925eebed2d4406c490b3602d2149e7655ca4808a
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle OpenOCD User's Guide
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). OpenOCD User's Guide
8 @end direntry
9 @paragraphindent 0
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 This User's Guide documents
17 release @value{VERSION},
18 dated @value{UPDATED},
19 of the Open On-Chip Debugger (OpenOCD).
20
21 @itemize @bullet
22 @item Copyright @copyright{} 2008 The OpenOCD Project
23 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
24 @item Copyright @copyright{} 2008-2010 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
25 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
26 @item Copyright @copyright{} 2009-2010 David Brownell
27 @end itemize
28
29 @quotation
30 Permission is granted to copy, distribute and/or modify this document
31 under the terms of the GNU Free Documentation License, Version 1.2 or
32 any later version published by the Free Software Foundation; with no
33 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
34 Texts. A copy of the license is included in the section entitled ``GNU
35 Free Documentation License''.
36 @end quotation
37 @end copying
38
39 @titlepage
40 @titlefont{@emph{Open On-Chip Debugger:}}
41 @sp 1
42 @title OpenOCD User's Guide
43 @subtitle for release @value{VERSION}
44 @subtitle @value{UPDATED}
45
46 @page
47 @vskip 0pt plus 1filll
48 @insertcopying
49 @end titlepage
50
51 @summarycontents
52 @contents
53
54 @ifnottex
55 @node Top
56 @top OpenOCD User's Guide
57
58 @insertcopying
59 @end ifnottex
60
61 @menu
62 * About:: About OpenOCD
63 * Developers:: OpenOCD Developer Resources
64 * Debug Adapter Hardware:: Debug Adapter Hardware
65 * About Jim-Tcl:: About Jim-Tcl
66 * Running:: Running OpenOCD
67 * OpenOCD Project Setup:: OpenOCD Project Setup
68 * Config File Guidelines:: Config File Guidelines
69 * Daemon Configuration:: Daemon Configuration
70 * Debug Adapter Configuration:: Debug Adapter Configuration
71 * Reset Configuration:: Reset Configuration
72 * TAP Declaration:: TAP Declaration
73 * CPU Configuration:: CPU Configuration
74 * Flash Commands:: Flash Commands
75 * Flash Programming:: Flash Programming
76 * NAND Flash Commands:: NAND Flash Commands
77 * PLD/FPGA Commands:: PLD/FPGA Commands
78 * General Commands:: General Commands
79 * Architecture and Core Commands:: Architecture and Core Commands
80 * JTAG Commands:: JTAG Commands
81 * Boundary Scan Commands:: Boundary Scan Commands
82 * Utility Commands:: Utility Commands
83 * TFTP:: TFTP
84 * GDB and OpenOCD:: Using GDB and OpenOCD
85 * Tcl Scripting API:: Tcl Scripting API
86 * FAQ:: Frequently Asked Questions
87 * Tcl Crash Course:: Tcl Crash Course
88 * License:: GNU Free Documentation License
89
90 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
91 @comment case issue with ``Index.html'' and ``index.html''
92 @comment Occurs when creating ``--html --no-split'' output
93 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
94 * OpenOCD Concept Index:: Concept Index
95 * Command and Driver Index:: Command and Driver Index
96 @end menu
97
98 @node About
99 @unnumbered About
100 @cindex about
101
102 OpenOCD was created by Dominic Rath as part of a 2005 diploma thesis written
103 at the University of Applied Sciences Augsburg (@uref{http://www.hs-augsburg.de}).
104 Since that time, the project has grown into an active open-source project,
105 supported by a diverse community of software and hardware developers from
106 around the world.
107
108 @section What is OpenOCD?
109 @cindex TAP
110 @cindex JTAG
111
112 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
113 in-system programming and boundary-scan testing for embedded target
114 devices.
115
116 It does so with the assistance of a @dfn{debug adapter}, which is
117 a small hardware module which helps provide the right kind of
118 electrical signaling to the target being debugged. These are
119 required since the debug host (on which OpenOCD runs) won't
120 usually have native support for such signaling, or the connector
121 needed to hook up to the target.
122
123 Such debug adapters support one or more @dfn{transport} protocols,
124 each of which involves different electrical signaling (and uses
125 different messaging protocols on top of that signaling). There
126 are many types of debug adapter, and little uniformity in what
127 they are called. (There are also product naming differences.)
128
129 These adapters are sometimes packaged as discrete dongles, which
130 may generically be called @dfn{hardware interface dongles}.
131 Some development boards also integrate them directly, which may
132 let the development board connect directly to the debug
133 host over USB (and sometimes also to power it over USB).
134
135 For example, a @dfn{JTAG Adapter} supports JTAG
136 signaling, and is used to communicate
137 with JTAG (IEEE 1149.1) compliant TAPs on your target board.
138 A @dfn{TAP} is a ``Test Access Port'', a module which processes
139 special instructions and data. TAPs are daisy-chained within and
140 between chips and boards. JTAG supports debugging and boundary
141 scan operations.
142
143 There are also @dfn{SWD Adapters} that support Serial Wire Debug (SWD)
144 signaling to communicate with some newer ARM cores, as well as debug
145 adapters which support both JTAG and SWD transports. SWD supports only
146 debugging, whereas JTAG also supports boundary scan operations.
147
148 For some chips, there are also @dfn{Programming Adapters} supporting
149 special transports used only to write code to flash memory, without
150 support for on-chip debugging or boundary scan.
151 (At this writing, OpenOCD does not support such non-debug adapters.)
152
153
154 @b{Dongles:} OpenOCD currently supports many types of hardware dongles:
155 USB-based, parallel port-based, and other standalone boxes that run
156 OpenOCD internally. @xref{Debug Adapter Hardware}.
157
158 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
159 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x), Cortex-M3
160 (Stellaris LM3, ST STM32 and Energy Micro EFM32) and Intel Quark (x10xx)
161 based cores to be debugged via the GDB protocol.
162
163 @b{Flash Programming:} Flash writing is supported for external
164 CFI-compatible NOR flashes (Intel and AMD/Spansion command set) and several
165 internal flashes (LPC1700, LPC1800, LPC2000, LPC4300, AT91SAM7, AT91SAM3U,
166 STR7x, STR9x, LM3, STM32x and EFM32). Preliminary support for various NAND flash
167 controllers (LPC3180, Orion, S3C24xx, more) is included.
168
169 @section OpenOCD Web Site
170
171 The OpenOCD web site provides the latest public news from the community:
172
173 @uref{http://openocd.sourceforge.net/}
174
175 @section Latest User's Guide:
176
177 The user's guide you are now reading may not be the latest one
178 available. A version for more recent code may be available.
179 Its HTML form is published regularly at:
180
181 @uref{http://openocd.sourceforge.net/doc/html/index.html}
182
183 PDF form is likewise published at:
184
185 @uref{http://openocd.sourceforge.net/doc/pdf/openocd.pdf}
186
187 @section OpenOCD User's Forum
188
189 There is an OpenOCD forum (phpBB) hosted by SparkFun,
190 which might be helpful to you. Note that if you want
191 anything to come to the attention of developers, you
192 should post it to the OpenOCD Developer Mailing List
193 instead of this forum.
194
195 @uref{http://forum.sparkfun.com/viewforum.php?f=18}
196
197 @section OpenOCD User's Mailing List
198
199 The OpenOCD User Mailing List provides the primary means of
200 communication between users:
201
202 @uref{https://lists.sourceforge.net/mailman/listinfo/openocd-user}
203
204 @section OpenOCD IRC
205
206 Support can also be found on irc:
207 @uref{irc://irc.freenode.net/openocd}
208
209 @node Developers
210 @chapter OpenOCD Developer Resources
211 @cindex developers
212
213 If you are interested in improving the state of OpenOCD's debugging and
214 testing support, new contributions will be welcome. Motivated developers
215 can produce new target, flash or interface drivers, improve the
216 documentation, as well as more conventional bug fixes and enhancements.
217
218 The resources in this chapter are available for developers wishing to explore
219 or expand the OpenOCD source code.
220
221 @section OpenOCD Git Repository
222
223 During the 0.3.x release cycle, OpenOCD switched from Subversion to
224 a Git repository hosted at SourceForge. The repository URL is:
225
226 @uref{git://git.code.sf.net/p/openocd/code}
227
228 or via http
229
230 @uref{http://git.code.sf.net/p/openocd/code}
231
232 You may prefer to use a mirror and the HTTP protocol:
233
234 @uref{http://repo.or.cz/r/openocd.git}
235
236 With standard Git tools, use @command{git clone} to initialize
237 a local repository, and @command{git pull} to update it.
238 There are also gitweb pages letting you browse the repository
239 with a web browser, or download arbitrary snapshots without
240 needing a Git client:
241
242 @uref{http://repo.or.cz/w/openocd.git}
243
244 The @file{README} file contains the instructions for building the project
245 from the repository or a snapshot.
246
247 Developers that want to contribute patches to the OpenOCD system are
248 @b{strongly} encouraged to work against mainline.
249 Patches created against older versions may require additional
250 work from their submitter in order to be updated for newer releases.
251
252 @section Doxygen Developer Manual
253
254 During the 0.2.x release cycle, the OpenOCD project began
255 providing a Doxygen reference manual. This document contains more
256 technical information about the software internals, development
257 processes, and similar documentation:
258
259 @uref{http://openocd.sourceforge.net/doc/doxygen/html/index.html}
260
261 This document is a work-in-progress, but contributions would be welcome
262 to fill in the gaps. All of the source files are provided in-tree,
263 listed in the Doxyfile configuration at the top of the source tree.
264
265 @section Gerrit Review System
266
267 All changes in the OpenOCD Git repository go through the web-based Gerrit
268 Code Review System:
269
270 @uref{http://openocd.zylin.com/}
271
272 After a one-time registration and repository setup, anyone can push commits
273 from their local Git repository directly into Gerrit.
274 All users and developers are encouraged to review, test, discuss and vote
275 for changes in Gerrit. The feedback provides the basis for a maintainer to
276 eventually submit the change to the main Git repository.
277
278 The @file{HACKING} file, also available as the Patch Guide in the Doxygen
279 Developer Manual, contains basic information about how to connect a
280 repository to Gerrit, prepare and push patches. Patch authors are expected to
281 maintain their changes while they're in Gerrit, respond to feedback and if
282 necessary rework and push improved versions of the change.
283
284 @section OpenOCD Developer Mailing List
285
286 The OpenOCD Developer Mailing List provides the primary means of
287 communication between developers:
288
289 @uref{https://lists.sourceforge.net/mailman/listinfo/openocd-devel}
290
291 @section OpenOCD Bug Database
292
293 During the 0.4.x release cycle the OpenOCD project team began
294 using Trac for its bug database:
295
296 @uref{https://sourceforge.net/apps/trac/openocd}
297
298
299 @node Debug Adapter Hardware
300 @chapter Debug Adapter Hardware
301 @cindex dongles
302 @cindex FTDI
303 @cindex wiggler
304 @cindex zy1000
305 @cindex printer port
306 @cindex USB Adapter
307 @cindex RTCK
308
309 Defined: @b{dongle}: A small device that plugs into a computer and serves as
310 an adapter .... [snip]
311
312 In the OpenOCD case, this generally refers to @b{a small adapter} that
313 attaches to your computer via USB or the parallel port. One
314 exception is the Ultimate Solutions ZY1000, packaged as a small box you
315 attach via an ethernet cable. The ZY1000 has the advantage that it does not
316 require any drivers to be installed on the developer PC. It also has
317 a built in web interface. It supports RTCK/RCLK or adaptive clocking
318 and has a built-in relay to power cycle targets remotely.
319
320
321 @section Choosing a Dongle
322
323 There are several things you should keep in mind when choosing a dongle.
324
325 @enumerate
326 @item @b{Transport} Does it support the kind of communication that you need?
327 OpenOCD focusses mostly on JTAG. Your version may also support
328 other ways to communicate with target devices.
329 @item @b{Voltage} What voltage is your target - 1.8, 2.8, 3.3, or 5V?
330 Does your dongle support it? You might need a level converter.
331 @item @b{Pinout} What pinout does your target board use?
332 Does your dongle support it? You may be able to use jumper
333 wires, or an "octopus" connector, to convert pinouts.
334 @item @b{Connection} Does your computer have the USB, parallel, or
335 Ethernet port needed?
336 @item @b{RTCK} Do you expect to use it with ARM chips and boards with
337 RTCK support (also known as ``adaptive clocking'')?
338 @end enumerate
339
340 @section Stand-alone JTAG Probe
341
342 The ZY1000 from Ultimate Solutions is technically not a dongle but a
343 stand-alone JTAG probe that, unlike most dongles, doesn't require any drivers
344 running on the developer's host computer.
345 Once installed on a network using DHCP or a static IP assignment, users can
346 access the ZY1000 probe locally or remotely from any host with access to the
347 IP address assigned to the probe.
348 The ZY1000 provides an intuitive web interface with direct access to the
349 OpenOCD debugger.
350 Users may also run a GDBSERVER directly on the ZY1000 to take full advantage
351 of GCC & GDB to debug any distribution of embedded Linux or NetBSD running on
352 the target.
353 The ZY1000 supports RTCK & RCLK or adaptive clocking and has a built-in relay
354 to power cycle the target remotely.
355
356 For more information, visit:
357
358 @b{ZY1000} See: @url{http://www.ultsol.com/index.php/component/content/article/8/210-zylin-zy1000-main}
359
360 @section USB FT2232 Based
361
362 There are many USB JTAG dongles on the market, many of them based
363 on a chip from ``Future Technology Devices International'' (FTDI)
364 known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip.
365 See: @url{http://www.ftdichip.com} for more information.
366 In summer 2009, USB high speed (480 Mbps) versions of these FTDI
367 chips started to become available in JTAG adapters. Around 2012, a new
368 variant appeared - FT232H - this is a single-channel version of FT2232H.
369 (Adapters using those high speed FT2232H or FT232H chips may support adaptive
370 clocking.)
371
372 The FT2232 chips are flexible enough to support some other
373 transport options, such as SWD or the SPI variants used to
374 program some chips. They have two communications channels,
375 and one can be used for a UART adapter at the same time the
376 other one is used to provide a debug adapter.
377
378 Also, some development boards integrate an FT2232 chip to serve as
379 a built-in low-cost debug adapter and USB-to-serial solution.
380
381 @itemize @bullet
382 @item @b{usbjtag}
383 @* Link @url{http://elk.informatik.fh-augsburg.de/hhweb/doc/openocd/usbjtag/usbjtag.html}
384 @item @b{jtagkey}
385 @* See: @url{http://www.amontec.com/jtagkey.shtml}
386 @item @b{jtagkey2}
387 @* See: @url{http://www.amontec.com/jtagkey2.shtml}
388 @item @b{oocdlink}
389 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
390 @item @b{signalyzer}
391 @* See: @url{http://www.signalyzer.com}
392 @item @b{Stellaris Eval Boards}
393 @* See: @url{http://www.ti.com} - The Stellaris eval boards
394 bundle FT2232-based JTAG and SWD support, which can be used to debug
395 the Stellaris chips. Using separate JTAG adapters is optional.
396 These boards can also be used in a "pass through" mode as JTAG adapters
397 to other target boards, disabling the Stellaris chip.
398 @item @b{TI/Luminary ICDI}
399 @* See: @url{http://www.ti.com} - TI/Luminary In-Circuit Debug
400 Interface (ICDI) Boards are included in Stellaris LM3S9B9x
401 Evaluation Kits. Like the non-detachable FT2232 support on the other
402 Stellaris eval boards, they can be used to debug other target boards.
403 @item @b{olimex-jtag}
404 @* See: @url{http://www.olimex.com}
405 @item @b{Flyswatter/Flyswatter2}
406 @* See: @url{http://www.tincantools.com}
407 @item @b{turtelizer2}
408 @* See:
409 @uref{http://www.ethernut.de/en/hardware/turtelizer/index.html, Turtelizer 2}, or
410 @url{http://www.ethernut.de}
411 @item @b{comstick}
412 @* Link: @url{http://www.hitex.com/index.php?id=383}
413 @item @b{stm32stick}
414 @* Link @url{http://www.hitex.com/stm32-stick}
415 @item @b{axm0432_jtag}
416 @* Axiom AXM-0432 Link @url{http://www.axman.com} - NOTE: This JTAG does not appear
417 to be available anymore as of April 2012.
418 @item @b{cortino}
419 @* Link @url{http://www.hitex.com/index.php?id=cortino}
420 @item @b{dlp-usb1232h}
421 @* Link @url{http://www.dlpdesign.com/usb/usb1232h.shtml}
422 @item @b{digilent-hs1}
423 @* Link @url{http://www.digilentinc.com/Products/Detail.cfm?Prod=JTAG-HS1}
424 @item @b{opendous}
425 @* Link @url{http://code.google.com/p/opendous/wiki/JTAG} FT2232H-based
426 (OpenHardware).
427 @item @b{JTAG-lock-pick Tiny 2}
428 @* Link @url{http://www.distortec.com/jtag-lock-pick-tiny-2} FT232H-based
429
430 @item @b{GW16042}
431 @* Link: @url{http://shop.gateworks.com/index.php?route=product/product&path=70_80&product_id=64}
432 FT2232H-based
433
434 @end itemize
435 @section USB-JTAG / Altera USB-Blaster compatibles
436
437 These devices also show up as FTDI devices, but are not
438 protocol-compatible with the FT2232 devices. They are, however,
439 protocol-compatible among themselves. USB-JTAG devices typically consist
440 of a FT245 followed by a CPLD that understands a particular protocol,
441 or emulates this protocol using some other hardware.
442
443 They may appear under different USB VID/PID depending on the particular
444 product. The driver can be configured to search for any VID/PID pair
445 (see the section on driver commands).
446
447 @itemize
448 @item @b{USB-JTAG} Kolja Waschk's USB Blaster-compatible adapter
449 @* Link: @url{http://ixo-jtag.sourceforge.net/}
450 @item @b{Altera USB-Blaster}
451 @* Link: @url{http://www.altera.com/literature/ug/ug_usb_blstr.pdf}
452 @end itemize
453
454 @section USB JLINK based
455 There are several OEM versions of the Segger @b{JLINK} adapter. It is
456 an example of a micro controller based JTAG adapter, it uses an
457 AT91SAM764 internally.
458
459 @itemize @bullet
460 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
461 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
462 @item @b{SEGGER JLINK}
463 @* Link: @url{http://www.segger.com/jlink.html}
464 @item @b{IAR J-Link}
465 @* Link: @url{http://www.iar.com/en/products/hardware-debug-probes/iar-j-link/}
466 @end itemize
467
468 @section USB RLINK based
469 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer,
470 permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for
471 SWD and not JTAG, thus not supported.
472
473 @itemize @bullet
474 @item @b{Raisonance RLink}
475 @* Link: @url{http://www.mcu-raisonance.com/~rlink-debugger-programmer__microcontrollers__tool~tool__T018:4cn9ziz4bnx6.html}
476 @item @b{STM32 Primer}
477 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
478 @item @b{STM32 Primer2}
479 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
480 @end itemize
481
482 @section USB ST-LINK based
483 ST Micro has an adapter called @b{ST-LINK}.
484 They only work with ST Micro chips, notably STM32 and STM8.
485
486 @itemize @bullet
487 @item @b{ST-LINK}
488 @* This is available standalone and as part of some kits, eg. STM32VLDISCOVERY.
489 @* Link: @url{http://www.st.com/internet/evalboard/product/219866.jsp}
490 @item @b{ST-LINK/V2}
491 @* This is available standalone and as part of some kits, eg. STM32F4DISCOVERY.
492 @* Link: @url{http://www.st.com/internet/evalboard/product/251168.jsp}
493 @end itemize
494
495 For info the original ST-LINK enumerates using the mass storage usb class; however,
496 its implementation is completely broken. The result is this causes issues under Linux.
497 The simplest solution is to get Linux to ignore the ST-LINK using one of the following methods:
498 @itemize @bullet
499 @item modprobe -r usb-storage && modprobe usb-storage quirks=483:3744:i
500 @item add "options usb-storage quirks=483:3744:i" to /etc/modprobe.conf
501 @end itemize
502
503 @section USB TI/Stellaris ICDI based
504 Texas Instruments has an adapter called @b{ICDI}.
505 It is not to be confused with the FTDI based adapters that were originally fitted to their
506 evaluation boards. This is the adapter fitted to the Stellaris LaunchPad.
507
508 @section USB CMSIS-DAP based
509 ARM has released a interface standard called CMSIS-DAP that simplifies connecting
510 debuggers to ARM Cortex based targets @url{http://www.keil.com/support/man/docs/dapdebug/dapdebug_introduction.htm}.
511
512 @section USB Other
513 @itemize @bullet
514 @item @b{USBprog}
515 @* Link: @url{http://shop.embedded-projects.net/} - which uses an Atmel MEGA32 and a UBN9604
516
517 @item @b{USB - Presto}
518 @* Link: @url{http://tools.asix.net/prg_presto.htm}
519
520 @item @b{Versaloon-Link}
521 @* Link: @url{http://www.versaloon.com}
522
523 @item @b{ARM-JTAG-EW}
524 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
525
526 @item @b{Buspirate}
527 @* Link: @url{http://dangerousprototypes.com/bus-pirate-manual/}
528
529 @item @b{opendous}
530 @* Link: @url{http://code.google.com/p/opendous-jtag/} - which uses an AT90USB162
531
532 @item @b{estick}
533 @* Link: @url{http://code.google.com/p/estick-jtag/}
534
535 @item @b{Keil ULINK v1}
536 @* Link: @url{http://www.keil.com/ulink1/}
537 @end itemize
538
539 @section IBM PC Parallel Printer Port Based
540
541 The two well-known ``JTAG Parallel Ports'' cables are the Xilinx DLC5
542 and the Macraigor Wiggler. There are many clones and variations of
543 these on the market.
544
545 Note that parallel ports are becoming much less common, so if you
546 have the choice you should probably avoid these adapters in favor
547 of USB-based ones.
548
549 @itemize @bullet
550
551 @item @b{Wiggler} - There are many clones of this.
