- minimum autoconf 2.59 is now required and verified - due to issues with AS_HELP_STRING
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @c %**end of header
6
7 @include version.texi
8
9 @titlepage
10 @title Open On-Chip Debugger (openocd)
11 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
12 @subtitle @value{UPDATED}
13 @page
14 @vskip 0pt plus 1filll
15 @end titlepage
16
17 @contents
18
19 @node Top, About, , (dir)
20 @top OpenOCD
21
22 This is edition @value{EDITION} of the openocd manual for version
23 @value{VERSION}, @value{UPDATED}
24
25 @menu
26 * About:: About Openocd.
27 * Developers::
28 * Building:: Building Openocd
29 * Running:: Running Openocd
30 * Configuration:: Openocd Configuration.
31 * Commands:: Openocd Commands
32 * Sample Scripts:: Sample Target Scripts
33 * GDB and Openocd:: Using GDB and Openocd
34 * FAQ:: Frequently Asked Questions
35 * License:: GNU Free Documentation License
36 * Index:: Main index.
37 @end menu
38
39 @node About
40 @unnumbered About
41 @cindex about
42
43 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
44 and boundary-scan testing for embedded target devices. The targets are interfaced
45 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
46 connection types in the future.
47
48 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
49 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
50 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
51 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
52
53 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
54 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
55 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
56
57 @node Developers
58 @chapter Developers
59 @cindex developers
60
61 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
62 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
63 Others interested in improving the state of free and open debug and testing technology
64 are welcome to participate.
65
66 Other developers have contributed support for additional targets and flashes as well
67 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
68
69 @node Building
70 @chapter Building
71 @cindex building openocd
72
73 You can download the current SVN version with SVN client of your choice from the
74 following repositories:
75
76 (@uref{svn://svn.berlios.de/openocd/trunk})
77
78 or
79
80 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
81
82 Using the SVN command line client, you could use the following command to fetch the
83 latest version (make sure there is no (non-svn) directory called "openocd" in the
84 current directory):
85
86 @smallexample
87 svn checkout svn://svn.berlios.de/openocd/trunk
88 @end smallexample
89
90 Building the OpenOCD requires a recent version of the GNU autotools.
91 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
92 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
93 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
94 paths, resulting in obscure dependency errors (This is an observation I've gathered
95 from the logs of one user - correct me if I'm wrong).
96
97 You further need the appropriate driver files, if you want to build support for
98 a FTDI FT2232 based interface:
99 @itemize @bullet
100 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
101 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
102 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
103 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
104 @end itemize
105
106 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
107 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
108
109 In general, the D2XX driver provides superior performance (several times as fast),
110 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
111 a kernel module, only a user space library.
112
113 To build OpenOCD (on both Linux and Cygwin), use the following commands:
114 @smallexample
115 ./bootstrap
116 @end smallexample
117 Bootstrap generates the configure script, and prepares building on your system.
118 @smallexample
119 ./configure
120 @end smallexample
121 Configure generates the Makefiles used to build OpenOCD
122 @smallexample
123 make
124 @end smallexample
125 Make builds the OpenOCD, and places the final executable in ./src/
126
127 The configure script takes several options, specifying which JTAG interfaces
128 should be included:
129
130 @itemize @bullet
131 @item
132 --enable-parport
133 @item
134 --enable-parport_ppdev
135 @item
136 --enable-amtjtagaccel
137 @item
138 --enable-ft2232_ftd2xx
139 @footnote{Using the latest D2XX drivers from FTDI and following their installation
140 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
141 build properly}
142 @item
143 --enable-ft2232_libftdi
144 @item
145 --with-ftd2xx=/path/to/d2xx/
146 @end itemize
147
148 If you want to access the parallel port using the PPDEV interface you have to specify
149 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
150 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
151 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
152
153 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
154 absolute path containing no spaces.
155
156 Linux users should copy the various parts of the D2XX package to the appropriate
157 locations, i.e. /usr/include, /usr/lib.
158
159 @node Running
160 @chapter Running
161 @cindex running openocd
162 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
163 Run with @option{--help} or @option{-h} to view the available command line arguments.
164
165 It reads its configuration by default from the file openocd.cfg located in the current
166 working directory. This may be overwritten with the @option{-f <configfile>} command line
167 switch.
168
169 To enable debug output (when reporting problems or working on OpenOCD itself), use
170 the @option{-d} command line switch. This sets the debug_level to "3", outputting
171 the most information, including debug messages. The default setting is "2", outputting
172 only informational messages, warnings and errors. You can also change this setting
173 from within a telnet or gdb session (@option{debug_level <n>}).
174
175 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
176
177 @node Configuration
178 @chapter Configuration
179 @cindex configuration
180 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
181 by default from the file openocd.cfg in the current directory. A different configuration
182 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
183
184 The configuration file is used to specify on which ports the daemon listens for new
185 connections, the JTAG interface used to connect to the target, the layout of the JTAG
186 chain, the targets that should be debugged, and connected flashes.
187
188 @section Daemon configuration
189
190 @itemize @bullet
191 @item @b{telnet_port} <@var{number}>
192 @cindex telnet_port
193 Port on which to listen for incoming telnet connections
194 @item @b{gdb_port} <@var{number}>
195 @cindex gdb_port
196 First port on which to listen for incoming GDB connections. The GDB port for the
197 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
198 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
199 @cindex gdb_detach
200 Configures what openocd will do when gdb detaches from the daeman.
201 Default behaviour is <@var{resume}>
202 @item @b{gdb_memory_map} <@var{enable|disable}>
203 @cindex gdb_memory_map
204 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
205 requested. gdb will then know when to set hardware breakpoints, and program flash
206 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
207 for flash programming to work.
208 Default behaviour is <@var{disable}>
209 @item @b{gdb_flash_program} <@var{enable|disable}>
210 @cindex gdb_flash_program
211 Set to <@var{enable}> so that openocd will program the flash memory when a
212 vFlash packet is received.
213 Default behaviour is <@var{disable}>
214 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
215 @cindex daemon_startup
216 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
217 if it should just attach to the target.
218 @end itemize
219
220 @section JTAG interface configuration
221
222 @itemize @bullet
223 @item @b{interface} <@var{name}>
224 @cindex interface
225 Use the interface driver <@var{name}> to connect to the target. Currently supported
226 interfaces are
227 @itemize @minus
228 @item parport
229 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
230 @end itemize
231 @itemize @minus
232 @item amt_jtagaccel
233 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
234 mode parallel port
235 @end itemize
236 @itemize @minus
237 @item ft2232
238 FTDI FT2232 based devices using either the open-source libftdi or the binary only
239 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
240 platform. The libftdi uses libusb, and should be portable to all systems that provide
241 libusb.
242 @end itemize
243 @itemize @minus
244 @item ep93xx
245 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
246 @end itemize
247 @end itemize
248
249 @itemize @bullet
250 @item @b{jtag_speed} <@var{number}>
251 @cindex jtag_speed
252 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
253 speed. The actual effect of this option depends on the JTAG interface used.
254
255 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
256 @cindex reset_config
257 The configuration of the reset signals available on the JTAG interface AND the target.
258 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
259 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
260 @samp{srst_only} or @samp{trst_and_srst}.
261 [@var{combination}] is an optional value specifying broken reset signal implementations.
262 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
263 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
264 that the system is reset together with the test logic (only hypothetical, I haven't
265 seen hardware with such a bug, and can be worked around).
