9e310f3386d6ae49ea606913a5383251d0342baa
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @c %**end of header
6
7 @include version.texi
8
9 @titlepage
10 @title Open On-Chip Debugger (openocd)
11 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
12 @subtitle @value{UPDATED}
13 @page
14 @vskip 0pt plus 1filll
15 @end titlepage
16
17 @contents
18
19 @node Top, About, , (dir)
20 @top OpenOCD
21
22 This is edition @value{EDITION} of the openocd manual for version
23 @value{VERSION}, @value{UPDATED}
24
25 @menu
26 * About:: About Openocd.
27 * Developers::
28 * Building:: Building Openocd
29 * Running:: Running Openocd
30 * Configuration:: Openocd Configuration.
31 * Commands:: Openocd Commands
32 * Sample Scripts:: Sample Target Scripts
33 * GDB and Openocd:: Using GDB and Openocd
34 * FAQ:: Frequently Asked Questions
35 * License:: GNU Free Documentation License
36 * Index:: Main index.
37 @end menu
38
39 @node About
40 @unnumbered About
41 @cindex about
42
43 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
44 and boundary-scan testing for embedded target devices. The targets are interfaced
45 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
46 connection types in the future.
47
48 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
49 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
50 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
51 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
52
53 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
54 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
55 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
56
57 @node Developers
58 @chapter Developers
59 @cindex developers
60
61 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
62 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
63 Others interested in improving the state of free and open debug and testing technology
64 are welcome to participate.
65
66 Other developers have contributed support for additional targets and flashes as well
67 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
68
69 @node Building
70 @chapter Building
71 @cindex building openocd
72
73 You can download the current SVN version with SVN client of your choice from the
74 following repositories:
75
76 (@uref{svn://svn.berlios.de/openocd/trunk})
77
78 or
79
80 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
81
82 Using the SVN command line client, you could use the following command to fetch the
83 latest version (make sure there is no (non-svn) directory called "openocd" in the
84 current directory):
85
86 @smallexample
87 svn checkout svn://svn.berlios.de/openocd/trunk
88 @end smallexample
89
90 Building the OpenOCD requires a recent version of the GNU autotools.
91 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
92 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
93 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
94 paths, resulting in obscure dependency errors (This is an observation I've gathered
95 from the logs of one user - correct me if I'm wrong).
96
97 You further need the appropriate driver files, if you want to build support for
98 a FTDI FT2232 based interface:
99 @itemize @bullet
100 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
101 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
102 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
103 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
104 @end itemize
105
106 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
107 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
108
109 In general, the D2XX driver provides superior performance (several times as fast),
110 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
111 a kernel module, only a user space library.
112
113 To build OpenOCD (on both Linux and Cygwin), use the following commands:
114 @smallexample
115 ./bootstrap
116 @end smallexample
117 Bootstrap generates the configure script, and prepares building on your system.
118 @smallexample
119 ./configure
120 @end smallexample
121 Configure generates the Makefiles used to build OpenOCD
122 @smallexample
123 make
124 @end smallexample
125 Make builds the OpenOCD, and places the final executable in ./src/
126
127 The configure script takes several options, specifying which JTAG interfaces
128 should be included:
129
130 @itemize @bullet
131 @item
132 --enable-parport
133 @item
134 --enable-parport_ppdev
135 @item
136 --enable-amtjtagaccel
137 @item
138 --enable-ft2232_ftd2xx
139 @footnote{Using the latest D2XX drivers from FTDI and following their installation
140 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
141 build properly}
142 @item
143 --enable-ft2232_libftdi
144 @item
145 --with-ftd2xx=/path/to/d2xx/
146 @end itemize
147
148 If you want to access the parallel port using the PPDEV interface you have to specify
149 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
150 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
151 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
152
153 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
154 absolute path containing no spaces.
155
156 Linux users should copy the various parts of the D2XX package to the appropriate
157 locations, i.e. /usr/include, /usr/lib.
158
159 @node Running
160 @chapter Running
161 @cindex running openocd
162 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
163 Run with @option{--help} or @option{-h} to view the available command line arguments.
164
165 It reads its configuration by default from the file openocd.cfg located in the current
166 working directory. This may be overwritten with the @option{-f <configfile>} command line
167 switch.
168
169 To enable debug output (when reporting problems or working on OpenOCD itself), use
170 the @option{-d} command line switch. This sets the debug_level to "3", outputting
171 the most information, including debug messages. The default setting is "2", outputting
172 only informational messages, warnings and errors. You can also change this setting
173 from within a telnet or gdb session (@option{debug_level <n>}).
174
175 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
176
177 @node Configuration
178 @chapter Configuration
179 @cindex configuration
180 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
181 by default from the file openocd.cfg in the current directory. A different configuration
182 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
183
184 The configuration file is used to specify on which ports the daemon listens for new
185 connections, the JTAG interface used to connect to the target, the layout of the JTAG
186 chain, the targets that should be debugged, and connected flashes.
187
188 @section Daemon configuration
189
190 @itemize @bullet
191 @item @b{telnet_port} <@var{number}>
192 @cindex telnet_port
193 Port on which to listen for incoming telnet connections
194 @item @b{gdb_port} <@var{number}>
195 @cindex gdb_port
196 First port on which to listen for incoming GDB connections. The GDB port for the
197 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
198 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
199 @cindex gdb_detach
200 Configures what openocd will do when gdb detaches from the daeman.
201 Default behaviour is <@var{resume}>
202 @item @b{gdb_memory_map} <@var{enable|disable}>
203 @cindex gdb_memory_map
204 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
205 requested. gdb will then know when to set hardware breakpoints, and program flash
206 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
207 for flash programming to work.
208 Default behaviour is <@var{disable}>
209 @item @b{gdb_flash_program} <@var{enable|disable}>
210 @cindex gdb_flash_program
211 Set to <@var{enable}> so that openocd will program the flash memory when a
212 vFlash packet is received.
213 Default behaviour is <@var{disable}>
214 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
215 @cindex daemon_startup
216 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
217 if it should just attach to the target.
218 @end itemize
219
220 @section JTAG interface configuration
221
222 @itemize @bullet
223 @item @b{interface} <@var{name}>
224 @cindex interface
225 Use the interface driver <@var{name}> to connect to the target. Currently supported
226 interfaces are
227 @itemize @minus
228 @item parport
229 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
230 @end itemize
231 @itemize @minus
232 @item amt_jtagaccel
233 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
234 mode parallel port
235 @end itemize
236 @itemize @minus
237 @item ft2232
238 FTDI FT2232 based devices using either the open-source libftdi or the binary only
239 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
240 platform. The libftdi uses libusb, and should be portable to all systems that provide
241 libusb.
242 @end itemize
243 @itemize @minus
244 @item ep93xx
245 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
246 @end itemize
247 @end itemize
248
249 @itemize @bullet
250 @item @b{jtag_speed} <@var{number}>
251 @cindex jtag_speed
252 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
253 speed. The actual effect of this option depends on the JTAG interface used.
254
255 @itemize @minus
256 @item wiggler: maximum speed / @var{number}
257 @item ft2232: 6MHz / (@var{number}+1)
258 @item amt jtagaccel: 8 / 2**@var{number}
259 @end itemize
260
261 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
262 especially true for synthesized cores (-S).
263
264 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
265 @cindex reset_config
266 The configuration of the reset signals available on the JTAG interface AND the target.
267 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
268 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
269 @samp{srst_only} or @samp{trst_and_srst}.