552 @* Link: @url{http://www.macraigor.com/wiggler.htm}
553
554 @item @b{DLC5} - From XILINX - There are many clones of this
555 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
556 produced, PDF schematics are easily found and it is easy to make.
557
558 @item @b{Amontec - JTAG Accelerator}
559 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
560
561 @item @b{Wiggler2}
562 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
563
564 @item @b{Wiggler_ntrst_inverted}
565 @* Yet another variation - See the source code, src/jtag/parport.c
566
567 @item @b{old_amt_wiggler}
568 @* Unknown - probably not on the market today
569
570 @item @b{arm-jtag}
571 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
572
573 @item @b{chameleon}
574 @* Link: @url{http://www.amontec.com/chameleon.shtml}
575
576 @item @b{Triton}
577 @* Unknown.
578
579 @item @b{Lattice}
580 @* ispDownload from Lattice Semiconductor
581 @url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
582
583 @item @b{flashlink}
584 @* From ST Microsystems;
585 @* Link: @url{http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/DM00039500.pdf}
586
587 @end itemize
588
589 @section Other...
590 @itemize @bullet
591
592 @item @b{ep93xx}
593 @* An EP93xx based Linux machine using the GPIO pins directly.
594
595 @item @b{at91rm9200}
596 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
597
598 @item @b{bcm2835gpio}
599 @* A BCM2835-based board (e.g. Raspberry Pi) using the GPIO pins of the expansion header.
600
601 @item @b{jtag_vpi}
602 @* A JTAG driver acting as a client for the JTAG VPI server interface.
603 @* Link: @url{http://github.com/fjullien/jtag_vpi}
604
605 @end itemize
606
607 @node About Jim-Tcl
608 @chapter About Jim-Tcl
609 @cindex Jim-Tcl
610 @cindex tcl
611
612 OpenOCD uses a small ``Tcl Interpreter'' known as Jim-Tcl.
613 This programming language provides a simple and extensible
614 command interpreter.
615
616 All commands presented in this Guide are extensions to Jim-Tcl.
617 You can use them as simple commands, without needing to learn
618 much of anything about Tcl.
619 Alternatively, you can write Tcl programs with them.
620
621 You can learn more about Jim at its website, @url{http://jim.tcl.tk}.
622 There is an active and responsive community, get on the mailing list
623 if you have any questions. Jim-Tcl maintainers also lurk on the
624 OpenOCD mailing list.
625
626 @itemize @bullet
627 @item @b{Jim vs. Tcl}
628 @* Jim-Tcl is a stripped down version of the well known Tcl language,
629 which can be found here: @url{http://www.tcl.tk}. Jim-Tcl has far
630 fewer features. Jim-Tcl is several dozens of .C files and .H files and
631 implements the basic Tcl command set. In contrast: Tcl 8.6 is a
632 4.2 MB .zip file containing 1540 files.
633
634 @item @b{Missing Features}
635 @* Our practice has been: Add/clone the real Tcl feature if/when
636 needed. We welcome Jim-Tcl improvements, not bloat. Also there
637 are a large number of optional Jim-Tcl features that are not
638 enabled in OpenOCD.
639
640 @item @b{Scripts}
641 @* OpenOCD configuration scripts are Jim-Tcl Scripts. OpenOCD's
642 command interpreter today is a mixture of (newer)
643 Jim-Tcl commands, and the (older) original command interpreter.
644
645 @item @b{Commands}
646 @* At the OpenOCD telnet command line (or via the GDB monitor command) one
647 can type a Tcl for() loop, set variables, etc.
648 Some of the commands documented in this guide are implemented
649 as Tcl scripts, from a @file{startup.tcl} file internal to the server.
650
651 @item @b{Historical Note}
652 @* Jim-Tcl was introduced to OpenOCD in spring 2008. Fall 2010,
653 before OpenOCD 0.5 release, OpenOCD switched to using Jim-Tcl
654 as a Git submodule, which greatly simplified upgrading Jim-Tcl
655 to benefit from new features and bugfixes in Jim-Tcl.
656
657 @item @b{Need a crash course in Tcl?}
658 @*@xref{Tcl Crash Course}.
659 @end itemize
660
661 @node Running
662 @chapter Running
663 @cindex command line options
664 @cindex logfile
665 @cindex directory search
666
667 Properly installing OpenOCD sets up your operating system to grant it access
668 to the debug adapters. On Linux, this usually involves installing a file
669 in @file{/etc/udev/rules.d,} so OpenOCD has permissions. An example rules file
670 that works for many common adapters is shipped with OpenOCD in the
671 @file{contrib} directory. MS-Windows needs
672 complex and confusing driver configuration for every peripheral. Such issues
673 are unique to each operating system, and are not detailed in this User's Guide.
674
675 Then later you will invoke the OpenOCD server, with various options to
676 tell it how each debug session should work.
677 The @option{--help} option shows:
678 @verbatim
679 bash$ openocd --help
680
681 --help | -h display this help
682 --version | -v display OpenOCD version
683 --file | -f use configuration file <name>
684 --search | -s dir to search for config files and scripts
685 --debug | -d set debug level <0-3>
686 --log_output | -l redirect log output to file <name>
687 --command | -c run <command>
688 @end verbatim
689
690 If you don't give any @option{-f} or @option{-c} options,
691 OpenOCD tries to read the configuration file @file{openocd.cfg}.
692 To specify one or more different
693 configuration files, use @option{-f} options. For example:
694
695 @example
696 openocd -f config1.cfg -f config2.cfg -f config3.cfg
697 @end example
698
699 Configuration files and scripts are searched for in
700 @enumerate
701 @item the current directory,
702 @item any search dir specified on the command line using the @option{-s} option,
703 @item any search dir specified using the @command{add_script_search_dir} command,
704 @item @file{$HOME/.openocd} (not on Windows),
705 @item the site wide script library @file{$pkgdatadir/site} and
706 @item the OpenOCD-supplied script library @file{$pkgdatadir/scripts}.
707 @end enumerate
708 The first found file with a matching file name will be used.
709
710 @quotation Note
711 Don't try to use configuration script names or paths which
712 include the "#" character. That character begins Tcl comments.
713 @end quotation
714
715 @section Simple setup, no customization
716
717 In the best case, you can use two scripts from one of the script
718 libraries, hook up your JTAG adapter, and start the server ... and
719 your JTAG setup will just work "out of the box". Always try to
720 start by reusing those scripts, but assume you'll need more
721 customization even if this works. @xref{OpenOCD Project Setup}.
722
723 If you find a script for your JTAG adapter, and for your board or
724 target, you may be able to hook up your JTAG adapter then start
725 the server with some variation of one of the following:
726
727 @example
728 openocd -f interface/ADAPTER.cfg -f board/MYBOARD.cfg
729 openocd -f interface/ftdi/ADAPTER.cfg -f board/MYBOARD.cfg
730 @end example
731
732 You might also need to configure which reset signals are present,
733 using @option{-c 'reset_config trst_and_srst'} or something similar.
734 If all goes well you'll see output something like
735
736 @example
737 Open On-Chip Debugger 0.4.0 (2010-01-14-15:06)
738 For bug reports, read
739 http://openocd.sourceforge.net/doc/doxygen/bugs.html
740 Info : JTAG tap: lm3s.cpu tap/device found: 0x3ba00477
741 (mfg: 0x23b, part: 0xba00, ver: 0x3)
742 @end example
743
744 Seeing that "tap/device found" message, and no warnings, means
745 the JTAG communication is working. That's a key milestone, but
746 you'll probably need more project-specific setup.
747
748 @section What OpenOCD does as it starts
749
750 OpenOCD starts by processing the configuration commands provided
751 on the command line or, if there were no @option{-c command} or
752 @option{-f file.cfg} options given, in @file{openocd.cfg}.
753 @xref{configurationstage,,Configuration Stage}.
754 At the end of the configuration stage it verifies the JTAG scan
755 chain defined using those commands; your configuration should
756 ensure that this always succeeds.
757 Normally, OpenOCD then starts running as a daemon.
758 Alternatively, commands may be used to terminate the configuration
759 stage early, perform work (such as updating some flash memory),
760 and then shut down without acting as a daemon.
761
762 Once OpenOCD starts running as a daemon, it waits for connections from
763 clients (Telnet, GDB, Other) and processes the commands issued through
764 those channels.
765
766 If you are having problems, you can enable internal debug messages via
767 the @option{-d} option.
768
769 Also it is possible to interleave Jim-Tcl commands w/config scripts using the
770 @option{-c} command line switch.
771
772 To enable debug output (when reporting problems or working on OpenOCD
773 itself), use the @option{-d} command line switch. This sets the
774 @option{debug_level} to "3", outputting the most information,
775 including debug messages. The default setting is "2", outputting only
776 informational messages, warnings and errors. You can also change this
777 setting from within a telnet or gdb session using @command{debug_level<n>}
778 (@pxref{debuglevel,,debug_level}).
779
780 You can redirect all output from the daemon to a file using the
781 @option{-l <logfile>} switch.
782
783 Note! OpenOCD will launch the GDB & telnet server even if it can not
784 establish a connection with the target. In general, it is possible for
785 the JTAG controller to be unresponsive until the target is set up
786 correctly via e.g. GDB monitor commands in a GDB init script.
787
788 @node OpenOCD Project Setup
789 @chapter OpenOCD Project Setup
790
791 To use OpenOCD with your development projects, you need to do more than
792 just connect the JTAG adapter hardware (dongle) to your development board
793 and start the OpenOCD server.
794 You also need to configure your OpenOCD server so that it knows
795 about your adapter and board, and helps your work.
796 You may also want to connect OpenOCD to GDB, possibly
797 using Eclipse or some other GUI.
798
799 @section Hooking up the JTAG Adapter
800
801 Today's most common case is a dongle with a JTAG cable on one side
802 (such as a ribbon cable with a 10-pin or 20-pin IDC connector)
803 and a USB cable on the other.
804 Instead of USB, some cables use Ethernet;
805 older ones may use a PC parallel port, or even a serial port.
806
807 @enumerate
808 @item @emph{Start with power to your target board turned off},
809 and nothing connected to your JTAG adapter.
810 If you're particularly paranoid, unplug power to the board.
811 It's important to have the ground signal properly set up,
812 unless you are using a JTAG adapter which provides
813 galvanic isolation between the target board and the
814 debugging host.
815
816 @item @emph{Be sure it's the right kind of JTAG connector.}
817 If your dongle has a 20-pin ARM connector, you need some kind
818 of adapter (or octopus, see below) to hook it up to
819 boards using 14-pin or 10-pin connectors ... or to 20-pin
820 connectors which don't use ARM's pinout.
821
822 In the same vein, make sure the voltage levels are compatible.
823 Not all JTAG adapters have the level shifters needed to work
824 with 1.2 Volt boards.
825
826 @item @emph{Be certain the cable is properly oriented} or you might
827 damage your board. In most cases there are only two possible
828 ways to connect the cable.
829 Connect the JTAG cable from your adapter to the board.
830 Be sure it's firmly connected.
831
832 In the best case, the connector is keyed to physically
833 prevent you from inserting it wrong.
834 This is most often done using a slot on the board's male connector
835 housing, which must match a key on the JTAG cable's female connector.
836 If there's no housing, then you must look carefully and
837 make sure pin 1 on the cable hooks up to pin 1 on the board.
838 Ribbon cables are frequently all grey except for a wire on one
839 edge, which is red. The red wire is pin 1.
840
841 Sometimes dongles provide cables where one end is an ``octopus'' of
842 color coded single-wire connectors, instead of a connector block.
843 These are great when converting from one JTAG pinout to another,
844 but are tedious to set up.
845 Use these with connector pinout diagrams to help you match up the
846 adapter signals to the right board pins.
847
848 @item @emph{Connect the adapter's other end} once the JTAG cable is connected.
849 A USB, parallel, or serial port connector will go to the host which
850 you are using to run OpenOCD.
851 For Ethernet, consult the documentation and your network administrator.
852
853 For USB-based JTAG adapters you have an easy sanity check at this point:
854 does the host operating system see the JTAG adapter? If you're running
855 Linux, try the @command{lsusb} command. If that host is an
856 MS-Windows host, you'll need to install a driver before OpenOCD works.
857
858 @item @emph{Connect the adapter's power supply, if needed.}
859 This step is primarily for non-USB adapters,
860 but sometimes USB adapters need extra power.
861
862 @item @emph{Power up the target board.}
863 Unless you just let the magic smoke escape,
864 you're now ready to set up the OpenOCD server
865 so you can use JTAG to work with that board.
866
867 @end enumerate
868
869 Talk with the OpenOCD server using
870 telnet (@code{telnet localhost 4444} on many systems) or GDB.
871 @xref{GDB and OpenOCD}.
872
873 @section Project Directory
874
875 There are many ways you can configure OpenOCD and start it up.
876
877 A simple way to organize them all involves keeping a
878 single directory for your work with a given board.
879 When you start OpenOCD from that directory,
880 it searches there first for configuration files, scripts,
881 files accessed through semihosting,
882 and for code you upload to the target board.
883 It is also the natural place to write files,
884 such as log files and data you download from the board.
885
886 @section Configuration Basics
887
888 There are two basic ways of configuring OpenOCD, and
889 a variety of ways you can mix them.
890 Think of the difference as just being how you start the server:
891
892 @itemize
893 @item Many @option{-f file} or @option{-c command} options on the command line
894 @item No options, but a @dfn{user config file}
895 in the current directory named @file{openocd.cfg}
896 @end itemize
897
898 Here is an example @file{openocd.cfg} file for a setup
899 using a Signalyzer FT2232-based JTAG adapter to talk to
900 a board with an Atmel AT91SAM7X256 microcontroller:
901
902 @example
903 source [find interface/signalyzer.cfg]
904
905 # GDB can also flash my flash!
906 gdb_memory_map enable
907 gdb_flash_program enable
908
909 source [find target/sam7x256.cfg]
910 @end example
911
912 Here is the command line equivalent of that configuration:
913
914 @example
915 openocd -f interface/signalyzer.cfg \
916 -c "gdb_memory_map enable" \
917 -c "gdb_flash_program enable" \
918 -f target/sam7x256.cfg
919 @end example
920
921 You could wrap such long command lines in shell scripts,
922 each supporting a different development task.
923 One might re-flash the board with a specific firmware version.
924 Another might set up a particular debugging or run-time environment.
925
926 @quotation Important
927 At this writing (October 2009) the command line method has
928 problems with how it treats variables.
929 For example, after @option{-c "set VAR value"}, or doing the
930 same in a script, the variable @var{VAR} will have no value
931 that can be tested in a later script.
932 @end quotation
933
934 Here we will focus on the simpler solution: one user config
935 file, including basic configuration plus any TCL procedures
936 to simplify your work.
937
938 @section User Config Files
939 @cindex config file, user
940 @cindex user config file
941 @cindex config file, overview
942
943 A user configuration file ties together all the parts of a project
944 in one place.
945 One of the following will match your situation best:
946
947 @itemize
948 @item Ideally almost everything comes from configuration files
949 provided by someone else.
950 For example, OpenOCD distributes a @file{scripts} directory
951 (probably in @file{/usr/share/openocd/scripts} on Linux).
952 Board and tool vendors can provide these too, as can individual
953 user sites; the @option{-s} command line option lets you say
954 where to find these files. (@xref{Running}.)
955 The AT91SAM7X256 example above works this way.
956
957 Three main types of non-user configuration file each have their
958 own subdirectory in the @file{scripts} directory:
959
960 @enumerate
961 @item @b{interface} -- one for each different debug adapter;
962 @item @b{board} -- one for each different board
963 @item @b{target} -- the chips which integrate CPUs and other JTAG TAPs
964 @end enumerate
965
966 Best case: include just two files, and they handle everything else.
967 The first is an interface config file.
968 The second is board-specific, and it sets up the JTAG TAPs and
969 their GDB targets (by deferring to some @file{target.cfg} file),
970 declares all flash memory, and leaves you nothing to do except
971 meet your deadline:
972
973 @example
974 source [find interface/olimex-jtag-tiny.cfg]
975 source [find board/csb337.cfg]
976 @end example
977
978 Boards with a single microcontroller often won't need more
979 than the target config file, as in the AT91SAM7X256 example.
980 That's because there is no external memory (flash, DDR RAM), and
981 the board differences are encapsulated by application code.
982
983 @item Maybe you don't know yet what your board looks like to JTAG.
984 Once you know the @file{interface.cfg} file to use, you may
985 need help from OpenOCD to discover what's on the board.
986 Once you find the JTAG TAPs, you can just search for appropriate
987 target and board
988 configuration files ... or write your own, from the bottom up.
989 @xref{autoprobing,,Autoprobing}.
990
991 @item You can often reuse some standard config files but
992 need to write a few new ones, probably a @file{board.cfg} file.
993 You will be using commands described later in this User's Guide,
994 and working with the guidelines in the next chapter.
995
996 For example, there may be configuration files for your JTAG adapter
997 and target chip, but you need a new board-specific config file
998 giving access to your particular flash chips.
999 Or you might need to write another target chip configuration file
1000 for a new chip built around the Cortex M3 core.
1001
1002 @quotation Note
1003 When you write new configuration files, please submit
1004 them for inclusion in the next OpenOCD release.
1005 For example, a @file{board/newboard.cfg} file will help the
1006 next users of that board, and a @file{target/newcpu.cfg}
1007 will help support users of any board using that chip.
1008 @end quotation
1009
1010 @item
1011 You may may need to write some C code.
1012 It may be as simple as supporting a new FT2232 or parport
1013 based adapter; a bit more involved, like a NAND or NOR flash
1014 controller driver; or a big piece of work like supporting
1015 a new chip architecture.
1016 @end itemize
1017
1018 Reuse the existing config files when you can.
1019 Look first in the @file{scripts/boards} area, then @file{scripts/targets}.
1020 You may find a board configuration that's a good example to follow.
1021
1022 When you write config files, separate the reusable parts
1023 (things every user of that interface, chip, or board needs)
1024 from ones specific to your environment and debugging approach.
1025 @itemize
1026
1027 @item
1028 For example, a @code{gdb-attach} event handler that invokes
1029 the @command{reset init} command will interfere with debugging
1030 early boot code, which performs some of the same actions
1031 that the @code{reset-init} event handler does.
1032
1033 @item
1034 Likewise, the @command{arm9 vector_catch} command (or
1035 @cindex vector_catch
1036 its siblings @command{xscale vector_catch}
1037 and @command{cortex_m vector_catch}) can be a timesaver
1038 during some debug sessions, but don't make everyone use that either.
1039 Keep those kinds of debugging aids in your user config file,
1040 along with messaging and tracing setup.
1041 (@xref{softwaredebugmessagesandtracing,,Software Debug Messages and Tracing}.)
1042
1043 @item
1044 You might need to override some defaults.
1045 For example, you might need to move, shrink, or back up the target's
1046 work area if your application needs much SRAM.
1047
1048 @item
1049 TCP/IP port configuration is another example of something which
1050 is environment-specific, and should only appear in
1051 a user config file. @xref{tcpipports,,TCP/IP Ports}.
1052 @end itemize
1053
1054 @section Project-Specific Utilities
1055
1056 A few project-specific utility
1057 routines may well speed up your work.
1058 Write them, and keep them in your project's user config file.
1059
1060 For example, if you are making a boot loader work on a
1061 board, it's nice to be able to debug the ``after it's
1062 loaded to RAM'' parts separately from the finicky early
1063 code which sets up the DDR RAM controller and clocks.
1064 A script like this one, or a more GDB-aware sibling,
1065 may help:
1066
1067 @example
1068 proc ramboot @{ @} @{
1069 # Reset, running the target's "reset-init" scripts
1070 # to initialize clocks and the DDR RAM controller.
1071 # Leave the CPU halted.
1072 reset init
1073
1074 # Load CONFIG_SKIP_LOWLEVEL_INIT version into DDR RAM.
1075 load_image u-boot.bin 0x20000000
1076
1077 # Start running.
1078 resume 0x20000000
1079 @}
1080 @end example
1081
1082 Then once that code is working you will need to make it
1083 boot from NOR flash; a different utility would help.
1084 Alternatively, some developers write to flash using GDB.
1085 (You might use a similar script if you're working with a flash
1086 based microcontroller application instead of a boot loader.)
1087
1088 @example
1089 proc newboot @{ @} @{
1090 # Reset, leaving the CPU halted. The "reset-init" event
1091 # proc gives faster access to the CPU and to NOR flash;
1092 # "reset halt" would be slower.
1093 reset init
1094
1095 # Write standard version of U-Boot into the first two
1096 # sectors of NOR flash ... the standard version should
1097 # do the same lowlevel init as "reset-init".
1098 flash protect 0 0 1 off
1099 flash erase_sector 0 0 1
1100 flash write_bank 0 u-boot.bin 0x0
1101 flash protect 0 0 1 on
1102
1103 # Reboot from scratch using that new boot loader.
1104 reset run
1105 @}
1106 @end example
1107
1108 You may need more complicated utility procedures when booting
1109 from NAND.
1110 That often involves an extra bootloader stage,
1111 running from on-chip SRAM to perform DDR RAM setup so it can load
1112 the main bootloader code (which won't fit into that SRAM).
1113
1114 Other helper scripts might be used to write production system images,
1115 involving considerably more than just a three stage bootloader.
1116
1117 @section Target Software Changes
1118
1119 Sometimes you may want to make some small changes to the software
1120 you're developing, to help make JTAG debugging work better.
1121 For example, in C or assembly language code you might
1122 use @code{#ifdef JTAG_DEBUG} (or its converse) around code
1123 handling issues like:
1124
1125 @itemize @bullet
1126
1127 @item @b{Watchdog Timers}...
1128 Watchog timers are typically used to automatically reset systems if
1129 some application task doesn't periodically reset the timer. (The
1130 assumption is that the system has locked up if the task can't run.)
1131 When a JTAG debugger halts the system, that task won't be able to run
1132 and reset the timer ... potentially causing resets in the middle of
1133 your debug sessions.
1134
1135 It's rarely a good idea to disable such watchdogs, since their usage
1136 needs to be debugged just like all other parts of your firmware.
