
1550
1551 retval = rtp_read_cs_regs(ap, base_address, &v);
1552 if (retval != ERROR_OK) {
1553 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1554 return ERROR_OK; /* Don't abort recursion */
1555 }
1556
1557 if (!is_valid_arm_cs_cidr(v.cid)) {
1558 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v.cid);
1559 return ERROR_OK; /* Don't abort recursion */
1560 }
1561
1562 /* component may take multiple 4K pages */
1563 uint32_t size = ARM_CS_PIDR_SIZE(v.pid);
1564 if (size > 0)
1565 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_address - 0x1000 * size);
1566
1567 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v.pid);
1568
1569 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1570 const unsigned int part_num = ARM_CS_PIDR_PART(v.pid);
1571 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v.pid);
1572
1573 if (v.pid & ARM_CS_PIDR_JEDEC) {
1574 /* JEP106 code */
1575 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1576 designer_id, jep106_manufacturer(designer_id));
1577 } else {
1578 /* Legacy ASCII ID, clear invalid bits */
1579 designer_id &= 0x7f;
1580 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1581 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1582 }
1583
1584 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1585 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1586 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1587
1588 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1589 if (v.devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1590 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1591 else
1592 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1593
1594 return rtp_rom_loop(cmd, ap, base_address, depth, 960);
1595 }
1596
1597 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1598 retval = dap_devtype_display(cmd, v.devtype_memtype);
1599 if (retval != ERROR_OK)
1600 return retval;
1601
1602 /* REVISIT also show ARM_CS_C9_DEVID */
1603
1604 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1605 return ERROR_OK;
1606
1607 unsigned int architect_id = (v.devarch & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) >> ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT;
1608 unsigned int revision = (v.devarch & ARM_CS_C9_DEVARCH_REVISION_MASK) >> ARM_CS_C9_DEVARCH_REVISION_SHIFT;
1609 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v.devarch,
1610 jep106_manufacturer(architect_id), class0x9_devarch_description(v.devarch),
1611 revision);
1612 /* quit if not ROM table */
1613 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1614 return ERROR_OK;
1615
1616 if (v.devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1617 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1618 else
1619 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1620
1621 return rtp_rom_loop(cmd, ap, base_address, depth, 512);
1622 }
1623
1624 /* Class other than 0x1 and 0x9 */
1625 return ERROR_OK;
1626 }
1627
1628 int dap_info_command(struct command_invocation *cmd,
1629 struct adiv5_ap *ap)
1630 {
1631 int retval;
1632 uint32_t apid;
1633 target_addr_t dbgbase;
1634 target_addr_t dbgaddr;
1635
1636 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1637 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1638 if (retval != ERROR_OK)
1639 return retval;
1640
1641 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1642 if (apid == 0) {
1643 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1644 return ERROR_FAIL;
1645 }
1646
1647 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1648
1649 /* NOTE: a MEM-AP may have a single CoreSight component that's
1650 * not a ROM table ... or have no such components at all.