270 [@var{combination}] is an optional value specifying broken reset signal implementations.
271 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
272 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
273 that the system is reset together with the test logic (only hypothetical, I haven't
274 seen hardware with such a bug, and can be worked around).
275
276 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
277 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
278 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
279 (default) and @samp{srst_push_pull} for the system reset. These values only affect
280 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
281
282 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
283 @cindex jtag_device
284 Describes the devices that form the JTAG daisy chain, with the first device being
285 the one closest to TDO. The parameters are the length of the instruction register
286 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
287 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
288 The IDCODE instruction will in future be used to query devices for their JTAG
289 identification code. This line is the same for all ARM7 and ARM9 devices.
290 Other devices, like CPLDs, require different parameters. An example configuration
291 line for a Xilinx XC9500 CPLD would look like this:
292 @smallexample
293 jtag_device 8 0x01 0x0e3 0xfe
294 @end smallexample
295 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
296 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
297 The IDCODE instruction is 0xfe.
298
299 @item @b{jtag_nsrst_delay} <@var{ms}>
300 @cindex jtag_nsrst_delay
301 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
302 starting new JTAG operations.
303 @item @b{jtag_ntrst_delay} <@var{ms}>
304 @cindex jtag_ntrst_delay
305 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
306 starting new JTAG operations.
307
308 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
309 or on-chip features) keep a reset line asserted for some time after the external reset
310 got deasserted.
311 @end itemize
312
313 @section parport options
314
315 @itemize @bullet
316 @item @b{parport_port} <@var{number}>
317 @cindex parport_port
318 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
319 the @file{/dev/parport} device
320
321 When using PPDEV to access the parallel port, use the number of the parallel port:
322 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
323 you may encounter a problem.
324 @item @b{parport_cable} <@var{name}>
325 @cindex parport_cable
326 The layout of the parallel port cable used to connect to the target.
327 Currently supported cables are
328 @itemize @minus
329 @item wiggler
330 @cindex wiggler
331 Original Wiggler layout, also supported by several clones, such
332 as the Olimex ARM-JTAG
333 @item old_amt_wiggler
334 @cindex old_amt_wiggler
335 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
336 version available from the website uses the original Wiggler layout ('@var{wiggler}')
337 @item chameleon
338 @cindex chameleon
339 Describes the connection of the Amontec Chameleon's CPLD when operated in
340 configuration mode. This is only used to program the Chameleon itself, not
341 a connected target.
342 @item dlc5
343 @cindex dlc5
344 Xilinx Parallel cable III.
345 @item triton
346 @cindex triton
347 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
348 This is also the layout used by the HollyGates design
349 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
350 @item flashlink
351 @cindex flashlink
352 ST Parallel cable.
353 @end itemize
354 @item @b{parport_write_on_exit} <@var{on|off}>
355 @cindex parport_write_on_exit
356 This will configure the parallel driver to write a known value to the parallel
357 interface on exiting openocd
358 @end itemize
359
360 @section amt_jtagaccel options
361 @itemize @bullet
362 @item @b{parport_port} <@var{number}>
363 @cindex parport_port
364 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
365 @file{/dev/parport} device
366 @end itemize
367 @section ft2232 options
368
369 @itemize @bullet
370 @item @b{ft2232_device_desc} <@var{description}>
371 @cindex ft2232_device_desc
372 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
373 default value is used. This setting is only valid if compiled with FTD2XX support.
374 @item @b{ft2232_layout} <@var{name}>
375 @cindex ft2232_layout
376 The layout of the FT2232 GPIO signals used to control output-enables and reset
377 signals. Valid layouts are
378 @itemize @minus
379 @item usbjtag
380 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
381 @item jtagkey
382 Amontec JTAGkey and JTAGkey-tiny
383 @item signalyzer
384 Signalyzer
385 @item olimex-jtag
386 Olimex ARM-USB-OCD
387 @item m5960
388 American Microsystems M5960
389 @item evb_lm3s811
390 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
391 SRST signals on external connector
392 @item comstick
393 Hitex STR9 comstick
394 @item stm32stick
395 Hitex STM32 Performance Stick
396 @item flyswatter
397 Tin Can Tools Flyswatter
398 @item turtelizer2
399 egnite Software turtelizer2
400 @item oocdlink
401 OOCDLink
402 @end itemize
403
404 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
405 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
406 default values are used. This command is not available on Windows.
407 @item @b{ft2232_latency} <@var{ms}>
408 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
409 ft2232_read() fails to return the expected number of bytes. This can be caused by
410 USB communication delays and has proved hard to reproduce and debug. Setting the
411 FT2232 latency timer to a larger value increases delays for short USB packages but it
412 also reduces the risk of timeouts before receiving the expected number of bytes.
413 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
414 @end itemize
415
416 @section ep93xx options
417 @cindex ep93xx options
418 Currently, there are no options available for the ep93xx interface.
419
420 @page
421 @section Target configuration
422
423 @itemize @bullet
424 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
425 <@var{variant}>
426 @cindex target
427 Defines a target that should be debugged. Currently supported types are:
428 @itemize @minus
429 @item arm7tdmi
430 @item arm720t
431 @item arm9tdmi
432 @item arm920t
433 @item arm922t
434 @item arm926ejs
435 @item arm966e
436 @item cortex_m3
437 @item xscale
438 @end itemize
439
440 If you want to use a target board that is not on this list, see Adding a new
441 target board
442
443 Endianess may be @option{little} or @option{big}.
444
445 The reset_mode specifies what should happen to the target when a reset occurs:
446 @itemize @minus
447 @item reset_halt
448 @cindex reset_halt
449 Immediately request a target halt after reset. This allows targets to be debugged
450 from the very first instruction. This is only possible with targets and JTAG
451 interfaces that correctly implement the reset signals.
452 @item reset_init
453 @cindex reset_init
454 Similar to @option{reset_halt}, but executes the script file defined to handle the
455 'reset' event for the target. Like @option{reset_halt} this only works with
456 correct reset implementations.
457 @item reset_run
458 @cindex reset_run
459 Simply let the target run after a reset.
460 @item run_and_halt
461 @cindex run_and_halt
462 Let the target run for some time (default: 1s), and then request halt.
463 @item run_and_init
464 @cindex run_and_init
465 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
466 to run for some time, then halted, and the @option{reset} event script is executed.
467 @end itemize
468
469 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
470 completely independent (like the LPC2000 series), or where the JTAG interface is
471 unavailable for some time during startup (like the STR7 series), you can't use
472 @option{reset_halt} or @option{reset_init}.
473
474 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
475 @cindex target_script
476 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
477
478 TODO: describe exact semantic of events
479 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
480 @cindex run_and_halt_time
481 The amount of time the debugger should wait after releasing reset before it asserts
482 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
483 reset modes.
484 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
485 <@var{backup}|@var{nobackup}>
486 @cindex working_area
487 Specifies a working area for the debugger to use. This may be used to speed-up
488 downloads to target memory and flash operations, or to perform otherwise unavailable
489 operations (some coprocessor operations on ARM7/9 systems, for example). The last
490 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
491 a working_area that doesn't need to be backed up, as that slows down operation.
492 @end itemize
493
494 @subsection arm7tdmi options
495 @cindex arm7tdmi options
496 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
497 The arm7tdmi target definition requires at least one additional argument, specifying
498 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
499 The optional [@var{variant}] parameter has been removed in recent versions.
500 The correct feature set is determined at runtime.
501
502 @subsection arm720t options
503 @cindex arm720t options
504 ARM720t options are similar to ARM7TDMI options.
505
506 @subsection arm9tdmi options
507 @cindex arm9tdmi options
508 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
509 @option{arm920t}, @option{arm922t} and @option{arm940t}.