266
267 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
268 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
269 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
270 (default) and @samp{srst_push_pull} for the system reset. These values only affect
271 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
272
273 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
274 @cindex jtag_device
275 Describes the devices that form the JTAG daisy chain, with the first device being
276 the one closest to TDO. The parameters are the length of the instruction register
277 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
278 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
279 The IDCODE instruction will in future be used to query devices for their JTAG
280 identification code. This line is the same for all ARM7 and ARM9 devices.
281 Other devices, like CPLDs, require different parameters. An example configuration
282 line for a Xilinx XC9500 CPLD would look like this:
283 @smallexample
284 jtag_device 8 0x01 0x0e3 0xfe
285 @end smallexample
286 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
287 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
288 The IDCODE instruction is 0xfe.
289
290 @item @b{jtag_nsrst_delay} <@var{ms}>
291 @cindex jtag_nsrst_delay
292 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
293 starting new JTAG operations.
294 @item @b{jtag_ntrst_delay} <@var{ms}>
295 @cindex jtag_ntrst_delay
296 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
297 starting new JTAG operations.
298
299 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
300 or on-chip features) keep a reset line asserted for some time after the external reset
301 got deasserted.
302 @end itemize
303
304 @section parport options
305
306 @itemize @bullet
307 @item @b{parport_port} <@var{number}>
308 @cindex parport_port
309 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
310 the @file{/dev/parport} device
311
312 When using PPDEV to access the parallel port, use the number of the parallel port:
313 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
314 you may encounter a problem.
315 @item @b{parport_cable} <@var{name}>
316 @cindex parport_cable
317 The layout of the parallel port cable used to connect to the target.
318 Currently supported cables are
319 @itemize @minus
320 @item wiggler
321 @cindex wiggler
322 Original Wiggler layout, also supported by several clones, such
323 as the Olimex ARM-JTAG
324 @item old_amt_wiggler
325 @cindex old_amt_wiggler
326 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
327 version available from the website uses the original Wiggler layout ('@var{wiggler}')
328 @item chameleon
329 @cindex chameleon
330 Describes the connection of the Amontec Chameleon's CPLD when operated in
331 configuration mode. This is only used to program the Chameleon itself, not
332 a connected target.
333 @item dlc5
334 @cindex dlc5
335 Xilinx Parallel cable III.
336 @item triton
337 @cindex triton
338 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
339 This is also the layout used by the HollyGates design
340 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
341 @item flashlink
342 @cindex flashlink
343 ST Parallel cable.
344 @end itemize
345 @item @b{parport_write_on_exit} <@var{on|off}>
346 @cindex parport_write_on_exit
347 This will configure the parallel driver to write a known value to the parallel
348 interface on exiting openocd
349 @end itemize
350
351 @section amt_jtagaccel options
352 @itemize @bullet
353 @item @b{parport_port} <@var{number}>
354 @cindex parport_port
355 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
356 @file{/dev/parport} device
357 @end itemize
358 @section ft2232 options
359
360 @itemize @bullet
361 @item @b{ft2232_device_desc} <@var{description}>
362 @cindex ft2232_device_desc
363 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
364 default value is used. This setting is only valid if compiled with FTD2XX support.
365 @item @b{ft2232_layout} <@var{name}>
366 @cindex ft2232_layout
367 The layout of the FT2232 GPIO signals used to control output-enables and reset
368 signals. Valid layouts are
369 @itemize @minus
370 @item usbjtag
371 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
372 @item jtagkey
373 Amontec JTAGkey and JTAGkey-tiny
374 @item signalyzer
375 Signalyzer
376 @item olimex-jtag
377 Olimex ARM-USB-OCD
378 @item m5960
379 American Microsystems M5960
380 @item evb_lm3s811
381 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
382 SRST signals on external connector
383 @item comstick
384 Hitex STR9 comstick
385 @item stm32stick
386 Hitex STM32 Performance Stick
387 @end itemize
388
389 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
390 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
391 default values are used. This command is not available on Windows.
392 @item @b{ft2232_latency} <@var{ms}>
393 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
394 ft2232_read() fails to return the expected number of bytes. This can be caused by
395 USB communication delays and has proved hard to reproduce and debug. Setting the
396 FT2232 latency timer to a larger value increases delays for short USB packages but it
397 also reduces the risk of timeouts before receiving the expected number of bytes.
398 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
399 @end itemize
400
401 @section ep93xx options
402 @cindex ep93xx options
403 Currently, there are no options available for the ep93xx interface.
404
405 @page
406 @section Target configuration
407
408 @itemize @bullet
409 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
410 <@var{variant}>
411 @cindex target
412 Defines a target that should be debugged. Currently supported types are:
413 @itemize @minus
414 @item arm7tdmi
415 @item arm720t
416 @item arm9tdmi
417 @item arm920t
418 @item arm922t
419 @item arm926ejs
420 @item arm966e
421 @item cortex_m3
422 @item xscale
423 @end itemize
424
425 If you want to use a target board that is not on this list, see Adding a new
426 target board
427
428 Endianess may be @option{little} or @option{big}.
429
430 The reset_mode specifies what should happen to the target when a reset occurs:
431 @itemize @minus
432 @item reset_halt
433 @cindex reset_halt
434 Immediately request a target halt after reset. This allows targets to be debugged
435 from the very first instruction. This is only possible with targets and JTAG
436 interfaces that correctly implement the reset signals.
437 @item reset_init
438 @cindex reset_init
439 Similar to @option{reset_halt}, but executes the script file defined to handle the
440 'reset' event for the target. Like @option{reset_halt} this only works with
441 correct reset implementations.
442 @item reset_run
443 @cindex reset_run
444 Simply let the target run after a reset.
445 @item run_and_halt
446 @cindex run_and_halt
447 Let the target run for some time (default: 1s), and then request halt.
448 @item run_and_init
449 @cindex run_and_init
450 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
451 to run for some time, then halted, and the @option{reset} event script is executed.
452 @end itemize
453
454 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
455 completely independent (like the LPC2000 series), or where the JTAG interface is
456 unavailable for some time during startup (like the STR7 series), you can't use
457 @option{reset_halt} or @option{reset_init}.
458
459 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
460 @cindex target_script
461 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
462
463 TODO: describe exact semantic of events
464 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
465 @cindex run_and_halt_time
466 The amount of time the debugger should wait after releasing reset before it asserts
467 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
468 reset modes.
469 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
470 <@var{backup}|@var{nobackup}>
471 @cindex working_area
472 Specifies a working area for the debugger to use. This may be used to speed-up
473 downloads to target memory and flash operations, or to perform otherwise unavailable
474 operations (some coprocessor operations on ARM7/9 systems, for example). The last
475 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
476 a working_area that doesn't need to be backed up, as that slows down operation.
477 @end itemize
478
479 @subsection arm7tdmi options
480 @cindex arm7tdmi options
481 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
482 The arm7tdmi target definition requires at least one additional argument, specifying
483 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
484 The optional [@var{variant}] parameter has been removed in recent versions.
485 The correct feature set is determined at runtime.
486
487 @subsection arm720t options
488 @cindex arm720t options
489 ARM720t options are similar to ARM7TDMI options.
490
491 @subsection arm9tdmi options
492 @cindex arm9tdmi options
493 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
494 @option{arm920t}, @option{arm922t} and @option{arm940t}.