1651 */
1652 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1653
1654 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1655 if (is_64bit_ap(ap))
1656 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1657 else
1658 dbgaddr = 0xFFFFFFFFul;
1659
1660 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1661
1662 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1663 command_print(cmd, "\tNo ROM table present");
1664 } else {
1665 if (dbgbase & 0x01)
1666 command_print(cmd, "\tValid ROM table present");
1667 else
1668 command_print(cmd, "\tROM table in legacy format");
1669
1670 rtp_cs_component(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1671 }
1672 }
1673
1674 return ERROR_OK;
1675 }
1676
1677 enum adiv5_cfg_param {
1678 CFG_DAP,
1679 CFG_AP_NUM,
1680 CFG_BASEADDR,
1681 CFG_CTIBASE, /* DEPRECATED */
1682 };
1683
1684 static const struct jim_nvp nvp_config_opts[] = {
1685 { .name = "-dap", .value = CFG_DAP },
1686 { .name = "-ap-num", .value = CFG_AP_NUM },
1687 { .name = "-baseaddr", .value = CFG_BASEADDR },
1688 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1689 { .name = NULL, .value = -1 }
1690 };
1691
1692 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1693 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1694 {
1695 if (!goi->argc)
1696 return JIM_OK;
1697
1698 Jim_SetEmptyResult(goi->interp);
1699
1700 struct jim_nvp *n;
1701 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1702 goi->argv[0], &n);
1703 if (e != JIM_OK)
1704 return JIM_CONTINUE;
1705
1706 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1707 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1708 return JIM_CONTINUE;
1709
1710 e = jim_getopt_obj(goi, NULL);
1711 if (e != JIM_OK)
1712 return e;
1713
1714 switch (n->value) {
1715 case CFG_DAP:
1716 if (goi->isconfigure) {
1717 Jim_Obj *o_t;
1718 struct adiv5_dap *dap;
1719 e = jim_getopt_obj(goi, &o_t);
1720 if (e != JIM_OK)
1721 return e;
1722 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1723 if (!dap) {
1724 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1725 return JIM_ERR;
1726 }
1727 if (*dap_p && *dap_p != dap) {
1728 Jim_SetResultString(goi->interp,
1729 "DAP assignment cannot be changed!", -1);
1730 return JIM_ERR;
1731 }
1732 *dap_p = dap;
1733 } else {
1734 if (goi->argc)
1735 goto err_no_param;
1736 if (!*dap_p) {
1737 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1738 return JIM_ERR;
1739 }
1740 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1741 }
1742 break;
1743
1744 case CFG_AP_NUM:
1745 if (goi->isconfigure) {
1746 jim_wide ap_num;
1747 e = jim_getopt_wide(goi, &ap_num);
1748 if (e != JIM_OK)
1749 return e;
1750 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1751 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1752 return JIM_ERR;
1753 }
1754 *ap_num_p = ap_num;
1755 } else {
1756 if (goi->argc)
1757 goto err_no_param;
1758 if (*ap_num_p == DP_APSEL_INVALID) {
1759 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1760 return JIM_ERR;
1761 }
1762 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1763 }
1764 break;
1765
1766 case CFG_CTIBASE:
1767 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1768 /* fall through */
1769 case CFG_BASEADDR:
1770 if (goi->isconfigure) {
1771 jim_wide base;
1772 e = jim_getopt_wide(goi, &base);
1773 if (e != JIM_OK)
1774 return e;
1775 *base_p = (uint32_t)base;
1776 } else {
1777 if (goi->argc)
1778 goto err_no_param;
1779 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1780 }
1781 break;
1782 };
1783
1784 return JIM_OK;
1785
1786 err_no_param:
1787 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1788 return JIM_ERR;
1789 }
1790
1791 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1792 {
1793 struct adiv5_private_config *pc;
1794 int e;
1795
1796 pc = (struct adiv5_private_config *)target->private_config;
1797 if (!pc) {
1798 pc = calloc(1, sizeof(struct adiv5_private_config));
1799 pc->ap_num = DP_APSEL_INVALID;
1800 target->private_config = pc;
