Build Permutations with ftd2xx and libftdi addressed. Also added a new se of regressi...
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Building From Source
137
138 You can download the current SVN version with SVN client of your choice from the
139 following repositories:
140
141 (@uref{svn://svn.berlios.de/openocd/trunk})
142
143 or
144
145 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
146
147 Using the SVN command line client, you can use the following command to fetch the
148 latest version (make sure there is no (non-svn) directory called "openocd" in the
149 current directory):
150
151 @example
152 svn checkout svn://svn.berlios.de/openocd/trunk openocd
153 @end example
154
155 Building OpenOCD requires a recent version of the GNU autotools.
156 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
157 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
158 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
159 paths, resulting in obscure dependency errors (This is an observation I've gathered
160 from the logs of one user - correct me if I'm wrong).
161
162 You further need the appropriate driver files, if you want to build support for
163 a FTDI FT2232 based interface:
164 @itemize @bullet
165 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
166 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
167 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
168 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
169 @end itemize
170
171 libftdi is supported under windows. Do not use versions earlier then 0.14.
172
173 In general, the D2XX driver provides superior performance (several times as fast),
174 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
175 a kernel module, only a user space library.
176
177 To build OpenOCD (on both Linux and Cygwin), use the following commands:
178 @example
179 ./bootstrap
180 @end example
181 Bootstrap generates the configure script, and prepares building on your system.
182 @example
183 ./configure [options, see below]
184 @end example
185 Configure generates the Makefiles used to build OpenOCD.
186 @example
187 make
188 make install
189 @end example
190 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
191
192 The configure script takes several options, specifying which JTAG interfaces
193 should be included:
194
195 @itemize @bullet
196 @item
197 @option{--enable-parport} - Bit bang pc printer ports.
198 @item
199 @option{--enable-parport_ppdev} - Parallel Port [see below]
200 @item
201 @option{--enable-parport_giveio} - Parallel Port [see below]
202 @item
203 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
204 @item
205 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
206 @item
207 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
208 @item
209 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
210 @item
211 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
212 @item
213 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
214 @item
215 @option{--enable-gw16012}
216 @item
217 @option{--enable-usbprog}
218 @item
219 @option{--enable-presto_libftdi}
220 @item
221 @option{--enable-presto_ftd2xx}
222 @item
223 @option{--enable-jlink} - From SEGGER
224 @item
225 @option{--enable-rlink} - Raisonance.com dongle.
226 @end itemize
227
228 @section Parallel Port Dongles
229
230 If you want to access the parallel port using the PPDEV interface you have to specify
231 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
232 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
233 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
234
235 @section FT2232C Based USB Dongles
236
237 There are 2 methods of using the FTD2232, either (1) using the
238 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
239 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
240
241 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
242 TAR.GZ file. You must unpack them ``some where'' convient. As of this
243 writing (12/26/2008) FTDICHIP does not supply means to install these
244 files ``in an appropriate place'' As a result, there are two
245 ``./configure'' options that help.
246
247 Below is an example build process:
248
249 1) Check out the latest version of ``openocd'' from SVN.
250
251 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
252 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
253
254 @example
255 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
256 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
257 @end example
258
259 3) Configure with these options:
260
261 @example
262 Cygwin FTCICHIP solution
263 ./configure --prefix=/home/duane/mytools \
264 --enable-ft2232_ftd2xx \
265 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
266
267 Linux FTDICHIP solution
268 ./configure --prefix=/home/duane/mytools \
269 --enable-ft2232_ftd2xx \
270 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
271
272 Cygwin/Linux LIBFTDI solution
273 Assumes:
274 1a) For Windows: The windows port of LIBUSB is in place.
275 1b) For Linux: libusb has been built and is inplace.
276
277 2) And libftdi has been built and installed
278 Note: libftdi - relies upon libusb.
279
280 ./configure --prefix=/home/duane/mytools \
281 --enable-ft2232_libftdi
282
283 @end example
284
285 4) Then just type ``make'', and perhaps ``make install''.
286
287
288 @section Miscellaneous configure options
289
290 @itemize @bullet
291 @item
292 @option{--enable-gccwarnings} - enable extra gcc warnings during build
293 @end itemize
294
295 @node JTAG Hardware Dongles
296 @chapter JTAG Hardware Dongles
297 @cindex dongles
298 @cindex ftdi
299 @cindex wiggler
300 @cindex zy1000
301 @cindex printer port
302 @cindex usb adapter
303 @cindex rtck
304
305 Defined: @b{dongle}: A small device that plugins into a computer and serves as
306 an adapter .... [snip]
307
308 In the OpenOCD case, this generally refers to @b{a small adapater} one
309 attaches to your computer via USB or the Parallel Printer Port. The
310 execption being the Zylin ZY1000 which is a small box you attach via
311 an ethernet cable.
312
313
314 @section Choosing a Dongle
315
316 There are three things you should keep in mind when choosing a dongle.
317
318 @enumerate
319 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
320 @item @b{Connection} Printer Ports - Does your computer have one?
321 @item @b{Connection} Is that long printer bit-bang cable practical?
322 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
323 @end enumerate
324
325 @section Stand alone Systems
326
327 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
328 dongle, but a standalone box.
329
330 @section USB FT2232 Based
331
332 There are many USB jtag dongles on the market, many of them are based
333 on a chip from ``Future Technology Devices International'' (FTDI)
334 known as the FTDI FT2232.
335
336 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
337
338 As of 28/Nov/2008, the following are supported:
339
340 @itemize @bullet
341 @item @b{usbjtag}
342 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
343 @item @b{jtagkey}
344 @* See: @url{http://www.amontec.com/jtagkey.shtml}
345 @item @b{oocdlink}
346 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
347 @item @b{signalyzer}
348 @* See: @url{http://www.signalyzer.com}
349 @item @b{evb_lm3s811}
350 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
351 @item @b{olimex-jtag}
352 @* See: @url{http://www.olimex.com}
353 @item @b{flyswatter}
354 @* See: @url{http://www.tincantools.com}
355 @item @b{turtelizer2}
356 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
357 @item @b{comstick}
358 @* Link: @url{http://www.hitex.com/index.php?id=383}
359 @item @b{stm32stick}
360 @* Link @url{http://www.hitex.com/stm32-stick}
361 @item @b{axm0432_jtag}
362 @* Axiom AXM-0432 Link @url{http://www.axman.com}
363 @end itemize
364
365 @section USB JLINK based
366 There are several OEM versions of the Segger @b{JLINK} adapter. It is
367 an example of a micro controller based JTAG adapter, it uses an
368 AT91SAM764 internally.
369
370 @itemize @bullet
371 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
372 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
373 @item @b{SEGGER JLINK}
374 @* Link: @url{http://www.segger.com/jlink.html}
375 @item @b{IAR J-Link}
376 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
377 @end itemize
378
379 @section USB RLINK based
380 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
381
382 @itemize @bullet
383 @item @b{Raisonance RLink}
384 @* Link: @url{http://www.raisonance.com/products/RLink.php}
385 @item @b{STM32 Primer}
386 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
387 @item @b{STM32 Primer2}
388 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
389 @end itemize
390
391 @section USB Other
392 @itemize @bullet
393 @item @b{USBprog}
394 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
395
396 @item @b{USB - Presto}
397 @* Link: @url{http://tools.asix.net/prg_presto.htm}
398 @end itemize
399
400 @section IBM PC Parallel Printer Port Based
401
402 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
403 and the MacGraigor Wiggler. There are many clones and variations of
404 these on the market.