495 This enables the hardware single-stepping support found on these cores.
496
497 @subsection arm920t options
498 @cindex arm920t options
499 ARM920t options are similar to ARM9TDMI options.
500
501 @subsection arm966e options
502 @cindex arm966e options
503 ARM966e options are similar to ARM9TDMI options.
504
505 @subsection xscale options
506 @cindex xscale options
507 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
508 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
509
510 @section Flash configuration
511 @cindex Flash configuration
512
513 @itemize @bullet
514 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
515 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
516 @cindex flash bank
517 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
518 and <@var{bus_width}> bytes using the selected flash <driver>.
519
520 @item @b{flash autoerase} <@option{on}|@option{off}>
521 @cindex flash autoerase
522 auto erase flash banks prior to writing. Currently only works when using
523 @option{flash write_image} command. Default is @option{off}.
524 @end itemize
525
526 @subsection lpc2000 options
527 @cindex lpc2000 options
528
529 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
530 <@var{clock}> [@var{calc_checksum}]
531 LPC flashes don't require the chip and bus width to be specified. Additional
532 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
533 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
534 of the target this flash belongs to (first is 0), the frequency at which the core
535 is currently running (in kHz - must be an integral number), and the optional keyword
536 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
537 vector table.
538
539 @subsection cfi options
540 @cindex cfi options
541
542 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
543 <@var{target#}>
544 CFI flashes require the number of the target they're connected to as an additional
545 argument. The CFI driver makes use of a working area (specified for the target)
546 to significantly speed up operation.
547
548 @subsection at91sam7 options
549 @cindex at91sam7 options
550
551 @b{flash bank at91sam7} 0 0 0 0 <@var{target#>}>
552 AT91SAM7 flashes only require the target#, all other values are looked up after
553 reading the chip-id and type.
554
555 @subsection str7 options
556 @cindex str7 options
557
558 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
559 variant can be either STR71x, STR73x or STR75x.
560
561 @subsection str9 options
562 @cindex str9 options
563
564 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
565 The str9 needs the flash controller to be configured prior to Flash programming, eg.
566 @smallexample
567 str9x flash_config 0 4 2 0 0x80000
568 @end smallexample
569 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
570
571 @subsection str9 options (str9xpec driver)
572
573 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
574 Before using the flash commands the turbo mode will need enabling using str9xpec
575 @option{enable_turbo} <@var{num>.}
576
577 Only use this driver for locking/unlocking the device or configuring the option bytes.
578 Use the standard str9 driver for programming.
579
580 @subsection stellaris (LM3Sxxx) options
581 @cindex stellaris (LM3Sxxx) options
582
583 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
584 stellaris flash plugin only require the target#.
585
586 @subsection stm32x options
587 @cindex stm32x options
588
589 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
590 stm32x flash plugin only require the target#.
591
592 @node Commands
593 @chapter Commands
594 @cindex commands
595
596 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
597 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
598 is available from both the telnet interface and a GDB session. To issue commands to the
599 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
600 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
601 GDB session.
602
603 @section Daemon
604
605 @itemize @bullet
606 @item @b{sleep} <@var{msec}>
607 @cindex sleep
608 Wait for n milliseconds before resuming. Useful in connection with script files
609 (@var{script} command and @var{target_script} configuration).
610
611 @item @b{shutdown}
612 @cindex shutdown
613 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
614
615 @item @b{debug_level} [@var{n}]
616 @cindex debug_level
617 Display or adjust debug level to n<0-3>
618
619 @item @b{log_output} <@var{file}>
620 @cindex log_output
621 Redirect logging to <file> (default: stderr)
622
623 @item @b{script} <@var{file}>
624 @cindex script
625 Execute commands from <file>
626
627 @end itemize
628
629 @subsection Target state handling
630 @itemize @bullet
631 @item @b{poll} [@option{on}|@option{off}]
632 @cindex poll
633 Poll the target for its current state. If the target is in debug mode, architecture
634 specific information about the current state are printed. An optional parameter
635 allows continuous polling to be enabled and disabled.
636
637 @item @b{halt}
638 @cindex halt
639 Send a halt request to the target. The debugger signals the debug request,
640 and waits for the target to enter debug mode.
641
642 @item @b{resume} [@var{address}]
643 @cindex resume
644 Resume the target at its current code position, or at an optional address.
645
646 @item @b{step} [@var{address}]
647 @cindex step
648 Single-step the target at its current code position, or at an optional address.
649
650 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
651 |@option{run_and_init}]
652 @cindex reset
653 Do a hard-reset. The optional parameter specifies what should happen after the reset.
654 This optional parameter overwrites the setting specified in the configuration file,
655 making the new behaviour the default for the @option{reset} command.
656 @itemize @minus
657 @item run
658 @cindex reset run
659 Let the target run.
660 @item halt
661 @cindex reset halt
662 Immediately halt the target (works only with certain configurations).
663 @item init
664 @cindex reset init
665 Immediately halt the target, and execute the reset script (works only with certain
666 configurations)
667 @item run_and_halt
668 @cindex reset run_and_halt
669 Let the target run for a certain amount of time, then request a halt.
670 @item run_and_init
671 @cindex reset run_and_init
672 Let the target run for a certain amount of time, then request a halt. Execute the
673 reset script once the target entered debug mode.
674 @end itemize
675 @end itemize
676
677 @subsection Memory access commands
678 These commands allow accesses of a specific size to the memory system:
679 @itemize @bullet
680 @item @b{mdw} <@var{addr}> [@var{count}]
681 @cindex mdw
682 display memory words
683 @item @b{mdh} <@var{addr}> [@var{count}]
684 @cindex mdh
685 display memory half-words
686 @item @b{mdb} <@var{addr}> [@var{count}]
687 @cindex mdb
688 display memory bytes
689 @item @b{mww} <@var{addr}> <@var{value}>
690 @cindex mww
691 write memory word
692 @item @b{mwh} <@var{addr}> <@var{value}>
693 @cindex mwh
694 write memory half-word
695 @item @b{mwb} <@var{addr}> <@var{value}>
696 @cindex mwb
697 write memory byte
698
699 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
700 @cindex load_image
701 Load image <@var{file}> to target memory at <@var{address}>
702 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
703 @cindex dump_image
704 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
705 (binary) <@var{file}>.
706 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
707 @cindex verify_image
708 Verify <@var{file}> to target memory starting at <@var{address}>.
709 This will first attempt using a crc checksum, if this fails it will try a binary compare.
710 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
711 @cindex load_binary
712 Load binary <@var{file}> to target memory at <@var{address}>
713 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
714 @cindex dump_binary
715 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
716 (binary) <@var{file}>.
717 @end itemize
718
719 @subsection Flash commands
720 @cindex Flash commands
721 @itemize @bullet
722 @item @b{flash banks}
723 @cindex flash banks
724 List configured flash banks
725 @item @b{flash info} <@var{num}>
726 @cindex flash info
727 Print info about flash bank <@option{num}>
728 @item @b{flash probe} <@var{num}>
729 @cindex flash probe
730 Identify the flash, or validate the parameters of the configured flash. Operation
731 depends on the flash type.
732 @item @b{flash erase_check} <@var{num}>
733 @cindex flash erase_check
734 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
735 updates the erase state information displayed by @option{flash info}. That means you have
736 to issue an @option{erase_check} command after erasing or programming the device to get
737 updated information.