1137 That might however be your only option.
1138
1139 Look instead for chip-specific ways to stop the watchdog from counting
1140 while the system is in a debug halt state. It may be simplest to set
1141 that non-counting mode in your debugger startup scripts. You may however
1142 need a different approach when, for example, a motor could be physically
1143 damaged by firmware remaining inactive in a debug halt state. That might
1144 involve a type of firmware mode where that "non-counting" mode is disabled
1145 at the beginning then re-enabled at the end; a watchdog reset might fire
1146 and complicate the debug session, but hardware (or people) would be
1147 protected.@footnote{Note that many systems support a "monitor mode" debug
1148 that is a somewhat cleaner way to address such issues. You can think of
1149 it as only halting part of the system, maybe just one task,
1150 instead of the whole thing.
1151 At this writing, January 2010, OpenOCD based debugging does not support
1152 monitor mode debug, only "halt mode" debug.}
1153
1154 @item @b{ARM Semihosting}...
1155 @cindex ARM semihosting
1156 When linked with a special runtime library provided with many
1157 toolchains@footnote{See chapter 8 "Semihosting" in
1158 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.dui0203i/DUI0203I_rvct_developer_guide.pdf,
1159 ARM DUI 0203I}, the "RealView Compilation Tools Developer Guide".
1160 The CodeSourcery EABI toolchain also includes a semihosting library.},
1161 your target code can use I/O facilities on the debug host. That library
1162 provides a small set of system calls which are handled by OpenOCD.
1163 It can let the debugger provide your system console and a file system,
1164 helping with early debugging or providing a more capable environment
1165 for sometimes-complex tasks like installing system firmware onto
1166 NAND or SPI flash.
1167
1168 @item @b{ARM Wait-For-Interrupt}...
1169 Many ARM chips synchronize the JTAG clock using the core clock.
1170 Low power states which stop that core clock thus prevent JTAG access.
1171 Idle loops in tasking environments often enter those low power states
1172 via the @code{WFI} instruction (or its coprocessor equivalent, before ARMv7).
1173
1174 You may want to @emph{disable that instruction} in source code,
1175 or otherwise prevent using that state,
1176 to ensure you can get JTAG access at any time.@footnote{As a more
1177 polite alternative, some processors have special debug-oriented
1178 registers which can be used to change various features including
1179 how the low power states are clocked while debugging.
1180 The STM32 DBGMCU_CR register is an example; at the cost of extra
1181 power consumption, JTAG can be used during low power states.}
1182 For example, the OpenOCD @command{halt} command may not
1183 work for an idle processor otherwise.
1184
1185 @item @b{Delay after reset}...
1186 Not all chips have good support for debugger access
1187 right after reset; many LPC2xxx chips have issues here.
1188 Similarly, applications that reconfigure pins used for
1189 JTAG access as they start will also block debugger access.
1190
1191 To work with boards like this, @emph{enable a short delay loop}
1192 the first thing after reset, before "real" startup activities.
1193 For example, one second's delay is usually more than enough
1194 time for a JTAG debugger to attach, so that
1195 early code execution can be debugged
1196 or firmware can be replaced.
1197
1198 @item @b{Debug Communications Channel (DCC)}...
1199 Some processors include mechanisms to send messages over JTAG.
1200 Many ARM cores support these, as do some cores from other vendors.
1201 (OpenOCD may be able to use this DCC internally, speeding up some
1202 operations like writing to memory.)
1203
1204 Your application may want to deliver various debugging messages
1205 over JTAG, by @emph{linking with a small library of code}
1206 provided with OpenOCD and using the utilities there to send
1207 various kinds of message.
1208 @xref{softwaredebugmessagesandtracing,,Software Debug Messages and Tracing}.
1209
1210 @end itemize
1211
1212 @section Target Hardware Setup
1213
1214 Chip vendors often provide software development boards which
1215 are highly configurable, so that they can support all options
1216 that product boards may require. @emph{Make sure that any
1217 jumpers or switches match the system configuration you are
1218 working with.}
1219
1220 Common issues include:
1221
1222 @itemize @bullet
1223
1224 @item @b{JTAG setup} ...
1225 Boards may support more than one JTAG configuration.
1226 Examples include jumpers controlling pullups versus pulldowns
1227 on the nTRST and/or nSRST signals, and choice of connectors
1228 (e.g. which of two headers on the base board,
1229 or one from a daughtercard).
1230 For some Texas Instruments boards, you may need to jumper the
1231 EMU0 and EMU1 signals (which OpenOCD won't currently control).
1232
1233 @item @b{Boot Modes} ...
1234 Complex chips often support multiple boot modes, controlled
1235 by external jumpers. Make sure this is set up correctly.
1236 For example many i.MX boards from NXP need to be jumpered
1237 to "ATX mode" to start booting using the on-chip ROM, when
1238 using second stage bootloader code stored in a NAND flash chip.
1239
1240 Such explicit configuration is common, and not limited to
1241 booting from NAND. You might also need to set jumpers to
1242 start booting using code loaded from an MMC/SD card; external
1243 SPI flash; Ethernet, UART, or USB links; NOR flash; OneNAND
1244 flash; some external host; or various other sources.
1245
1246
1247 @item @b{Memory Addressing} ...
1248 Boards which support multiple boot modes may also have jumpers
1249 to configure memory addressing. One board, for example, jumpers
1250 external chipselect 0 (used for booting) to address either
1251 a large SRAM (which must be pre-loaded via JTAG), NOR flash,
1252 or NAND flash. When it's jumpered to address NAND flash, that
1253 board must also be told to start booting from on-chip ROM.
1254
1255 Your @file{board.cfg} file may also need to be told this jumper
1256 configuration, so that it can know whether to declare NOR flash
1257 using @command{flash bank} or instead declare NAND flash with
1258 @command{nand device}; and likewise which probe to perform in
1259 its @code{reset-init} handler.
1260
1261 A closely related issue is bus width. Jumpers might need to
1262 distinguish between 8 bit or 16 bit bus access for the flash
1263 used to start booting.
1264
1265 @item @b{Peripheral Access} ...
1266 Development boards generally provide access to every peripheral
1267 on the chip, sometimes in multiple modes (such as by providing
1268 multiple audio codec chips).
1269 This interacts with software
1270 configuration of pin multiplexing, where for example a
1271 given pin may be routed either to the MMC/SD controller
1272 or the GPIO controller. It also often interacts with
1273 configuration jumpers. One jumper may be used to route
1274 signals to an MMC/SD card slot or an expansion bus (which
1275 might in turn affect booting); others might control which
1276 audio or video codecs are used.
1277
1278 @end itemize
1279
1280 Plus you should of course have @code{reset-init} event handlers
1281 which set up the hardware to match that jumper configuration.
1282 That includes in particular any oscillator or PLL used to clock
1283 the CPU, and any memory controllers needed to access external
1284 memory and peripherals. Without such handlers, you won't be
1285 able to access those resources without working target firmware
1286 which can do that setup ... this can be awkward when you're
1287 trying to debug that target firmware. Even if there's a ROM
1288 bootloader which handles a few issues, it rarely provides full
1289 access to all board-specific capabilities.
1290
1291
1292 @node Config File Guidelines
1293 @chapter Config File Guidelines
1294
1295 This chapter is aimed at any user who needs to write a config file,
1296 including developers and integrators of OpenOCD and any user who
1297 needs to get a new board working smoothly.
1298 It provides guidelines for creating those files.
1299
1300 You should find the following directories under @t{$(INSTALLDIR)/scripts},
1301 with files including the ones listed here.
1302 Use them as-is where you can; or as models for new files.
1303 @itemize @bullet
1304 @item @file{interface} ...
1305 These are for debug adapters.
1306 Files that configure JTAG adapters go here.
1307 @example
1308 $ ls interface -R
1309 interface/:
1310 altera-usb-blaster.cfg hilscher_nxhx50_re.cfg openocd-usb-hs.cfg
1311 arm-jtag-ew.cfg hitex_str9-comstick.cfg openrd.cfg
1312 at91rm9200.cfg icebear.cfg osbdm.cfg
1313 axm0432.cfg jlink.cfg parport.cfg
1314 busblaster.cfg jtagkey2.cfg parport_dlc5.cfg
1315 buspirate.cfg jtagkey2p.cfg redbee-econotag.cfg
1316 calao-usb-a9260-c01.cfg jtagkey.cfg redbee-usb.cfg
1317 calao-usb-a9260-c02.cfg jtagkey-tiny.cfg rlink.cfg
1318 calao-usb-a9260.cfg jtag-lock-pick_tiny_2.cfg sheevaplug.cfg
1319 chameleon.cfg kt-link.cfg signalyzer.cfg
1320 cortino.cfg lisa-l.cfg signalyzer-h2.cfg
1321 digilent-hs1.cfg luminary.cfg signalyzer-h4.cfg
1322 dlp-usb1232h.cfg luminary-icdi.cfg signalyzer-lite.cfg
1323 dummy.cfg luminary-lm3s811.cfg stlink-v1.cfg
1324 estick.cfg minimodule.cfg stlink-v2.cfg
1325 flashlink.cfg neodb.cfg stm32-stick.cfg
1326 flossjtag.cfg ngxtech.cfg sysfsgpio-raspberrypi.cfg
1327 flossjtag-noeeprom.cfg olimex-arm-usb-ocd.cfg ti-icdi.cfg
1328 flyswatter2.cfg olimex-arm-usb-ocd-h.cfg turtelizer2.cfg
1329 flyswatter.cfg olimex-arm-usb-tiny-h.cfg ulink.cfg
1330 ftdi olimex-jtag-tiny.cfg usb-jtag.cfg
1331 hilscher_nxhx10_etm.cfg oocdlink.cfg usbprog.cfg
1332 hilscher_nxhx500_etm.cfg opendous.cfg vpaclink.cfg
1333 hilscher_nxhx500_re.cfg opendous_ftdi.cfg vsllink.cfg
1334 hilscher_nxhx50_etm.cfg openocd-usb.cfg xds100v2.cfg
1335
1336 interface/ftdi:
1337 axm0432.cfg hitex_str9-comstick.cfg olimex-jtag-tiny.cfg
1338 calao-usb-a9260-c01.cfg icebear.cfg oocdlink.cfg
1339 calao-usb-a9260-c02.cfg jtagkey2.cfg opendous_ftdi.cfg
1340 cortino.cfg jtagkey2p.cfg openocd-usb.cfg
1341 dlp-usb1232h.cfg jtagkey.cfg openocd-usb-hs.cfg
1342 dp_busblaster.cfg jtag-lock-pick_tiny_2.cfg openrd.cfg
1343 flossjtag.cfg kt-link.cfg redbee-econotag.cfg
1344 flossjtag-noeeprom.cfg lisa-l.cfg redbee-usb.cfg
1345 flyswatter2.cfg luminary.cfg sheevaplug.cfg
1346 flyswatter.cfg luminary-icdi.cfg signalyzer.cfg
1347 gw16042.cfg luminary-lm3s811.cfg signalyzer-lite.cfg
1348 hilscher_nxhx10_etm.cfg minimodule.cfg stm32-stick.cfg
1349 hilscher_nxhx500_etm.cfg neodb.cfg turtelizer2-revB.cfg
1350 hilscher_nxhx500_re.cfg ngxtech.cfg turtelizer2-revC.cfg
1351 hilscher_nxhx50_etm.cfg olimex-arm-usb-ocd.cfg vpaclink.cfg
1352 hilscher_nxhx50_re.cfg olimex-arm-usb-ocd-h.cfg xds100v2.cfg
1353 hitex_lpc1768stick.cfg olimex-arm-usb-tiny-h.cfg
1354 $
1355 @end example
1356 @item @file{board} ...
1357 think Circuit Board, PWA, PCB, they go by many names. Board files
1358 contain initialization items that are specific to a board.
1359 They reuse target configuration files, since the same
1360 microprocessor chips are used on many boards,
1361 but support for external parts varies widely. For
1362 example, the SDRAM initialization sequence for the board, or the type
1363 of external flash and what address it uses. Any initialization
1364 sequence to enable that external flash or SDRAM should be found in the
1365 board file. Boards may also contain multiple targets: two CPUs; or
1366 a CPU and an FPGA.
1367 @example
1368 $ ls board
1369 actux3.cfg lpc1850_spifi_generic.cfg
1370 am3517evm.cfg lpc4350_spifi_generic.cfg
1371 arm_evaluator7t.cfg lubbock.cfg
1372 at91cap7a-stk-sdram.cfg mcb1700.cfg
1373 at91eb40a.cfg microchip_explorer16.cfg
1374 at91rm9200-dk.cfg mini2440.cfg
1375 at91rm9200-ek.cfg mini6410.cfg
1376 at91sam9261-ek.cfg netgear-dg834v3.cfg
1377 at91sam9263-ek.cfg olimex_LPC2378STK.cfg
1378 at91sam9g20-ek.cfg olimex_lpc_h2148.cfg
1379 atmel_at91sam7s-ek.cfg olimex_sam7_ex256.cfg
1380 atmel_at91sam9260-ek.cfg olimex_sam9_l9260.cfg
1381 atmel_at91sam9rl-ek.cfg olimex_stm32_h103.cfg
1382 atmel_sam3n_ek.cfg olimex_stm32_h107.cfg
1383 atmel_sam3s_ek.cfg olimex_stm32_p107.cfg
1384 atmel_sam3u_ek.cfg omap2420_h4.cfg
1385 atmel_sam3x_ek.cfg open-bldc.cfg
1386 atmel_sam4s_ek.cfg openrd.cfg
1387 balloon3-cpu.cfg osk5912.cfg
1388 colibri.cfg phone_se_j100i.cfg
1389 crossbow_tech_imote2.cfg phytec_lpc3250.cfg
1390 csb337.cfg pic-p32mx.cfg
1391 csb732.cfg propox_mmnet1001.cfg
1392 da850evm.cfg pxa255_sst.cfg
1393 digi_connectcore_wi-9c.cfg redbee.cfg
1394 diolan_lpc4350-db1.cfg rsc-w910.cfg
1395 dm355evm.cfg sheevaplug.cfg
1396 dm365evm.cfg smdk6410.cfg
1397 dm6446evm.cfg spear300evb.cfg
1398 efikamx.cfg spear300evb_mod.cfg
1399 eir.cfg spear310evb20.cfg
1400 ek-lm3s1968.cfg spear310evb20_mod.cfg
1401 ek-lm3s3748.cfg spear320cpu.cfg
1402 ek-lm3s6965.cfg spear320cpu_mod.cfg
1403 ek-lm3s811.cfg steval_pcc010.cfg
1404 ek-lm3s811-revb.cfg stm320518_eval_stlink.cfg
1405 ek-lm3s8962.cfg stm32100b_eval.cfg
1406 ek-lm3s9b9x.cfg stm3210b_eval.cfg
1407 ek-lm3s9d92.cfg stm3210c_eval.cfg
1408 ek-lm4f120xl.cfg stm3210e_eval.cfg
1409 ek-lm4f232.cfg stm3220g_eval.cfg
1410 embedded-artists_lpc2478-32.cfg stm3220g_eval_stlink.cfg
1411 ethernut3.cfg stm3241g_eval.cfg
1412 glyn_tonga2.cfg stm3241g_eval_stlink.cfg
1413 hammer.cfg stm32f0discovery.cfg
1414 hilscher_nxdb500sys.cfg stm32f3discovery.cfg
1415 hilscher_nxeb500hmi.cfg stm32f4discovery.cfg
1416 hilscher_nxhx10.cfg stm32ldiscovery.cfg
1417 hilscher_nxhx500.cfg stm32vldiscovery.cfg
1418 hilscher_nxhx50.cfg str910-eval.cfg
1419 hilscher_nxsb100.cfg telo.cfg
1420 hitex_lpc1768stick.cfg ti_am335xevm.cfg
1421 hitex_lpc2929.cfg ti_beagleboard.cfg
1422 hitex_stm32-performancestick.cfg ti_beagleboard_xm.cfg
1423 hitex_str9-comstick.cfg ti_beaglebone.cfg
1424 iar_lpc1768.cfg ti_blaze.cfg
1425 iar_str912_sk.cfg ti_pandaboard.cfg
1426 icnova_imx53_sodimm.cfg ti_pandaboard_es.cfg
1427 icnova_sam9g45_sodimm.cfg topas910.cfg
1428 imx27ads.cfg topasa900.cfg
1429 imx27lnst.cfg twr-k60f120m.cfg
1430 imx28evk.cfg twr-k60n512.cfg
1431 imx31pdk.cfg tx25_stk5.cfg
1432 imx35pdk.cfg tx27_stk5.cfg
1433 imx53loco.cfg unknown_at91sam9260.cfg
1434 keil_mcb1700.cfg uptech_2410.cfg
1435 keil_mcb2140.cfg verdex.cfg
1436 kwikstik.cfg voipac.cfg
1437 linksys_nslu2.cfg voltcraft_dso-3062c.cfg
1438 lisa-l.cfg x300t.cfg
1439 logicpd_imx27.cfg zy1000.cfg
1440 $
1441 @end example
1442 @item @file{target} ...
1443 think chip. The ``target'' directory represents the JTAG TAPs
1444 on a chip
1445 which OpenOCD should control, not a board. Two common types of targets
1446 are ARM chips and FPGA or CPLD chips.
1447 When a chip has multiple TAPs (maybe it has both ARM and DSP cores),
1448 the target config file defines all of them.
1449 @example
1450 $ ls target
1451 aduc702x.cfg lpc1763.cfg
1452 am335x.cfg lpc1764.cfg
1453 amdm37x.cfg lpc1765.cfg
1454 ar71xx.cfg lpc1766.cfg
1455 at32ap7000.cfg lpc1767.cfg
1456 at91r40008.cfg lpc1768.cfg
1457 at91rm9200.cfg lpc1769.cfg
1458 at91sam3ax_4x.cfg lpc1788.cfg
1459 at91sam3ax_8x.cfg lpc17xx.cfg
1460 at91sam3ax_xx.cfg lpc1850.cfg
1461 at91sam3nXX.cfg lpc2103.cfg
1462 at91sam3sXX.cfg lpc2124.cfg
1463 at91sam3u1c.cfg lpc2129.cfg
1464 at91sam3u1e.cfg lpc2148.cfg
1465 at91sam3u2c.cfg lpc2294.cfg
1466 at91sam3u2e.cfg lpc2378.cfg
1467 at91sam3u4c.cfg lpc2460.cfg
1468 at91sam3u4e.cfg lpc2478.cfg
1469 at91sam3uxx.cfg lpc2900.cfg
1470 at91sam3XXX.cfg lpc2xxx.cfg
1471 at91sam4sd32x.cfg lpc3131.cfg
1472 at91sam4sXX.cfg lpc3250.cfg
1473 at91sam4XXX.cfg lpc4350.cfg
1474 at91sam7se512.cfg lpc4350.cfg.orig
1475 at91sam7sx.cfg mc13224v.cfg
1476 at91sam7x256.cfg nuc910.cfg
1477 at91sam7x512.cfg omap2420.cfg
1478 at91sam9260.cfg omap3530.cfg
1479 at91sam9260_ext_RAM_ext_flash.cfg omap4430.cfg
1480 at91sam9261.cfg omap4460.cfg
1481 at91sam9263.cfg omap5912.cfg
1482 at91sam9.cfg omapl138.cfg
1483 at91sam9g10.cfg pic32mx.cfg
1484 at91sam9g20.cfg pxa255.cfg
1485 at91sam9g45.cfg pxa270.cfg
1486 at91sam9rl.cfg pxa3xx.cfg
1487 atmega128.cfg readme.txt
1488 avr32.cfg samsung_s3c2410.cfg
1489 c100.cfg samsung_s3c2440.cfg
1490 c100config.tcl samsung_s3c2450.cfg
1491 c100helper.tcl samsung_s3c4510.cfg
1492 c100regs.tcl samsung_s3c6410.cfg
1493 cs351x.cfg sharp_lh79532.cfg
1494 davinci.cfg smp8634.cfg
1495 dragonite.cfg spear3xx.cfg
1496 dsp56321.cfg stellaris.cfg
1497 dsp568013.cfg stellaris_icdi.cfg
1498 dsp568037.cfg stm32f0x_stlink.cfg
1499 efm32_stlink.cfg stm32f1x.cfg
1500 epc9301.cfg stm32f1x_stlink.cfg
1501 faux.cfg stm32f2x.cfg
1502 feroceon.cfg stm32f2x_stlink.cfg
1503 fm3.cfg stm32f3x.cfg
1504 hilscher_netx10.cfg stm32f3x_stlink.cfg
1505 hilscher_netx500.cfg stm32f4x.cfg
1506 hilscher_netx50.cfg stm32f4x_stlink.cfg
1507 icepick.cfg stm32l.cfg
1508 imx21.cfg stm32lx_dual_bank.cfg
1509 imx25.cfg stm32lx_stlink.cfg
1510 imx27.cfg stm32_stlink.cfg
1511 imx28.cfg stm32w108_stlink.cfg
1512 imx31.cfg stm32xl.cfg
1513 imx35.cfg str710.cfg
1514 imx51.cfg str730.cfg
1515 imx53.cfg str750.cfg
1516 imx6.cfg str912.cfg
1517 imx.cfg swj-dp.tcl
1518 is5114.cfg test_reset_syntax_error.cfg
1519 ixp42x.cfg test_syntax_error.cfg
1520 k40.cfg ti-ar7.cfg
1521 k60.cfg ti_calypso.cfg
1522 lpc1751.cfg ti_dm355.cfg
1523 lpc1752.cfg ti_dm365.cfg
1524 lpc1754.cfg ti_dm6446.cfg
1525 lpc1756.cfg tmpa900.cfg
1526 lpc1758.cfg tmpa910.cfg
1527 lpc1759.cfg u8500.cfg
1528 @end example
1529 @item @emph{more} ... browse for other library files which may be useful.
1530 For example, there are various generic and CPU-specific utilities.
1531 @end itemize
1532
1533 The @file{openocd.cfg} user config
1534 file may override features in any of the above files by
1535 setting variables before sourcing the target file, or by adding
1536 commands specific to their situation.