510 This enables the hardware single-stepping support found on these cores.
511
512 @subsection arm920t options
513 @cindex arm920t options
514 ARM920t options are similar to ARM9TDMI options.
515
516 @subsection arm966e options
517 @cindex arm966e options
518 ARM966e options are similar to ARM9TDMI options.
519
520 @subsection xscale options
521 @cindex xscale options
522 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
523 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
524
525 @section Flash configuration
526 @cindex Flash configuration
527
528 @itemize @bullet
529 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
530 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
531 @cindex flash bank
532 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
533 and <@var{bus_width}> bytes using the selected flash <driver>.
534
535 @item @b{flash auto_erase} <@option{on}|@option{off}>
536 @cindex flash auto_erase
537 auto erase flash banks prior to writing. Currently only works when using
538 @option{flash write_image} command. Default is @option{off}.
539 @end itemize
540
541 @subsection lpc2000 options
542 @cindex lpc2000 options
543
544 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
545 <@var{clock}> [@var{calc_checksum}]
546 LPC flashes don't require the chip and bus width to be specified. Additional
547 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
548 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
549 of the target this flash belongs to (first is 0), the frequency at which the core
550 is currently running (in kHz - must be an integral number), and the optional keyword
551 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
552 vector table.
553
554 @subsection cfi options
555 @cindex cfi options
556
557 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
558 <@var{target#}>
559 CFI flashes require the number of the target they're connected to as an additional
560 argument. The CFI driver makes use of a working area (specified for the target)
561 to significantly speed up operation.
562
563 @var{chip_width} and @var{bus_width} are specified in bytes.
564
565 @subsection at91sam7 options
566 @cindex at91sam7 options
567
568 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
569 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
570 reading the chip-id and type.
571
572 @subsection str7 options
573 @cindex str7 options
574
575 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
576 variant can be either STR71x, STR73x or STR75x.
577
578 @subsection str9 options
579 @cindex str9 options
580
581 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
582 The str9 needs the flash controller to be configured prior to Flash programming, eg.
583 @smallexample
584 str9x flash_config 0 4 2 0 0x80000
585 @end smallexample
586 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
587
588 @subsection str9 options (str9xpec driver)
589
590 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
591 Before using the flash commands the turbo mode will need enabling using str9xpec
592 @option{enable_turbo} <@var{num>.}
593
594 Only use this driver for locking/unlocking the device or configuring the option bytes.
595 Use the standard str9 driver for programming.
596
597 @subsection stellaris (LM3Sxxx) options
598 @cindex stellaris (LM3Sxxx) options
599
600 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
601 stellaris flash plugin only require the @var{target#}.
602
603 @subsection stm32x options
604 @cindex stm32x options
605
606 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
607 stm32x flash plugin only require the @var{target#}.
608
609 @node Commands
610 @chapter Commands
611 @cindex commands
612
613 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
614 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
615 is available from both the telnet interface and a GDB session. To issue commands to the
616 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
617 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
618 GDB session.
619
620 @section Daemon
621
622 @itemize @bullet
623 @item @b{sleep} <@var{msec}>
624 @cindex sleep
625 Wait for n milliseconds before resuming. Useful in connection with script files
626 (@var{script} command and @var{target_script} configuration).
627
628 @item @b{shutdown}
629 @cindex shutdown
630 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
631
632 @item @b{debug_level} [@var{n}]
633 @cindex debug_level
634 Display or adjust debug level to n<0-3>
635
636 @item @b{log_output} <@var{file}>
637 @cindex log_output
638 Redirect logging to <file> (default: stderr)
639
640 @item @b{script} <@var{file}>
641 @cindex script
642 Execute commands from <file>
643
644 @end itemize
645
646 @subsection Target state handling
647 @itemize @bullet
648 @item @b{poll} [@option{on}|@option{off}]
649 @cindex poll
650 Poll the target for its current state. If the target is in debug mode, architecture
651 specific information about the current state are printed. An optional parameter
652 allows continuous polling to be enabled and disabled.
653
654 @item @b{halt} [@option{ms}]
655 @cindex halt
656 Send a halt request to the target and waits for it to halt for [@option{ms}].
657 Default [@option{ms}] is 5 seconds if no arg given.
658 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
659 will stop openocd from waiting.
660
661 @item @b{wait_halt} [@option{ms}]
662 @cindex wait_halt
663 Wait for the target to enter debug mode. Optional [@option{ms}] is
664 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
665 arg given.
666
667 @item @b{resume} [@var{address}]
668 @cindex resume
669 Resume the target at its current code position, or at an optional address.
670 Openocd will wait 5 seconds for the target to resume.
671
672 @item @b{step} [@var{address}]
673 @cindex step
674 Single-step the target at its current code position, or at an optional address.
675
676 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
677 |@option{run_and_init}]
678 @cindex reset
679 Do a hard-reset. The optional parameter specifies what should happen after the reset.
680 This optional parameter overwrites the setting specified in the configuration file,
681 making the new behaviour the default for the @option{reset} command.
682 @itemize @minus
683 @item run
684 @cindex reset run
685 Let the target run.
686 @item halt
687 @cindex reset halt
688 Immediately halt the target (works only with certain configurations).
689 @item init
690 @cindex reset init
691 Immediately halt the target, and execute the reset script (works only with certain
692 configurations)
693 @item run_and_halt
694 @cindex reset run_and_halt
695 Let the target run for a certain amount of time, then request a halt.
696 @item run_and_init
697 @cindex reset run_and_init
698 Let the target run for a certain amount of time, then request a halt. Execute the
699 reset script once the target entered debug mode.
700 @end itemize
701 @end itemize
702
703 @subsection Memory access commands
704 These commands allow accesses of a specific size to the memory system:
705 @itemize @bullet
706 @item @b{mdw} <@var{addr}> [@var{count}]
707 @cindex mdw
708 display memory words
709 @item @b{mdh} <@var{addr}> [@var{count}]
710 @cindex mdh
711 display memory half-words
712 @item @b{mdb} <@var{addr}> [@var{count}]
713 @cindex mdb
714 display memory bytes
715 @item @b{mww} <@var{addr}> <@var{value}>
716 @cindex mww
717 write memory word
718 @item @b{mwh} <@var{addr}> <@var{value}>
719 @cindex mwh
720 write memory half-word
721 @item @b{mwb} <@var{addr}> <@var{value}>
722 @cindex mwb
723 write memory byte
724
725 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
726 @cindex load_image
727 Load image <@var{file}> to target memory at <@var{address}>
728 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
729 @cindex dump_image
730 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
731 (binary) <@var{file}>.
732 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
733 @cindex verify_image
734 Verify <@var{file}> to target memory starting at <@var{address}>.
735 This will first attempt using a crc checksum, if this fails it will try a binary compare.
736 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
737 @cindex load_binary
738 Load binary <@var{file}> to target memory at <@var{address}>
739 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
740 @cindex dump_binary
741 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
742 (binary) <@var{file}>.
743 @end itemize
744
745 @subsection Flash commands
746 @cindex Flash commands
747 @itemize @bullet
748 @item @b{flash banks}
749 @cindex flash banks
750 List configured flash banks
751 @item @b{flash info} <@var{num}>
752 @cindex flash info
753 Print info about flash bank <@option{num}>
754 @item @b{flash probe} <@var{num}>
755 @cindex flash probe
756 Identify the flash, or validate the parameters of the configured flash. Operation
757 depends on the flash type.