405
406 @itemize @bullet
407
408 @item @b{Wiggler} - There are many clones of this.
409 @* Link: @url{http://www.macraigor.com/wiggler.htm}
410
411 @item @b{DLC5} - From XILINX - There are many clones of this
412 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
413 produced, PDF schematics are easily found and it is easy to make.
414
415 @item @b{Amontec - JTAG Accelerator}
416 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
417
418 @item @b{GW16402}
419 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
420
421 @item @b{Wiggler2}
422 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
423
424 @item @b{Wiggler_ntrst_inverted}
425 @* Yet another variation - See the source code, src/jtag/parport.c
426
427 @item @b{old_amt_wiggler}
428 @* Unknown - probably not on the market today
429
430 @item @b{arm-jtag}
431 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
432
433 @item @b{chameleon}
434 @* Link: @url{http://www.amontec.com/chameleon.shtml}
435
436 @item @b{Triton}
437 @* Unknown.
438
439 @item @b{Lattice}
440 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
441
442 @item @b{flashlink}
443 @* From ST Microsystems, link:
444 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
445 Title: FlashLINK JTAG programing cable for PSD and uPSD
446
447 @end itemize
448
449 @section Other...
450 @itemize @bullet
451
452 @item @b{ep93xx}
453 @* An EP93xx based linux machine using the GPIO pins directly.
454
455 @item @b{at91rm9200}
456 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
457
458 @end itemize
459
460 @node Running
461 @chapter Running
462 @cindex running OpenOCD
463 @cindex --configfile
464 @cindex --debug_level
465 @cindex --logfile
466 @cindex --search
467
468 The @option{--help} option shows:
469 @verbatim
470 bash$ openocd --help
471
472 --help | -h display this help
473 --version | -v display OpenOCD version
474 --file | -f use configuration file <name>
475 --search | -s dir to search for config files and scripts
476 --debug | -d set debug level <0-3>
477 --log_output | -l redirect log output to file <name>
478 --command | -c run <command>
479 --pipe | -p use pipes when talking to gdb
480 @end verbatim
481
482 By default OpenOCD reads the file configuration file ``openocd.cfg''
483 in the current directory. To specify a different (or multiple)
484 configuration file, you can use the ``-f'' option. For example:
485
486 @example
487 openocd -f config1.cfg -f config2.cfg -f config3.cfg
488 @end example
489
490 Once started, OpenOCD runs as a daemon, waiting for connections from
491 clients (Telnet, GDB, Other).
492
493 If you are having problems, you can enable internal debug messages via
494 the ``-d'' option.
495
496 Also it is possible to interleave commands w/config scripts using the
497 @option{-c} command line switch.
498
499 To enable debug output (when reporting problems or working on OpenOCD
500 itself), use the @option{-d} command line switch. This sets the
501 @option{debug_level} to "3", outputting the most information,
502 including debug messages. The default setting is "2", outputting only
503 informational messages, warnings and errors. You can also change this
504 setting from within a telnet or gdb session using @option{debug_level
505 <n>} @xref{debug_level}.
506
507 You can redirect all output from the daemon to a file using the
508 @option{-l <logfile>} switch.
509
510 Search paths for config/script files can be added to OpenOCD by using
511 the @option{-s <search>} switch. The current directory and the OpenOCD
512 target library is in the search path by default.
513
514 For details on the @option{-p} option. @xref{Connecting to GDB}.
515 Option @option{-p} is not currently supported under native win32.
516
517 Note! OpenOCD will launch the GDB & telnet server even if it can not
518 establish a connection with the target. In general, it is possible for
519 the JTAG controller to be unresponsive until the target is set up
520 correctly via e.g. GDB monitor commands in a GDB init script.
521
522 @node Simple Configuration Files
523 @chapter Simple Configuration Files
524 @cindex configuration
525
526 @section Outline
527 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
528
529 @enumerate
530 @item A small openocd.cfg file which ``sources'' other configuration files
531 @item A monolithic openocd.cfg file
532 @item Many -f filename options on the command line
533 @item Your Mixed Solution
534 @end enumerate
535
536 @section Small configuration file method
537
538 This is the prefered method, it is simple and is works well for many
539 people. The developers of OpenOCD would encourage you to use this
540 method. If you create a new configuration please email new
541 configurations to the development list.
542
543 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
544
545 @example
546 source [find interface/signalyzer.cfg]
547
548 # Change the default telnet port...
549 telnet_port 4444
550 # GDB connects here
551 gdb_port 3333
552 # GDB can also flash my flash!
553 gdb_memory_map enable
554 gdb_flash_program enable
555
556 source [find target/sam7x256.cfg]
557 @end example
558
559 There are many example configuration scripts you can work with. You
560 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
561 should find:
562
563 @enumerate
564 @item @b{board} - eval board level configurations
565 @item @b{interface} - specific dongle configurations
566 @item @b{target} - the target chips
567 @item @b{tcl} - helper scripts
568 @item @b{xscale} - things specific to the xscale.
569 @end enumerate
570
571 Look first in the ``boards'' area, then the ``targets'' area. Often a board
572 configuration is a good example to work from.
573
574 @section Many -f filename options
575 Some believe this is a wonderful solution, others find it painful.
576
577 You can use a series of ``-f filename'' options on the command line,
578 OpenOCD will read each filename in sequence, for example:
579
580 @example
581 openocd -f file1.cfg -f file2.cfg -f file2.cfg
582 @end example
583
584 You can also intermix various commands with the ``-c'' command line
585 option.
586
587 @section Monolithic file
588 The ``Monolithic File'' dispenses with all ``source'' statements and
589 puts everything in one self contained (monolithic) file. This is not
590 encouraged.
591
592 Please try to ``source'' various files or use the multiple -f
593 technique.
594
595 @section Advice for you
596 Often, one uses a ``mixed approach''. Where possible, please try to
597 ``source'' common things, and if needed cut/paste parts of the
598 standard distribution configuration files as needed.
599
600 @b{REMEMBER:} The ``important parts'' of your configuration file are:
601
602 @enumerate
603 @item @b{Interface} - Defines the dongle
604 @item @b{Taps} - Defines the JTAG Taps
605 @item @b{GDB Targets} - What GDB talks to
606 @item @b{Flash Programing} - Very Helpful
607 @end enumerate
608
609 Some key things you should look at and understand are:
610
611 @enumerate
612 @item The RESET configuration of your debug environment as a hole
613 @item Is there a ``work area'' that OpenOCD can use?
614 @* For ARM - work areas mean up to 10x faster downloads.
615 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
616 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
617 @end enumerate
618
619
620
621 @node Config File Guidelines
622 @chapter Config File Guidelines
623
624 This section/chapter is aimed at developers and integrators of
625 OpenOCD. These are guidelines for creating new boards and new target
626 configurations as of 28/Nov/2008.
627
628 However, you the user of OpenOCD should be some what familiar with
629 this section as it should help explain some of the internals of what
630 you might be looking at.