738 @item @b{flash protect_check} <@var{num}>
739 @cindex flash protect_check
740 Check protection state of sectors in flash bank <num>.
741
742 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
743 @cindex flash erase
744 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
745 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
746 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
747 the CFI driver). This command was replaced by the new command
748 @option{flash erase_sector} using the same syntax.
749 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
750 @cindex flash erase_sector
751 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
752 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
753 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
754 the CFI driver).
755 @item @b{flash erase_address} <@var{address}> <@var{length}>
756 @cindex flash erase_address
757 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
758 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
759 @cindex flash write
760 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
761 bytes from the beginning of the bank. This command was replaced by the new command
762 @option{flash write_binary} using the same syntax.
763 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
764 @cindex flash write_binary
765 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
766 <@option{offset}> bytes from the beginning of the bank.
767 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
768 @cindex flash write_image
769 Write the image <@var{file}> to the current target's flash bank(s). A relocation
770 [@var{offset}] can be specified and the file [@var{type}] can be specified
771 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
772 (ELF file) or @option{s19} (Motorola s19).
773 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
774 @cindex flash protect
775 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
776 <@var{last}> of @option{flash bank} <@var{num}>.
777 @item @b{flash auto_erase} <@var{on}|@var{off}>
778 @cindex flash auto_erase
779 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
780 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
781 @end itemize
782
783 @page
784 @section Target Specific Commands
785 @cindex Target Specific Commands
786
787 @subsection AT91SAM7 specific commands
788 @cindex AT91SAM7 specific commands
789 The flash configuration is deduced from the chip identification register. The flash
790 controller handles erases automatically on a page (128/265 byte) basis so erase is
791 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
792 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
793 that can be erased separatly.Only an EraseAll command is supported by the controller
794 for each flash plane and this is called with
795 @itemize @bullet
796 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
797 bulk erase flash planes first_plane to last_plane.
798 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
799 @cindex at91sam7 gpnvm
800 set or clear a gpnvm bit for the processor
801 @end itemize
802
803 @subsection STR9 specific commands
804 @cindex STR9 specific commands
805 These are flash specific commands when using the str9xpec driver.
806 @itemize @bullet
807 @item @b{str9xpec enable_turbo} <@var{num}>
808 @cindex str9xpec enable_turbo
809 enable turbo mode, simply this will remove the str9 from the chain and talk
810 directly to the embedded flash controller.
811 @item @b{str9xpec disable_turbo} <@var{num}>
812 @cindex str9xpec disable_turbo
813 restore the str9 into jtag chain.
814 @item @b{str9xpec lock} <@var{num}>
815 @cindex str9xpec lock
816 lock str9 device. The str9 will only respond to an unlock command that will
817 erase the device.
818 @item @b{str9xpec unlock} <@var{num}>
819 @cindex str9xpec unlock
820 unlock str9 device.
821 @item @b{str9xpec options_read} <@var{num}>
822 @cindex str9xpec options_read
823 read str9 option bytes.
824 @item @b{str9xpec options_write} <@var{num}>
825 @cindex str9xpec options_write
826 write str9 option bytes.
827 @end itemize
828
829 @subsection STR9 configuration
830 @cindex STR9 configuration
831 @itemize @bullet
832 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
833 <@var{BBADR}> <@var{NBBADR}>
834 @cindex str9x flash_config
835 Configure str9 flash controller.
836 @smallexample
837 eg. str9x flash_config 0 4 2 0 0x80000
838 This will setup
839 BBSR - Boot Bank Size register
840 NBBSR - Non Boot Bank Size register
841 BBADR - Boot Bank Start Address register
842 NBBADR - Boot Bank Start Address register
843 @end smallexample
844 @end itemize
845
846 @subsection STR9 option byte configuration
847 @cindex STR9 option byte configuration
848 @itemize @bullet
849 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
850 @cindex str9xpec options_cmap
851 configure str9 boot bank.
852 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
853 @cindex str9xpec options_lvdthd
854 configure str9 lvd threshold.
855 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
856 @cindex str9xpec options_lvdsel
857 configure str9 lvd source.
858 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
859 @cindex str9xpec options_lvdwarn
860 configure str9 lvd reset warning source.
861 @end itemize
862
863 @subsection STM32x specific commands
864 @cindex STM32x specific commands
865
866 These are flash specific commands when using the stm32x driver.
867 @itemize @bullet
868 @item @b{stm32x lock} <@var{num}>
869 @cindex stm32x lock
870 lock stm32 device.
871 @item @b{stm32x unlock} <@var{num}>
872 @cindex stm32x unlock
873 unlock stm32 device.
874 @item @b{stm32x options_read} <@var{num}>
875 @cindex stm32x options_read
876 read stm32 option bytes.
877 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
878 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
879 @cindex stm32x options_write
880 write stm32 option bytes.
881 @item @b{stm32x mass_erase} <@var{num}>
882 @cindex stm32x mass_erase
883 mass erase flash memory.
884 @end itemize
885
886 @page
887 @section Architecture Specific Commands
888 @cindex Architecture Specific Commands
889
890 @subsection ARMV4/5 specific commands
891 @cindex ARMV4/5 specific commands
892
893 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
894 or Intel XScale (XScale isn't supported yet).
895 @itemize @bullet
896 @item @b{armv4_5 reg}
897 @cindex armv4_5 reg
898 Display a list of all banked core registers, fetching the current value from every
899 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
900 register value.
901 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
902 @cindex armv4_5 core_mode
903 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
904 The target is resumed in the currently set @option{core_mode}.
905 @end itemize
906
907 @subsection ARM7/9 specific commands
908 @cindex ARM7/9 specific commands
909
910 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
911 ARM920t or ARM926EJ-S.
912 @itemize @bullet
913 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
914 @cindex arm7_9 sw_bkpts
915 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
916 one of the watchpoint registers to implement software breakpoints. Disabling
917 SW Bkpts frees that register again.
918 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
919 @cindex arm7_9 force_hw_bkpts
920 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
921 breakpoints are turned into hardware breakpoints.
922 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
923 @cindex arm7_9 dbgrq
924 Enable use of the DBGRQ bit to force entry into debug mode. This should be
925 safe for all but ARM7TDMI--S cores (like Philips LPC).
926 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
927 @cindex arm7_9 fast_writes [DEPRECATED]
928 See @option{arm7_9 fast_memory_access} instead.
929 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
930 @cindex arm7_9 fast_memory_access
931 Allow the OpenOCD to read and write memory without checking completion of
932 the operation. This provides a huge speed increase, especially with USB JTAG
933 cables (FT2232), but might be unsafe if used with targets running at a very low
934 speed, like the 32kHz startup clock of an AT91RM9200.
935 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
936 @cindex arm7_9 dcc_downloads
937 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
938 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
939 unsafe, especially with targets running at a very low speed. This command was introduced
940 with OpenOCD rev. 60.