758 @item @b{flash erase_check} <@var{num}>
759 @cindex flash erase_check
760 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
761 updates the erase state information displayed by @option{flash info}. That means you have
762 to issue an @option{erase_check} command after erasing or programming the device to get
763 updated information.
764 @item @b{flash protect_check} <@var{num}>
765 @cindex flash protect_check
766 Check protection state of sectors in flash bank <num>.
767
768 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
769 @cindex flash erase
770 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
771 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
772 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
773 the CFI driver). This command was replaced by the new command
774 @option{flash erase_sector} using the same syntax.
775 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
776 @cindex flash erase_sector
777 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
778 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
779 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
780 the CFI driver).
781 @item @b{flash erase_address} <@var{address}> <@var{length}>
782 @cindex flash erase_address
783 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
784 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
785 @cindex flash write
786 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
787 bytes from the beginning of the bank. This command was replaced by the new command
788 @option{flash write_binary} using the same syntax.
789 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
790 @cindex flash write_binary
791 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
792 <@option{offset}> bytes from the beginning of the bank.
793 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
794 @cindex flash write_image
795 Write the image <@var{file}> to the current target's flash bank(s). A relocation
796 [@var{offset}] can be specified and the file [@var{type}] can be specified
797 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
798 (ELF file) or @option{s19} (Motorola s19).
799 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
800 @cindex flash protect
801 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
802 <@var{last}> of @option{flash bank} <@var{num}>.
803 @item @b{flash auto_erase} <@var{on}|@var{off}>
804 @cindex flash auto_erase
805 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
806 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
807 @end itemize
808
809 @page
810 @section Target Specific Commands
811 @cindex Target Specific Commands
812
813 @subsection AT91SAM7 specific commands
814 @cindex AT91SAM7 specific commands
815 The flash configuration is deduced from the chip identification register. The flash
816 controller handles erases automatically on a page (128/265 byte) basis so erase is
817 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
818 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
819 that can be erased separatly.Only an EraseAll command is supported by the controller
820 for each flash plane and this is called with
821 @itemize @bullet
822 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
823 bulk erase flash planes first_plane to last_plane.
824 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
825 @cindex at91sam7 gpnvm
826 set or clear a gpnvm bit for the processor
827 @end itemize
828
829 @subsection STR9 specific commands
830 @cindex STR9 specific commands
831 These are flash specific commands when using the str9xpec driver.
832 @itemize @bullet
833 @item @b{str9xpec enable_turbo} <@var{num}>
834 @cindex str9xpec enable_turbo
835 enable turbo mode, simply this will remove the str9 from the chain and talk
836 directly to the embedded flash controller.
837 @item @b{str9xpec disable_turbo} <@var{num}>
838 @cindex str9xpec disable_turbo
839 restore the str9 into jtag chain.
840 @item @b{str9xpec lock} <@var{num}>
841 @cindex str9xpec lock
842 lock str9 device. The str9 will only respond to an unlock command that will
843 erase the device.
844 @item @b{str9xpec unlock} <@var{num}>
845 @cindex str9xpec unlock
846 unlock str9 device.
847 @item @b{str9xpec options_read} <@var{num}>
848 @cindex str9xpec options_read
849 read str9 option bytes.
850 @item @b{str9xpec options_write} <@var{num}>
851 @cindex str9xpec options_write
852 write str9 option bytes.
853 @end itemize
854
855 @subsection STR9 configuration
856 @cindex STR9 configuration
857 @itemize @bullet
858 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
859 <@var{BBADR}> <@var{NBBADR}>
860 @cindex str9x flash_config
861 Configure str9 flash controller.
862 @smallexample
863 eg. str9x flash_config 0 4 2 0 0x80000
864 This will setup
865 BBSR - Boot Bank Size register
866 NBBSR - Non Boot Bank Size register
867 BBADR - Boot Bank Start Address register
868 NBBADR - Boot Bank Start Address register
869 @end smallexample
870 @end itemize
871
872 @subsection STR9 option byte configuration
873 @cindex STR9 option byte configuration
874 @itemize @bullet
875 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
876 @cindex str9xpec options_cmap
877 configure str9 boot bank.
878 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
879 @cindex str9xpec options_lvdthd
880 configure str9 lvd threshold.
881 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
882 @cindex str9xpec options_lvdsel
883 configure str9 lvd source.
884 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
885 @cindex str9xpec options_lvdwarn
886 configure str9 lvd reset warning source.
887 @end itemize
888
889 @subsection STM32x specific commands
890 @cindex STM32x specific commands
891
892 These are flash specific commands when using the stm32x driver.
893 @itemize @bullet
894 @item @b{stm32x lock} <@var{num}>
895 @cindex stm32x lock
896 lock stm32 device.
897 @item @b{stm32x unlock} <@var{num}>
898 @cindex stm32x unlock
899 unlock stm32 device.
900 @item @b{stm32x options_read} <@var{num}>
901 @cindex stm32x options_read
902 read stm32 option bytes.
903 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
904 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
905 @cindex stm32x options_write
906 write stm32 option bytes.
907 @item @b{stm32x mass_erase} <@var{num}>
908 @cindex stm32x mass_erase
909 mass erase flash memory.
910 @end itemize
911
912 @page
913 @section Architecture Specific Commands
914 @cindex Architecture Specific Commands
915
916 @subsection ARMV4/5 specific commands
917 @cindex ARMV4/5 specific commands
918
919 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
920 or Intel XScale (XScale isn't supported yet).
921 @itemize @bullet
922 @item @b{armv4_5 reg}
923 @cindex armv4_5 reg
924 Display a list of all banked core registers, fetching the current value from every
925 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
926 register value.
927 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
928 @cindex armv4_5 core_mode
929 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
930 The target is resumed in the currently set @option{core_mode}.
931 @end itemize
932
933 @subsection ARM7/9 specific commands
934 @cindex ARM7/9 specific commands
935
936 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
937 ARM920t or ARM926EJ-S.
938 @itemize @bullet
939 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
940 @cindex arm7_9 sw_bkpts
941 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
942 one of the watchpoint registers to implement software breakpoints. Disabling
943 SW Bkpts frees that register again.
944 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
945 @cindex arm7_9 force_hw_bkpts
946 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
947 breakpoints are turned into hardware breakpoints.
948 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
949 @cindex arm7_9 dbgrq
950 Enable use of the DBGRQ bit to force entry into debug mode. This should be
951 safe for all but ARM7TDMI--S cores (like Philips LPC).
952 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
953 @cindex arm7_9 fast_writes [DEPRECATED]
954 See @option{arm7_9 fast_memory_access} instead.
955 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
956 @cindex arm7_9 fast_memory_access
957 Allow the OpenOCD to read and write memory without checking completion of
958 the operation. This provides a huge speed increase, especially with USB JTAG
959 cables (FT2232), but might be unsafe if used with targets running at a very low
960 speed, like the 32kHz startup clock of an AT91RM9200.
961 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
962 @cindex arm7_9 dcc_downloads
963 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
964 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
965 unsafe, especially with targets running at a very low speed. This command was introduced
966 with OpenOCD rev. 60.