631
632 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
633 following directories:
634
635 @itemize @bullet
636 @item @b{interface}
637 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
638 @item @b{board}
639 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
640 contain initialization items that are specific to a board - for
641 example: The SDRAM initialization sequence for the board, or the type
642 of external flash and what address it is found at. Any initialization
643 sequence to enable that external flash or sdram should be found in the
644 board file. Boards may also contain multiple targets, ie: Two cpus, or
645 a CPU and an FPGA or CPLD.
646 @item @b{target}
647 @* Think CHIP. The ``target'' directory represents a jtag tap (or
648 chip) OpenOCD should control, not a board. Two common types of targets
649 are ARM chips and FPGA or CPLD chips.
650 @end itemize
651
652 @b{If needed...} The user in their ``openocd.cfg'' file or the board
653 file might override a specific feature in any of the above files by
654 setting a variable or two before sourcing the target file. Or adding
655 various commands specific to their situation.
656
657 @section Interface Config Files
658
659 The user should be able to source one of these files via a command like this:
660
661 @example
662 source [find interface/FOOBAR.cfg]
663 Or:
664 openocd -f interface/FOOBAR.cfg
665 @end example
666
667 A preconfigured interface file should exist for every interface in use
668 today, that said, perhaps some interfaces have only been used by the
669 sole developer who created it.
670
671 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
672 tcl_platform(platform), it should be called jim_platform (because it
673 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
674 ``cygwin'' or ``mingw''
675
676 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
677
678 @section Board Config Files
679
680 @b{Note: BOARD directory NEW as of 28/nov/2008}
681
682 The user should be able to source one of these files via a command like this:
683
684 @example
685 source [find board/FOOBAR.cfg]
686 Or:
687 openocd -f board/FOOBAR.cfg
688 @end example
689
690
691 The board file should contain one or more @t{source [find
692 target/FOO.cfg]} statements along with any board specific things.
693
694 In summery the board files should contain (if present)
695
696 @enumerate
697 @item External flash configuration (ie: the flash on CS0)
698 @item SDRAM configuration (size, speed, etc)
699 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
700 @item Multiple TARGET source statements
701 @item All things that are not ``inside a chip''
702 @item Things inside a chip go in a 'target' file
703 @end enumerate
704
705 @section Target Config Files
706
707 The user should be able to source one of these files via a command like this:
708
709 @example
710 source [find target/FOOBAR.cfg]
711 Or:
712 openocd -f target/FOOBAR.cfg
713 @end example
714
715 In summery the target files should contain
716
717 @enumerate
718 @item Set Defaults
719 @item Create Taps
720 @item Reset Configuration
721 @item Work Areas
722 @item CPU/Chip/CPU-Core Specific features
723 @item OnChip Flash
724 @end enumerate
725
726 @subsection Important variable names
727
728 By default, the end user should never need to set these
729 variables. However, if the user needs to override a setting they only
730 need to set the variable in a simple way.
731
732 @itemize @bullet
733 @item @b{CHIPNAME}
734 @* This gives a name to the overall chip, and is used as part of the
735 tap identifier dotted name.
736 @item @b{ENDIAN}
737 @* By default little - unless the chip or board is not normally used that way.
738 @item @b{CPUTAPID}
739 @* When OpenOCD examines the JTAG chain, it will attempt to identify
740 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
741 to verify the tap id number verses configuration file and may issue an
742 error or warning like this. The hope is this will help pin point
743 problem OpenOCD configurations.
744
745 @example
746 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
747 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
748 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
749 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
750 @end example
751
752 @item @b{_TARGETNAME}
753 @* By convention, this variable is created by the target configuration
754 script. The board configuration file may make use of this variable to
755 configure things like a ``reset init'' script, or other things
756 specific to that board and that target.
757
758 If the chip has 2 targets, use the names @b{_TARGETNAME0},
759 @b{_TARGETNAME1}, ... etc.
760
761 @b{Remember:} The ``board file'' may include multiple targets.
762
763 At no time should the name ``target0'' (the default target name if
764 none was specified) be used. The name ``target0'' is a hard coded name
765 - the next target on the board will be some other number.
766
767 The user (or board file) should reasonably be able to:
768
769 @example
770 source [find target/FOO.cfg]
771 $_TARGETNAME configure ... FOO specific parameters
772
773 source [find target/BAR.cfg]
774 $_TARGETNAME configure ... BAR specific parameters
775 @end example
776
777 @end itemize
778
779 @subsection TCL Variables Guide Line
780 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
781
782 Thus the rule we follow in OpenOCD is this: Variables that begin with
783 a leading underscore are temporal in nature, and can be modified and
784 used at will within a ?TARGET? configuration file
785
786 @b{EXAMPLE:} The user should be able to do this:
787
788 @example
789 # Board has 3 chips,
790 # PXA270 #1 network side, big endian
791 # PXA270 #2 video side, little endian
792 # Xilinx Glue logic
793 set CHIPNAME network
794 set ENDIAN big
795 source [find target/pxa270.cfg]
796 # variable: _TARGETNAME = network.cpu
797 # other commands can refer to the "network.cpu" tap.
798 $_TARGETNAME configure .... params for this cpu..
799
800 set ENDIAN little
801 set CHIPNAME video
802 source [find target/pxa270.cfg]
803 # variable: _TARGETNAME = video.cpu
804 # other commands can refer to the "video.cpu" tap.
805 $_TARGETNAME configure .... params for this cpu..
806
807 unset ENDIAN
808 set CHIPNAME xilinx
809 source [find target/spartan3.cfg]
810
811 # Since $_TARGETNAME is temporal..
812 # these names still work!
813 network.cpu configure ... params
814 video.cpu configure ... params
815
816 @end example
817
818 @subsection Default Value Boiler Plate Code
819
820 All target configuration files should start with this (or a modified form)
821
822 @example
823 # SIMPLE example
824 if @{ [info exists CHIPNAME] @} @{
825 set _CHIPNAME $CHIPNAME
826 @} else @{
827 set _CHIPNAME sam7x256
828 @}
829
830 if @{ [info exists ENDIAN] @} @{
831 set _ENDIAN $ENDIAN
832 @} else @{
833 set _ENDIAN little
834 @}
835
836 if @{ [info exists CPUTAPID ] @} @{
837 set _CPUTAPID $CPUTAPID
838 @} else @{
839 set _CPUTAPID 0x3f0f0f0f
840 @}
841
842 @end example
843
844 @subsection Creating Taps
845 After the ``defaults'' are choosen, [see above], the taps are created.
846
847 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
848
849 @example
850 # for an ARM7TDMI.
851 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
852 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
853 @end example
854
855 @b{COMPLEX example:}
856
857 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
858
859 @enumerate
860 @item @b{Unform tap names} - See: Tap Naming Convention
861 @item @b{_TARGETNAME} is created at the end where used.
862 @end enumerate
863
864 @example
865 if @{ [info exists FLASHTAPID ] @} @{
866 set _FLASHTAPID $FLASHTAPID
867 @} else @{
868 set _FLASHTAPID 0x25966041
869 @}
870 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
871
872 if @{ [info exists CPUTAPID ] @} @{
873 set _CPUTAPID $CPUTAPID
874 @} else @{
875 set _CPUTAPID 0x25966041
876 @}
877 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
878
879
880 if @{ [info exists BSTAPID ] @} @{
881 set _BSTAPID $BSTAPID
882 @} else @{
883 set _BSTAPID 0x1457f041
884 @}
885 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
886
887 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
888 @end example
889
890 @b{Tap Naming Convention}
891
892 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
893
894 @itemize @bullet
895 @item @b{tap}
896 @item @b{cpu}
897 @item @b{flash}
898 @item @b{bs}
899 @item @b{jrc}
900 @item @b{unknownN} - it happens :-(
901 @end itemize
902
903 @subsection Reset Configuration
904
905 Some chips have specific ways the TRST and SRST signals are
906 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
907 @b{BOARD SPECIFIC} they go in the board file.