1537
1538 @section Interface Config Files
1539
1540 The user config file
1541 should be able to source one of these files with a command like this:
1542
1543 @example
1544 source [find interface/FOOBAR.cfg]
1545 @end example
1546
1547 A preconfigured interface file should exist for every debug adapter
1548 in use today with OpenOCD.
1549 That said, perhaps some of these config files
1550 have only been used by the developer who created it.
1551
1552 A separate chapter gives information about how to set these up.
1553 @xref{Debug Adapter Configuration}.
1554 Read the OpenOCD source code (and Developer's Guide)
1555 if you have a new kind of hardware interface
1556 and need to provide a driver for it.
1557
1558 @section Board Config Files
1559 @cindex config file, board
1560 @cindex board config file
1561
1562 The user config file
1563 should be able to source one of these files with a command like this:
1564
1565 @example
1566 source [find board/FOOBAR.cfg]
1567 @end example
1568
1569 The point of a board config file is to package everything
1570 about a given board that user config files need to know.
1571 In summary the board files should contain (if present)
1572
1573 @enumerate
1574 @item One or more @command{source [find target/...cfg]} statements
1575 @item NOR flash configuration (@pxref{norconfiguration,,NOR Configuration})
1576 @item NAND flash configuration (@pxref{nandconfiguration,,NAND Configuration})
1577 @item Target @code{reset} handlers for SDRAM and I/O configuration
1578 @item JTAG adapter reset configuration (@pxref{Reset Configuration})
1579 @item All things that are not ``inside a chip''
1580 @end enumerate
1581
1582 Generic things inside target chips belong in target config files,
1583 not board config files. So for example a @code{reset-init} event
1584 handler should know board-specific oscillator and PLL parameters,
1585 which it passes to target-specific utility code.
1586
1587 The most complex task of a board config file is creating such a
1588 @code{reset-init} event handler.
1589 Define those handlers last, after you verify the rest of the board
1590 configuration works.
1591
1592 @subsection Communication Between Config files
1593
1594 In addition to target-specific utility code, another way that
1595 board and target config files communicate is by following a
1596 convention on how to use certain variables.
1597
1598 The full Tcl/Tk language supports ``namespaces'', but Jim-Tcl does not.
1599 Thus the rule we follow in OpenOCD is this: Variables that begin with
1600 a leading underscore are temporary in nature, and can be modified and
1601 used at will within a target configuration file.
1602
1603 Complex board config files can do the things like this,
1604 for a board with three chips:
1605
1606 @example
1607 # Chip #1: PXA270 for network side, big endian
1608 set CHIPNAME network
1609 set ENDIAN big
1610 source [find target/pxa270.cfg]
1611 # on return: _TARGETNAME = network.cpu
1612 # other commands can refer to the "network.cpu" target.
1613 $_TARGETNAME configure .... events for this CPU..
1614
1615 # Chip #2: PXA270 for video side, little endian
1616 set CHIPNAME video
1617 set ENDIAN little
1618 source [find target/pxa270.cfg]
1619 # on return: _TARGETNAME = video.cpu
1620 # other commands can refer to the "video.cpu" target.
1621 $_TARGETNAME configure .... events for this CPU..
1622
1623 # Chip #3: Xilinx FPGA for glue logic
1624 set CHIPNAME xilinx
1625 unset ENDIAN
1626 source [find target/spartan3.cfg]
1627 @end example
1628
1629 That example is oversimplified because it doesn't show any flash memory,
1630 or the @code{reset-init} event handlers to initialize external DRAM
1631 or (assuming it needs it) load a configuration into the FPGA.
1632 Such features are usually needed for low-level work with many boards,
1633 where ``low level'' implies that the board initialization software may
1634 not be working. (That's a common reason to need JTAG tools. Another
1635 is to enable working with microcontroller-based systems, which often
1636 have no debugging support except a JTAG connector.)
1637
1638 Target config files may also export utility functions to board and user
1639 config files. Such functions should use name prefixes, to help avoid
1640 naming collisions.
1641
1642 Board files could also accept input variables from user config files.
1643 For example, there might be a @code{J4_JUMPER} setting used to identify
1644 what kind of flash memory a development board is using, or how to set
1645 up other clocks and peripherals.
1646
1647 @subsection Variable Naming Convention
1648 @cindex variable names
1649
1650 Most boards have only one instance of a chip.
1651 However, it should be easy to create a board with more than
1652 one such chip (as shown above).
1653 Accordingly, we encourage these conventions for naming
1654 variables associated with different @file{target.cfg} files,
1655 to promote consistency and
1656 so that board files can override target defaults.
1657
1658 Inputs to target config files include:
1659
1660 @itemize @bullet
1661 @item @code{CHIPNAME} ...
1662 This gives a name to the overall chip, and is used as part of
1663 tap identifier dotted names.
1664 While the default is normally provided by the chip manufacturer,
1665 board files may need to distinguish between instances of a chip.
1666 @item @code{ENDIAN} ...
1667 By default @option{little} - although chips may hard-wire @option{big}.
1668 Chips that can't change endianness don't need to use this variable.
1669 @item @code{CPUTAPID} ...
1670 When OpenOCD examines the JTAG chain, it can be told verify the
1671 chips against the JTAG IDCODE register.
1672 The target file will hold one or more defaults, but sometimes the
1673 chip in a board will use a different ID (perhaps a newer revision).
1674 @end itemize
1675
1676 Outputs from target config files include:
1677
1678 @itemize @bullet
1679 @item @code{_TARGETNAME} ...
1680 By convention, this variable is created by the target configuration
1681 script. The board configuration file may make use of this variable to
1682 configure things like a ``reset init'' script, or other things
1683 specific to that board and that target.
1684 If the chip has 2 targets, the names are @code{_TARGETNAME0},
1685 @code{_TARGETNAME1}, ... etc.
1686 @end itemize
1687
1688 @subsection The reset-init Event Handler
1689 @cindex event, reset-init
1690 @cindex reset-init handler
1691
1692 Board config files run in the OpenOCD configuration stage;
1693 they can't use TAPs or targets, since they haven't been
1694 fully set up yet.
1695 This means you can't write memory or access chip registers;
1696 you can't even verify that a flash chip is present.
1697 That's done later in event handlers, of which the target @code{reset-init}
1698 handler is one of the most important.
1699
1700 Except on microcontrollers, the basic job of @code{reset-init} event
1701 handlers is setting up flash and DRAM, as normally handled by boot loaders.
1702 Microcontrollers rarely use boot loaders; they run right out of their
1703 on-chip flash and SRAM memory. But they may want to use one of these
1704 handlers too, if just for developer convenience.
1705
1706 @quotation Note
1707 Because this is so very board-specific, and chip-specific, no examples
1708 are included here.
1709 Instead, look at the board config files distributed with OpenOCD.
1710 If you have a boot loader, its source code will help; so will
1711 configuration files for other JTAG tools
1712 (@pxref{translatingconfigurationfiles,,Translating Configuration Files}).
1713 @end quotation
1714
1715 Some of this code could probably be shared between different boards.
1716 For example, setting up a DRAM controller often doesn't differ by
1717 much except the bus width (16 bits or 32?) and memory timings, so a
1718 reusable TCL procedure loaded by the @file{target.cfg} file might take
1719 those as parameters.
1720 Similarly with oscillator, PLL, and clock setup;
1721 and disabling the watchdog.
1722 Structure the code cleanly, and provide comments to help
1723 the next developer doing such work.
1724 (@emph{You might be that next person} trying to reuse init code!)
1725
1726 The last thing normally done in a @code{reset-init} handler is probing
1727 whatever flash memory was configured. For most chips that needs to be
1728 done while the associated target is halted, either because JTAG memory
1729 access uses the CPU or to prevent conflicting CPU access.
1730
1731 @subsection JTAG Clock Rate
1732
1733 Before your @code{reset-init} handler has set up
1734 the PLLs and clocking, you may need to run with
1735 a low JTAG clock rate.
1736 @xref{jtagspeed,,JTAG Speed}.
1737 Then you'd increase that rate after your handler has
1738 made it possible to use the faster JTAG clock.
1739 When the initial low speed is board-specific, for example
1740 because it depends on a board-specific oscillator speed, then
1741 you should probably set it up in the board config file;
1742 if it's target-specific, it belongs in the target config file.
1743
1744 For most ARM-based processors the fastest JTAG clock@footnote{A FAQ
1745 @uref{http://www.arm.com/support/faqdev/4170.html} gives details.}
1746 is one sixth of the CPU clock; or one eighth for ARM11 cores.
1747 Consult chip documentation to determine the peak JTAG clock rate,
1748 which might be less than that.
1749
1750 @quotation Warning
1751 On most ARMs, JTAG clock detection is coupled to the core clock, so
1752 software using a @option{wait for interrupt} operation blocks JTAG access.
1753 Adaptive clocking provides a partial workaround, but a more complete
1754 solution just avoids using that instruction with JTAG debuggers.
1755 @end quotation
1756
1757 If both the chip and the board support adaptive clocking,
1758 use the @command{jtag_rclk}
1759 command, in case your board is used with JTAG adapter which
1760 also supports it. Otherwise use @command{adapter_khz}.
1761 Set the slow rate at the beginning of the reset sequence,
1762 and the faster rate as soon as the clocks are at full speed.
1763
1764 @anchor{theinitboardprocedure}
1765 @subsection The init_board procedure
1766 @cindex init_board procedure
1767
1768 The concept of @code{init_board} procedure is very similar to @code{init_targets}
1769 (@xref{theinittargetsprocedure,,The init_targets procedure}.) - it's a replacement of ``linear''
1770 configuration scripts. This procedure is meant to be executed when OpenOCD enters run stage
1771 (@xref{enteringtherunstage,,Entering the Run Stage},) after @code{init_targets}. The idea to have
1772 separate @code{init_targets} and @code{init_board} procedures is to allow the first one to configure
1773 everything target specific (internal flash, internal RAM, etc.) and the second one to configure
1774 everything board specific (reset signals, chip frequency, reset-init event handler, external memory, etc.).
1775 Additionally ``linear'' board config file will most likely fail when target config file uses
1776 @code{init_targets} scheme (``linear'' script is executed before @code{init} and @code{init_targets} - after),
1777 so separating these two configuration stages is very convenient, as the easiest way to overcome this
1778 problem is to convert board config file to use @code{init_board} procedure. Board config scripts don't
1779 need to override @code{init_targets} defined in target config files when they only need to add some specifics.
1780
1781 Just as @code{init_targets}, the @code{init_board} procedure can be overridden by ``next level'' script (which sources
1782 the original), allowing greater code reuse.
1783
1784 @example
1785 ### board_file.cfg ###
1786
1787 # source target file that does most of the config in init_targets
1788 source [find target/target.cfg]
1789
1790 proc enable_fast_clock @{@} @{
1791 # enables fast on-board clock source
1792 # configures the chip to use it
1793 @}
1794
1795 # initialize only board specifics - reset, clock, adapter frequency
1796 proc init_board @{@} @{
1797 reset_config trst_and_srst trst_pulls_srst
1798
1799 $_TARGETNAME configure -event reset-init @{
1800 adapter_khz 1
1801 enable_fast_clock
1802 adapter_khz 10000
1803 @}
1804 @}
1805 @end example
1806
1807 @section Target Config Files
1808 @cindex config file, target
1809 @cindex target config file
1810
1811 Board config files communicate with target config files using
1812 naming conventions as described above, and may source one or
1813 more target config files like this:
1814
1815 @example
1816 source [find target/FOOBAR.cfg]
1817 @end example
1818
1819 The point of a target config file is to package everything
1820 about a given chip that board config files need to know.
1821 In summary the target files should contain
1822
1823 @enumerate
1824 @item Set defaults
1825 @item Add TAPs to the scan chain
1826 @item Add CPU targets (includes GDB support)
1827 @item CPU/Chip/CPU-Core specific features
1828 @item On-Chip flash
1829 @end enumerate
1830
1831 As a rule of thumb, a target file sets up only one chip.
1832 For a microcontroller, that will often include a single TAP,
1833 which is a CPU needing a GDB target, and its on-chip flash.
1834
1835 More complex chips may include multiple TAPs, and the target
1836 config file may need to define them all before OpenOCD
1837 can talk to the chip.
1838 For example, some phone chips have JTAG scan chains that include
1839 an ARM core for operating system use, a DSP,
1840 another ARM core embedded in an image processing engine,
1841 and other processing engines.
1842
1843 @subsection Default Value Boiler Plate Code
1844
1845 All target configuration files should start with code like this,
1846 letting board config files express environment-specific
1847 differences in how things should be set up.
1848
1849 @example
1850 # Boards may override chip names, perhaps based on role,
1851 # but the default should match what the vendor uses
1852 if @{ [info exists CHIPNAME] @} @{
1853 set _CHIPNAME $CHIPNAME
1854 @} else @{
1855 set _CHIPNAME sam7x256
1856 @}
1857
1858 # ONLY use ENDIAN with targets that can change it.
1859 if @{ [info exists ENDIAN] @} @{
1860 set _ENDIAN $ENDIAN
1861 @} else @{
1862 set _ENDIAN little
1863 @}
1864
1865 # TAP identifiers may change as chips mature, for example with
1866 # new revision fields (the "3" here). Pick a good default; you
1867 # can pass several such identifiers to the "jtag newtap" command.
1868 if @{ [info exists CPUTAPID ] @} @{
1869 set _CPUTAPID $CPUTAPID
1870 @} else @{
1871 set _CPUTAPID 0x3f0f0f0f
1872 @}
1873 @end example
1874 @c but 0x3f0f0f0f is for an str73x part ...
1875
1876 @emph{Remember:} Board config files may include multiple target
1877 config files, or the same target file multiple times
1878 (changing at least @code{CHIPNAME}).
1879
1880 Likewise, the target configuration file should define
1881 @code{_TARGETNAME} (or @code{_TARGETNAME0} etc) and
1882 use it later on when defining debug targets:
1883
1884 @example
1885 set _TARGETNAME $_CHIPNAME.cpu
1886 target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME
1887 @end example
1888
1889 @subsection Adding TAPs to the Scan Chain
1890 After the ``defaults'' are set up,
1891 add the TAPs on each chip to the JTAG scan chain.
1892 @xref{TAP Declaration}, and the naming convention
1893 for taps.
1894
1895 In the simplest case the chip has only one TAP,
1896 probably for a CPU or FPGA.
1897 The config file for the Atmel AT91SAM7X256
1898 looks (in part) like this:
1899
1900 @example
1901 jtag newtap $_CHIPNAME cpu -irlen 4 -expected-id $_CPUTAPID
1902 @end example
1903
1904 A board with two such at91sam7 chips would be able
1905 to source such a config file twice, with different
1906 values for @code{CHIPNAME}, so
1907 it adds a different TAP each time.
1908
1909 If there are nonzero @option{-expected-id} values,
1910 OpenOCD attempts to verify the actual tap id against those values.
1911 It will issue error messages if there is mismatch, which
1912 can help to pinpoint problems in OpenOCD configurations.
1913
1914 @example
1915 JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f
1916 (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
1917 ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
1918 ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
1919 ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
1920 @end example
1921
1922 There are more complex examples too, with chips that have
1923 multiple TAPs. Ones worth looking at include:
1924
1925 @itemize
1926 @item @file{target/omap3530.cfg} -- with disabled ARM and DSP,
1927 plus a JRC to enable them
1928 @item @file{target/str912.cfg} -- with flash, CPU, and boundary scan
1929 @item @file{target/ti_dm355.cfg} -- with ETM, ARM, and JRC (this JRC
1930 is not currently used)
1931 @end itemize
1932
1933 @subsection Add CPU targets
1934
1935 After adding a TAP for a CPU, you should set it up so that
1936 GDB and other commands can use it.
1937 @xref{CPU Configuration}.
1938 For the at91sam7 example above, the command can look like this;
1939 note that @code{$_ENDIAN} is not needed, since OpenOCD defaults
1940 to little endian, and this chip doesn't support changing that.
1941
1942 @example
1943 set _TARGETNAME $_CHIPNAME.cpu
1944 target create $_TARGETNAME arm7tdmi -chain-position $_TARGETNAME
1945 @end example
1946
1947 Work areas are small RAM areas associated with CPU targets.
1948 They are used by OpenOCD to speed up downloads,
1949 and to download small snippets of code to program flash chips.
1950 If the chip includes a form of ``on-chip-ram'' - and many do - define
1951 a work area if you can.
1952 Again using the at91sam7 as an example, this can look like:
1953
1954 @example
1955 $_TARGETNAME configure -work-area-phys 0x00200000 \
1956 -work-area-size 0x4000 -work-area-backup 0
1957 @end example
1958
1959 @anchor{definecputargetsworkinginsmp}
1960 @subsection Define CPU targets working in SMP
1961 @cindex SMP
1962 After setting targets, you can define a list of targets working in SMP.
1963
1964 @example
1965 set _TARGETNAME_1 $_CHIPNAME.cpu1
1966 set _TARGETNAME_2 $_CHIPNAME.cpu2
1967 target create $_TARGETNAME_1 cortex_a -chain-position $_CHIPNAME.dap \
1968 -coreid 0 -dbgbase $_DAP_DBG1
1969 target create $_TARGETNAME_2 cortex_a -chain-position $_CHIPNAME.dap \
1970 -coreid 1 -dbgbase $_DAP_DBG2
1971 #define 2 targets working in smp.
1972 target smp $_CHIPNAME.cpu2 $_CHIPNAME.cpu1
1973 @end example
1974 In the above example on cortex_a, 2 cpus are working in SMP.
1975 In SMP only one GDB instance is created and :
1976 @itemize @bullet
1977 @item a set of hardware breakpoint sets the same breakpoint on all targets in the list.
1978 @item halt command triggers the halt of all targets in the list.
1979 @item resume command triggers the write context and the restart of all targets in the list.
1980 @item following a breakpoint: the target stopped by the breakpoint is displayed to the GDB session.
1981 @item dedicated GDB serial protocol packets are implemented for switching/retrieving the target
1982 displayed by the GDB session @pxref{usingopenocdsmpwithgdb,,Using OpenOCD SMP with GDB}.
1983 @end itemize
1984
1985 The SMP behaviour can be disabled/enabled dynamically. On cortex_a following
1986 command have been implemented.
1987 @itemize @bullet
1988 @item cortex_a smp_on : enable SMP mode, behaviour is as described above.
1989 @item cortex_a smp_off : disable SMP mode, the current target is the one
1990 displayed in the GDB session, only this target is now controlled by GDB
1991 session. This behaviour is useful during system boot up.
1992 @item cortex_a smp_gdb : display/fix the core id displayed in GDB session see
1993 following example.
1994 @end itemize
1995
1996 @example
1997 >cortex_a smp_gdb
1998 gdb coreid 0 -> -1
1999 #0 : coreid 0 is displayed to GDB ,
2000 #-> -1 : next resume triggers a real resume
2001 > cortex_a smp_gdb 1
2002 gdb coreid 0 -> 1
2003 #0 :coreid 0 is displayed to GDB ,
2004 #->1 : next resume displays coreid 1 to GDB
2005 > resume
2006 > cortex_a smp_gdb
2007 gdb coreid 1 -> 1
2008 #1 :coreid 1 is displayed to GDB ,
2009 #->1 : next resume displays coreid 1 to GDB
2010 > cortex_a smp_gdb -1
2011 gdb coreid 1 -> -1
2012 #1 :coreid 1 is displayed to GDB,
2013 #->-1 : next resume triggers a real resume
2014 @end example
2015
2016
2017 @subsection Chip Reset Setup
2018
2019 As a rule, you should put the @command{reset_config} command
2020 into the board file. Most things you think you know about a
2021 chip can be tweaked by the board.
2022
2023 Some chips have specific ways the TRST and SRST signals are
2024 managed. In the unusual case that these are @emph{chip specific}
2025 and can never be changed by board wiring, they could go here.
2026 For example, some chips can't support JTAG debugging without
2027 both signals.
2028
2029 Provide a @code{reset-assert} event handler if you can.
2030 Such a handler uses JTAG operations to reset the target,
2031 letting this target config be used in systems which don't
2032 provide the optional SRST signal, or on systems where you
2033 don't want to reset all targets at once.
2034 Such a handler might write to chip registers to force a reset,
2035 use a JRC to do that (preferable -- the target may be wedged!),
2036 or force a watchdog timer to trigger.
2037 (For Cortex-M targets, this is not necessary. The target
2038 driver knows how to use trigger an NVIC reset when SRST is
2039 not available.)
2040
2041 Some chips need special attention during reset handling if
2042 they're going to be used with JTAG.
2043 An example might be needing to send some commands right
2044 after the target's TAP has been reset, providing a
2045 @code{reset-deassert-post} event handler that writes a chip
2046 register to report that JTAG debugging is being done.
2047 Another would be reconfiguring the watchdog so that it stops
2048 counting while the core is halted in the debugger.
2049
2050 JTAG clocking constraints often change during reset, and in
2051 some cases target config files (rather than board config files)
2052 are the right places to handle some of those issues.
2053 For example, immediately after reset most chips run using a
2054 slower clock than they will use later.
2055 That means that after reset (and potentially, as OpenOCD
2056 first starts up) they must use a slower JTAG clock rate
2057 than they will use later.
2058 @xref{jtagspeed,,JTAG Speed}.
2059
2060 @quotation Important
2061 When you are debugging code that runs right after chip
2062 reset, getting these issues right is critical.
2063 In particular, if you see intermittent failures when
2064 OpenOCD verifies the scan chain after reset,
2065 look at how you are setting up JTAG clocking.
2066 @end quotation
2067
2068 @anchor{theinittargetsprocedure}
2069 @subsection The init_targets procedure
2070 @cindex init_targets procedure
2071
2072 Target config files can either be ``linear'' (script executed line-by-line when parsed in
2073 configuration stage, @xref{configurationstage,,Configuration Stage},) or they can contain a special
2074 procedure called @code{init_targets}, which will be executed when entering run stage
2075 (after parsing all config files or after @code{init} command, @xref{enteringtherunstage,,Entering the Run Stage}.)