1801 }
1802
1803 target->has_dap = true;
1804
1805 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1806 if (e != JIM_OK)
1807 return e;
1808
1809 if (pc->dap && !target->dap_configured) {
1810 if (target->tap_configured) {
1811 pc->dap = NULL;
1812 Jim_SetResultString(goi->interp,
1813 "-chain-position and -dap configparams are mutually exclusive!", -1);
1814 return JIM_ERR;
1815 }
1816 target->tap = pc->dap->tap;
1817 target->dap_configured = true;
1818 }
1819
1820 return JIM_OK;
1821 }
1822
1823 int adiv5_verify_config(struct adiv5_private_config *pc)
1824 {
1825 if (!pc)
1826 return ERROR_FAIL;
1827
1828 if (!pc->dap)
1829 return ERROR_FAIL;
1830
1831 return ERROR_OK;
1832 }
1833
1834 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1835 struct jim_getopt_info *goi)
1836 {
1837 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1838 }
1839
1840 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1841 {
1842 p->dap = NULL;
1843 p->ap_num = DP_APSEL_INVALID;
1844 p->base = 0;
1845 return ERROR_OK;
1846 }
1847
1848 COMMAND_HANDLER(handle_dap_info_command)
1849 {
1850 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1851 uint32_t apsel;
1852
1853 switch (CMD_ARGC) {
1854 case 0:
1855 apsel = dap->apsel;
1856 break;
1857 case 1:
1858 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1859 if (apsel > DP_APSEL_MAX) {
1860 command_print(CMD, "Invalid AP number");
1861 return ERROR_COMMAND_ARGUMENT_INVALID;
1862 }
1863 break;
1864 default:
1865 return ERROR_COMMAND_SYNTAX_ERROR;
1866 }
1867
1868 return dap_info_command(CMD, &dap->ap[apsel]);
1869 }
1870
1871 COMMAND_HANDLER(dap_baseaddr_command)
1872 {
1873 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1874 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1875 struct adiv5_ap *ap;
1876 target_addr_t baseaddr;
1877 int retval;
1878
1879 baseaddr_upper = 0;
1880
1881 switch (CMD_ARGC) {
1882 case 0:
1883 apsel = dap->apsel;
1884 break;
1885 case 1:
1886 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1887 /* AP address is in bits 31:24 of DP_SELECT */
1888 if (apsel > DP_APSEL_MAX) {
1889 command_print(CMD, "Invalid AP number");
1890 return ERROR_COMMAND_ARGUMENT_INVALID;
1891 }
1892 break;
1893 default:
1894 return ERROR_COMMAND_SYNTAX_ERROR;
1895 }
1896
1897 /* NOTE: assumes we're talking to a MEM-AP, which
1898 * has a base address. There are other kinds of AP,
1899 * though they're not common for now. This should
1900 * use the ID register to verify it's a MEM-AP.
1901 */
1902
1903 ap = dap_ap(dap, apsel);
1904 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1905
1906 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1907 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1908
1909 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1910 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1911 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1912 }
1913
1914 if (retval == ERROR_OK)
1915 retval = dap_run(dap);
1916 if (retval != ERROR_OK)
1917 return retval;
1918
1919 if (is_64bit_ap(ap)) {
1920 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1921 command_print(CMD, "0x%016" PRIx64, baseaddr);
1922 } else
1923 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1924
1925 return ERROR_OK;
1926 }
1927
1928 COMMAND_HANDLER(dap_memaccess_command)
1929 {
1930 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1931 uint32_t memaccess_tck;
1932
1933 switch (CMD_ARGC) {
1934 case 0:
1935 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1936 break;
1937 case 1:
1938 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1939 break;
1940 default:
1941 return ERROR_COMMAND_SYNTAX_ERROR;
1942 }
1943 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1944
1945 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1946 dap->ap[dap->apsel].memaccess_tck);
1947
1948 return ERROR_OK;
1949 }
1950
1951 COMMAND_HANDLER(dap_apsel_command)
1952 {
1953 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1954 uint32_t apsel;