908
909 @subsection Work Areas
910
911 Work areas are small RAM areas used by OpenOCD to speed up downloads,
912 and to download small snippits of code to program flash chips.
913
914 If the chip includes an form of ``on-chip-ram'' - and many do - define
915 a reasonable work area and use the ``backup'' option.
916
917 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
918 inaccessable if/when the application code enables or disables the MMU.
919
920 @subsection ARM Core Specific Hacks
921
922 If the chip has a DCC, enable it. If the chip is an arm9 with some
923 special high speed download - enable it.
924
925 If the chip has an ARM ``vector catch'' feature - by defeault enable
926 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
927 user is really writing a handler for those situations - they can
928 easily disable it. Experiance has shown the ``vector catch'' is
929 helpful - for common programing errors.
930
931 If present, the MMU, the MPU and the CACHE should be disabled.
932
933 @subsection Internal Flash Configuration
934
935 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
936
937 @b{Never ever} in the ``target configuration file'' define any type of
938 flash that is external to the chip. (For example the BOOT flash on
939 Chip Select 0). The BOOT flash information goes in a board file - not
940 the TARGET (chip) file.
941
942 Examples:
943 @itemize @bullet
944 @item at91sam7x256 - has 256K flash YES enable it.
945 @item str912 - has flash internal YES enable it.
946 @item imx27 - uses boot flash on CS0 - it goes in the board file.
947 @item pxa270 - again - CS0 flash - it goes in the board file.
948 @end itemize
949
950 @node About JIM-Tcl
951 @chapter About JIM-Tcl
952 @cindex JIM Tcl
953 @cindex tcl
954
955 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
956 learn more about JIM here: @url{http://jim.berlios.de}
957
958 @itemize @bullet
959 @item @b{JIM vrs TCL}
960 @* JIM-TCL is a stripped down version of the well known Tcl language,
961 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
962 fewer features. JIM-Tcl is a single .C file and a single .H file and
963 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
964 4.2MEG zip file containing 1540 files.
965
966 @item @b{Missing Features}
967 @* Our practice has been: Add/clone the Real TCL feature if/when
968 needed. We welcome JIM Tcl improvements, not bloat.
969
970 @item @b{Scripts}
971 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
972 command interpretor today (28/nov/2008) is a mixture of (newer)
973 JIM-Tcl commands, and (older) the orginal command interpretor.
974
975 @item @b{Commands}
976 @* At the OpenOCD telnet command line (or via the GDB mon command) one
977 can type a Tcl for() loop, set variables, etc.
978
979 @item @b{Historical Note}
980 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
981
982 @item @b{Need a Crash Course In TCL?}
983 @* See: @xref{TCL Crash Course}.
984 @end itemize
985
986
987 @node Daemon Configuration
988 @chapter Daemon Configuration
989 The commands here are commonly found in the openocd.cfg file and are
990 used to specify what TCP/IP ports are used, and how GDB should be
991 supported.
992 @section init
993 @cindex init
994 This command terminates the configuration stage and
995 enters the normal command mode. This can be useful to add commands to
996 the startup scripts and commands such as resetting the target,
997 programming flash, etc. To reset the CPU upon startup, add "init" and
998 "reset" at the end of the config script or at the end of the OpenOCD
999 command line using the @option{-c} command line switch.
1000
1001 If this command does not appear in any startup/configuration file
1002 OpenOCD executes the command for you after processing all
1003 configuration files and/or command line options.
1004
1005 @b{NOTE:} This command normally occurs at or near the end of your
1006 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1007 targets ready. For example: If your openocd.cfg file needs to
1008 read/write memory on your target - the init command must occur before
1009 the memory read/write commands.
1010
1011 @section TCP/IP Ports
1012 @itemize @bullet
1013 @item @b{telnet_port} <@var{number}>
1014 @cindex telnet_port
1015 @*Intended for a human. Port on which to listen for incoming telnet connections.
1016
1017 @item @b{tcl_port} <@var{number}>
1018 @cindex tcl_port
1019 @*Intended as a machine interface. Port on which to listen for
1020 incoming TCL syntax. This port is intended as a simplified RPC
1021 connection that can be used by clients to issue commands and get the
1022 output from the TCL engine.
1023
1024 @item @b{gdb_port} <@var{number}>
1025 @cindex gdb_port
1026 @*First port on which to listen for incoming GDB connections. The GDB port for the
1027 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1028 @end itemize
1029
1030 @section GDB Items
1031 @itemize @bullet
1032 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1033 @cindex gdb_breakpoint_override
1034 @anchor{gdb_breakpoint_override}
1035 @*Force breakpoint type for gdb 'break' commands.
1036 The raison d'etre for this option is to support GDB GUI's without
1037 a hard/soft breakpoint concept where the default OpenOCD and
1038 GDB behaviour is not sufficient. Note that GDB will use hardware
1039 breakpoints if the memory map has been set up for flash regions.
1040
1041 This option replaces older arm7_9 target commands that addressed
1042 the same issue.
1043
1044 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1045 @cindex gdb_detach
1046 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1047 Default behaviour is <@var{resume}>
1048
1049 @item @b{gdb_memory_map} <@var{enable|disable}>
1050 @cindex gdb_memory_map
1051 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1052 requested. gdb will then know when to set hardware breakpoints, and program flash
1053 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1054 for flash programming to work.
1055 Default behaviour is <@var{enable}>
1056 @xref{gdb_flash_program}.
1057
1058 @item @b{gdb_flash_program} <@var{enable|disable}>
1059 @cindex gdb_flash_program
1060 @anchor{gdb_flash_program}
1061 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1062 vFlash packet is received.
1063 Default behaviour is <@var{enable}>
1064 @comment END GDB Items
1065 @end itemize
1066
1067 @node Interface - Dongle Configuration
1068 @chapter Interface - Dongle Configuration
1069 Interface commands are normally found in an interface configuration
1070 file which is sourced by your openocd.cfg file. These commands tell
1071 OpenOCD what type of JTAG dongle you have and how to talk to it.
1072 @section Simple Complete Interface Examples
1073 @b{A Turtelizer FT2232 Based JTAG Dongle}
1074 @verbatim
1075 #interface
1076 interface ft2232
1077 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1078 ft2232_layout turtelizer2
1079 ft2232_vid_pid 0x0403 0xbdc8
1080 @end verbatim
1081 @b{A SEGGER Jlink}
1082 @verbatim
1083 # jlink interface
1084 interface jlink
1085 @end verbatim
1086 @b{A Raisonance RLink}
1087 @verbatim
1088 # rlink interface
1089 interface rlink
1090 @end verbatim
1091 @b{Parallel Port}
1092 @verbatim
1093 interface parport
1094 parport_port 0xc8b8
1095 parport_cable wiggler
1096 jtag_speed 0
1097 @end verbatim
1098 @section Interface Conmmand
1099
1100 The interface command tells OpenOCD what type of jtag dongle you are
1101 using. Depending upon the type of dongle, you may need to have one or
1102 more additional commands.