967 @end itemize
968
969 @subsection ARM920T specific commands
970 @cindex ARM920T specific commands
971
972 @itemize @bullet
973 @item @b{arm920t cache_info}
974 @cindex arm920t cache_info
975 Print information about the caches found. This allows you to see if your target
976 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
977 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
978 @cindex arm920t md<bhw>_phys
979 Display memory at physical address addr.
980 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
981 @cindex arm920t mw<bhw>_phys
982 Write memory at physical address addr.
983 @item @b{arm920t read_cache} <@var{filename}>
984 @cindex arm920t read_cache
985 Dump the content of ICache and DCache to a file.
986 @item @b{arm920t read_mmu} <@var{filename}>
987 @cindex arm920t read_mmu
988 Dump the content of the ITLB and DTLB to a file.
989 @item @b{arm920t virt2phys} <@var{VA}>
990 @cindex arm920t virt2phys
991 Translate a virtual address to a physical address.
992 @end itemize
993
994 @page
995 @section Debug commands
996 @cindex Debug commands
997 The following commands give direct access to the core, and are most likely
998 only useful while debugging the OpenOCD.
999 @itemize @bullet
1000 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1001 @cindex arm7_9 write_xpsr
1002 Immediately write either the current program status register (CPSR) or the saved
1003 program status register (SPSR), without changing the register cache (as displayed
1004 by the @option{reg} and @option{armv4_5 reg} commands).
1005 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1006 <@var{0=cpsr},@var{1=spsr}>
1007 @cindex arm7_9 write_xpsr_im8
1008 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1009 operation (similar to @option{write_xpsr}).
1010 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1011 @cindex arm7_9 write_core_reg
1012 Write a core register, without changing the register cache (as displayed by the
1013 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1014 encoding of the [M4:M0] bits of the PSR.
1015 @end itemize
1016
1017 @page
1018 @section JTAG commands
1019 @cindex JTAG commands
1020 @itemize @bullet
1021 @item @b{scan_chain}
1022 @cindex scan_chain
1023 Print current scan chain configuration.
1024 @item @b{jtag_reset}
1025 @cindex jtag_reset
1026 Toggle reset lines <@var{trst}> <@var{srst}>.
1027 @item @b{endstate} <@var{tap_state}>
1028 @cindex endstate
1029 Finish JTAG operations in <@var{tap_state}>.
1030 @item @b{runtest} <@var{num_cycles}>
1031 @cindex runtest
1032 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1033 @item @b{statemove} [@var{tap_state}]
1034 @cindex statemove
1035 Move to current endstate or [@var{tap_state}]
1036 @item @b{irscan}
1037 @cindex irscan
1038 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1039 @item @b{drscan}
1040 @cindex drscan
1041 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1042 @item @b{verify_ircapture}
1043 @cindex verify_ircapture
1044 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1045 @item @b{var}
1046 @cindex var
1047 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1048 @item @b{field}
1049 @cindex field
1050 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1051 @end itemize
1052
1053 @node Sample Scripts
1054 @chapter Sample Scripts
1055 @cindex scripts
1056
1057 This page will collect some script examples for different CPUs.
1058
1059 The configuration script can be divided in the following section:
1060 @itemize @bullet
1061 @item daemon configuration
1062 @item interface
1063 @item jtag scan chain
1064 @item target configuration
1065 @item flash configuration
1066 @end itemize
1067
1068 Detailed information about each section can be found at OpenOCD configuration
1069
1070 @section OMAP5912 Flash Debug
1071 @cindex OMAP5912 Flash Debug
1072 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1073 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1074 - (@uref{http://www.spectrumdigital.com}).
1075 @subsection Openocd config
1076 @smallexample
1077 #daemon configuration
1078 telnet_port 4444
1079 gdb_port 3333
1080
1081 #interface
1082 interface parport
1083 parport_port 0x378
1084 parport_cable wiggler
1085 jtag_speed 0
1086
1087 #use combined on interfaces or targets that can't set TRST/SRST separately
1088 reset_config trst_and_srst
1089
1090 #jtag scan chain
1091 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1092 jtag_device 38 0x0 0x0 0x0
1093 jtag_device 4 0x1 0x0 0xe
1094 jtag_device 8 0x0 0x0 0x0
1095
1096 #target configuration
1097 daemon_startup reset
1098
1099 #target <type> <endianness> <reset mode> <chainpos> <variant>
1100 target arm926ejs little run_and_init 1 arm926ejs
1101 target_script 0 reset omap5912_osk.init
1102 run_and_halt_time 0 30
1103
1104 # omap5912 lcd frame buffer as working area
1105 working_area 0 0x20000000 0x3e800 nobackup
1106
1107 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1108 flash bank cfi 0x00000000 0x1000000 2 2 0
1109 @end smallexample
1110
1111 @subsection Openocd init
1112 @smallexample
1113 #
1114 # halt target
1115 #
1116 poll
1117 sleep 1
1118 halt
1119 wait_halt
1120 #
1121 # disable wdt
1122 #
1123 mww 0xfffec808 0x000000f5
1124 mww 0xfffec808 0x000000a0
1125
1126 mww 0xfffeb048 0x0000aaaa
1127 sleep 500
1128 mww 0xfffeb048 0x00005555
1129 sleep 500
1130 #
1131 # detect flash
1132 #
1133 flash probe 0
1134
1135 @end smallexample
1136
1137 @section STR71x Script
1138 @cindex STR71x Script
1139 The following script was used with an Amontec JTAGkey and a STR710 / STR711 cpu:
1140 @smallexample
1141 #daemon configuration
1142 telnet_port 4444
1143 gdb_port 3333
1144
1145 #interface
1146 interface ft2232
1147 ft2232_device_desc "Amontec JTAGkey A"
1148 ft2232_layout jtagkey
1149 ft2232_vid_pid 0x0403 0xcff8
1150 jtag_speed 0
1151
1152 #use combined on interfaces or targets that can't set TRST/SRST separately
1153 reset_config trst_and_srst srst_pulls_trst
1154
1155 #jtag scan chain
1156 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1157 jtag_device 4 0x1 0xf 0xe
1158
1159 #target configuration
1160 daemon_startup reset
1161
1162 #target <type> <startup mode>
1163 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1164 target arm7tdmi little run_and_halt 0 arm7tdmi
1165 run_and_halt_time 0 30
1166
1167 working_area 0 0x2000C000 0x4000 nobackup
1168
1169 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1170 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1171 @end smallexample
1172
1173 @section STR750 Script
1174 @cindex STR750 Script
1175 The following script was used with an Amontec JTAGkey and a STR750 cpu:
1176 @smallexample
1177 #daemon configuration
1178 telnet_port 4444
1179 gdb_port 3333
1180
1181 #interface
1182 interface ft2232
1183 ft2232_device_desc "Amontec JTAGkey A"
1184 ft2232_layout jtagkey
1185 ft2232_vid_pid 0x0403 0xcff8
1186 jtag_speed 19
1187
1188 #use combined on interfaces or targets that can't set TRST/SRST separately
1189 #reset_config trst_and_srst srst_pulls_trst
1190 reset_config trst_and_srst srst_pulls_trst
1191
1192 #jtag scan chain