941 @end itemize
942
943 @subsection ARM920T specific commands
944 @cindex ARM920T specific commands
945
946 @itemize @bullet
947 @item @b{arm920t cache_info}
948 @cindex arm920t cache_info
949 Print information about the caches found. This allows you to see if your target
950 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
951 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
952 @cindex arm920t md<bhw>_phys
953 Display memory at physical address addr.
954 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
955 @cindex arm920t mw<bhw>_phys
956 Write memory at physical address addr.
957 @item @b{arm920t read_cache} <@var{filename}>
958 @cindex arm920t read_cache
959 Dump the content of ICache and DCache to a file.
960 @item @b{arm920t read_mmu} <@var{filename}>
961 @cindex arm920t read_mmu
962 Dump the content of the ITLB and DTLB to a file.
963 @item @b{arm920t virt2phys} <@var{VA}>
964 @cindex arm920t virt2phys
965 Translate a virtual address to a physical address.
966 @end itemize
967
968 @page
969 @section Debug commands
970 @cindex Debug commands
971 The following commands give direct access to the core, and are most likely
972 only useful while debugging the OpenOCD.
973 @itemize @bullet
974 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
975 @cindex arm7_9 write_xpsr
976 Immediately write either the current program status register (CPSR) or the saved
977 program status register (SPSR), without changing the register cache (as displayed
978 by the @option{reg} and @option{armv4_5 reg} commands).
979 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
980 <@var{0=cpsr},@var{1=spsr}>
981 @cindex arm7_9 write_xpsr_im8
982 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
983 operation (similar to @option{write_xpsr}).
984 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
985 @cindex arm7_9 write_core_reg
986 Write a core register, without changing the register cache (as displayed by the
987 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
988 encoding of the [M4:M0] bits of the PSR.
989 @end itemize
990
991 @page
992 @section JTAG commands
993 @cindex JTAG commands
994 @itemize @bullet
995 @item @b{scan_chain}
996 @cindex scan_chain
997 Print current scan chain configuration.
998 @item @b{jtag_reset}
999 @cindex jtag_reset
1000 Toggle reset lines <@var{trst}> <@var{srst}>.
1001 @item @b{endstate} <@var{tap_state}>
1002 @cindex endstate
1003 Finish JTAG operations in <@var{tap_state}>.
1004 @item @b{runtest} <@var{num_cycles}>
1005 @cindex runtest
1006 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1007 @item @b{statemove} [@var{tap_state}]
1008 @cindex statemove
1009 Move to current endstate or [@var{tap_state}]
1010 @item @b{irscan}
1011 @cindex irscan
1012 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1013 @item @b{drscan}
1014 @cindex drscan
1015 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1016 @item @b{verify_ircapture}
1017 @cindex verify_ircapture
1018 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1019 @item @b{var}
1020 @cindex var
1021 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1022 @item @b{field}
1023 @cindex field
1024 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1025 @end itemize
1026
1027 @node Sample Scripts
1028 @chapter Sample Scripts
1029 @cindex scripts
1030
1031 This page will collect some script examples for different CPUs.
1032
1033 The configuration script can be divided in the following section:
1034 @itemize @bullet
1035 @item daemon configuration
1036 @item interface
1037 @item jtag scan chain
1038 @item target configuration
1039 @item flash configuration
1040 @end itemize
1041
1042 Detailed information about each section can be found at OpenOCD configuration
1043
1044 @section OMAP5912 Flash Debug
1045 @cindex OMAP5912 Flash Debug
1046 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1047 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1048 - (@uref{http://www.spectrumdigital.com}).
1049 @subsection Openocd config
1050 @smallexample
1051 #daemon configuration
1052 telnet_port 4444
1053 gdb_port 3333
1054
1055 #interface
1056 interface parport
1057 parport_port 0x378
1058 parport_cable wiggler
1059 jtag_speed 0
1060
1061 #use combined on interfaces or targets that can't set TRST/SRST separately
1062 reset_config trst_and_srst
1063
1064 #jtag scan chain
1065 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1066 jtag_device 38 0x0 0x0 0x0
1067 jtag_device 4 0x1 0x0 0xe
1068 jtag_device 8 0x0 0x0 0x0
1069
1070 #target configuration
1071 daemon_startup reset
1072
1073 #target <type> <endianness> <reset mode> <chainpos> <variant>
1074 target arm926ejs little run_and_init 1 arm926ejs
1075 target_script 0 reset omap5912_osk.init
1076 run_and_halt_time 0 30
1077
1078 # omap5912 lcd frame buffer as working area
1079 working_area 0 0x20000000 0x3e800 nobackup
1080
1081 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1082 flash bank cfi 0x00000000 0x1000000 2 2 0
1083 @end smallexample
1084
1085 @subsection Openocd init
1086 @smallexample
1087 #
1088 # halt target
1089 #
1090 poll
1091 sleep 1
1092 halt
1093 wait_halt
1094 #
1095 # disable wdt
1096 #
1097 mww 0xfffec808 0x000000f5
1098 mww 0xfffec808 0x000000a0
1099
1100 mww 0xfffeb048 0x0000aaaa
1101 sleep 500
1102 mww 0xfffeb048 0x00005555
1103 sleep 500
1104 #
1105 # detect flash
1106 #
1107 flash probe 0
1108
1109 @end smallexample
1110
1111 @section STR71x Script
1112 @cindex STR71x Script
1113 The following script was used with an Amontec JTAGkey and a STR710 / STR711 cpu:
1114 @smallexample
1115 #daemon configuration
1116 telnet_port 4444
1117 gdb_port 3333
1118
1119 #interface
1120 interface ft2232
1121 ft2232_device_desc "Amontec JTAGkey A"
1122 ft2232_layout jtagkey
1123 ft2232_vid_pid 0x0403 0xcff8
1124 jtag_speed 0
1125
1126 #use combined on interfaces or targets that can't set TRST/SRST separately
1127 reset_config trst_and_srst srst_pulls_trst
1128
1129 #jtag scan chain
1130 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1131 jtag_device 4 0x1 0xf 0xe
1132
1133 #target configuration
1134 daemon_startup reset
1135
1136 #target <type> <startup mode>
1137 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1138 target arm7tdmi little run_and_halt 0 arm7tdmi
1139 run_and_halt_time 0 30
1140
1141 working_area 0 0x2000C000 0x4000 nobackup
1142
1143 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1144 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1145 @end smallexample
1146
1147 @section STR750 Script
1148 @cindex STR750 Script
1149 The following script was used with an Amontec JTAGkey and a STR750 cpu:
1150 @smallexample
1151 #daemon configuration
1152 telnet_port 4444
1153 gdb_port 3333
1154
1155 #interface
1156 interface ft2232
1157 ft2232_device_desc "Amontec JTAGkey A"
1158 ft2232_layout jtagkey
1159 ft2232_vid_pid 0x0403 0xcff8
1160 jtag_speed 19
1161
1162 #use combined on interfaces or targets that can't set TRST/SRST separately
1163 #reset_config trst_and_srst srst_pulls_trst
1164 reset_config trst_and_srst srst_pulls_trst
1165
1166 #jtag scan chain