1103
1104 @itemize @bullet
1105
1106 @item @b{interface} <@var{name}>
1107 @cindex interface
1108 @*Use the interface driver <@var{name}> to connect to the
1109 target. Currently supported interfaces are
1110
1111 @itemize @minus
1112
1113 @item @b{parport}
1114 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1115
1116 @item @b{amt_jtagaccel}
1117 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1118 mode parallel port
1119
1120 @item @b{ft2232}
1121 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1122 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1123 platform. The libftdi uses libusb, and should be portable to all systems that provide
1124 libusb.
1125
1126 @item @b{ep93xx}
1127 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1128
1129 @item @b{presto}
1130 @* ASIX PRESTO USB JTAG programmer.
1131
1132 @item @b{usbprog}
1133 @* usbprog is a freely programmable USB adapter.
1134
1135 @item @b{gw16012}
1136 @* Gateworks GW16012 JTAG programmer.
1137
1138 @item @b{jlink}
1139 @* Segger jlink usb adapter
1140
1141 @item @b{rlink}
1142 @* Raisonance RLink usb adapter
1143 @comment - End parameters
1144 @end itemize
1145 @comment - End Interface
1146 @end itemize
1147 @subsection parport options
1148
1149 @itemize @bullet
1150 @item @b{parport_port} <@var{number}>
1151 @cindex parport_port
1152 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1153 the @file{/dev/parport} device
1154
1155 When using PPDEV to access the parallel port, use the number of the parallel port:
1156 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1157 you may encounter a problem.
1158 @item @b{parport_cable} <@var{name}>
1159 @cindex parport_cable
1160 @*The layout of the parallel port cable used to connect to the target.
1161 Currently supported cables are
1162 @itemize @minus
1163 @item @b{wiggler}
1164 @cindex wiggler
1165 The original Wiggler layout, also supported by several clones, such
1166 as the Olimex ARM-JTAG
1167 @item @b{wiggler2}
1168 @cindex wiggler2
1169 Same as original wiggler except an led is fitted on D5.
1170 @item @b{wiggler_ntrst_inverted}
1171 @cindex wiggler_ntrst_inverted
1172 Same as original wiggler except TRST is inverted.
1173 @item @b{old_amt_wiggler}
1174 @cindex old_amt_wiggler
1175 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1176 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1177 @item @b{chameleon}
1178 @cindex chameleon
1179 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1180 program the Chameleon itself, not a connected target.
1181 @item @b{dlc5}
1182 @cindex dlc5
1183 The Xilinx Parallel cable III.
1184 @item @b{triton}
1185 @cindex triton
1186 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1187 This is also the layout used by the HollyGates design
1188 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1189 @item @b{flashlink}
1190 @cindex flashlink
1191 The ST Parallel cable.
1192 @item @b{arm-jtag}
1193 @cindex arm-jtag
1194 Same as original wiggler except SRST and TRST connections reversed and
1195 TRST is also inverted.
1196 @item @b{altium}
1197 @cindex altium
1198 Altium Universal JTAG cable.
1199 @end itemize
1200 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1201 @cindex parport_write_on_exit
1202 @*This will configure the parallel driver to write a known value to the parallel
1203 interface on exiting OpenOCD
1204 @end itemize
1205
1206 @subsection amt_jtagaccel options
1207 @itemize @bullet
1208 @item @b{parport_port} <@var{number}>
1209 @cindex parport_port
1210 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1211 @file{/dev/parport} device
1212 @end itemize
1213 @subsection ft2232 options
1214
1215 @itemize @bullet
1216 @item @b{ft2232_device_desc} <@var{description}>
1217 @cindex ft2232_device_desc
1218 @*The USB device description of the FTDI FT2232 device. If not
1219 specified, the FTDI default value is used. This setting is only valid
1220 if compiled with FTD2XX support.
1221
1222 @b{TODO:} Confirm the following: On windows the name needs to end with
1223 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1224 this be added and when must it not be added? Why can't the code in the
1225 interface or in OpenOCD automatically add this if needed? -- Duane.
1226
1227 @item @b{ft2232_serial} <@var{serial-number}>
1228 @cindex ft2232_serial
1229 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1230 values are used.
1231 @item @b{ft2232_layout} <@var{name}>
1232 @cindex ft2232_layout
1233 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1234 signals. Valid layouts are
1235 @itemize @minus
1236 @item @b{usbjtag}
1237 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1238 @item @b{jtagkey}
1239 Amontec JTAGkey and JTAGkey-tiny
1240 @item @b{signalyzer}
1241 Signalyzer
1242 @item @b{olimex-jtag}
1243 Olimex ARM-USB-OCD
1244 @item @b{m5960}
1245 American Microsystems M5960
1246 @item @b{evb_lm3s811}
1247 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1248 SRST signals on external connector
1249 @item @b{comstick}
1250 Hitex STR9 comstick
1251 @item @b{stm32stick}
1252 Hitex STM32 Performance Stick
1253 @item @b{flyswatter}
1254 Tin Can Tools Flyswatter
1255 @item @b{turtelizer2}
1256 egnite Software turtelizer2
1257 @item @b{oocdlink}
1258 OOCDLink
1259 @item @b{axm0432_jtag}
1260 Axiom AXM-0432
1261 @end itemize
1262
1263 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1264 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1265 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1266 @example
1267 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1268 @end example
1269 @item @b{ft2232_latency} <@var{ms}>
1270 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1271 ft2232_read() fails to return the expected number of bytes. This can be caused by
1272 USB communication delays and has proved hard to reproduce and debug. Setting the
1273 FT2232 latency timer to a larger value increases delays for short USB packages but it
1274 also reduces the risk of timeouts before receiving the expected number of bytes.
1275 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1276 @end itemize
1277
1278 @subsection ep93xx options
1279 @cindex ep93xx options
1280 Currently, there are no options available for the ep93xx interface.
1281
1282 @section JTAG Speed
1283 @itemize @bullet
1284 @item @b{jtag_khz} <@var{reset speed kHz}>
1285 @cindex jtag_khz
1286
1287 It is debatable if this command belongs here - or in a board
1288 configuration file. In fact, in some situations the jtag speed is
1289 changed during the target initialization process (ie: (1) slow at
1290 reset, (2) program the cpu clocks, (3) run fast)
1291
1292 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1293
1294 Not all interfaces support ``rtck''. If the interface device can not
1295 support the rate asked for, or can not translate from kHz to
1296 jtag_speed, then an error is returned.
1297
1298 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1299 especially true for synthesized cores (-S). Also see RTCK.
1300
1301 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1302 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1303 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1304 the specified frequency.
1305
1306 @example
1307 # Fall back to 3mhz if RCLK is not supported
1308 jtag_rclk 3000
1309 @end example
1310
1311 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1312 @cindex jtag_speed
1313 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1314 speed. The actual effect of this option depends on the JTAG interface used.
1315
1316 The speed used during reset can be adjusted using setting jtag_speed during
1317 pre_reset and post_reset events.