1955
1956 switch (CMD_ARGC) {
1957 case 0:
1958 command_print(CMD, "%" PRIu32, dap->apsel);
1959 return ERROR_OK;
1960 case 1:
1961 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1962 /* AP address is in bits 31:24 of DP_SELECT */
1963 if (apsel > DP_APSEL_MAX) {
1964 command_print(CMD, "Invalid AP number");
1965 return ERROR_COMMAND_ARGUMENT_INVALID;
1966 }
1967 break;
1968 default:
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970 }
1971
1972 dap->apsel = apsel;
1973 return ERROR_OK;
1974 }
1975
1976 COMMAND_HANDLER(dap_apcsw_command)
1977 {
1978 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1979 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1980 uint32_t csw_val, csw_mask;
1981
1982 switch (CMD_ARGC) {
1983 case 0:
1984 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1985 dap->apsel, apcsw);
1986 return ERROR_OK;
1987 case 1:
1988 if (strcmp(CMD_ARGV[0], "default") == 0)
1989 csw_val = CSW_AHB_DEFAULT;
1990 else
1991 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1992
1993 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1994 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1995 return ERROR_COMMAND_ARGUMENT_INVALID;
1996 }
1997 apcsw = csw_val;
1998 break;
1999 case 2:
2000 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2001 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2002 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2003 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2004 return ERROR_COMMAND_ARGUMENT_INVALID;
2005 }
2006 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
2007 break;
2008 default:
2009 return ERROR_COMMAND_SYNTAX_ERROR;
2010 }
2011 dap->ap[dap->apsel].csw_default = apcsw;
2012
2013 return 0;
2014 }
2015
2016
2017
2018 COMMAND_HANDLER(dap_apid_command)
2019 {
2020 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2021 uint32_t apsel, apid;
2022 int retval;
2023
2024 switch (CMD_ARGC) {
2025 case 0:
2026 apsel = dap->apsel;
2027 break;
2028 case 1:
2029 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2030 /* AP address is in bits 31:24 of DP_SELECT */
2031 if (apsel > DP_APSEL_MAX) {
2032 command_print(CMD, "Invalid AP number");
2033 return ERROR_COMMAND_ARGUMENT_INVALID;
2034 }
2035 break;
2036 default:
2037 return ERROR_COMMAND_SYNTAX_ERROR;
2038 }
2039
2040 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
2041 if (retval != ERROR_OK)
2042 return retval;
2043 retval = dap_run(dap);
2044 if (retval != ERROR_OK)
2045 return retval;
2046
2047 command_print(CMD, "0x%8.8" PRIx32, apid);
2048
2049 return retval;
2050 }
2051
2052 COMMAND_HANDLER(dap_apreg_command)
2053 {
2054 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2055 uint32_t apsel, reg, value;
2056 struct adiv5_ap *ap;
2057 int retval;
2058
2059 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2060 return ERROR_COMMAND_SYNTAX_ERROR;
2061
2062 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2063 /* AP address is in bits 31:24 of DP_SELECT */
2064 if (apsel > DP_APSEL_MAX) {
2065 command_print(CMD, "Invalid AP number");
2066 return ERROR_COMMAND_ARGUMENT_INVALID;
2067 }
2068
2069 ap = dap_ap(dap, apsel);
2070
2071 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2072 if (reg >= 256 || (reg & 3)) {
2073 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2074 return ERROR_COMMAND_ARGUMENT_INVALID;
2075 }
2076
2077 if (CMD_ARGC == 3) {
2078 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2079 switch (reg) {
2080 case MEM_AP_REG_CSW:
2081 ap->csw_value = 0; /* invalid, in case write fails */
2082 retval = dap_queue_ap_write(ap, reg, value);
2083 if (retval == ERROR_OK)
2084 ap->csw_value = value;
2085 break;
2086 case MEM_AP_REG_TAR:
2087 retval = dap_queue_ap_write(ap, reg, value);
2088 if (retval == ERROR_OK)
2089 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2090 else {
2091 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2092 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2093 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2094 /* if tar_valid is false. */