1167 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1168 jtag_device 4 0x1 0xf 0xe
1169
1170 #jtag nTRST and nSRST delay
1171 jtag_nsrst_delay 500
1172 jtag_ntrst_delay 500
1173
1174 #target configuration
1175 daemon_startup reset
1176
1177 #target <type> <startup mode>
1178 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1179 target arm7tdmi little run_and_halt 0 arm7tdmi
1180 run_and_halt_time 0 30
1181
1182 working_area 0 0x40000000 0x4000 nobackup
1183
1184 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1185 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1186 @end smallexample
1187
1188 @section STR912 Script
1189 @cindex STR912 Script
1190 The following script was used with an Amontec JTAGkey and a STR912 cpu:
1191 @smallexample
1192 #daemon configuration
1193 telnet_port 4444
1194 gdb_port 3333
1195
1196 #interface
1197 interface ft2232
1198 ft2232_device_desc "Amontec JTAGkey A"
1199 ft2232_layout jtagkey
1200 jtag_speed 1
1201
1202 #use combined on interfaces or targets that can't set TRST/SRST separately
1203 reset_config trst_and_srst
1204
1205 #jtag scan chain
1206 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1207 jtag_device 8 0x1 0x1 0xfe
1208 jtag_device 4 0x1 0xf 0xe
1209 jtag_device 5 0x1 0x1 0x1e
1210
1211 #target configuration
1212 daemon_startup reset
1213
1214 #target <type> <startup mode>
1215 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1216 target arm966e little reset_halt 1 arm966e
1217 run_and_halt_time 0 30
1218
1219 working_area 0 0x50000000 16384 nobackup
1220
1221 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1222 flash bank str9x 0x00000000 0x00080000 0 0 0
1223 @end smallexample
1224
1225 @section STR912 comstick
1226 @cindex STR912 comstick Script
1227 The following script was used with a Hitex STR9 Comstick:
1228 @smallexample
1229 #daemon configuration
1230 telnet_port 4444
1231 gdb_port 3333
1232
1233 #interface
1234 interface ft2232
1235 ft2232_device_desc "STR9-comStick A"
1236 ft2232_layout comstick
1237 jtag_speed 1
1238
1239 jtag_nsrst_delay 100
1240 jtag_ntrst_delay 100
1241
1242 #use combined on interfaces or targets that can't set TRST/SRST separately
1243 reset_config trst_and_srst
1244
1245 #jtag scan chain
1246 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1247 jtag_device 8 0x1 0x1 0xfe
1248 jtag_device 4 0x1 0xf 0xe
1249 jtag_device 5 0x1 0x1 0x1e
1250
1251 #target configuration
1252 daemon_startup reset
1253
1254 #target <type> <startup mode>
1255 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1256 target arm966e little reset_halt 1 arm966e
1257 run_and_halt_time 0 30
1258
1259 working_area 0 0x50000000 16384 nobackup
1260
1261 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1262 flash bank str9x 0x00000000 0x00080000 0 0 0
1263 @end smallexample
1264
1265 @section STM32x Script
1266 @cindex STM32x Script
1267 The following script was used with an Amontec JTAGkey and a STM32x cpu:
1268 @smallexample
1269 #daemon configuration
1270 telnet_port 4444
1271 gdb_port 3333
1272
1273 #interface
1274 interface ft2232
1275 ft2232_device_desc "Amontec JTAGkey A"
1276 ft2232_layout jtagkey
1277 jtag_speed 10
1278
1279 jtag_nsrst_delay 100
1280 jtag_ntrst_delay 100
1281
1282 #use combined on interfaces or targets that can't set TRST/SRST separately
1283 reset_config trst_and_srst
1284
1285 #jtag scan chain
1286 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1287 jtag_device 4 0x1 0xf 0xe
1288 jtag_device 5 0x1 0x1 0x1e
1289
1290 #target configuration
1291 daemon_startup reset
1292
1293 #target <type> <startup mode>
1294 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1295 target cortex_m3 little run_and_halt 0
1296 run_and_halt_time 0 30
1297
1298 working_area 0 0x20000000 16384 nobackup
1299
1300 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1301 flash bank stm32x 0x08000000 0x00020000 0 0 0
1302 @end smallexample
1303
1304 @section STM32x Performance Stick
1305 @cindex STM32x Performance Stick Script
1306 The following script was used with the Hitex STM32 Performance Stick
1307 @smallexample
1308 #daemon configuration
1309 telnet_port 4444
1310 gdb_port 3333
1311
1312 #interface
1313 interface ft2232
1314 ft2232_device_desc "STM32-PerformanceStick A"
1315 ft2232_layout stm32stick
1316 jtag_speed 10
1317
1318 jtag_nsrst_delay 100
1319 jtag_ntrst_delay 100
1320
1321 #use combined on interfaces or targets that can't set TRST/SRST separately
1322 reset_config trst_and_srst
1323
1324 #jtag scan chain
1325 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1326 jtag_device 4 0x1 0xf 0xe
1327 jtag_device 5 0x1 0x1 0x1e
1328 jtag_device 4 0x1 0xf 0xe
1329
1330 #target configuration
1331 daemon_startup reset
1332
1333 #target <type> <startup mode>
1334 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1335 target cortex_m3 little run_and_halt 0
1336 run_and_halt_time 0 30
1337
1338 working_area 0 0x20000000 16384 nobackup
1339
1340 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1341 flash bank stm32x 0x08000000 0x00020000 0 0 0
1342 @end smallexample
1343
1344 @section LPC2129 Script
1345 @cindex LPC2129 Script
1346 The following script was used with an wiggler PP and a LPC-2129 cpu:
1347 @smallexample
1348 #daemon configuration
1349 telnet_port 4444
1350 gdb_port 3333
1351
1352 #interface
1353 interface parport
1354 parport_port 0x378
1355 parport_cable wiggler
1356 jtag_speed 0
1357
1358 #use combined on interfaces or targets that can't set TRST/SRST separately
1359 reset_config trst_and_srst srst_pulls_trst
1360
1361 #jtag scan chain
1362 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1363 jtag_device 4 0x1 0xf 0xe
1364
1365 #target configuration
1366 daemon_startup reset
1367
1368 #target <type> <startup mode>
1369 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1370 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1371 run_and_halt_time 0 30
1372
1373 working_area 0 0x40000000 0x4000 nobackup
1374
1375 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1376 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1377 @end smallexample
1378
1379 @section LPC2148 Script
1380 @cindex LPC2148 Script
1381 The following script was used with an Amontec JTAGkey and a LPC2148 cpu:
1382 @smallexample
1383 #daemon configuration
1384 telnet_port 4444
1385 gdb_port 3333
1386
1387 #interface
1388 interface ft2232
1389 ft2232_device_desc "Amontec JTAGkey A"
1390 ft2232_layout jtagkey
1391 ft2232_vid_pid 0x0403 0xcff8
1392 jtag_speed 3
1393
1394 #use combined on interfaces or targets that can't set TRST/SRST separately
1395 reset_config trst_and_srst srst_pulls_trst
1396
1397 #jtag scan chain
1398 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1399 jtag_device 4 0x1 0xf 0xe
1400
1401 #target configuration
1402 daemon_startup reset
1403
1404 #target <type> <startup mode>
1405 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1406 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1407 run_and_halt_time 0 30
1408
1409 working_area 0 0x40000000 0x8000 nobackup
1410
1411 #flash configuration
1412 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1413 @end smallexample