1318 @itemize @minus
1319
1320 @item wiggler: maximum speed / @var{number}
1321 @item ft2232: 6MHz / (@var{number}+1)
1322 @item amt jtagaccel: 8 / 2**@var{number}
1323 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1324 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1325 @comment end speed list.
1326 @end itemize
1327
1328 @comment END command list
1329 @end itemize
1330
1331 @node Reset Configuration
1332 @chapter Reset Configuration
1333 @cindex reset configuration
1334
1335 Every system configuration may require a different reset
1336 configuration. This can also be quite confusing. Please see the
1337 various board files for example.
1338
1339 @section jtag_nsrst_delay <@var{ms}>
1340 @cindex jtag_nsrst_delay
1341 @*How long (in milliseconds) OpenOCD should wait after deasserting
1342 nSRST before starting new JTAG operations.
1343
1344 @section jtag_ntrst_delay <@var{ms}>
1345 @cindex jtag_ntrst_delay
1346 @*Same @b{jtag_nsrst_delay}, but for nTRST
1347
1348 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1349 big resistor/capacitor, reset supervisor, or on-chip features). This
1350 keeps the signal asserted for some time after the external reset got
1351 deasserted.
1352
1353 @section reset_config
1354
1355 @b{Note:} To maintainer types and integrators. Where exactly the
1356 ``reset configuration'' goes is a good question. It touches several
1357 things at once. In the end, if you have a board file - the board file
1358 should define it and assume 100% that the DONGLE supports
1359 anything. However, that does not mean the target should not also make
1360 not of something the silicon vendor has done inside the
1361 chip. @i{Grr.... nothing is every pretty.}
1362
1363 @* @b{Problems:}
1364 @enumerate
1365 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1366 @item Every board is also slightly different; some boards tie TRST and SRST together.
1367 @item Every chip is slightly different; some chips internally tie the two signals together.
1368 @item Some may not impliment all of the signals the same way.
1369 @item Some signals might be push-pull, others open-drain/collector.
1370 @end enumerate
1371 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1372 reset the TAP via TRST and send commands through the JTAG tap to halt
1373 the CPU at the reset vector before the 1st instruction is executed,
1374 and finally release the SRST signal.
1375 @*Depending upon your board vendor, your chip vendor, etc, these
1376 signals may have slightly different names.
1377
1378 OpenOCD defines these signals in these terms:
1379 @itemize @bullet
1380 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1381 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1382 @end itemize
1383
1384 The Command:
1385
1386 @itemize @bullet
1387 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1388 @cindex reset_config
1389 @* The @t{reset_config} command tells OpenOCD the reset configuration
1390 of your combination of Dongle, Board, and Chips.
1391 If the JTAG interface provides SRST, but the target doesn't connect
1392 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1393 be @option{none}, @option{trst_only}, @option{srst_only} or
1394 @option{trst_and_srst}.
1395
1396 [@var{combination}] is an optional value specifying broken reset
1397 signal implementations. @option{srst_pulls_trst} states that the
1398 testlogic is reset together with the reset of the system (e.g. Philips
1399 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1400 the system is reset together with the test logic (only hypothetical, I
1401 haven't seen hardware with such a bug, and can be worked around).
1402 @option{combined} imples both @option{srst_pulls_trst} and
1403 @option{trst_pulls_srst}. The default behaviour if no option given is
1404 @option{separate}.
1405
1406 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1407 driver type of the reset lines to be specified. Possible values are
1408 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1409 test reset signal, and @option{srst_open_drain} (default) and
1410 @option{srst_push_pull} for the system reset. These values only affect
1411 JTAG interfaces with support for different drivers, like the Amontec
1412 JTAGkey and JTAGAccelerator.
1413
1414 @comment - end command
1415 @end itemize
1416
1417
1418
1419 @node Tap Creation
1420 @chapter Tap Creation
1421 @cindex tap creation
1422 @cindex tap configuration
1423
1424 In order for OpenOCD to control a target, a JTAG tap must be
1425 defined/created.
1426
1427 Commands to create taps are normally found in a configuration file and
1428 are not normally typed by a human.
1429
1430 When a tap is created a @b{dotted.name} is created for the tap. Other
1431 commands use that dotted.name to manipulate or refer to the tap.
1432
1433 Tap Uses:
1434 @itemize @bullet
1435 @item @b{Debug Target} A tap can be used by a GDB debug target
1436 @item @b{Flash Programing} Some chips program the flash via JTAG
1437 @item @b{Boundry Scan} Some chips support boundry scan.
1438 @end itemize
1439
1440
1441 @section jtag newtap
1442 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1443 @cindex jtag_device
1444 @cindex jtag newtap
1445 @cindex tap
1446 @cindex tap order
1447 @cindex tap geometry
1448
1449 @comment START options
1450 @itemize @bullet
1451 @item @b{CHIPNAME}
1452 @* is a symbolic name of the chip.
1453 @item @b{TAPNAME}
1454 @* is a symbol name of a tap present on the chip.
1455 @item @b{Required configparams}
1456 @* Every tap has 3 required configparams, and several ``optional
1457 parameters'', the required parameters are:
1458 @comment START REQUIRED
1459 @itemize @bullet
1460 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1461 @item @b{-ircapture NUMBER} - the ID code capture command.
1462 @item @b{-irmask NUMBER} - the corrisponding mask for the ir register.
1463 @comment END REQUIRED
1464 @end itemize
1465 An example of a FOOBAR Tap
1466 @example
1467 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1468 @end example
1469 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1470 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1471 [6,4,2,0] are checked.
1472
1473 FIXME: The IDCODE - this was not used in the old code, it should be?
1474 Right? -Duane.
1475 @item @b{Optional configparams}
1476 @comment START Optional
1477 @itemize @bullet
1478 @item @b{-expected-id NUMBER}
1479 @* By default it is zero. If non-zero represents the
1480 expected tap ID used when the Jtag Chain is examined. See below.
1481 @item @b{-disable}
1482 @item @b{-enable}
1483 @* By default not specified the tap is enabled. Some chips have a
1484 jtag route controller (JRC) that is used to enable and/or disable
1485 specific jtag taps. You can later enable or disable any JTAG tap via
1486 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1487 DOTTED.NAME}
1488 @comment END Optional
1489 @end itemize
1490
1491 @comment END OPTIONS
1492 @end itemize
1493 @b{Notes:}
1494 @comment START NOTES
1495 @itemize @bullet
1496 @item @b{Technically}
1497 @* newtap is a sub command of the ``jtag'' command
1498 @item @b{Big Picture Background}
1499 @*GDB Talks to OpenOCD using the GDB protocol via
1500 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1501 control the JTAG chain on your board. Your board has one or more chips
1502 in a @i{daisy chain configuration}. Each chip may have one or more
1503 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1504 @item @b{NAME Rules}
1505 @*Names follow ``C'' symbol name rules (start with alpha ...)
1506 @item @b{TAPNAME - Conventions}
1507 @itemize @bullet
1508 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1509 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1510 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1511 @item @b{bs} - for boundary scan if this is a seperate tap.
1512 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1513 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1514 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1515 @item @b{When in doubt} - use the chip makers name in their data sheet.
1516 @end itemize
1517 @item @b{DOTTED.NAME}
1518 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1519 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1520 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1521 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1522 numerous other places to refer to various taps.
1523 @item @b{ORDER}
1524 @* The order this command appears via the config files is
1525 important.