2095 ap->tar_valid = false;
2096 }
2097 break;
2098 case MEM_AP_REG_TAR64:
2099 retval = dap_queue_ap_write(ap, reg, value);
2100 if (retval == ERROR_OK)
2101 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2102 else {
2103 /* See above comment for the MEM_AP_REG_TAR failed write case */
2104 ap->tar_valid = false;
2105 }
2106 break;
2107 default:
2108 retval = dap_queue_ap_write(ap, reg, value);
2109 break;
2110 }
2111 } else {
2112 retval = dap_queue_ap_read(ap, reg, &value);
2113 }
2114 if (retval == ERROR_OK)
2115 retval = dap_run(dap);
2116
2117 if (retval != ERROR_OK)
2118 return retval;
2119
2120 if (CMD_ARGC == 2)
2121 command_print(CMD, "0x%08" PRIx32, value);
2122
2123 return retval;
2124 }
2125
2126 COMMAND_HANDLER(dap_dpreg_command)
2127 {
2128 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2129 uint32_t reg, value;
2130 int retval;
2131
2132 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2133 return ERROR_COMMAND_SYNTAX_ERROR;
2134
2135 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2136 if (reg >= 256 || (reg & 3)) {
2137 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2138 return ERROR_COMMAND_ARGUMENT_INVALID;
2139 }
2140
2141 if (CMD_ARGC == 2) {
2142 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2143 retval = dap_queue_dp_write(dap, reg, value);
2144 } else {
2145 retval = dap_queue_dp_read(dap, reg, &value);
2146 }
2147 if (retval == ERROR_OK)
2148 retval = dap_run(dap);
2149
2150 if (retval != ERROR_OK)
2151 return retval;
2152
2153 if (CMD_ARGC == 1)
2154 command_print(CMD, "0x%08" PRIx32, value);
2155
2156 return retval;
2157 }
2158
2159 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2160 {
2161 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2162 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2163 "TI BE-32 quirks mode");
2164 }
2165
2166 const struct command_registration dap_instance_commands[] = {
2167 {
2168 .name = "info",
2169 .handler = handle_dap_info_command,
2170 .mode = COMMAND_EXEC,
2171 .help = "display ROM table for MEM-AP "
2172 "(default currently selected AP)",
2173 .usage = "[ap_num]",
2174 },
2175 {
2176 .name = "apsel",
2177 .handler = dap_apsel_command,
2178 .mode = COMMAND_ANY,
2179 .help = "Set the currently selected AP (default 0) "
2180 "and display the result",
2181 .usage = "[ap_num]",
2182 },
2183 {
2184 .name = "apcsw",
2185 .handler = dap_apcsw_command,
2186 .mode = COMMAND_ANY,
2187 .help = "Set CSW default bits",
2188 .usage = "[value [mask]]",
2189 },
2190
2191 {
2192 .name = "apid",
2193 .handler = dap_apid_command,
2194 .mode = COMMAND_EXEC,
2195 .help = "return ID register from AP "
2196 "(default currently selected AP)",
2197 .usage = "[ap_num]",
2198 },
2199 {
2200 .name = "apreg",
2201 .handler = dap_apreg_command,
2202 .mode = COMMAND_EXEC,
2203 .help = "read/write a register from AP "
2204 "(reg is byte address of a word register, like 0 4 8...)",
2205 .usage = "ap_num reg [value]",
2206 },
2207 {
2208 .name = "dpreg",
2209 .handler = dap_dpreg_command,
2210 .mode = COMMAND_EXEC,
2211 .help = "read/write a register from DP "
2212 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2213 .usage = "reg [value]",
2214 },
2215 {
2216 .name = "baseaddr",
2217 .handler = dap_baseaddr_command,
2218 .mode = COMMAND_EXEC,
2219 .help = "return debug base address from MEM-AP "
2220 "(default currently selected AP)",
2221 .usage = "[ap_num]",
2222 },
2223 {
2224 .name = "memaccess",
2225 .handler = dap_memaccess_command,
2226 .mode = COMMAND_EXEC,
2227 .help = "set/get number of extra tck for MEM-AP memory "
2228 "bus access [0-255]",
2229 .usage = "[cycles]",
2230 },
2231 {
2232 .name = "ti_be_32_quirks",
2233 .handler = dap_ti_be_32_quirks_command,
2234 .mode = COMMAND_CONFIG,
2235 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2236 .usage = "[enable]",
2237 },
2238 COMMAND_REGISTRATION_DONE
2239 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)