1414
1415 @section LPC2294 Script
1416 @cindex LPC2294 Script
1417 The following script was used with an Amontec JTAGkey and a LPC2294 cpu:
1418 @smallexample
1419 #daemon configuration
1420 telnet_port 4444
1421 gdb_port 3333
1422
1423 #interface
1424 interface ft2232
1425 ft2232_device_desc "Amontec JTAGkey A"
1426 ft2232_layout jtagkey
1427 ft2232_vid_pid 0x0403 0xcff8
1428 jtag_speed 3
1429
1430 #use combined on interfaces or targets that can't set TRST/SRST separately
1431 reset_config trst_and_srst srst_pulls_trst
1432
1433 #jtag scan chain
1434 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1435 jtag_device 4 0x1 0xf 0xe
1436
1437 #target configuration
1438 daemon_startup reset
1439
1440 #target <type> <startup mode>
1441 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1442 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1443 run_and_halt_time 0 30
1444
1445 working_area 0 0x40000000 0x4000 nobackup
1446
1447 #flash configuration
1448 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1449 @end smallexample
1450
1451 @section AT91R40008 Script
1452 @cindex AT91R40008 Script
1453 The following script was used with an Amontec JTAGkey and a AT91R40008 cpu:
1454 @smallexample
1455 #daemon configuration
1456 telnet_port 4444
1457 gdb_port 3333
1458
1459 #interface
1460 interface ft2232
1461 ft2232_device_desc "Amontec JTAGkey A"
1462 ft2232_layout jtagkey
1463 ft2232_vid_pid 0x0403 0xcff8
1464 jtag_speed 0
1465 jtag_nsrst_delay 200
1466 jtag_ntrst_delay 200
1467
1468 #use combined on interfaces or targets that can't set TRST/SRST separately
1469 reset_config srst_only srst_pulls_trst
1470
1471 #jtag scan chain
1472 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1473 jtag_device 4 0x1 0xf 0xe
1474
1475 #target configuration
1476 daemon_startup reset
1477
1478 #target <type> <startup mode>
1479 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1480 target arm7tdmi little run_and_halt 0 arm7tdmi
1481 run_and_halt_time 0 30
1482 @end smallexample
1483
1484 @section AT91SAM7s Script
1485 @cindex AT91SAM7s Script
1486 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 cpu:
1487 @smallexample
1488 #daemon configuration
1489 telnet_port 4444
1490 gdb_port 3333
1491
1492 #interface
1493 interface ft2232
1494 ft2232_device_desc "Olimex OpenOCD JTAG A"
1495 ft2232_layout olimex-jtag
1496 ft2232_vid_pid 0x15BA 0x0003
1497 jtag_speed 0
1498 jtag_nsrst_delay 200
1499 jtag_ntrst_delay 200
1500
1501 #use combined on interfaces or targets that can't set TRST/SRST separately
1502 reset_config srst_only srst_pulls_trst
1503
1504 #jtag scan chain
1505 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1506 jtag_device 4 0x1 0xf 0xe
1507
1508 #target configuration
1509 daemon_startup reset
1510
1511 #target <type> <startup mode>
1512 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1513 target arm7tdmi little run_and_halt 0 arm7tdmi
1514 run_and_halt_time 0 30
1515
1516 # flash-options AT91
1517 working_area 0 0x00200000 0x4000 nobackup
1518 flash bank at91sam7 0 0 0 0 0
1519
1520 # Information:
1521 # erase command (telnet-interface) for complete flash:
1522 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1523 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1524 # set/clear NVM-Bits:
1525 # at91sam7 gpnvm <num> <bit> <set|clear>
1526 # disable locking from SAM-BA:
1527 # flash protect 0 0 1 off
1528 @end smallexample
1529
1530 @section XSCALE IXP42x Script
1531 @cindex XSCALE IXP42x Script
1532 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x cpu:
1533 @smallexample
1534 #daemon configuration
1535 telnet_port 4444
1536 gdb_port 3333
1537
1538 #interface
1539 interface ft2232
1540 ft2232_device_desc "Amontec JTAGkey A"
1541 ft2232_layout jtagkey
1542 ft2232_vid_pid 0x0403 0xcff8
1543 jtag_speed 0
1544 jtag_nsrst_delay 200
1545 jtag_ntrst_delay 200
1546
1547 #use combined on interfaces or targets that can't set TRST/SRST separately
1548 reset_config srst_only srst_pulls_trst
1549
1550 #jtag scan chain
1551 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1552 jtag_device 7 0x1 0x7f 0x7e
1553
1554 #target configuration
1555 daemon_startup reset
1556
1557 #target <type> <startup mode>
1558 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1559 target xscale big run_and_halt 0 IXP42x
1560 run_and_halt_time 0 30
1561 @end smallexample
1562
1563 @section Cirrus Logic EP9301 Script
1564 @cindex Cirrus Logic EP9301 Script
1565 The following script was used with FT2232 based JTAG interfaces and a
1566 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1567 @smallexample
1568 #daemon configuration
1569 telnet_port 4444
1570 gdb_port 3333
1571
1572 #interface
1573 interface ft2232
1574
1575 #Olimex ARM-USB-OCD
1576 #ft2232_device_desc "Olimex OpenOCD JTAG"
1577 #ft2232_layout olimex-jtag
1578 #ft2232_vid_pid 0x15ba 0x0003
1579
1580 #Amontec JTAGkey (and JTAGkey-Tiny)
1581 #Serial is only necessary if more than one JTAGkey is connected
1582 ft2232_device_desc "Amontec JTAGkey A"
1583 #ft2232_serial AMTJKV31
1584 #ft2232_serial T1P3S2W8
1585 ft2232_layout jtagkey
1586 ft2232_vid_pid 0x0403 0xcff8
1587
1588 #wiggler/parallel port interface
1589 #interface parport
1590 #parport_port 0x378
1591 #parport_cable wiggler
1592 #jtag_speed 0
1593 jtag_speed 1
1594 reset_config trst_and_srst
1595
1596 #jtag scan chain
1597 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1598 jtag_device 4 0x1 0xf 0xe
1599
1600 jtag_nsrst_delay 100
1601 jtag_ntrst_delay 100
1602
1603 #target configuration
1604 daemon_startup attach
1605
1606 #target <type> <endianess> <reset mode>
1607 target arm920t little reset_halt 0
1608 working_area 0 0x80014000 0x1000 backup
1609
1610 #flash configuration
1611 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1612 flash bank cfi 0x60000000 0x1000000 2 2 0
1613 @end smallexample
1614
1615 @section Hilscher netX 100 / 500 Script
1616 @cindex Hilscher netX 100 / 500 Script
1617 The following script was used with an Amontec JTAGkey and a Hilscher
1618 netX 500 cpu:
1619 @smallexample
1620 #daemon configuration
1621 telnet_port 4444
1622 gdb_port 3333
1623
1624 #interface
1625 interface ft2232
1626 ft2232_device_desc "Amontec JTAGkey A"
1627 ft2232_layout jtagkey
1628 ft2232_vid_pid 0x0403 0xcff8
1629 jtag_speed 5
1630
1631 #use combined on interfaces or targets that can't set TRST/SRST separately
1632 reset_config trst_and_srst
1633
1634 #jtag scan chain
1635 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1636 jtag_device 4 0x1 0xf 0xe
1637
1638 jtag_nsrst_delay 100
1639 jtag_ntrst_delay 100
1640
1641 #target configuration
1642 daemon_startup reset
1643
1644 #target <type> <endianness> <startup mode> <chainpos> <variant>
1645 target arm926ejs little run_and_halt 0 arm926ejs
1646 run_and_halt_time 0 500
1647 @end smallexample
1648
1649 @section Marvell/Intel PXA270 Script
1650 @cindex Marvell/Intel PXA270 Script
1651 @smallexample
1652 # config for Intel PXA270
1653 # not, as of 2007-06-22, openocd only works with the
1654 # libftd2xx library from ftdi. libftdi does not work.