1526 @item @b{Multi Tap Example}
1527 @* This example is based on the ST Microsystems STR912. See the ST
1528 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1529 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1530
1531 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1532 @*@b{checked: 28/nov/2008}
1533
1534 The diagram shows the TDO pin connects to the flash tap, flash TDI
1535 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1536 tap which then connects to the TDI pin.
1537
1538 @example
1539 # The order is...
1540 # create tap: 'str912.flash'
1541 jtag newtap str912 flash ... params ...
1542 # create tap: 'str912.cpu'
1543 jtag newtap str912 cpu ... params ...
1544 # create tap: 'str912.bs'
1545 jtag newtap str912 bs ... params ...
1546 @end example
1547
1548 @item @b{Note: Deprecated} - Index Numbers
1549 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1550 feature is still present, however its use is highly discouraged and
1551 should not be counted upon.
1552 @item @b{Multiple chips}
1553 @* If your board has multiple chips, you should be
1554 able to @b{source} two configuration files, in the proper order, and
1555 have the taps created in the proper order.
1556 @comment END NOTES
1557 @end itemize
1558 @comment at command level
1559 @comment DOCUMENT old command
1560 @section jtag_device - REMOVED
1561 @example
1562 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1563 @end example
1564 @cindex jtag_device
1565
1566 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1567 by the ``jtag newtap'' command. The documentation remains here so that
1568 one can easily convert the old syntax to the new syntax. About the old
1569 syntax: The old syntax is positional, ie: The 4th parameter is the
1570 ``irmask''. The new syntax requires named prefixes, and supports
1571 additional options, for example ``-irmask 4''. Please refer to the
1572 @b{jtag newtap} command for details.
1573 @example
1574 OLD: jtag_device 8 0x01 0x0e3 0xfe
1575 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
1576 @end example
1577
1578 @section Enable/Disable Taps
1579 @b{Note:} These commands are intended to be used as a machine/script
1580 interface. Humans might find the ``scan_chain'' command more helpful
1581 when querying the state of the JTAG taps.
1582
1583 @b{By default, all taps are enabled}
1584
1585 @itemize @bullet
1586 @item @b{jtag tapenable} @var{DOTTED.NAME}
1587 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1588 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1589 @end itemize
1590 @cindex tap enable
1591 @cindex tap disable
1592 @cindex JRC
1593 @cindex route controller
1594
1595 These commands are used when your target has a JTAG Route controller
1596 that effectively adds or removes a tap from the jtag chain in a
1597 non-standard way.
1598
1599 The ``standard way'' to remove a tap would be to place the tap in
1600 bypass mode. But with the advent of modern chips, this is not always a
1601 good solution. Some taps operate slowly, others operate fast, and
1602 there are other JTAG clock syncronization problems one must face. To
1603 solve that problem, the JTAG Route controller was introduced. Rather
1604 then ``bypass'' the tap, the tap is completely removed from the
1605 circuit and skipped.
1606
1607
1608 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1609
1610 @itemize @bullet
1611 @item @b{Enabled - Not In ByPass} and has a variable bit length
1612 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1613 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1614 @end itemize
1615
1616 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1617 @b{Historical note:} this feature was added 28/nov/2008
1618
1619 @b{jtag tapisenabled DOTTED.NAME}
1620
1621 This command returns 1 if the named tap is currently enabled, 0 if not.
1622 This command exists so that scripts that manipulate a JRC (like the
1623 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1624 enabled, or disabled.
1625
1626 @page
1627 @node Target Configuration
1628 @chapter Target Configuration
1629
1630 This chapter discusses how to create a GDB Debug Target. Before
1631 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1632
1633 @section targets [NAME]
1634 @b{Note:} This command name is PLURAL - not singular.
1635
1636 With NO parameter, this plural @b{targets} command lists all known
1637 targets in a human friendly form.
1638
1639 With a parameter, this pural @b{targets} command sets the current
1640 target to the given name. (ie: If there are multiple debug targets)
1641
1642 Example:
1643 @verbatim
1644 (gdb) mon targets
1645 CmdName Type Endian ChainPos State
1646 -- ---------- ---------- ---------- -------- ----------
1647 0: target0 arm7tdmi little 0 halted
1648 @end verbatim
1649
1650 @section target COMMANDS
1651 @b{Note:} This command name is SINGULAR - not plural. It is used to
1652 manipulate specific targets, to create targets and other things.
1653
1654 Once a target is created, a TARGETNAME (object) command is created;
1655 see below for details.
1656
1657 The TARGET command accepts these sub-commands:
1658 @itemize @bullet
1659 @item @b{create} .. parameters ..
1660 @* creates a new target, See below for details.
1661 @item @b{types}
1662 @* Lists all supported target types (perhaps some are not yet in this document).
1663 @item @b{names}
1664 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1665 @verbatim
1666 foreach t [target names] {
1667 puts [format "Target: %s\n" $t]
1668 }
1669 @end verbatim
1670 @item @b{current}
1671 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1672 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1673 @item @b{number} @b{NUMBER}
1674 @* Internally OpenOCD maintains a list of targets - in numerical index
1675 (0..N-1) this command returns the name of the target at index N.
1676 Example usage:
1677 @verbatim
1678 set thename [target number $x]
1679 puts [format "Target %d is: %s\n" $x $thename]
1680 @end verbatim
1681 @item @b{count}
1682 @* Returns the number of targets known to OpenOCD (see number above)
1683 Example:
1684 @verbatim
1685 set c [target count]
1686 for { set x 0 } { $x < $c } { incr x } {
1687 # Assuming you have created this function
1688 print_target_details $x
1689 }
1690 @end verbatim
1691
1692 @end itemize
1693
1694 @section TARGETNAME (object) commands
1695 @b{Use:} Once a target is created, an ``object name'' that represents the
1696 target is created. By convention, the target name is identical to the
1697 tap name. In a multiple target system, one can preceed many common
1698 commands with a specific target name and effect only that target.
1699 @example
1700 str912.cpu mww 0x1234 0x42
1701 omap3530.cpu mww 0x5555 123
1702 @end example
1703
1704 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1705 good example is a on screen button, once a button is created a button
1706 has a name (a path in TK terms) and that name is useable as a 1st
1707 class command. For example in TK, one can create a button and later
1708 configure it like this:
1709
1710 @example
1711 # Create
1712 button .foobar -background red -command @{ foo @}
1713 # Modify
1714 .foobar configure -foreground blue
1715 # Query
1716 set x [.foobar cget -background]
1717 # Report
1718 puts [format "The button is %s" $x]
1719 @end example
1720
1721 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1722 button. Commands avaialble as a ``target object'' are:
1723
1724 @comment START targetobj commands.
1725 @itemize @bullet
1726 @item @b{configure} - configure the target; see Target Config/Cget Options below
1727 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1728 @item @b{curstate} - current target state (running, halt, etc)
1729 @item @b{eventlist}
1730 @* Intended for a human to see/read the currently configure target events.
1731 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1732 @comment start memory
1733 @itemize @bullet
1734 @item @b{mww} ...
1735 @item @b{mwh} ...
1736 @item @b{mwb} ...
1737 @item @b{mdw} ...
1738 @item @b{mdh} ...
1739 @item @b{mdb} ...