1193 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1194 jtag_device 4 0x1 0xf 0xe
1195
1196 #jtag nTRST and nSRST delay
1197 jtag_nsrst_delay 500
1198 jtag_ntrst_delay 500
1199
1200 #target configuration
1201 daemon_startup reset
1202
1203 #target <type> <startup mode>
1204 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1205 target arm7tdmi little run_and_halt 0 arm7tdmi
1206 run_and_halt_time 0 30
1207
1208 working_area 0 0x40000000 0x4000 nobackup
1209
1210 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1211 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1212 @end smallexample
1213
1214 @section STR912 Script
1215 @cindex STR912 Script
1216 The following script was used with an Amontec JTAGkey and a STR912 cpu:
1217 @smallexample
1218 #daemon configuration
1219 telnet_port 4444
1220 gdb_port 3333
1221
1222 #interface
1223 interface ft2232
1224 ft2232_device_desc "Amontec JTAGkey A"
1225 ft2232_layout jtagkey
1226 jtag_speed 1
1227
1228 #use combined on interfaces or targets that can't set TRST/SRST separately
1229 reset_config trst_and_srst
1230
1231 #jtag scan chain
1232 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1233 jtag_device 8 0x1 0x1 0xfe
1234 jtag_device 4 0x1 0xf 0xe
1235 jtag_device 5 0x1 0x1 0x1e
1236
1237 #target configuration
1238 daemon_startup reset
1239
1240 #target <type> <startup mode>
1241 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1242 target arm966e little reset_halt 1 arm966e
1243 run_and_halt_time 0 30
1244
1245 working_area 0 0x50000000 16384 nobackup
1246
1247 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1248 flash bank str9x 0x00000000 0x00080000 0 0 0
1249 @end smallexample
1250
1251 @section STR912 comstick
1252 @cindex STR912 comstick Script
1253 The following script was used with a Hitex STR9 Comstick:
1254 @smallexample
1255 #daemon configuration
1256 telnet_port 4444
1257 gdb_port 3333
1258
1259 #interface
1260 interface ft2232
1261 ft2232_device_desc "STR9-comStick A"
1262 ft2232_layout comstick
1263 jtag_speed 1
1264
1265 jtag_nsrst_delay 100
1266 jtag_ntrst_delay 100
1267
1268 #use combined on interfaces or targets that can't set TRST/SRST separately
1269 reset_config trst_and_srst
1270
1271 #jtag scan chain
1272 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1273 jtag_device 8 0x1 0x1 0xfe
1274 jtag_device 4 0x1 0xf 0xe
1275 jtag_device 5 0x1 0x1 0x1e
1276
1277 #target configuration
1278 daemon_startup reset
1279
1280 #target <type> <startup mode>
1281 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1282 target arm966e little reset_halt 1 arm966e
1283 run_and_halt_time 0 30
1284
1285 working_area 0 0x50000000 16384 nobackup
1286
1287 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1288 flash bank str9x 0x00000000 0x00080000 0 0 0
1289 @end smallexample
1290
1291 @section STM32x Script
1292 @cindex STM32x Script
1293 The following script was used with an Amontec JTAGkey and a STM32x cpu:
1294 @smallexample
1295 #daemon configuration
1296 telnet_port 4444
1297 gdb_port 3333
1298
1299 #interface
1300 interface ft2232
1301 ft2232_device_desc "Amontec JTAGkey A"
1302 ft2232_layout jtagkey
1303 jtag_speed 10
1304
1305 jtag_nsrst_delay 100
1306 jtag_ntrst_delay 100
1307
1308 #use combined on interfaces or targets that can't set TRST/SRST separately
1309 reset_config trst_and_srst
1310
1311 #jtag scan chain
1312 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1313 jtag_device 4 0x1 0xf 0xe
1314 jtag_device 5 0x1 0x1 0x1e
1315
1316 #target configuration
1317 daemon_startup reset
1318
1319 #target <type> <startup mode>
1320 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1321 target cortex_m3 little run_and_halt 0
1322 run_and_halt_time 0 30
1323
1324 working_area 0 0x20000000 16384 nobackup
1325
1326 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1327 flash bank stm32x 0x08000000 0x00020000 0 0 0
1328 @end smallexample
1329
1330 @section STM32x Performance Stick
1331 @cindex STM32x Performance Stick Script
1332 The following script was used with the Hitex STM32 Performance Stick
1333 @smallexample
1334 #daemon configuration
1335 telnet_port 4444
1336 gdb_port 3333
1337
1338 #interface
1339 interface ft2232
1340 ft2232_device_desc "STM32-PerformanceStick A"
1341 ft2232_layout stm32stick
1342 jtag_speed 10
1343
1344 jtag_nsrst_delay 100
1345 jtag_ntrst_delay 100
1346
1347 #use combined on interfaces or targets that can't set TRST/SRST separately
1348 reset_config trst_and_srst
1349
1350 #jtag scan chain
1351 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1352 jtag_device 4 0x1 0xf 0xe
1353 jtag_device 5 0x1 0x1 0x1e
1354 jtag_device 4 0x1 0xf 0xe
1355
1356 #target configuration
1357 daemon_startup reset
1358
1359 #target <type> <startup mode>
1360 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1361 target cortex_m3 little run_and_halt 0
1362 run_and_halt_time 0 30
1363
1364 working_area 0 0x20000000 16384 nobackup
1365
1366 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1367 flash bank stm32x 0x08000000 0x00020000 0 0 0
1368 @end smallexample
1369
1370 @section LPC2129 Script
1371 @cindex LPC2129 Script
1372 The following script was used with an wiggler PP and a LPC-2129 cpu:
1373 @smallexample
1374 #daemon configuration
1375 telnet_port 4444
1376 gdb_port 3333
1377
1378 #interface
1379 interface parport
1380 parport_port 0x378
1381 parport_cable wiggler
1382 jtag_speed 0
1383
1384 #use combined on interfaces or targets that can't set TRST/SRST separately
1385 reset_config trst_and_srst srst_pulls_trst
1386
1387 #jtag scan chain
1388 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1389 jtag_device 4 0x1 0xf 0xe
1390
1391 #target configuration
1392 daemon_startup reset
1393
1394 #target <type> <startup mode>
1395 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1396 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1397 run_and_halt_time 0 30
1398
1399 working_area 0 0x40000000 0x4000 nobackup
1400
1401 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1402 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1403 @end smallexample
1404
1405 @section LPC2148 Script
1406 @cindex LPC2148 Script
1407 The following script was used with an Amontec JTAGkey and a LPC2148 cpu:
1408 @smallexample
1409 #daemon configuration
1410 telnet_port 4444
1411 gdb_port 3333
1412
1413 #interface
1414 interface ft2232
1415 ft2232_device_desc "Amontec JTAGkey A"
1416 ft2232_layout jtagkey
1417 ft2232_vid_pid 0x0403 0xcff8
1418 jtag_speed 3
1419
1420 #use combined on interfaces or targets that can't set TRST/SRST separately
1421 reset_config trst_and_srst srst_pulls_trst
1422
1423 #jtag scan chain
1424 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1425 jtag_device 4 0x1 0xf 0xe
1426
1427 #target configuration
1428 daemon_startup reset
1429
1430 #target <type> <startup mode>
1431 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1432 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1433 run_and_halt_time 0 30
1434
1435 working_area 0 0x40000000 0x8000 nobackup
1436
1437 #flash configuration
1438 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1439 @end smallexample