2076 Such procedure can be overriden by ``next level'' script (which sources the original).
2077 This concept faciliates code reuse when basic target config files provide generic configuration
2078 procedures and @code{init_targets} procedure, which can then be sourced and enchanced or changed in
2079 a ``more specific'' target config file. This is not possible with ``linear'' config scripts,
2080 because sourcing them executes every initialization commands they provide.
2081
2082 @example
2083 ### generic_file.cfg ###
2084
2085 proc setup_my_chip @{chip_name flash_size ram_size@} @{
2086 # basic initialization procedure ...
2087 @}
2088
2089 proc init_targets @{@} @{
2090 # initializes generic chip with 4kB of flash and 1kB of RAM
2091 setup_my_chip MY_GENERIC_CHIP 4096 1024
2092 @}
2093
2094 ### specific_file.cfg ###
2095
2096 source [find target/generic_file.cfg]
2097
2098 proc init_targets @{@} @{
2099 # initializes specific chip with 128kB of flash and 64kB of RAM
2100 setup_my_chip MY_CHIP_WITH_128K_FLASH_64KB_RAM 131072 65536
2101 @}
2102 @end example
2103
2104 The easiest way to convert ``linear'' config files to @code{init_targets} version is to
2105 enclose every line of ``code'' (i.e. not @code{source} commands, procedures, etc.) in this procedure.
2106
2107 For an example of this scheme see LPC2000 target config files.
2108
2109 The @code{init_boards} procedure is a similar concept concerning board config files
2110 (@xref{theinitboardprocedure,,The init_board procedure}.)
2111
2112 @anchor{theinittargeteventsprocedure}
2113 @subsection The init_target_events procedure
2114 @cindex init_target_events procedure
2115
2116 A special procedure called @code{init_target_events} is run just after
2117 @code{init_targets} (@xref{theinittargetsprocedure,,The init_targets
2118 procedure}.) and before @code{init_board}
2119 (@xref{theinitboardprocedure,,The init_board procedure}.) It is used
2120 to set up default target events for the targets that do not have those
2121 events already assigned.
2122
2123 @subsection ARM Core Specific Hacks
2124
2125 If the chip has a DCC, enable it. If the chip is an ARM9 with some
2126 special high speed download features - enable it.
2127
2128 If present, the MMU, the MPU and the CACHE should be disabled.
2129
2130 Some ARM cores are equipped with trace support, which permits
2131 examination of the instruction and data bus activity. Trace
2132 activity is controlled through an ``Embedded Trace Module'' (ETM)
2133 on one of the core's scan chains. The ETM emits voluminous data
2134 through a ``trace port''. (@xref{armhardwaretracing,,ARM Hardware Tracing}.)
2135 If you are using an external trace port,
2136 configure it in your board config file.
2137 If you are using an on-chip ``Embedded Trace Buffer'' (ETB),
2138 configure it in your target config file.
2139
2140 @example
2141 etm config $_TARGETNAME 16 normal full etb
2142 etb config $_TARGETNAME $_CHIPNAME.etb
2143 @end example
2144
2145 @subsection Internal Flash Configuration
2146
2147 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
2148
2149 @b{Never ever} in the ``target configuration file'' define any type of
2150 flash that is external to the chip. (For example a BOOT flash on
2151 Chip Select 0.) Such flash information goes in a board file - not
2152 the TARGET (chip) file.
2153
2154 Examples:
2155 @itemize @bullet
2156 @item at91sam7x256 - has 256K flash YES enable it.
2157 @item str912 - has flash internal YES enable it.
2158 @item imx27 - uses boot flash on CS0 - it goes in the board file.
2159 @item pxa270 - again - CS0 flash - it goes in the board file.
2160 @end itemize
2161
2162 @anchor{translatingconfigurationfiles}
2163 @section Translating Configuration Files
2164 @cindex translation
2165 If you have a configuration file for another hardware debugger
2166 or toolset (Abatron, BDI2000, BDI3000, CCS,
2167 Lauterbach, Segger, Macraigor, etc.), translating
2168 it into OpenOCD syntax is often quite straightforward. The most tricky
2169 part of creating a configuration script is oftentimes the reset init
2170 sequence where e.g. PLLs, DRAM and the like is set up.
2171
2172 One trick that you can use when translating is to write small
2173 Tcl procedures to translate the syntax into OpenOCD syntax. This
2174 can avoid manual translation errors and make it easier to
2175 convert other scripts later on.
2176
2177 Example of transforming quirky arguments to a simple search and
2178 replace job:
2179
2180 @example
2181 # Lauterbach syntax(?)
2182 #
2183 # Data.Set c15:0x042f %long 0x40000015
2184 #
2185 # OpenOCD syntax when using procedure below.
2186 #
2187 # setc15 0x01 0x00050078
2188
2189 proc setc15 @{regs value@} @{
2190 global TARGETNAME
2191
2192 echo [format "set p15 0x%04x, 0x%08x" $regs $value]
2193
2194 arm mcr 15 [expr ($regs>>12)&0x7] \
2195 [expr ($regs>>0)&0xf] [expr ($regs>>4)&0xf] \
2196 [expr ($regs>>8)&0x7] $value
2197 @}
2198 @end example
2199
2200
2201
2202 @node Daemon Configuration
2203 @chapter Daemon Configuration
2204 @cindex initialization
2205 The commands here are commonly found in the openocd.cfg file and are
2206 used to specify what TCP/IP ports are used, and how GDB should be
2207 supported.
2208
2209 @anchor{configurationstage}
2210 @section Configuration Stage
2211 @cindex configuration stage
2212 @cindex config command
2213
2214 When the OpenOCD server process starts up, it enters a
2215 @emph{configuration stage} which is the only time that
2216 certain commands, @emph{configuration commands}, may be issued.
2217 Normally, configuration commands are only available
2218 inside startup scripts.
2219
2220 In this manual, the definition of a configuration command is
2221 presented as a @emph{Config Command}, not as a @emph{Command}
2222 which may be issued interactively.
2223 The runtime @command{help} command also highlights configuration
2224 commands, and those which may be issued at any time.
2225
2226 Those configuration commands include declaration of TAPs,
2227 flash banks,
2228 the interface used for JTAG communication,
2229 and other basic setup.
2230 The server must leave the configuration stage before it
2231 may access or activate TAPs.
2232 After it leaves this stage, configuration commands may no
2233 longer be issued.
2234
2235 @anchor{enteringtherunstage}
2236 @section Entering the Run Stage
2237
2238 The first thing OpenOCD does after leaving the configuration
2239 stage is to verify that it can talk to the scan chain
2240 (list of TAPs) which has been configured.
2241 It will warn if it doesn't find TAPs it expects to find,
2242 or finds TAPs that aren't supposed to be there.
2243 You should see no errors at this point.
2244 If you see errors, resolve them by correcting the
2245 commands you used to configure the server.
2246 Common errors include using an initial JTAG speed that's too
2247 fast, and not providing the right IDCODE values for the TAPs
2248 on the scan chain.
2249
2250 Once OpenOCD has entered the run stage, a number of commands
2251 become available.
2252 A number of these relate to the debug targets you may have declared.
2253 For example, the @command{mww} command will not be available until
2254 a target has been successfuly instantiated.
2255 If you want to use those commands, you may need to force
2256 entry to the run stage.
2257
2258 @deffn {Config Command} init
2259 This command terminates the configuration stage and
2260 enters the run stage. This helps when you need to have
2261 the startup scripts manage tasks such as resetting the target,
2262 programming flash, etc. To reset the CPU upon startup, add "init" and
2263 "reset" at the end of the config script or at the end of the OpenOCD
2264 command line using the @option{-c} command line switch.
2265
2266 If this command does not appear in any startup/configuration file
2267 OpenOCD executes the command for you after processing all
2268 configuration files and/or command line options.
2269
2270 @b{NOTE:} This command normally occurs at or near the end of your
2271 openocd.cfg file to force OpenOCD to ``initialize'' and make the
2272 targets ready. For example: If your openocd.cfg file needs to
2273 read/write memory on your target, @command{init} must occur before
2274 the memory read/write commands. This includes @command{nand probe}.
2275 @end deffn
2276
2277 @deffn {Overridable Procedure} jtag_init
2278 This is invoked at server startup to verify that it can talk
2279 to the scan chain (list of TAPs) which has been configured.
2280
2281 The default implementation first tries @command{jtag arp_init},
2282 which uses only a lightweight JTAG reset before examining the
2283 scan chain.
2284 If that fails, it tries again, using a harder reset
2285 from the overridable procedure @command{init_reset}.
2286
2287 Implementations must have verified the JTAG scan chain before
2288 they return.
2289 This is done by calling @command{jtag arp_init}
2290 (or @command{jtag arp_init-reset}).
2291 @end deffn
2292
2293 @anchor{tcpipports}
2294 @section TCP/IP Ports
2295 @cindex TCP port
2296 @cindex server
2297 @cindex port
2298 @cindex security
2299 The OpenOCD server accepts remote commands in several syntaxes.
2300 Each syntax uses a different TCP/IP port, which you may specify
2301 only during configuration (before those ports are opened).
2302
2303 For reasons including security, you may wish to prevent remote
2304 access using one or more of these ports.
2305 In such cases, just specify the relevant port number as zero.
2306 If you disable all access through TCP/IP, you will need to
2307 use the command line @option{-pipe} option.
2308
2309 @deffn {Command} gdb_port [number]
2310 @cindex GDB server
2311 Normally gdb listens to a TCP/IP port, but GDB can also
2312 communicate via pipes(stdin/out or named pipes). The name
2313 "gdb_port" stuck because it covers probably more than 90% of
2314 the normal use cases.
2315
2316 No arguments reports GDB port. "pipe" means listen to stdin
2317 output to stdout, an integer is base port number, "disable"
2318 disables the gdb server.
2319
2320 When using "pipe", also use log_output to redirect the log
2321 output to a file so as not to flood the stdin/out pipes.
2322
2323 The -p/--pipe option is deprecated and a warning is printed
2324 as it is equivalent to passing in -c "gdb_port pipe; log_output openocd.log".
2325
2326 Any other string is interpreted as named pipe to listen to.
2327 Output pipe is the same name as input pipe, but with 'o' appended,
2328 e.g. /var/gdb, /var/gdbo.
2329
2330 The GDB port for the first target will be the base port, the
2331 second target will listen on gdb_port + 1, and so on.
2332 When not specified during the configuration stage,
2333 the port @var{number} defaults to 3333.
2334 @end deffn
2335
2336 @deffn {Command} tcl_port [number]
2337 Specify or query the port used for a simplified RPC
2338 connection that can be used by clients to issue TCL commands and get the
2339 output from the Tcl engine.
2340 Intended as a machine interface.
2341 When not specified during the configuration stage,
2342 the port @var{number} defaults to 6666.
2343
2344 @end deffn
2345
2346 @deffn {Command} telnet_port [number]
2347 Specify or query the
2348 port on which to listen for incoming telnet connections.
2349 This port is intended for interaction with one human through TCL commands.
2350 When not specified during the configuration stage,
2351 the port @var{number} defaults to 4444.
2352 When specified as zero, this port is not activated.
2353 @end deffn
2354
2355 @anchor{gdbconfiguration}
2356 @section GDB Configuration
2357 @cindex GDB
2358 @cindex GDB configuration
2359 You can reconfigure some GDB behaviors if needed.
2360 The ones listed here are static and global.
2361 @xref{targetconfiguration,,Target Configuration}, about configuring individual targets.
2362 @xref{targetevents,,Target Events}, about configuring target-specific event handling.
2363
2364 @anchor{gdbbreakpointoverride}
2365 @deffn {Command} gdb_breakpoint_override [@option{hard}|@option{soft}|@option{disable}]
2366 Force breakpoint type for gdb @command{break} commands.
2367 This option supports GDB GUIs which don't
2368 distinguish hard versus soft breakpoints, if the default OpenOCD and
2369 GDB behaviour is not sufficient. GDB normally uses hardware
2370 breakpoints if the memory map has been set up for flash regions.
2371 @end deffn
2372
2373 @anchor{gdbflashprogram}
2374 @deffn {Config Command} gdb_flash_program (@option{enable}|@option{disable})
2375 Set to @option{enable} to cause OpenOCD to program the flash memory when a
2376 vFlash packet is received.
2377 The default behaviour is @option{enable}.
2378 @end deffn
2379
2380 @deffn {Config Command} gdb_memory_map (@option{enable}|@option{disable})
2381 Set to @option{enable} to cause OpenOCD to send the memory configuration to GDB when
2382 requested. GDB will then know when to set hardware breakpoints, and program flash
2383 using the GDB load command. @command{gdb_flash_program enable} must also be enabled
2384 for flash programming to work.
2385 Default behaviour is @option{enable}.
2386 @xref{gdbflashprogram,,gdb_flash_program}.
2387 @end deffn
2388
2389 @deffn {Config Command} gdb_report_data_abort (@option{enable}|@option{disable})
2390 Specifies whether data aborts cause an error to be reported
2391 by GDB memory read packets.
2392 The default behaviour is @option{disable};
2393 use @option{enable} see these errors reported.
2394 @end deffn
2395
2396 @deffn {Config Command} gdb_target_description (@option{enable}|@option{disable})
2397 Set to @option{enable} to cause OpenOCD to send the target descriptions to gdb via qXfer:features:read packet.
2398 The default behaviour is @option{disable}.
2399 @end deffn
2400
2401 @deffn {Command} gdb_save_tdesc
2402 Saves the target descripton file to the local file system.
2403
2404 The file name is @i{target_name}.xml.
2405 @end deffn
2406
2407 @anchor{eventpolling}
2408 @section Event Polling
2409
2410 Hardware debuggers are parts of asynchronous systems,
2411 where significant events can happen at any time.
2412 The OpenOCD server needs to detect some of these events,
2413 so it can report them to through TCL command line
2414 or to GDB.
2415
2416 Examples of such events include:
2417
2418 @itemize
2419 @item One of the targets can stop running ... maybe it triggers
2420 a code breakpoint or data watchpoint, or halts itself.
2421 @item Messages may be sent over ``debug message'' channels ... many
2422 targets support such messages sent over JTAG,
2423 for receipt by the person debugging or tools.
2424 @item Loss of power ... some adapters can detect these events.
2425 @item Resets not issued through JTAG ... such reset sources
2426 can include button presses or other system hardware, sometimes
2427 including the target itself (perhaps through a watchdog).
2428 @item Debug instrumentation sometimes supports event triggering
2429 such as ``trace buffer full'' (so it can quickly be emptied)
2430 or other signals (to correlate with code behavior).
2431 @end itemize
2432
2433 None of those events are signaled through standard JTAG signals.
2434 However, most conventions for JTAG connectors include voltage
2435 level and system reset (SRST) signal detection.
2436 Some connectors also include instrumentation signals, which
2437 can imply events when those signals are inputs.
2438
2439 In general, OpenOCD needs to periodically check for those events,
2440 either by looking at the status of signals on the JTAG connector
2441 or by sending synchronous ``tell me your status'' JTAG requests
2442 to the various active targets.
2443 There is a command to manage and monitor that polling,
2444 which is normally done in the background.
2445
2446 @deffn Command poll [@option{on}|@option{off}]
2447 Poll the current target for its current state.
2448 (Also, @pxref{targetcurstate,,target curstate}.)
2449 If that target is in debug mode, architecture
2450 specific information about the current state is printed.
2451 An optional parameter
2452 allows background polling to be enabled and disabled.
2453
2454 You could use this from the TCL command shell, or
2455 from GDB using @command{monitor poll} command.
2456 Leave background polling enabled while you're using GDB.
2457 @example
2458 > poll
2459 background polling: on
2460 target state: halted
2461 target halted in ARM state due to debug-request, \
2462 current mode: Supervisor
2463 cpsr: 0x800000d3 pc: 0x11081bfc
2464 MMU: disabled, D-Cache: disabled, I-Cache: enabled
2465 >
2466 @end example
2467 @end deffn
2468
2469 @node Debug Adapter Configuration
2470 @chapter Debug Adapter Configuration
2471 @cindex config file, interface
2472 @cindex interface config file
2473
2474 Correctly installing OpenOCD includes making your operating system give
2475 OpenOCD access to debug adapters. Once that has been done, Tcl commands
2476 are used to select which one is used, and to configure how it is used.
2477
2478 @quotation Note
2479 Because OpenOCD started out with a focus purely on JTAG, you may find
2480 places where it wrongly presumes JTAG is the only transport protocol
2481 in use. Be aware that recent versions of OpenOCD are removing that
2482 limitation. JTAG remains more functional than most other transports.
2483 Other transports do not support boundary scan operations, or may be
2484 specific to a given chip vendor. Some might be usable only for
2485 programming flash memory, instead of also for debugging.
2486 @end quotation
2487
2488 Debug Adapters/Interfaces/Dongles are normally configured
2489 through commands in an interface configuration
2490 file which is sourced by your @file{openocd.cfg} file, or
2491 through a command line @option{-f interface/....cfg} option.
2492
2493 @example
2494 source [find interface/olimex-jtag-tiny.cfg]
2495 @end example
2496
2497 These commands tell
2498 OpenOCD what type of JTAG adapter you have, and how to talk to it.
2499 A few cases are so simple that you only need to say what driver to use:
2500
2501 @example
2502 # jlink interface
2503 interface jlink
2504 @end example
2505
2506 Most adapters need a bit more configuration than that.
2507
2508
2509 @section Interface Configuration
2510
2511 The interface command tells OpenOCD what type of debug adapter you are
2512 using. Depending on the type of adapter, you may need to use one or
2513 more additional commands to further identify or configure the adapter.
2514
2515 @deffn {Config Command} {interface} name
2516 Use the interface driver @var{name} to connect to the
2517 target.
2518 @end deffn
2519
2520 @deffn Command {interface_list}
2521 List the debug adapter drivers that have been built into
2522 the running copy of OpenOCD.
2523 @end deffn
2524 @deffn Command {interface transports} transport_name+
2525 Specifies the transports supported by this debug adapter.
2526 The adapter driver builds-in similar knowledge; use this only
2527 when external configuration (such as jumpering) changes what
2528 the hardware can support.
2529 @end deffn
2530
2531
2532
2533 @deffn Command {adapter_name}
2534 Returns the name of the debug adapter driver being used.
2535 @end deffn
2536
2537 @section Interface Drivers
2538
2539 Each of the interface drivers listed here must be explicitly
2540 enabled when OpenOCD is configured, in order to be made
2541 available at run time.
2542
2543 @deffn {Interface Driver} {amt_jtagaccel}
2544 Amontec Chameleon in its JTAG Accelerator configuration,
2545 connected to a PC's EPP mode parallel port.
2546 This defines some driver-specific commands:
2547
2548 @deffn {Config Command} {parport_port} number
2549 Specifies either the address of the I/O port (default: 0x378 for LPT1) or
2550 the number of the @file{/dev/parport} device.
2551 @end deffn
2552
2553 @deffn {Config Command} rtck [@option{enable}|@option{disable}]
2554 Displays status of RTCK option.
2555 Optionally sets that option first.
2556 @end deffn
2557 @end deffn
2558
2559 @deffn {Interface Driver} {arm-jtag-ew}
2560 Olimex ARM-JTAG-EW USB adapter
2561 This has one driver-specific command:
2562
2563 @deffn Command {armjtagew_info}
2564 Logs some status
2565 @end deffn
2566 @end deffn
2567
2568 @deffn {Interface Driver} {at91rm9200}
2569 Supports bitbanged JTAG from the local system,
2570 presuming that system is an Atmel AT91rm9200
2571 and a specific set of GPIOs is used.
2572 @c command: at91rm9200_device NAME
2573 @c chooses among list of bit configs ... only one option
2574 @end deffn
2575
2576 @deffn {Interface Driver} {cmsis-dap}
2577 ARM CMSIS-DAP compliant based adapter.
2578
2579 @deffn {Config Command} {cmsis_dap_vid_pid} [vid pid]+
2580 The vendor ID and product ID of the CMSIS-DAP device. If not specified
2581 the driver will attempt to auto detect the CMSIS-DAP device.
2582 Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
2583 @example
2584 cmsis_dap_vid_pid 0xc251 0xf001 0x0d28 0x0204
2585 @end example
2586 @end deffn
2587
2588 @deffn {Command} {cmsis-dap info}
2589 Display various device information, like hardware version, firmware version, current bus status.
2590 @end deffn
2591 @end deffn
2592
2593 @deffn {Interface Driver} {dummy}
2594 A dummy software-only driver for debugging.
2595 @end deffn
2596
2597 @deffn {Interface Driver} {ep93xx}
2598 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
2599 @end deffn
2600
2601 @deffn {Interface Driver} {ft2232}
2602 FTDI FT2232 (USB) based devices over one of the userspace libraries.
2603
2604 Note that this driver has several flaws and the @command{ftdi} driver is
2605 recommended as its replacement.
2606
2607 These interfaces have several commands, used to configure the driver
2608 before initializing the JTAG scan chain:
2609
2610 @deffn {Config Command} {ft2232_device_desc} description
2611 Provides the USB device description (the @emph{iProduct string})
2612 of the FTDI FT2232 device. If not
2613 specified, the FTDI default value is used. This setting is only valid
2614 if compiled with FTD2XX support.
2615 @end deffn
2616
2617 @deffn {Config Command} {ft2232_serial} serial-number
2618 Specifies the @var{serial-number} of the FTDI FT2232 device to use,
2619 in case the vendor provides unique IDs and more than one FT2232 device
2620 is connected to the host.
2621 If not specified, serial numbers are not considered.
2622 (Note that USB serial numbers can be arbitrary Unicode strings,
2623 and are not restricted to containing only decimal digits.)
2624 @end deffn
2625
2626 @deffn {Config Command} {ft2232_layout} name
2627 Each vendor's FT2232 device can use different GPIO signals
2628 to control output-enables, reset signals, and LEDs.