1655
1656 telnet_port 3333
1657 gdb_port 4444
1658
1659 interface ft2232
1660 ft2232_layout olimex-jtag
1661 ft2232_vid_pid 0x15BA 0x0003
1662 ft2232_device_desc "Olimex OpenOCD JTAG"
1663 jtag_speed 0
1664 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1665 # the rest of the needed delays are built into the openocd program
1666 jtag_nsrst_delay 260
1667 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1668 # the rest of the needed delays are built into the openocd program
1669 jtag_ntrst_delay 0
1670
1671 #use combined on interfaces or targets that can't set TRST/SRST separately
1672 reset_config trst_and_srst separate
1673
1674 #jtag scan chain
1675 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1676 jtag_device 7 0x1 0x7f 0x7e
1677
1678 #target configuration
1679 daemon_startup reset
1680
1681 target xscale little reset_halt 0 pxa27x
1682
1683 # maps to PXA internal RAM. If you are using a PXA255
1684 # you must initialize SDRAM or leave this option off
1685 working_area 0 0x5c000000 0x10000 nobackup
1686
1687 run_and_halt_time 0 30
1688
1689 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1690 # works for P30 flash
1691 flash bank cfi 0x00000000 0x1000000 2 4 0
1692 @end smallexample
1693
1694 @node GDB and Openocd
1695 @chapter GDB and Openocd
1696 @cindex GDB and Openocd
1697 Openocd complies with the remote gdbserver protocol, and as such can be used
1698 to debug remote targets.
1699
1700 @section Connecting to gdb
1701 @cindex Connecting to gdb
1702 A connection is typically started as follows:
1703 @smallexample
1704 target remote localhost:3333
1705 @end smallexample
1706 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1707
1708 To see a list of available openocd commands type @option{monitor help} on the
1709 gdb commandline.
1710
1711 Openocd supports the gdb @option{qSupported} packet, this enables information
1712 to be sent by the gdb server (openocd) to gdb. Typical information includes
1713 packet size and device memory map.
1714
1715 Previous versions of openocd required the following gdb options to increase
1716 the packet size and speed up gdb communication.
1717 @smallexample
1718 set remote memory-write-packet-size 1024
1719 set remote memory-write-packet-size fixed
1720 set remote memory-read-packet-size 1024
1721 set remote memory-read-packet-size fixed
1722 @end smallexample
1723 This is now handled in the @option{qSupported} PacketSize.
1724
1725 @section Programming using gdb
1726 @cindex Programming using gdb
1727
1728 By default the target memory map is not sent to gdb, this can be enabled by
1729 the following openocd config option:
1730 @smallexample
1731 gdb_memory_map enable
1732 @end smallexample
1733 For this to function correctly a valid flash config must also be configured
1734 in openocd. For speed also configure a valid working area.
1735
1736 Informing gdb of the memory map of the target will enable gdb to protect any
1737 flash area of the target and use hardware breakpoints by default. This means
1738 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1739 using a memory map.
1740
1741 To view the configured memory map in gdb, use the gdb command @option{info mem}
1742 All other unasigned addresses within gdb are treated as ram.
1743
1744 If @option{gdb_flash_program enable} is also used, gdb will be able to
1745 program any flash memory using the vFlash interface.
1746
1747 gdb will look at the target memory map when a load command is given, if any
1748 areas to be programmed lie within the target flash area the vFlash packets
1749 will be used.
1750
1751 Incase the target needs configuring before gdb programming, a script can be executed.
1752 @smallexample
1753 target_script 0 gdb_program_config config.script
1754 @end smallexample
1755
1756 To verify any flash programming the gdb command @option{compare-sections}
1757 can be used.
1758
1759 @node FAQ
1760 @chapter FAQ
1761 @cindex faq
1762 @enumerate
1763 @item OpenOCD complains about a missing cygwin1.dll
1764
1765 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1766 claims to come with all the necessary dlls. When using Cygwin, try launching
1767 the OpenOCD from the Cygwin shell.
1768
1769 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1770 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1771 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1772
1773 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1774 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1775 software breakpoints consume one of the two available hardware breakpoints,
1776 and are therefor disabled by default. If your code is running from RAM, you
1777 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1778 your code resides in Flash, you can't use software breakpoints, but you can force
1779 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1780
1781 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1782 and works sometimes fine.
1783
1784 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1785 clock at the time you're programming the flash. If you've specified the crystal's
1786 frequency, make sure the PLL is disabled, if you've specified the full core speed
1787 (e.g. 60MHz), make sure the PLL is enabled.
1788
1789 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1790 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1791 out while waiting for end of scan, rtck was disabled".
1792
1793 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1794 settings in your PC Bios (ECP, EPP, and different versions of those).
1795
1796 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1797 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1798 memory read caused data abort".
1799
1800 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1801 beyond the last valid frame. It might be possible to prevent this by setting up
1802 a proper "initial" stack frame, if you happen to know what exactly has to
1803 be done, feel free to add this here.
1804
1805 @item I get the following message in the OpenOCD console (or log file):
1806 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1807
1808 This warning doesn't indicate any serious problem, as long as you don't want to
1809 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1810 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1811 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1812 independently. With this setup, it's not possible to halt the core right out of
1813 reset, everything else should work fine.
1814
1815 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1816 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1817 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1818 quit with an error message. Is there a stability issue with OpenOCD?
1819
1820 No, this is not a stability issue concering OpenOCD. Most users have solved
1821 this issue by simply using a self-powered USB Hub, which they connect their
1822 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1823 supply stable enough for the Amontec JTAGkey to be operated.
1824
1825 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1826 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1827 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1828 What does that mean and what might be the reason for this?
1829
1830 First of all, the reason might be the USB power supply. Try using a self-powered
1831 hub instead of a direct connection to your computer. Secondly, the error code 4
1832 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1833 Chip ran into some sort of error - this points us to a USB problem.
1834
1835 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1836 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1837 What does that mean and what might be the reason for this?
1838
1839 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1840 has closed the connection to OpenOCD. This might be a GDB issue.
1841
1842 @item In the configuration file in the section where flash device configurations
1843 are described, there is a parameter for specifying the clock frequency for
1844 LPC2000 internal flash devices (e.g.
1845 @option{flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14746 calc_checksum}),
1846 which must be sepcified in kilohertz. However, I do have a quartz crystal of a
1847 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1848 Is it possible to specify real numbers for the clock frequency?
1849
1850 No. The clock frequency specified here must be given as an integral number.
1851 However, this clock frequency is used by the In-Application-Programming (IAP)
1852 routines of the LPC2000 family only, which seems to be very tolerant concerning
1853 the given clock frequency, so a slight difference between the specified clock
1854 frequency and the actual clock frequency will not cause any trouble.
1855
1856 @item Do I have to keep a specific order for the commands in the configuration file?
1857
1858 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1859 listed for the JTAG scan chain must be given in the right order (jtag_device),
1860 with the device closest to the TDO-Pin being listed first. In general,
1861 whenever objects of the same type exist which require an index number, then
1862 these objects must be given in the right order (jtag_devices, targets and flash
1863 banks - a target references a jtag_device and a flash bank references a target).
1864
1865 @item Sometimes my debugging session terminates with an error. When I look into the
1866 log file, I can see these error messages: Error: arm7_9_common.c:561
1867 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1868
1869 @end enumerate
1870
1871 @include fdl.texi
1872
1873 @node Index
1874 @unnumbered Index
1875
1876 @printindex cp
1877
1878 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)