1440
1441 @section LPC2294 Script
1442 @cindex LPC2294 Script
1443 The following script was used with an Amontec JTAGkey and a LPC2294 cpu:
1444 @smallexample
1445 #daemon configuration
1446 telnet_port 4444
1447 gdb_port 3333
1448
1449 #interface
1450 interface ft2232
1451 ft2232_device_desc "Amontec JTAGkey A"
1452 ft2232_layout jtagkey
1453 ft2232_vid_pid 0x0403 0xcff8
1454 jtag_speed 3
1455
1456 #use combined on interfaces or targets that can't set TRST/SRST separately
1457 reset_config trst_and_srst srst_pulls_trst
1458
1459 #jtag scan chain
1460 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1461 jtag_device 4 0x1 0xf 0xe
1462
1463 #target configuration
1464 daemon_startup reset
1465
1466 #target <type> <startup mode>
1467 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1468 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1469 run_and_halt_time 0 30
1470
1471 working_area 0 0x40000000 0x4000 nobackup
1472
1473 #flash configuration
1474 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1475 @end smallexample
1476
1477 @section AT91R40008 Script
1478 @cindex AT91R40008 Script
1479 The following script was used with an Amontec JTAGkey and a AT91R40008 cpu:
1480 @smallexample
1481 #daemon configuration
1482 telnet_port 4444
1483 gdb_port 3333
1484
1485 #interface
1486 interface ft2232
1487 ft2232_device_desc "Amontec JTAGkey A"
1488 ft2232_layout jtagkey
1489 ft2232_vid_pid 0x0403 0xcff8
1490 jtag_speed 0
1491 jtag_nsrst_delay 200
1492 jtag_ntrst_delay 200
1493
1494 #use combined on interfaces or targets that can't set TRST/SRST separately
1495 reset_config srst_only srst_pulls_trst
1496
1497 #jtag scan chain
1498 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1499 jtag_device 4 0x1 0xf 0xe
1500
1501 #target configuration
1502 daemon_startup reset
1503
1504 #target <type> <startup mode>
1505 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1506 target arm7tdmi little run_and_halt 0 arm7tdmi
1507 run_and_halt_time 0 30
1508 @end smallexample
1509
1510 @section AT91SAM7s Script
1511 @cindex AT91SAM7s Script
1512 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 cpu:
1513 @smallexample
1514 #daemon configuration
1515 telnet_port 4444
1516 gdb_port 3333
1517
1518 #interface
1519 interface ft2232
1520 ft2232_device_desc "Olimex OpenOCD JTAG A"
1521 ft2232_layout olimex-jtag
1522 ft2232_vid_pid 0x15BA 0x0003
1523 jtag_speed 0
1524 jtag_nsrst_delay 200
1525 jtag_ntrst_delay 200
1526
1527 #use combined on interfaces or targets that can't set TRST/SRST separately
1528 reset_config srst_only srst_pulls_trst
1529
1530 #jtag scan chain
1531 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1532 jtag_device 4 0x1 0xf 0xe
1533
1534 #target configuration
1535 daemon_startup reset
1536
1537 #target <type> <startup mode>
1538 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1539 target arm7tdmi little run_and_halt 0 arm7tdmi
1540 run_and_halt_time 0 30
1541
1542 # flash-options AT91
1543 working_area 0 0x00200000 0x4000 nobackup
1544 flash bank at91sam7 0 0 0 0 0
1545
1546 # Information:
1547 # erase command (telnet-interface) for complete flash:
1548 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1549 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1550 # set/clear NVM-Bits:
1551 # at91sam7 gpnvm <num> <bit> <set|clear>
1552 # disable locking from SAM-BA:
1553 # flash protect 0 0 1 off
1554 @end smallexample
1555
1556 @section XSCALE IXP42x Script
1557 @cindex XSCALE IXP42x Script
1558 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x cpu:
1559 @smallexample
1560 #daemon configuration
1561 telnet_port 4444
1562 gdb_port 3333
1563
1564 #interface
1565 interface ft2232
1566 ft2232_device_desc "Amontec JTAGkey A"
1567 ft2232_layout jtagkey
1568 ft2232_vid_pid 0x0403 0xcff8
1569 jtag_speed 0
1570 jtag_nsrst_delay 200
1571 jtag_ntrst_delay 200
1572
1573 #use combined on interfaces or targets that can't set TRST/SRST separately
1574 reset_config srst_only srst_pulls_trst
1575
1576 #jtag scan chain
1577 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1578 jtag_device 7 0x1 0x7f 0x7e
1579
1580 #target configuration
1581 daemon_startup reset
1582
1583 #target <type> <startup mode>
1584 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1585 target xscale big run_and_halt 0 IXP42x
1586 run_and_halt_time 0 30
1587 @end smallexample
1588
1589 @section Cirrus Logic EP9301 Script
1590 @cindex Cirrus Logic EP9301 Script
1591 The following script was used with FT2232 based JTAG interfaces and a
1592 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1593 @smallexample
1594 #daemon configuration
1595 telnet_port 4444
1596 gdb_port 3333
1597
1598 #interface
1599 interface ft2232
1600
1601 #Olimex ARM-USB-OCD
1602 #ft2232_device_desc "Olimex OpenOCD JTAG"
1603 #ft2232_layout olimex-jtag
1604 #ft2232_vid_pid 0x15ba 0x0003
1605
1606 #Amontec JTAGkey (and JTAGkey-Tiny)
1607 #Serial is only necessary if more than one JTAGkey is connected
1608 ft2232_device_desc "Amontec JTAGkey A"
1609 #ft2232_serial AMTJKV31
1610 #ft2232_serial T1P3S2W8
1611 ft2232_layout jtagkey
1612 ft2232_vid_pid 0x0403 0xcff8
1613
1614 #wiggler/parallel port interface
1615 #interface parport
1616 #parport_port 0x378
1617 #parport_cable wiggler
1618 #jtag_speed 0
1619 jtag_speed 1
1620 reset_config trst_and_srst
1621
1622 #jtag scan chain
1623 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1624 jtag_device 4 0x1 0xf 0xe
1625
1626 jtag_nsrst_delay 100
1627 jtag_ntrst_delay 100
1628
1629 #target configuration
1630 daemon_startup attach
1631
1632 #target <type> <endianess> <reset mode>
1633 target arm920t little reset_halt 0
1634 working_area 0 0x80014000 0x1000 backup
1635
1636 #flash configuration
1637 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1638 flash bank cfi 0x60000000 0x1000000 2 2 0
1639 @end smallexample
1640
1641 @section Hilscher netX 100 / 500 Script
1642 @cindex Hilscher netX 100 / 500 Script
1643 The following script was used with an Amontec JTAGkey and a Hilscher
1644 netX 500 cpu:
1645 @smallexample
1646 #daemon configuration
1647 telnet_port 4444
1648 gdb_port 3333
1649
1650 #interface
1651 interface ft2232
1652 ft2232_device_desc "Amontec JTAGkey A"
1653 ft2232_layout jtagkey
1654 ft2232_vid_pid 0x0403 0xcff8
1655 jtag_speed 5
1656
1657 #use combined on interfaces or targets that can't set TRST/SRST separately
1658 reset_config trst_and_srst
1659
1660 #jtag scan chain
1661 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1662 jtag_device 4 0x1 0xf 0xe
1663
1664 jtag_nsrst_delay 100
1665 jtag_ntrst_delay 100
1666
1667 #target configuration
1668 daemon_startup reset
1669
1670 #target <type> <endianness> <startup mode> <chainpos> <variant>
1671 target arm926ejs little run_and_halt 0 arm926ejs
1672 run_and_halt_time 0 500
1673 @end smallexample
1674
1675 @section Marvell/Intel PXA270 Script
1676 @cindex Marvell/Intel PXA270 Script
1677 @smallexample
1678 # config for Intel PXA270
1679 # not, as of 2007-06-22, openocd only works with the
1680 # libftd2xx library from ftdi. libftdi does not work.