2629 Currently valid layout @var{name} values include:
2630 @itemize @minus
2631 @item @b{axm0432_jtag} Axiom AXM-0432
2632 @item @b{comstick} Hitex STR9 comstick
2633 @item @b{cortino} Hitex Cortino JTAG interface
2634 @item @b{evb_lm3s811} TI/Luminary Micro EVB_LM3S811 as a JTAG interface,
2635 either for the local Cortex-M3 (SRST only)
2636 or in a passthrough mode (neither SRST nor TRST)
2637 This layout can not support the SWO trace mechanism, and should be
2638 used only for older boards (before rev C).
2639 @item @b{luminary_icdi} This layout should be used with most TI/Luminary
2640 eval boards, including Rev C LM3S811 eval boards and the eponymous
2641 ICDI boards, to debug either the local Cortex-M3 or in passthrough mode
2642 to debug some other target. It can support the SWO trace mechanism.
2643 @item @b{flyswatter} Tin Can Tools Flyswatter
2644 @item @b{icebear} ICEbear JTAG adapter from Section 5
2645 @item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles)
2646 @item @b{jtagkey2} Amontec JTAGkey2 (and compatibles)
2647 @item @b{m5960} American Microsystems M5960
2648 @item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny
2649 @item @b{oocdlink} OOCDLink
2650 @c oocdlink ~= jtagkey_prototype_v1
2651 @item @b{redbee-econotag} Integrated with a Redbee development board.
2652 @item @b{redbee-usb} Integrated with a Redbee USB-stick development board.
2653 @item @b{sheevaplug} Marvell Sheevaplug development kit
2654 @item @b{signalyzer} Xverve Signalyzer
2655 @item @b{stm32stick} Hitex STM32 Performance Stick
2656 @item @b{turtelizer2} egnite Software turtelizer2
2657 @item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis
2658 @end itemize
2659 @end deffn
2660
2661 @deffn {Config Command} {ft2232_vid_pid} [vid pid]+
2662 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
2663 default values are used.
2664 Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
2665 @example
2666 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
2667 @end example
2668 @end deffn
2669
2670 @deffn {Config Command} {ft2232_latency} ms
2671 On some systems using FT2232 based JTAG interfaces the FT_Read function call in
2672 ft2232_read() fails to return the expected number of bytes. This can be caused by
2673 USB communication delays and has proved hard to reproduce and debug. Setting the
2674 FT2232 latency timer to a larger value increases delays for short USB packets but it
2675 also reduces the risk of timeouts before receiving the expected number of bytes.
2676 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
2677 @end deffn
2678
2679 @deffn {Config Command} {ft2232_channel} channel
2680 Used to select the channel of the ft2232 chip to use (between 1 and 4).
2681 The default value is 1.
2682 @end deffn
2683
2684 For example, the interface config file for a
2685 Turtelizer JTAG Adapter looks something like this:
2686
2687 @example
2688 interface ft2232
2689 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter"
2690 ft2232_layout turtelizer2
2691 ft2232_vid_pid 0x0403 0xbdc8
2692 @end example
2693 @end deffn
2694
2695 @deffn {Interface Driver} {ftdi}
2696 This driver is for adapters using the MPSSE (Multi-Protocol Synchronous Serial
2697 Engine) mode built into many FTDI chips, such as the FT2232, FT4232 and FT232H.
2698 It is a complete rewrite to address a large number of problems with the ft2232
2699 interface driver.
2700
2701 The driver is using libusb-1.0 in asynchronous mode to talk to the FTDI device,
2702 bypassing intermediate libraries like libftdi of D2XX. Performance-wise it is
2703 consistently faster than the ft2232 driver, sometimes several times faster.
2704
2705 A major improvement of this driver is that support for new FTDI based adapters
2706 can be added competely through configuration files, without the need to patch
2707 and rebuild OpenOCD.
2708
2709 The driver uses a signal abstraction to enable Tcl configuration files to
2710 define outputs for one or several FTDI GPIO. These outputs can then be
2711 controlled using the @command{ftdi_set_signal} command. Special signal names
2712 are reserved for nTRST, nSRST and LED (for blink) so that they, if defined,
2713 will be used for their customary purpose.
2714
2715 Depending on the type of buffer attached to the FTDI GPIO, the outputs have to
2716 be controlled differently. In order to support tristateable signals such as
2717 nSRST, both a data GPIO and an output-enable GPIO can be specified for each
2718 signal. The following output buffer configurations are supported:
2719
2720 @itemize @minus
2721 @item Push-pull with one FTDI output as (non-)inverted data line
2722 @item Open drain with one FTDI output as (non-)inverted output-enable
2723 @item Tristate with one FTDI output as (non-)inverted data line and another
2724 FTDI output as (non-)inverted output-enable
2725 @item Unbuffered, using the FTDI GPIO as a tristate output directly by
2726 switching data and direction as necessary
2727 @end itemize
2728
2729 These interfaces have several commands, used to configure the driver
2730 before initializing the JTAG scan chain:
2731
2732 @deffn {Config Command} {ftdi_vid_pid} [vid pid]+
2733 The vendor ID and product ID of the adapter. If not specified, the FTDI
2734 default values are used.
2735 Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
2736 @example
2737 ftdi_vid_pid 0x0403 0xcff8 0x15ba 0x0003
2738 @end example
2739 @end deffn
2740
2741 @deffn {Config Command} {ftdi_device_desc} description
2742 Provides the USB device description (the @emph{iProduct string})
2743 of the adapter. If not specified, the device description is ignored
2744 during device selection.
2745 @end deffn
2746
2747 @deffn {Config Command} {ftdi_serial} serial-number
2748 Specifies the @var{serial-number} of the adapter to use,
2749 in case the vendor provides unique IDs and more than one adapter
2750 is connected to the host.
2751 If not specified, serial numbers are not considered.
2752 (Note that USB serial numbers can be arbitrary Unicode strings,
2753 and are not restricted to containing only decimal digits.)
2754 @end deffn
2755
2756 @deffn {Config Command} {ftdi_channel} channel
2757 Selects the channel of the FTDI device to use for MPSSE operations. Most
2758 adapters use the default, channel 0, but there are exceptions.
2759 @end deffn
2760
2761 @deffn {Config Command} {ftdi_layout_init} data direction
2762 Specifies the initial values of the FTDI GPIO data and direction registers.
2763 Each value is a 16-bit number corresponding to the concatenation of the high
2764 and low FTDI GPIO registers. The values should be selected based on the
2765 schematics of the adapter, such that all signals are set to safe levels with
2766 minimal impact on the target system. Avoid floating inputs, conflicting outputs
2767 and initially asserted reset signals.
2768 @end deffn
2769
2770 @deffn {Config Command} {ftdi_layout_signal} name [@option{-data}|@option{-ndata} data_mask] [@option{-oe}|@option{-noe} oe_mask] [@option{-alias}|@option{-nalias} name]
2771 Creates a signal with the specified @var{name}, controlled by one or more FTDI
2772 GPIO pins via a range of possible buffer connections. The masks are FTDI GPIO
2773 register bitmasks to tell the driver the connection and type of the output
2774 buffer driving the respective signal. @var{data_mask} is the bitmask for the
2775 pin(s) connected to the data input of the output buffer. @option{-ndata} is
2776 used with inverting data inputs and @option{-data} with non-inverting inputs.
2777 The @option{-oe} (or @option{-noe}) option tells where the output-enable (or
2778 not-output-enable) input to the output buffer is connected.
2779
2780 Both @var{data_mask} and @var{oe_mask} need not be specified. For example, a
2781 simple open-collector transistor driver would be specified with @option{-oe}
2782 only. In that case the signal can only be set to drive low or to Hi-Z and the
2783 driver will complain if the signal is set to drive high. Which means that if
2784 it's a reset signal, @command{reset_config} must be specified as
2785 @option{srst_open_drain}, not @option{srst_push_pull}.
2786
2787 A special case is provided when @option{-data} and @option{-oe} is set to the
2788 same bitmask. Then the FTDI pin is considered being connected straight to the
2789 target without any buffer. The FTDI pin is then switched between output and
2790 input as necessary to provide the full set of low, high and Hi-Z
2791 characteristics. In all other cases, the pins specified in a signal definition
2792 are always driven by the FTDI.
2793
2794 If @option{-alias} or @option{-nalias} is used, the signal is created
2795 identical (or with data inverted) to an already specified signal
2796 @var{name}.
2797 @end deffn
2798
2799 @deffn {Command} {ftdi_set_signal} name @option{0}|@option{1}|@option{z}
2800 Set a previously defined signal to the specified level.
2801 @itemize @minus
2802 @item @option{0}, drive low
2803 @item @option{1}, drive high
2804 @item @option{z}, set to high-impedance
2805 @end itemize
2806 @end deffn
2807
2808 For example adapter definitions, see the configuration files shipped in the
2809 @file{interface/ftdi} directory.
2810 @end deffn
2811
2812 @deffn {Interface Driver} {remote_bitbang}
2813 Drive JTAG from a remote process. This sets up a UNIX or TCP socket connection
2814 with a remote process and sends ASCII encoded bitbang requests to that process
2815 instead of directly driving JTAG.
2816
2817 The remote_bitbang driver is useful for debugging software running on
2818 processors which are being simulated.
2819
2820 @deffn {Config Command} {remote_bitbang_port} number
2821 Specifies the TCP port of the remote process to connect to or 0 to use UNIX
2822 sockets instead of TCP.
2823 @end deffn
2824
2825 @deffn {Config Command} {remote_bitbang_host} hostname
2826 Specifies the hostname of the remote process to connect to using TCP, or the
2827 name of the UNIX socket to use if remote_bitbang_port is 0.
2828 @end deffn
2829
2830 For example, to connect remotely via TCP to the host foobar you might have
2831 something like:
2832
2833 @example
2834 interface remote_bitbang
2835 remote_bitbang_port 3335
2836 remote_bitbang_host foobar
2837 @end example
2838
2839 To connect to another process running locally via UNIX sockets with socket
2840 named mysocket:
2841
2842 @example
2843 interface remote_bitbang
2844 remote_bitbang_port 0
2845 remote_bitbang_host mysocket
2846 @end example
2847 @end deffn
2848
2849 @deffn {Interface Driver} {usb_blaster}
2850 USB JTAG/USB-Blaster compatibles over one of the userspace libraries
2851 for FTDI chips. These interfaces have several commands, used to
2852 configure the driver before initializing the JTAG scan chain:
2853
2854 @deffn {Config Command} {usb_blaster_device_desc} description
2855 Provides the USB device description (the @emph{iProduct string})
2856 of the FTDI FT245 device. If not
2857 specified, the FTDI default value is used. This setting is only valid
2858 if compiled with FTD2XX support.
2859 @end deffn
2860
2861 @deffn {Config Command} {usb_blaster_vid_pid} vid pid
2862 The vendor ID and product ID of the FTDI FT245 device. If not specified,
2863 default values are used.
2864 Currently, only one @var{vid}, @var{pid} pair may be given, e.g. for
2865 Altera USB-Blaster (default):
2866 @example
2867 usb_blaster_vid_pid 0x09FB 0x6001
2868 @end example
2869 The following VID/PID is for Kolja Waschk's USB JTAG:
2870 @example
2871 usb_blaster_vid_pid 0x16C0 0x06AD
2872 @end example
2873 @end deffn
2874
2875 @deffn {Command} {usb_blaster} (@option{pin6}|@option{pin8}) (@option{0}|@option{1})
2876 Sets the state of the unused GPIO pins on USB-Blasters (pins 6 and 8 on the
2877 female JTAG header). These pins can be used as SRST and/or TRST provided the
2878 appropriate connections are made on the target board.
2879
2880 For example, to use pin 6 as SRST (as with an AVR board):
2881 @example
2882 $_TARGETNAME configure -event reset-assert \
2883 "usb_blaster pin6 1; wait 1; usb_blaster pin6 0"
2884 @end example
2885 @end deffn
2886
2887 @end deffn
2888
2889 @deffn {Interface Driver} {gw16012}
2890 Gateworks GW16012 JTAG programmer.
2891 This has one driver-specific command:
2892
2893 @deffn {Config Command} {parport_port} [port_number]
2894 Display either the address of the I/O port
2895 (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device.
2896 If a parameter is provided, first switch to use that port.
2897 This is a write-once setting.
2898 @end deffn
2899 @end deffn
2900
2901 @deffn {Interface Driver} {jlink}
2902 Segger J-Link family of USB adapters. It currently supports JTAG and SWD transports.
2903
2904 @quotation Compatibility Note
2905 Segger released many firmware versions for the many harware versions they
2906 produced. OpenOCD was extensively tested and intended to run on all of them,
2907 but some combinations were reported as incompatible. As a general
2908 recommendation, it is advisable to use the latest firmware version
2909 available for each hardware version. However the current V8 is a moving
2910 target, and Segger firmware versions released after the OpenOCD was
2911 released may not be compatible. In such cases it is recommended to
2912 revert to the last known functional version. For 0.5.0, this is from
2913 "Feb 8 2012 14:30:39", packed with 4.42c. For 0.6.0, the last known
2914 version is from "May 3 2012 18:36:22", packed with 4.46f.
2915 @end quotation
2916
2917 @deffn {Command} {jlink caps}
2918 Display the device firmware capabilities.
2919 @end deffn
2920 @deffn {Command} {jlink info}
2921 Display various device information, like hardware version, firmware version, current bus status.
2922 @end deffn
2923 @deffn {Command} {jlink hw_jtag} [@option{2}|@option{3}]
2924 Set the JTAG protocol version to be used. Without argument, show the actual JTAG protocol version.
2925 @end deffn
2926 @deffn {Command} {jlink config}
2927 Display the J-Link configuration.
2928 @end deffn
2929 @deffn {Command} {jlink config kickstart} [val]
2930 Set the Kickstart power on JTAG-pin 19. Without argument, show the Kickstart configuration.
2931 @end deffn
2932 @deffn {Command} {jlink config mac_address} [@option{ff:ff:ff:ff:ff:ff}]
2933 Set the MAC address of the J-Link Pro. Without argument, show the MAC address.
2934 @end deffn
2935 @deffn {Command} {jlink config ip} [@option{A.B.C.D}(@option{/E}|@option{F.G.H.I})]
2936 Set the IP configuration of the J-Link Pro, where A.B.C.D is the IP address,
2937 E the bit of the subnet mask and
2938 F.G.H.I the subnet mask. Without arguments, show the IP configuration.
2939 @end deffn
2940 @deffn {Command} {jlink config usb_address} [@option{0x00} to @option{0x03} or @option{0xff}]
2941 Set the USB address; this will also change the product id. Without argument, show the USB address.
2942 @end deffn
2943 @deffn {Command} {jlink config reset}
2944 Reset the current configuration.
2945 @end deffn
2946 @deffn {Command} {jlink config save}
2947 Save the current configuration to the internal persistent storage.
2948 @end deffn
2949 @deffn {Config} {jlink pid} val
2950 Set the USB PID of the interface. As a configuration command, it can be used only before 'init'.
2951 @end deffn
2952 @end deffn
2953
2954 @deffn {Interface Driver} {parport}
2955 Supports PC parallel port bit-banging cables:
2956 Wigglers, PLD download cable, and more.
2957 These interfaces have several commands, used to configure the driver
2958 before initializing the JTAG scan chain:
2959
2960 @deffn {Config Command} {parport_cable} name
2961 Set the layout of the parallel port cable used to connect to the target.
2962 This is a write-once setting.
2963 Currently valid cable @var{name} values include:
2964
2965 @itemize @minus
2966 @item @b{altium} Altium Universal JTAG cable.
2967 @item @b{arm-jtag} Same as original wiggler except SRST and
2968 TRST connections reversed and TRST is also inverted.
2969 @item @b{chameleon} The Amontec Chameleon's CPLD when operated
2970 in configuration mode. This is only used to
2971 program the Chameleon itself, not a connected target.
2972 @item @b{dlc5} The Xilinx Parallel cable III.
2973 @item @b{flashlink} The ST Parallel cable.
2974 @item @b{lattice} Lattice ispDOWNLOAD Cable
2975 @item @b{old_amt_wiggler} The Wiggler configuration that comes with
2976 some versions of
2977 Amontec's Chameleon Programmer. The new version available from
2978 the website uses the original Wiggler layout ('@var{wiggler}')
2979 @item @b{triton} The parallel port adapter found on the
2980 ``Karo Triton 1 Development Board''.
2981 This is also the layout used by the HollyGates design
2982 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
2983 @item @b{wiggler} The original Wiggler layout, also supported by
2984 several clones, such as the Olimex ARM-JTAG
2985 @item @b{wiggler2} Same as original wiggler except an led is fitted on D5.
2986 @item @b{wiggler_ntrst_inverted} Same as original wiggler except TRST is inverted.
2987 @end itemize
2988 @end deffn
2989
2990 @deffn {Config Command} {parport_port} [port_number]
2991 Display either the address of the I/O port
2992 (default: 0x378 for LPT1) or the number of the @file{/dev/parport} device.
2993 If a parameter is provided, first switch to use that port.
2994 This is a write-once setting.
2995
2996 When using PPDEV to access the parallel port, use the number of the parallel port:
2997 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
2998 you may encounter a problem.
2999 @end deffn
3000
3001 @deffn Command {parport_toggling_time} [nanoseconds]
3002 Displays how many nanoseconds the hardware needs to toggle TCK;
3003 the parport driver uses this value to obey the
3004 @command{adapter_khz} configuration.
3005 When the optional @var{nanoseconds} parameter is given,
3006 that setting is changed before displaying the current value.
3007
3008 The default setting should work reasonably well on commodity PC hardware.
3009 However, you may want to calibrate for your specific hardware.
3010 @quotation Tip
3011 To measure the toggling time with a logic analyzer or a digital storage
3012 oscilloscope, follow the procedure below:
3013 @example
3014 > parport_toggling_time 1000
3015 > adapter_khz 500
3016 @end example
3017 This sets the maximum JTAG clock speed of the hardware, but
3018 the actual speed probably deviates from the requested 500 kHz.
3019 Now, measure the time between the two closest spaced TCK transitions.
3020 You can use @command{runtest 1000} or something similar to generate a
3021 large set of samples.
3022 Update the setting to match your measurement:
3023 @example
3024 > parport_toggling_time <measured nanoseconds>
3025 @end example
3026 Now the clock speed will be a better match for @command{adapter_khz rate}
3027 commands given in OpenOCD scripts and event handlers.
3028
3029 You can do something similar with many digital multimeters, but note
3030 that you'll probably need to run the clock continuously for several
3031 seconds before it decides what clock rate to show. Adjust the
3032 toggling time up or down until the measured clock rate is a good
3033 match for the adapter_khz rate you specified; be conservative.
3034 @end quotation
3035 @end deffn
3036
3037 @deffn {Config Command} {parport_write_on_exit} (@option{on}|@option{off})
3038 This will configure the parallel driver to write a known
3039 cable-specific value to the parallel interface on exiting OpenOCD.
3040 @end deffn
3041
3042 For example, the interface configuration file for a
3043 classic ``Wiggler'' cable on LPT2 might look something like this:
3044
3045 @example
3046 interface parport
3047 parport_port 0x278
3048 parport_cable wiggler
3049 @end example
3050 @end deffn
3051
3052 @deffn {Interface Driver} {presto}
3053 ASIX PRESTO USB JTAG programmer.
3054 @deffn {Config Command} {presto_serial} serial_string
3055 Configures the USB serial number of the Presto device to use.
3056 @end deffn
3057 @end deffn
3058
3059 @deffn {Interface Driver} {rlink}
3060 Raisonance RLink USB adapter
3061 @end deffn
3062
3063 @deffn {Interface Driver} {usbprog}
3064 usbprog is a freely programmable USB adapter.
3065 @end deffn
3066
3067 @deffn {Interface Driver} {vsllink}
3068 vsllink is part of Versaloon which is a versatile USB programmer.
3069
3070 @quotation Note
3071 This defines quite a few driver-specific commands,
3072 which are not currently documented here.
3073 @end quotation
3074 @end deffn
3075
3076 @deffn {Interface Driver} {hla}
3077 This is a driver that supports multiple High Level Adapters.
3078 This type of adapter does not expose some of the lower level api's
3079 that OpenOCD would normally use to access the target.
3080
3081 Currently supported adapters include the ST STLINK and TI ICDI.
3082 STLINK firmware version >= V2.J21.S4 recommended due to issues with earlier
3083 versions of firmware where serial number is reset after first use. Suggest
3084 using ST firmware update utility to upgrade STLINK firmware even if current
3085 version reported is V2.J21.S4.
3086
3087 @deffn {Config Command} {hla_device_desc} description
3088 Currently Not Supported.
3089 @end deffn
3090
3091 @deffn {Config Command} {hla_serial} serial
3092 Specifies the serial number of the adapter.
3093 @end deffn
3094
3095 @deffn {Config Command} {hla_layout} (@option{stlink}|@option{icdi})
3096 Specifies the adapter layout to use.
3097 @end deffn
3098
3099 @deffn {Config Command} {hla_vid_pid} vid pid
3100 The vendor ID and product ID of the device.
3101 @end deffn
3102
3103 @deffn {Command} {hla_command} command
3104 Execute a custom adapter-specific command. The @var{command} string is
3105 passed as is to the underlying adapter layout handler.
3106 @end deffn
3107
3108 @deffn {Config Command} {trace} source_clock_hz [output_file_path]
3109 Enable SWO tracing (if supported). The source clock rate for the
3110 trace port must be specified, this is typically the CPU clock rate. If
3111 the optional output file is specified then raw trace data is appended
3112 to the file, and the file is created if it does not exist.
3113 @end deffn
3114 @end deffn
3115
3116 @deffn {Interface Driver} {opendous}
3117 opendous-jtag is a freely programmable USB adapter.
3118 @end deffn
3119
3120 @deffn {Interface Driver} {ulink}
3121 This is the Keil ULINK v1 JTAG debugger.
3122 @end deffn
3123
3124 @deffn {Interface Driver} {ZY1000}
3125 This is the Zylin ZY1000 JTAG debugger.
3126 @end deffn
3127
3128 @quotation Note
3129 This defines some driver-specific commands,
3130 which are not currently documented here.
3131 @end quotation
3132
3133 @deffn Command power [@option{on}|@option{off}]
3134 Turn power switch to target on/off.
3135 No arguments: print status.
3136 @end deffn
3137
3138 @deffn {Interface Driver} {bcm2835gpio}
3139 This SoC is present in Raspberry Pi which is a cheap single-board computer
3140 exposing some GPIOs on its expansion header.
3141
3142 The driver accesses memory-mapped GPIO peripheral registers directly
3143 for maximum performance, but the only possible race condition is for
3144 the pins' modes/muxing (which is highly unlikely), so it should be
3145 able to coexist nicely with both sysfs bitbanging and various
3146 peripherals' kernel drivers. The driver restores the previous
3147 configuration on exit.
3148
3149 See @file{interface/raspberrypi-native.cfg} for a sample config and
3150 pinout.
3151
3152 @end deffn
3153
3154 @section Transport Configuration
3155 @cindex Transport
3156 As noted earlier, depending on the version of OpenOCD you use,
3157 and the debug adapter you are using,
3158 several transports may be available to
3159 communicate with debug targets (or perhaps to program flash memory).
3160 @deffn Command {transport list}
3161 displays the names of the transports supported by this
3162 version of OpenOCD.
3163 @end deffn
3164
3165 @deffn Command {transport select} transport_name
3166 Select which of the supported transports to use in this OpenOCD session.
3167 The transport must be supported by the debug adapter hardware and by the
3168 version of OpenOCD you are using (including the adapter's driver).
3169 No arguments: returns name of session's selected transport.
3170 @end deffn
3171
3172 @subsection JTAG Transport
3173 @cindex JTAG
3174 JTAG is the original transport supported by OpenOCD, and most
3175 of the OpenOCD commands support it.
3176 JTAG transports expose a chain of one or more Test Access Points (TAPs),
3177 each of which must be explicitly declared.
3178 JTAG supports both debugging and boundary scan testing.
3179 Flash programming support is built on top of debug support.
3180 @subsection SWD Transport
3181 @cindex SWD
3182 @cindex Serial Wire Debug
3183 SWD (Serial Wire Debug) is an ARM-specific transport which exposes one
3184 Debug Access Point (DAP, which must be explicitly declared.
3185 (SWD uses fewer signal wires than JTAG.)
3186 SWD is debug-oriented, and does not support boundary scan testing.
3187 Flash programming support is built on top of debug support.
3188 (Some processors support both JTAG and SWD.)
3189 @deffn Command {swd newdap} ...
3190 Declares a single DAP which uses SWD transport.
3191 Parameters are currently the same as "jtag newtap" but this is
3192 expected to change.
3193 @end deffn
3194 @deffn Command {swd wcr trn prescale}
3195 Updates TRN (turnaraound delay) and prescaling.fields of the
3196 Wire Control Register (WCR).
3197 No parameters: displays current settings.
3198 @end deffn
3199
3200 @subsection CMSIS-DAP Transport
3201 @cindex CMSIS-DAP
3202 CMSIS-DAP is an ARM-specific transport that is used to connect to
3203 compilant debuggers.
3204
3205 @subsection SPI Transport
3206 @cindex SPI
3207 @cindex Serial Peripheral Interface
3208 The Serial Peripheral Interface (SPI) is a general purpose transport
3209 which uses four wire signaling. Some processors use it as part of a
3210 solution for flash programming.
3211
3212 @anchor{jtagspeed}
3213 @section JTAG Speed
3214 JTAG clock setup is part of system setup.
3215 It @emph{does not belong with interface setup} since any interface
3216 only knows a few of the constraints for the JTAG clock speed.
3217 Sometimes the JTAG speed is
3218 changed during the target initialization process: (1) slow at
3219 reset, (2) program the CPU clocks, (3) run fast.
3220 Both the "slow" and "fast" clock rates are functions of the
3221 oscillators used, the chip, the board design, and sometimes
3222 power management software that may be active.
3223
3224 The speed used during reset, and the scan chain verification which
3225 follows reset, can be adjusted using a @code{reset-start}
3226 target event handler.
3227 It can then be reconfigured to a faster speed by a
3228 @code{reset-init} target event handler after it reprograms those
3229 CPU clocks, or manually (if something else, such as a boot loader,
3230 sets up those clocks).
3231 @xref{targetevents,,Target Events}.
3232 When the initial low JTAG speed is a chip characteristic, perhaps
3233 because of a required oscillator speed, provide such a handler
3234 in the target config file.
3235 When that speed is a function of a board-specific characteristic
3236 such as which speed oscillator is used, it belongs in the board
3237 config file instead.
3238 In both cases it's safest to also set the initial JTAG clock rate
3239 to that same slow speed, so that OpenOCD never starts up using a
3240 clock speed that's faster than the scan chain can support.
3241
3242 @example
3243 jtag_rclk 3000
3244 $_TARGET.cpu configure -event reset-start @{ jtag_rclk 3000 @}
3245 @end example
3246
3247 If your system supports adaptive clocking (RTCK), configuring
3248 JTAG to use that is probably the most robust approach.
3249 However, it introduces delays to synchronize clocks; so it
3250 may not be the fastest solution.
3251
3252 @b{NOTE:} Script writers should consider using @command{jtag_rclk}
3253 instead of @command{adapter_khz}, but only for (ARM) cores and boards
3254 which support adaptive clocking.
3255
3256 @deffn {Command} adapter_khz max_speed_kHz
3257 A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
3258 JTAG interfaces usually support a limited number of
3259 speeds. The speed actually used won't be faster
3260 than the speed specified.
3261
3262 Chip data sheets generally include a top JTAG clock rate.
3263 The actual rate is often a function of a CPU core clock,
3264 and is normally less than that peak rate.
3265 For example, most ARM cores accept at most one sixth of the CPU clock.
3266
3267 Speed 0 (khz) selects RTCK method.
3268 @xref{faqrtck,,FAQ RTCK}.
3269 If your system uses RTCK, you won't need to change the
3270 JTAG clocking after setup.
3271 Not all interfaces, boards, or targets support ``rtck''.
3272 If the interface device can not
3273 support it, an error is returned when you try to use RTCK.
3274 @end deffn
3275
3276 @defun jtag_rclk fallback_speed_kHz
3277 @cindex adaptive clocking
3278 @cindex RTCK
3279 This Tcl proc (defined in @file{startup.tcl}) attempts to enable RTCK/RCLK.
3280 If that fails (maybe the interface, board, or target doesn't
3281 support it), falls back to the specified frequency.
3282 @example
3283 # Fall back to 3mhz if RTCK is not supported
3284 jtag_rclk 3000
3285 @end example
3286 @end defun
3287
3288 @node Reset Configuration
3289 @chapter Reset Configuration
3290 @cindex Reset Configuration
3291
3292 Every system configuration may require a different reset
3293 configuration. This can also be quite confusing.
3294 Resets also interact with @var{reset-init} event handlers,
3295 which do things like setting up clocks and DRAM, and
3296 JTAG clock rates. (@xref{jtagspeed,,JTAG Speed}.)
3297 They can also interact with JTAG routers.
3298 Please see the various board files for examples.
3299
3300 @quotation Note
3301 To maintainers and integrators:
3302 Reset configuration touches several things at once.
3303 Normally the board configuration file
3304 should define it and assume that the JTAG adapter supports
3305 everything that's wired up to the board's JTAG connector.
3306
3307 However, the target configuration file could also make note
3308 of something the silicon vendor has done inside the chip,
3309 which will be true for most (or all) boards using that chip.
3310 And when the JTAG adapter doesn't support everything, the
3311 user configuration file will need to override parts of
3312 the reset configuration provided by other files.
3313 @end quotation
3314
3315 @section Types of Reset
3316
3317 There are many kinds of reset possible through JTAG, but
3318 they may not all work with a given board and adapter.
3319 That's part of why reset configuration can be error prone.
3320
3321 @itemize @bullet
3322 @item
3323 @emph{System Reset} ... the @emph{SRST} hardware signal
3324 resets all chips connected to the JTAG adapter, such as processors,
3325 power management chips, and I/O controllers. Normally resets triggered
3326 with this signal behave exactly like pressing a RESET button.
3327 @item
3328 @emph{JTAG TAP Reset} ... the @emph{TRST} hardware signal resets
3329 just the TAP controllers connected to the JTAG adapter.
3330 Such resets should not be visible to the rest of the system; resetting a
3331 device's TAP controller just puts that controller into a known state.
3332 @item
3333 @emph{Emulation Reset} ... many devices can be reset through JTAG
3334 commands. These resets are often distinguishable from system
3335 resets, either explicitly (a "reset reason" register says so)
3336 or implicitly (not all parts of the chip get reset).
3337 @item
3338 @emph{Other Resets} ... system-on-chip devices often support
3339 several other types of reset.
3340 You may need to arrange that a watchdog timer stops
3341 while debugging, preventing a watchdog reset.
3342 There may be individual module resets.
3343 @end itemize
3344
3345 In the best case, OpenOCD can hold SRST, then reset
3346 the TAPs via TRST and send commands through JTAG to halt the
3347 CPU at the reset vector before the 1st instruction is executed.
3348 Then when it finally releases the SRST signal, the system is
3349 halted under debugger control before any code has executed.
3350 This is the behavior required to support the @command{reset halt}
3351 and @command{reset init} commands; after @command{reset init} a
3352 board-specific script might do things like setting up DRAM.
3353 (@xref{resetcommand,,Reset Command}.)
3354
3355 @anchor{srstandtrstissues}
3356 @section SRST and TRST Issues
3357
3358 Because SRST and TRST are hardware signals, they can have a
3359 variety of system-specific constraints. Some of the most
3360 common issues are:
3361
3362 @itemize @bullet
3363
3364 @item @emph{Signal not available} ... Some boards don't wire
3365 SRST or TRST to the JTAG connector. Some JTAG adapters don't
3366 support such signals even if they are wired up.
3367 Use the @command{reset_config} @var{signals} options to say
3368 when either of those signals is not connected.
3369 When SRST is not available, your code might not be able to rely
3370 on controllers having been fully reset during code startup.
3371 Missing TRST is not a problem, since JTAG-level resets can
3372 be triggered using with TMS signaling.
3373
3374 @item @emph{Signals shorted} ... Sometimes a chip, board, or
3375 adapter will connect SRST to TRST, instead of keeping them separate.
3376 Use the @command{reset_config} @var{combination} options to say
3377 when those signals aren't properly independent.
3378
3379 @item @emph{Timing} ... Reset circuitry like a resistor/capacitor
3380 delay circuit, reset supervisor, or on-chip features can extend
3381 the effect of a JTAG adapter's reset for some time after the adapter
3382 stops issuing the reset. For example, there may be chip or board
3383 requirements that all reset pulses last for at least a
3384 certain amount of time; and reset buttons commonly have
3385 hardware debouncing.
3386 Use the @command{adapter_nsrst_delay} and @command{jtag_ntrst_delay}
3387 commands to say when extra delays are needed.
3388
3389 @item @emph{Drive type} ... Reset lines often have a pullup
3390 resistor, letting the JTAG interface treat them as open-drain
3391 signals. But that's not a requirement, so the adapter may need
3392 to use push/pull output drivers.
3393 Also, with weak pullups it may be advisable to drive
3394 signals to both levels (push/pull) to minimize rise times.
3395 Use the @command{reset_config} @var{trst_type} and
3396 @var{srst_type} parameters to say how to drive reset signals.
3397
3398 @item @emph{Special initialization} ... Targets sometimes need
3399 special JTAG initialization sequences to handle chip-specific
3400 issues (not limited to errata).
3401 For example, certain JTAG commands might need to be issued while
3402 the system as a whole is in a reset state (SRST active)
3403 but the JTAG scan chain is usable (TRST inactive).
3404 Many systems treat combined assertion of SRST and TRST as a
3405 trigger for a harder reset than SRST alone.
3406 Such custom reset handling is discussed later in this chapter.
3407 @end itemize
3408
3409 There can also be other issues.
3410 Some devices don't fully conform to the JTAG specifications.
3411 Trivial system-specific differences are common, such as
3412 SRST and TRST using slightly different names.
3413 There are also vendors who distribute key JTAG documentation for
3414 their chips only to developers who have signed a Non-Disclosure
3415 Agreement (NDA).
3416
3417 Sometimes there are chip-specific extensions like a requirement to use
3418 the normally-optional TRST signal (precluding use of JTAG adapters which
3419 don't pass TRST through), or needing extra steps to complete a TAP reset.
3420
3421 In short, SRST and especially TRST handling may be very finicky,
3422 needing to cope with both architecture and board specific constraints.
3423
3424 @section Commands for Handling Resets
3425
3426 @deffn {Command} adapter_nsrst_assert_width milliseconds
3427 Minimum amount of time (in milliseconds) OpenOCD should wait
3428 after asserting nSRST (active-low system reset) before
3429 allowing it to be deasserted.
3430 @end deffn
3431
3432 @deffn {Command} adapter_nsrst_delay milliseconds
3433 How long (in milliseconds) OpenOCD should wait after deasserting
3434 nSRST (active-low system reset) before starting new JTAG operations.
3435 When a board has a reset button connected to SRST line it will
3436 probably have hardware debouncing, implying you should use this.
3437 @end deffn
3438
3439 @deffn {Command} jtag_ntrst_assert_width milliseconds
3440 Minimum amount of time (in milliseconds) OpenOCD should wait
3441 after asserting nTRST (active-low JTAG TAP reset) before
3442 allowing it to be deasserted.
3443 @end deffn
3444
3445 @deffn {Command} jtag_ntrst_delay milliseconds
3446 How long (in milliseconds) OpenOCD should wait after deasserting
3447 nTRST (active-low JTAG TAP reset) before starting new JTAG operations.
3448 @end deffn
3449
3450 @deffn {Command} reset_config mode_flag ...
3451 This command displays or modifies the reset configuration
3452 of your combination of JTAG board and target in target
3453 configuration scripts.
3454
3455 Information earlier in this section describes the kind of problems
3456 the command is intended to address (@pxref{srstandtrstissues,,SRST and TRST Issues}).
3457 As a rule this command belongs only in board config files,
3458 describing issues like @emph{board doesn't connect TRST};
3459 or in user config files, addressing limitations derived
3460 from a particular combination of interface and board.
3461 (An unlikely example would be using a TRST-only adapter
3462 with a board that only wires up SRST.)
3463
3464 The @var{mode_flag} options can be specified in any order, but only one
3465 of each type -- @var{signals}, @var{combination}, @var{gates},
3466 @var{trst_type}, @var{srst_type} and @var{connect_type}
3467 -- may be specified at a time.
3468 If you don't provide a new value for a given type, its previous
3469 value (perhaps the default) is unchanged.
3470 For example, this means that you don't need to say anything at all about
3471 TRST just to declare that if the JTAG adapter should want to drive SRST,
3472 it must explicitly be driven high (@option{srst_push_pull}).
3473
3474 @itemize
3475 @item
3476 @var{signals} can specify which of the reset signals are connected.
3477 For example, If the JTAG interface provides SRST, but the board doesn't
3478 connect that signal properly, then OpenOCD can't use it.
3479 Possible values are @option{none} (the default), @option{trst_only},
3480 @option{srst_only} and @option{trst_and_srst}.
3481
3482 @quotation Tip
3483 If your board provides SRST and/or TRST through the JTAG connector,
3484 you must declare that so those signals can be used.
3485 @end quotation
3486
3487 @item
3488 The @var{combination} is an optional value specifying broken reset
3489 signal implementations.
3490 The default behaviour if no option given is @option{separate},
3491 indicating everything behaves normally.
3492 @option{srst_pulls_trst} states that the
3493 test logic is reset together with the reset of the system (e.g. NXP
3494 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
3495 the system is reset together with the test logic (only hypothetical, I
3496 haven't seen hardware with such a bug, and can be worked around).
3497 @option{combined} implies both @option{srst_pulls_trst} and
3498 @option{trst_pulls_srst}.
3499
3500 @item
3501 The @var{gates} tokens control flags that describe some cases where
3502 JTAG may be unvailable during reset.
3503 @option{srst_gates_jtag} (default)
3504 indicates that asserting SRST gates the
3505 JTAG clock. This means that no communication can happen on JTAG
3506 while SRST is asserted.
3507 Its converse is @option{srst_nogate}, indicating that JTAG commands
3508 can safely be issued while SRST is active.
3509
3510 @item
3511 The @var{connect_type} tokens control flags that describe some cases where
3512 SRST is asserted while connecting to the target. @option{srst_nogate}
3513 is required to use this option.
3514 @option{connect_deassert_srst} (default)
3515 indicates that SRST will not be asserted while connecting to the target.
3516 Its converse is @option{connect_assert_srst}, indicating that SRST will
3517 be asserted before any target connection.
3518 Only some targets support this feature, STM32 and STR9 are examples.
3519 This feature is useful if you are unable to connect to your target due
3520 to incorrect options byte config or illegal program execution.
3521 @end itemize
3522
3523 The optional @var{trst_type} and @var{srst_type} parameters allow the
3524 driver mode of each reset line to be specified. These values only affect
3525 JTAG interfaces with support for different driver modes, like the Amontec
3526 JTAGkey and JTAG Accelerator. Also, they are necessarily ignored if the
3527 relevant signal (TRST or SRST) is not connected.
3528
3529 @itemize
3530 @item
3531 Possible @var{trst_type} driver modes for the test reset signal (TRST)
3532 are the default @option{trst_push_pull}, and @option{trst_open_drain}.
3533 Most boards connect this signal to a pulldown, so the JTAG TAPs
3534 never leave reset unless they are hooked up to a JTAG adapter.
3535
3536 @item
3537 Possible @var{srst_type} driver modes for the system reset signal (SRST)
3538 are the default @option{srst_open_drain}, and @option{srst_push_pull}.
3539 Most boards connect this signal to a pullup, and allow the
3540 signal to be pulled low by various events including system
3541 powerup and pressing a reset button.
3542 @end itemize
3543 @end deffn
3544
3545 @section Custom Reset Handling
3546 @cindex events
3547
3548 OpenOCD has several ways to help support the various reset
3549 mechanisms provided by chip and board vendors.
3550 The commands shown in the previous section give standard parameters.
3551 There are also @emph{event handlers} associated with TAPs or Targets.
3552 Those handlers are Tcl procedures you can provide, which are invoked
3553 at particular points in the reset sequence.
3554
3555 @emph{When SRST is not an option} you must set
3556 up a @code{reset-assert} event handler for your target.
3557 For example, some JTAG adapters don't include the SRST signal;
3558 and some boards have multiple targets, and you won't always
3559 want to reset everything at once.
3560
3561 After configuring those mechanisms, you might still
3562 find your board doesn't start up or reset correctly.
3563 For example, maybe it needs a slightly different sequence
3564 of SRST and/or TRST manipulations, because of quirks that
3565 the @command{reset_config} mechanism doesn't address;
3566 or asserting both might trigger a stronger reset, which
3567 needs special attention.
3568
3569 Experiment with lower level operations, such as @command{jtag_reset}
3570 and the @command{jtag arp_*} operations shown here,
3571 to find a sequence of operations that works.
3572 @xref{JTAG Commands}.
3573 When you find a working sequence, it can be used to override
3574 @command{jtag_init}, which fires during OpenOCD startup
3575 (@pxref{configurationstage,,Configuration Stage});
3576 or @command{init_reset}, which fires during reset processing.
3577
3578 You might also want to provide some project-specific reset
3579 schemes. For example, on a multi-target board the standard
3580 @command{reset} command would reset all targets, but you
3581 may need the ability to reset only one target at time and
3582 thus want to avoid using the board-wide SRST signal.
3583
3584 @deffn {Overridable Procedure} init_reset mode
3585 This is invoked near the beginning of the @command{reset} command,
3586 usually to provide as much of a cold (power-up) reset as practical.
3587 By default it is also invoked from @command{jtag_init} if
3588 the scan chain does not respond to pure JTAG operations.
3589 The @var{mode} parameter is the parameter given to the
3590 low level reset command (@option{halt},
3591 @option{init}, or @option{run}), @option{setup},
3592 or potentially some other value.
3593
3594 The default implementation just invokes @command{jtag arp_init-reset}.
3595 Replacements will normally build on low level JTAG
3596 operations such as @command{jtag_reset}.
3597 Operations here must not address individual TAPs
3598 (or their associated targets)
3599 until the JTAG scan chain has first been verified to work.
3600
3601 Implementations must have verified the JTAG scan chain before
3602 they return.
3603 This is done by calling @command{jtag arp_init}
3604 (or @command{jtag arp_init-reset}).
3605 @end deffn
3606
3607 @deffn Command {jtag arp_init}
3608 This validates the scan chain using just the four
3609 standard JTAG signals (TMS, TCK, TDI, TDO).
3610 It starts by issuing a JTAG-only reset.
3611 Then it performs checks to verify that the scan chain configuration
3612 matches the TAPs it can observe.
3613 Those checks include checking IDCODE values for each active TAP,
3614 and verifying the length of their instruction registers using
3615 TAP @code{-ircapture} and @code{-irmask} values.
3616 If these tests all pass, TAP @code{setup} events are
3617 issued to all TAPs with handlers for that event.
3618 @end deffn
3619
3620 @deffn Command {jtag arp_init-reset}
3621 This uses TRST and SRST to try resetting
3622 everything on the JTAG scan chain
3623 (and anything else connected to SRST).
3624 It then invokes the logic of @command{jtag arp_init}.
3625 @end deffn
3626
3627
3628 @node TAP Declaration
3629 @chapter TAP Declaration
3630 @cindex TAP declaration
3631 @cindex TAP configuration
3632
3633 @emph{Test Access Ports} (TAPs) are the core of JTAG.
3634 TAPs serve many roles, including:
3635
3636 @itemize @bullet
3637 @item @b{Debug Target} A CPU TAP can be used as a GDB debug target.
3638 @item @b{Flash Programming} Some chips program the flash directly via JTAG.
3639 Others do it indirectly, making a CPU do it.
3640 @item @b{Program Download} Using the same CPU support GDB uses,
3641 you can initialize a DRAM controller, download code to DRAM, and then
3642 start running that code.
3643 @item @b{Boundary Scan} Most chips support boundary scan, which
3644 helps test for board assembly problems like solder bridges
3645 and missing connections.