1681
1682 telnet_port 3333
1683 gdb_port 4444
1684
1685 interface ft2232
1686 ft2232_layout olimex-jtag
1687 ft2232_vid_pid 0x15BA 0x0003
1688 ft2232_device_desc "Olimex OpenOCD JTAG"
1689 jtag_speed 0
1690 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1691 # the rest of the needed delays are built into the openocd program
1692 jtag_nsrst_delay 260
1693 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1694 # the rest of the needed delays are built into the openocd program
1695 jtag_ntrst_delay 0
1696
1697 #use combined on interfaces or targets that can't set TRST/SRST separately
1698 reset_config trst_and_srst separate
1699
1700 #jtag scan chain
1701 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1702 jtag_device 7 0x1 0x7f 0x7e
1703
1704 #target configuration
1705 daemon_startup reset
1706
1707 target xscale little reset_halt 0 pxa27x
1708
1709 # maps to PXA internal RAM. If you are using a PXA255
1710 # you must initialize SDRAM or leave this option off
1711 working_area 0 0x5c000000 0x10000 nobackup
1712
1713 run_and_halt_time 0 30
1714
1715 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1716 # works for P30 flash
1717 flash bank cfi 0x00000000 0x1000000 2 4 0
1718 @end smallexample
1719
1720 @node GDB and Openocd
1721 @chapter GDB and Openocd
1722 @cindex GDB and Openocd
1723 Openocd complies with the remote gdbserver protocol, and as such can be used
1724 to debug remote targets.
1725
1726 @section Connecting to gdb
1727 @cindex Connecting to gdb
1728 A connection is typically started as follows:
1729 @smallexample
1730 target remote localhost:3333
1731 @end smallexample
1732 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1733
1734 To see a list of available openocd commands type @option{monitor help} on the
1735 gdb commandline.
1736
1737 Openocd supports the gdb @option{qSupported} packet, this enables information
1738 to be sent by the gdb server (openocd) to gdb. Typical information includes
1739 packet size and device memory map.
1740
1741 Previous versions of openocd required the following gdb options to increase
1742 the packet size and speed up gdb communication.
1743 @smallexample
1744 set remote memory-write-packet-size 1024
1745 set remote memory-write-packet-size fixed
1746 set remote memory-read-packet-size 1024
1747 set remote memory-read-packet-size fixed
1748 @end smallexample
1749 This is now handled in the @option{qSupported} PacketSize.
1750
1751 @section Programming using gdb
1752 @cindex Programming using gdb
1753
1754 By default the target memory map is not sent to gdb, this can be enabled by
1755 the following openocd config option:
1756 @smallexample
1757 gdb_memory_map enable
1758 @end smallexample
1759 For this to function correctly a valid flash config must also be configured
1760 in openocd. For speed also configure a valid working area.
1761
1762 Informing gdb of the memory map of the target will enable gdb to protect any
1763 flash area of the target and use hardware breakpoints by default. This means
1764 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1765 using a memory map.
1766
1767 To view the configured memory map in gdb, use the gdb command @option{info mem}
1768 All other unasigned addresses within gdb are treated as ram.
1769
1770 If @option{gdb_flash_program enable} is also used, gdb will be able to
1771 program any flash memory using the vFlash interface.
1772
1773 gdb will look at the target memory map when a load command is given, if any
1774 areas to be programmed lie within the target flash area the vFlash packets
1775 will be used.
1776
1777 Incase the target needs configuring before gdb programming, a script can be executed.
1778 @smallexample
1779 target_script 0 gdb_program_config config.script
1780 @end smallexample
1781
1782 To verify any flash programming the gdb command @option{compare-sections}
1783 can be used.
1784
1785 @node FAQ
1786 @chapter FAQ
1787 @cindex faq
1788 @enumerate
1789 @item OpenOCD complains about a missing cygwin1.dll
1790
1791 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1792 claims to come with all the necessary dlls. When using Cygwin, try launching
1793 the OpenOCD from the Cygwin shell.
1794
1795 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1796 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1797 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1798
1799 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1800 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1801 software breakpoints consume one of the two available hardware breakpoints,
1802 and are therefor disabled by default. If your code is running from RAM, you
1803 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1804 your code resides in Flash, you can't use software breakpoints, but you can force
1805 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1806
1807 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1808 and works sometimes fine.
1809
1810 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1811 clock at the time you're programming the flash. If you've specified the crystal's
1812 frequency, make sure the PLL is disabled, if you've specified the full core speed
1813 (e.g. 60MHz), make sure the PLL is enabled.
1814
1815 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1816 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1817 out while waiting for end of scan, rtck was disabled".
1818
1819 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1820 settings in your PC Bios (ECP, EPP, and different versions of those).
1821
1822 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1823 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1824 memory read caused data abort".
1825
1826 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1827 beyond the last valid frame. It might be possible to prevent this by setting up
1828 a proper "initial" stack frame, if you happen to know what exactly has to
1829 be done, feel free to add this here.
1830
1831 @item I get the following message in the OpenOCD console (or log file):
1832 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1833
1834 This warning doesn't indicate any serious problem, as long as you don't want to
1835 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1836 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1837 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1838 independently. With this setup, it's not possible to halt the core right out of
1839 reset, everything else should work fine.
1840
1841 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1842 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1843 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1844 quit with an error message. Is there a stability issue with OpenOCD?
1845
1846 No, this is not a stability issue concering OpenOCD. Most users have solved
1847 this issue by simply using a self-powered USB Hub, which they connect their
1848 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1849 supply stable enough for the Amontec JTAGkey to be operated.
1850
1851 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1852 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1853 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1854 What does that mean and what might be the reason for this?
1855
1856 First of all, the reason might be the USB power supply. Try using a self-powered
1857 hub instead of a direct connection to your computer. Secondly, the error code 4
1858 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1859 Chip ran into some sort of error - this points us to a USB problem.
1860
1861 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1862 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1863 What does that mean and what might be the reason for this?
1864
1865 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1866 has closed the connection to OpenOCD. This might be a GDB issue.
1867
1868 @item In the configuration file in the section where flash device configurations
1869 are described, there is a parameter for specifying the clock frequency for
1870 LPC2000 internal flash devices (e.g.
1871 @option{flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14746 calc_checksum}),
1872 which must be sepcified in kilohertz. However, I do have a quartz crystal of a
1873 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1874 Is it possible to specify real numbers for the clock frequency?
1875
1876 No. The clock frequency specified here must be given as an integral number.
1877 However, this clock frequency is used by the In-Application-Programming (IAP)
1878 routines of the LPC2000 family only, which seems to be very tolerant concerning
1879 the given clock frequency, so a slight difference between the specified clock
1880 frequency and the actual clock frequency will not cause any trouble.
1881
1882 @item Do I have to keep a specific order for the commands in the configuration file?
1883
1884 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1885 listed for the JTAG scan chain must be given in the right order (jtag_device),
1886 with the device closest to the TDO-Pin being listed first. In general,
1887 whenever objects of the same type exist which require an index number, then
1888 these objects must be given in the right order (jtag_devices, targets and flash
1889 banks - a target references a jtag_device and a flash bank references a target).
1890
1891 @item Sometimes my debugging session terminates with an error. When I look into the
1892 log file, I can see these error messages: Error: arm7_9_common.c:561
1893 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1894
1895 @end enumerate
1896
1897 @include fdl.texi
1898
1899 @node Index
1900 @unnumbered Index
1901
1902 @printindex cp
1903
1904 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)