3646 @end itemize
3647
3648 OpenOCD must know about the active TAPs on your board(s).
3649 Setting up the TAPs is the core task of your configuration files.
3650 Once those TAPs are set up, you can pass their names to code
3651 which sets up CPUs and exports them as GDB targets,
3652 probes flash memory, performs low-level JTAG operations, and more.
3653
3654 @section Scan Chains
3655 @cindex scan chain
3656
3657 TAPs are part of a hardware @dfn{scan chain},
3658 which is a daisy chain of TAPs.
3659 They also need to be added to
3660 OpenOCD's software mirror of that hardware list,
3661 giving each member a name and associating other data with it.
3662 Simple scan chains, with a single TAP, are common in
3663 systems with a single microcontroller or microprocessor.
3664 More complex chips may have several TAPs internally.
3665 Very complex scan chains might have a dozen or more TAPs:
3666 several in one chip, more in the next, and connecting
3667 to other boards with their own chips and TAPs.
3668
3669 You can display the list with the @command{scan_chain} command.
3670 (Don't confuse this with the list displayed by the @command{targets}
3671 command, presented in the next chapter.
3672 That only displays TAPs for CPUs which are configured as
3673 debugging targets.)
3674 Here's what the scan chain might look like for a chip more than one TAP:
3675
3676 @verbatim
3677 TapName Enabled IdCode Expected IrLen IrCap IrMask
3678 -- ------------------ ------- ---------- ---------- ----- ----- ------
3679 0 omap5912.dsp Y 0x03df1d81 0x03df1d81 38 0x01 0x03
3680 1 omap5912.arm Y 0x0692602f 0x0692602f 4 0x01 0x0f
3681 2 omap5912.unknown Y 0x00000000 0x00000000 8 0x01 0x03
3682 @end verbatim
3683
3684 OpenOCD can detect some of that information, but not all
3685 of it. @xref{autoprobing,,Autoprobing}.
3686 Unfortunately, those TAPs can't always be autoconfigured,
3687 because not all devices provide good support for that.
3688 JTAG doesn't require supporting IDCODE instructions, and
3689 chips with JTAG routers may not link TAPs into the chain
3690 until they are told to do so.
3691
3692 The configuration mechanism currently supported by OpenOCD
3693 requires explicit configuration of all TAP devices using
3694 @command{jtag newtap} commands, as detailed later in this chapter.
3695 A command like this would declare one tap and name it @code{chip1.cpu}:
3696
3697 @example
3698 jtag newtap chip1 cpu -irlen 4 -expected-id 0x3ba00477
3699 @end example
3700
3701 Each target configuration file lists the TAPs provided
3702 by a given chip.
3703 Board configuration files combine all the targets on a board,
3704 and so forth.
3705 Note that @emph{the order in which TAPs are declared is very important.}
3706 That declaration order must match the order in the JTAG scan chain,
3707 both inside a single chip and between them.
3708 @xref{faqtaporder,,FAQ TAP Order}.
3709
3710 For example, the ST Microsystems STR912 chip has
3711 three separate TAPs@footnote{See the ST
3712 document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
3713 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
3714 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}}.
3715 To configure those taps, @file{target/str912.cfg}
3716 includes commands something like this:
3717
3718 @example
3719 jtag newtap str912 flash ... params ...
3720 jtag newtap str912 cpu ... params ...
3721 jtag newtap str912 bs ... params ...
3722 @end example
3723
3724 Actual config files typically use a variable such as @code{$_CHIPNAME}
3725 instead of literals like @option{str912}, to support more than one chip
3726 of each type. @xref{Config File Guidelines}.
3727
3728 @deffn Command {jtag names}
3729 Returns the names of all current TAPs in the scan chain.
3730 Use @command{jtag cget} or @command{jtag tapisenabled}
3731 to examine attributes and state of each TAP.
3732 @example
3733 foreach t [jtag names] @{
3734 puts [format "TAP: %s\n" $t]
3735 @}
3736 @end example
3737 @end deffn
3738
3739 @deffn Command {scan_chain}
3740 Displays the TAPs in the scan chain configuration,
3741 and their status.
3742 The set of TAPs listed by this command is fixed by
3743 exiting the OpenOCD configuration stage,
3744 but systems with a JTAG router can
3745 enable or disable TAPs dynamically.
3746 @end deffn
3747
3748 @c FIXME! "jtag cget" should be able to return all TAP
3749 @c attributes, like "$target_name cget" does for targets.
3750
3751 @c Probably want "jtag eventlist", and a "tap-reset" event
3752 @c (on entry to RESET state).
3753
3754 @section TAP Names
3755 @cindex dotted name
3756
3757 When TAP objects are declared with @command{jtag newtap},
3758 a @dfn{dotted.name} is created for the TAP, combining the
3759 name of a module (usually a chip) and a label for the TAP.
3760 For example: @code{xilinx.tap}, @code{str912.flash},
3761 @code{omap3530.jrc}, @code{dm6446.dsp}, or @code{stm32.cpu}.
3762 Many other commands use that dotted.name to manipulate or
3763 refer to the TAP. For example, CPU configuration uses the
3764 name, as does declaration of NAND or NOR flash banks.
3765
3766 The components of a dotted name should follow ``C'' symbol
3767 name rules: start with an alphabetic character, then numbers
3768 and underscores are OK; while others (including dots!) are not.
3769
3770 @section TAP Declaration Commands
3771
3772 @c shouldn't this be(come) a {Config Command}?
3773 @deffn Command {jtag newtap} chipname tapname configparams...
3774 Declares a new TAP with the dotted name @var{chipname}.@var{tapname},
3775 and configured according to the various @var{configparams}.
3776
3777 The @var{chipname} is a symbolic name for the chip.
3778 Conventionally target config files use @code{$_CHIPNAME},
3779 defaulting to the model name given by the chip vendor but
3780 overridable.
3781
3782 @cindex TAP naming convention
3783 The @var{tapname} reflects the role of that TAP,
3784 and should follow this convention:
3785
3786 @itemize @bullet
3787 @item @code{bs} -- For boundary scan if this is a separate TAP;
3788 @item @code{cpu} -- The main CPU of the chip, alternatively
3789 @code{arm} and @code{dsp} on chips with both ARM and DSP CPUs,
3790 @code{arm1} and @code{arm2} on chips with two ARMs, and so forth;
3791 @item @code{etb} -- For an embedded trace buffer (example: an ARM ETB11);
3792 @item @code{flash} -- If the chip has a flash TAP, like the str912;
3793 @item @code{jrc} -- For JTAG route controller (example: the ICEPick modules
3794 on many Texas Instruments chips, like the OMAP3530 on Beagleboards);
3795 @item @code{tap} -- Should be used only for FPGA- or CPLD-like devices
3796 with a single TAP;
3797 @item @code{unknownN} -- If you have no idea what the TAP is for (N is a number);
3798 @item @emph{when in doubt} -- Use the chip maker's name in their data sheet.
3799 For example, the Freescale i.MX31 has a SDMA (Smart DMA) with
3800 a JTAG TAP; that TAP should be named @code{sdma}.
3801 @end itemize
3802
3803 Every TAP requires at least the following @var{configparams}:
3804
3805 @itemize @bullet
3806 @item @code{-irlen} @var{NUMBER}
3807 @*The length in bits of the
3808 instruction register, such as 4 or 5 bits.
3809 @end itemize
3810
3811 A TAP may also provide optional @var{configparams}:
3812
3813 @itemize @bullet
3814 @item @code{-disable} (or @code{-enable})
3815 @*Use the @code{-disable} parameter to flag a TAP which is not
3816 linked into the scan chain after a reset using either TRST
3817 or the JTAG state machine's @sc{reset} state.
3818 You may use @code{-enable} to highlight the default state
3819 (the TAP is linked in).
3820 @xref{enablinganddisablingtaps,,Enabling and Disabling TAPs}.
3821 @item @code{-expected-id} @var{NUMBER}
3822 @*A non-zero @var{number} represents a 32-bit IDCODE
3823 which you expect to find when the scan chain is examined.
3824 These codes are not required by all JTAG devices.
3825 @emph{Repeat the option} as many times as required if more than one
3826 ID code could appear (for example, multiple versions).
3827 Specify @var{number} as zero to suppress warnings about IDCODE
3828 values that were found but not included in the list.
3829
3830 Provide this value if at all possible, since it lets OpenOCD
3831 tell when the scan chain it sees isn't right. These values
3832 are provided in vendors' chip documentation, usually a technical
3833 reference manual. Sometimes you may need to probe the JTAG
3834 hardware to find these values.
3835 @xref{autoprobing,,Autoprobing}.
3836 @item @code{-ignore-version}
3837 @*Specify this to ignore the JTAG version field in the @code{-expected-id}
3838 option. When vendors put out multiple versions of a chip, or use the same
3839 JTAG-level ID for several largely-compatible chips, it may be more practical
3840 to ignore the version field than to update config files to handle all of
3841 the various chip IDs. The version field is defined as bit 28-31 of the IDCODE.
3842 @item @code{-ircapture} @var{NUMBER}
3843 @*The bit pattern loaded by the TAP into the JTAG shift register
3844 on entry to the @sc{ircapture} state, such as 0x01.
3845 JTAG requires the two LSBs of this value to be 01.
3846 By default, @code{-ircapture} and @code{-irmask} are set
3847 up to verify that two-bit value. You may provide
3848 additional bits if you know them, or indicate that
3849 a TAP doesn't conform to the JTAG specification.
3850 @item @code{-irmask} @var{NUMBER}
3851 @*A mask used with @code{-ircapture}
3852 to verify that instruction scans work correctly.
3853 Such scans are not used by OpenOCD except to verify that
3854 there seems to be no problems with JTAG scan chain operations.
3855 @end itemize
3856 @end deffn
3857
3858 @section Other TAP commands
3859
3860 @deffn Command {jtag cget} dotted.name @option{-event} event_name
3861 @deffnx Command {jtag configure} dotted.name @option{-event} event_name handler
3862 At this writing this TAP attribute
3863 mechanism is used only for event handling.
3864 (It is not a direct analogue of the @code{cget}/@code{configure}
3865 mechanism for debugger targets.)
3866 See the next section for information about the available events.
3867
3868 The @code{configure} subcommand assigns an event handler,
3869 a TCL string which is evaluated when the event is triggered.
3870 The @code{cget} subcommand returns that handler.
3871 @end deffn
3872
3873 @section TAP Events
3874 @cindex events
3875 @cindex TAP events
3876
3877 OpenOCD includes two event mechanisms.
3878 The one presented here applies to all JTAG TAPs.
3879 The other applies to debugger targets,
3880 which are associated with certain TAPs.
3881
3882 The TAP events currently defined are:
3883
3884 @itemize @bullet
3885 @item @b{post-reset}
3886 @* The TAP has just completed a JTAG reset.
3887 The tap may still be in the JTAG @sc{reset} state.
3888 Handlers for these events might perform initialization sequences
3889 such as issuing TCK cycles, TMS sequences to ensure
3890 exit from the ARM SWD mode, and more.
3891
3892 Because the scan chain has not yet been verified, handlers for these events
3893 @emph{should not issue commands which scan the JTAG IR or DR registers}
3894 of any particular target.
3895 @b{NOTE:} As this is written (September 2009), nothing prevents such access.
3896 @item @b{setup}
3897 @* The scan chain has been reset and verified.
3898 This handler may enable TAPs as needed.
3899 @item @b{tap-disable}
3900 @* The TAP needs to be disabled. This handler should
3901 implement @command{jtag tapdisable}
3902 by issuing the relevant JTAG commands.
3903 @item @b{tap-enable}
3904 @* The TAP needs to be enabled. This handler should
3905 implement @command{jtag tapenable}
3906 by issuing the relevant JTAG commands.
3907 @end itemize
3908
3909 If you need some action after each JTAG reset which isn't actually
3910 specific to any TAP (since you can't yet trust the scan chain's
3911 contents to be accurate), you might:
3912
3913 @example
3914 jtag configure CHIP.jrc -event post-reset @{
3915 echo "JTAG Reset done"
3916 ... non-scan jtag operations to be done after reset
3917 @}
3918 @end example
3919
3920
3921 @anchor{enablinganddisablingtaps}
3922 @section Enabling and Disabling TAPs
3923 @cindex JTAG Route Controller
3924 @cindex jrc
3925
3926 In some systems, a @dfn{JTAG Route Controller} (JRC)
3927 is used to enable and/or disable specific JTAG TAPs.
3928 Many ARM-based chips from Texas Instruments include
3929 an ``ICEPick'' module, which is a JRC.
3930 Such chips include DaVinci and OMAP3 processors.
3931
3932 A given TAP may not be visible until the JRC has been
3933 told to link it into the scan chain; and if the JRC
3934 has been told to unlink that TAP, it will no longer
3935 be visible.
3936 Such routers address problems that JTAG ``bypass mode''
3937 ignores, such as:
3938
3939 @itemize
3940 @item The scan chain can only go as fast as its slowest TAP.
3941 @item Having many TAPs slows instruction scans, since all
3942 TAPs receive new instructions.
3943 @item TAPs in the scan chain must be powered up, which wastes
3944 power and prevents debugging some power management mechanisms.
3945 @end itemize
3946
3947 The IEEE 1149.1 JTAG standard has no concept of a ``disabled'' tap,
3948 as implied by the existence of JTAG routers.
3949 However, the upcoming IEEE 1149.7 framework (layered on top of JTAG)
3950 does include a kind of JTAG router functionality.
3951
3952 @c (a) currently the event handlers don't seem to be able to
3953 @c fail in a way that could lead to no-change-of-state.
3954
3955 In OpenOCD, tap enabling/disabling is invoked by the Tcl commands
3956 shown below, and is implemented using TAP event handlers.
3957 So for example, when defining a TAP for a CPU connected to
3958 a JTAG router, your @file{target.cfg} file
3959 should define TAP event handlers using
3960 code that looks something like this:
3961
3962 @example
3963 jtag configure CHIP.cpu -event tap-enable @{
3964 ... jtag operations using CHIP.jrc
3965 @}
3966 jtag configure CHIP.cpu -event tap-disable @{
3967 ... jtag operations using CHIP.jrc
3968 @}
3969 @end example
3970
3971 Then you might want that CPU's TAP enabled almost all the time:
3972
3973 @example
3974 jtag configure $CHIP.jrc -event setup "jtag tapenable $CHIP.cpu"
3975 @end example
3976
3977 Note how that particular setup event handler declaration
3978 uses quotes to evaluate @code{$CHIP} when the event is configured.
3979 Using brackets @{ @} would cause it to be evaluated later,
3980 at runtime, when it might have a different value.
3981
3982 @deffn Command {jtag tapdisable} dotted.name
3983 If necessary, disables the tap
3984 by sending it a @option{tap-disable} event.
3985 Returns the string "1" if the tap
3986 specified by @var{dotted.name} is enabled,
3987 and "0" if it is disabled.
3988 @end deffn
3989
3990 @deffn Command {jtag tapenable} dotted.name
3991 If necessary, enables the tap
3992 by sending it a @option{tap-enable} event.
3993 Returns the string "1" if the tap
3994 specified by @var{dotted.name} is enabled,
3995 and "0" if it is disabled.
3996 @end deffn
3997
3998 @deffn Command {jtag tapisenabled} dotted.name
3999 Returns the string "1" if the tap
4000 specified by @var{dotted.name} is enabled,
4001 and "0" if it is disabled.
4002
4003 @quotation Note
4004 Humans will find the @command{scan_chain} command more helpful
4005 for querying the state of the JTAG taps.
4006 @end quotation
4007 @end deffn
4008
4009 @anchor{autoprobing}
4010 @section Autoprobing
4011 @cindex autoprobe
4012 @cindex JTAG autoprobe
4013
4014 TAP configuration is the first thing that needs to be done
4015 after interface and reset configuration. Sometimes it's
4016 hard finding out what TAPs exist, or how they are identified.
4017 Vendor documentation is not always easy to find and use.
4018
4019 To help you get past such problems, OpenOCD has a limited
4020 @emph{autoprobing} ability to look at the scan chain, doing
4021 a @dfn{blind interrogation} and then reporting the TAPs it finds.
4022 To use this mechanism, start the OpenOCD server with only data
4023 that configures your JTAG interface, and arranges to come up
4024 with a slow clock (many devices don't support fast JTAG clocks
4025 right when they come out of reset).
4026
4027 For example, your @file{openocd.cfg} file might have:
4028
4029 @example
4030 source [find interface/olimex-arm-usb-tiny-h.cfg]
4031 reset_config trst_and_srst
4032 jtag_rclk 8
4033 @end example
4034
4035 When you start the server without any TAPs configured, it will
4036 attempt to autoconfigure the TAPs. There are two parts to this:
4037
4038 @enumerate
4039 @item @emph{TAP discovery} ...
4040 After a JTAG reset (sometimes a system reset may be needed too),
4041 each TAP's data registers will hold the contents of either the
4042 IDCODE or BYPASS register.
4043 If JTAG communication is working, OpenOCD will see each TAP,
4044 and report what @option{-expected-id} to use with it.
4045 @item @emph{IR Length discovery} ...
4046 Unfortunately JTAG does not provide a reliable way to find out
4047 the value of the @option{-irlen} parameter to use with a TAP
4048 that is discovered.
4049 If OpenOCD can discover the length of a TAP's instruction
4050 register, it will report it.
4051 Otherwise you may need to consult vendor documentation, such
4052 as chip data sheets or BSDL files.
4053 @end enumerate
4054
4055 In many cases your board will have a simple scan chain with just
4056 a single device. Here's what OpenOCD reported with one board
4057 that's a bit more complex:
4058
4059 @example
4060 clock speed 8 kHz
4061 There are no enabled taps. AUTO PROBING MIGHT NOT WORK!!
4062 AUTO auto0.tap - use "jtag newtap auto0 tap -expected-id 0x2b900f0f ..."
4063 AUTO auto1.tap - use "jtag newtap auto1 tap -expected-id 0x07926001 ..."
4064 AUTO auto2.tap - use "jtag newtap auto2 tap -expected-id 0x0b73b02f ..."
4065 AUTO auto0.tap - use "... -irlen 4"
4066 AUTO auto1.tap - use "... -irlen 4"
4067 AUTO auto2.tap - use "... -irlen 6"
4068 no gdb ports allocated as no target has been specified
4069 @end example
4070
4071 Given that information, you should be able to either find some existing
4072 config files to use, or create your own. If you create your own, you
4073 would configure from the bottom up: first a @file{target.cfg} file
4074 with these TAPs, any targets associated with them, and any on-chip
4075 resources; then a @file{board.cfg} with off-chip resources, clocking,
4076 and so forth.
4077
4078 @node CPU Configuration
4079 @chapter CPU Configuration
4080 @cindex GDB target
4081
4082 This chapter discusses how to set up GDB debug targets for CPUs.
4083 You can also access these targets without GDB
4084 (@pxref{Architecture and Core Commands},
4085 and @ref{targetstatehandling,,Target State handling}) and
4086 through various kinds of NAND and NOR flash commands.
4087 If you have multiple CPUs you can have multiple such targets.
4088
4089 We'll start by looking at how to examine the targets you have,
4090 then look at how to add one more target and how to configure it.
4091
4092 @section Target List
4093 @cindex target, current
4094 @cindex target, list
4095
4096 All targets that have been set up are part of a list,
4097 where each member has a name.
4098 That name should normally be the same as the TAP name.
4099 You can display the list with the @command{targets}
4100 (plural!) command.
4101 This display often has only one CPU; here's what it might
4102 look like with more than one:
4103 @verbatim
4104 TargetName Type Endian TapName State
4105 -- ------------------ ---------- ------ ------------------ ------------
4106 0* at91rm9200.cpu arm920t little at91rm9200.cpu running
4107 1 MyTarget cortex_m little mychip.foo tap-disabled
4108 @end verbatim
4109
4110 One member of that list is the @dfn{current target}, which
4111 is implicitly referenced by many commands.
4112 It's the one marked with a @code{*} near the target name.
4113 In particular, memory addresses often refer to the address
4114 space seen by that current target.
4115 Commands like @command{mdw} (memory display words)
4116 and @command{flash erase_address} (erase NOR flash blocks)
4117 are examples; and there are many more.
4118
4119 Several commands let you examine the list of targets:
4120
4121 @deffn Command {target count}
4122 @emph{Note: target numbers are deprecated; don't use them.
4123 They will be removed shortly after August 2010, including this command.
4124 Iterate target using @command{target names}, not by counting.}
4125
4126 Returns the number of targets, @math{N}.
4127 The highest numbered target is @math{N - 1}.
4128 @example
4129 set c [target count]
4130 for @{ set x 0 @} @{ $x < $c @} @{ incr x @} @{
4131 # Assuming you have created this function
4132 print_target_details $x
4133 @}
4134 @end example
4135 @end deffn
4136
4137 @deffn Command {target current}
4138 Returns the name of the current target.
4139 @end deffn
4140
4141 @deffn Command {target names}
4142 Lists the names of all current targets in the list.
4143 @example
4144 foreach t [target names] @{
4145 puts [format "Target: %s\n" $t]
4146 @}
4147 @end example
4148 @end deffn
4149
4150 @deffn Command {target number} number
4151 @emph{Note: target numbers are deprecated; don't use them.
4152 They will be removed shortly after August 2010, including this command.}
4153
4154 The list of targets is numbered starting at zero.
4155 This command returns the name of the target at index @var{number}.
4156 @example
4157 set thename [target number $x]
4158 puts [format "Target %d is: %s\n" $x $thename]
4159 @end example
4160 @end deffn
4161
4162 @c yep, "target list" would have been better.
4163 @c plus maybe "target setdefault".
4164
4165 @deffn Command targets [name]
4166 @emph{Note: the name of this command is plural. Other target
4167 command names are singular.}
4168
4169 With no parameter, this command displays a table of all known
4170 targets in a user friendly form.
4171
4172 With a parameter, this command sets the current target to
4173 the given target with the given @var{name}; this is
4174 only relevant on boards which have more than one target.
4175 @end deffn
4176
4177 @section Target CPU Types