1740 @comment end memory
1741 @end itemize
1742 @item @b{Memory To Array, Array To Memory}
1743 @* These are aimed at a machine interface to memory
1744 @itemize @bullet
1745 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1746 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1747 @* Where:
1748 @* @b{ARRAYNAME} is the name of an array variable
1749 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1750 @* @b{ADDRESS} is the target memory address
1751 @* @b{COUNT} is the number of elements to process
1752 @end itemize
1753 @item @b{Used during ``reset''}
1754 @* These commands are used internally by the OpenOCD scripts to deal
1755 with odd reset situations and are not documented here.
1756 @itemize @bullet
1757 @item @b{arp_examine}
1758 @item @b{arp_poll}
1759 @item @b{arp_reset}
1760 @item @b{arp_halt}
1761 @item @b{arp_waitstate}
1762 @end itemize
1763 @item @b{invoke-event} @b{EVENT-NAME}
1764 @* Invokes the specific event manually for the target
1765 @end itemize
1766
1767 @section Target Events
1768 At various times, certain things can happen, or you want them to happen.
1769
1770 Examples:
1771 @itemize @bullet
1772 @item What should happen when GDB connects? Should your target reset?
1773 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1774 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1775 @end itemize
1776
1777 All of the above items are handled by target events.
1778
1779 To specify an event action, either during target creation, or later
1780 via ``$_TARGETNAME configure'' see this example.
1781
1782 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1783 target event name, and BODY is a tcl procedure or string of commands
1784 to execute.
1785
1786 The programmers model is the ``-command'' option used in Tcl/Tk
1787 buttons and events. Below are two identical examples, the first
1788 creates and invokes small procedure. The second inlines the procedure.
1789
1790 @example
1791 proc my_attach_proc @{ @} @{
1792 puts "RESET...."
1793 reset halt
1794 @}
1795 mychip.cpu configure -event gdb-attach my_attach_proc
1796 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1797 @end example
1798
1799 @section Current Events
1800 The following events are available:
1801 @itemize @bullet
1802 @item @b{debug-halted}
1803 @* The target has halted for debug reasons (ie: breakpoint)
1804 @item @b{debug-resumed}
1805 @* The target has resumed (ie: gdb said run)
1806 @item @b{early-halted}
1807 @* Occurs early in the halt process
1808 @item @b{examine-end}
1809 @* Currently not used (goal: when JTAG examine completes)
1810 @item @b{examine-start}
1811 @* Currently not used (goal: when JTAG examine starts)
1812 @item @b{gdb-attach}
1813 @* When GDB connects
1814 @item @b{gdb-detach}
1815 @* When GDB disconnects
1816 @item @b{gdb-end}
1817 @* When the taret has halted and GDB is not doing anything (see early halt)
1818 @item @b{gdb-flash-erase-start}
1819 @* Before the GDB flash process tries to erase the flash
1820 @item @b{gdb-flash-erase-end}
1821 @* After the GDB flash process has finished erasing the flash
1822 @item @b{gdb-flash-write-start}
1823 @* Before GDB writes to the flash
1824 @item @b{gdb-flash-write-end}
1825 @* After GDB writes to the flash
1826 @item @b{gdb-start}
1827 @* Before the taret steps, gdb is trying to start/resume the tarfget
1828 @item @b{halted}
1829 @* The target has halted
1830 @item @b{old-gdb_program_config}
1831 @* DO NOT USE THIS: Used internally
1832 @item @b{old-pre_resume}
1833 @* DO NOT USE THIS: Used internally
1834 @item @b{reset-assert-pre}
1835 @* Before reset is asserted on the tap.
1836 @item @b{reset-assert-post}
1837 @* Reset is now asserted on the tap.
1838 @item @b{reset-deassert-pre}
1839 @* Reset is about to be released on the tap
1840 @item @b{reset-deassert-post}
1841 @* Reset has been released on the tap
1842 @item @b{reset-end}
1843 @* Currently not used.
1844 @item @b{reset-halt-post}
1845 @* Currently not usd
1846 @item @b{reset-halt-pre}
1847 @* Currently not used
1848 @item @b{reset-init}
1849 @* Currently not used
1850 @item @b{reset-start}
1851 @* Currently not used
1852 @item @b{reset-wait-pos}
1853 @* Currently not used
1854 @item @b{reset-wait-pre}
1855 @* Currently not used
1856 @item @b{resume-start}
1857 @* Before any target is resumed
1858 @item @b{resume-end}
1859 @* After all targets have resumed
1860 @item @b{resume-ok}
1861 @* Success
1862 @item @b{resumed}
1863 @* Target has resumed
1864 @item @b{tap-enable}
1865 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1866 @example
1867 jtag configure DOTTED.NAME -event tap-enable @{
1868 puts "Enabling CPU"
1869 ...
1870 @}
1871 @end example
1872 @item @b{tap-disable}
1873 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1874 @example
1875 jtag configure DOTTED.NAME -event tap-disable @{
1876 puts "Disabling CPU"
1877 ...
1878 @}
1879 @end example
1880 @end itemize
1881
1882
1883 @section target create
1884 @cindex target
1885 @cindex target creation
1886
1887 @example
1888 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1889 @end example
1890 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1891 @comment START params
1892 @itemize @bullet
1893 @item @b{NAME}
1894 @* Is the name of the debug target. By convention it should be the tap
1895 DOTTED.NAME, this name is also used to create the target object
1896 command.
1897 @item @b{TYPE}
1898 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1899 @comment START types
1900 @itemize @minus
1901 @item @b{arm7tdmi}
1902 @item @b{arm720t}
1903 @item @b{arm9tdmi}
1904 @item @b{arm920t}
1905 @item @b{arm922t}
1906 @item @b{arm926ejs}
1907 @item @b{arm966e}
1908 @item @b{cortex_m3}
1909 @item @b{feroceon}
1910 @item @b{xscale}
1911 @item @b{arm11}
1912 @item @b{mips_m4k}
1913 @comment end TYPES
1914 @end itemize
1915 @item @b{PARAMS}
1916 @*PARAMs are various target configure parameters, the following are mandatory
1917 at configuration:
1918 @comment START mandatory
1919 @itemize @bullet
1920 @item @b{-endian big|little}
1921 @item @b{-chain-position DOTTED.NAME}
1922 @comment end MANDATORY
1923 @end itemize
1924 @comment END params
1925 @end itemize
1926
1927 @section Target Config/Cget Options
1928 These options can be specified when the target is created, or later
1929 via the configure option or to query the target via cget.
1930 @itemize @bullet
1931 @item @b{-type} - returns the target type
1932 @item @b{-event NAME BODY} see Target events
1933 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1934 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1935 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1936 @item @b{-work-area-backup [0|1]} does the work area get backed up
1937 @item @b{-endian [big|little]}
1938 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1939 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1940 @end itemize
1941 Example:
1942 @example
1943 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1944 set name [target number $x]
1945 set y [$name cget -endian]
1946 set z [$name cget -type]
1947 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1948 @}
1949 @end example
1950
1951 @section Target Varients
1952 @itemize @bullet
1953 @item @b{arm7tdmi}
1954 @* Unknown (please write me)
1955 @item @b{arm720t}
1956 @* Unknown (please write me) (simular to arm7tdmi)
1957 @item @b{arm9tdmi}
1958 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
1959 This enables the hardware single-stepping support found on these
1960 cores.
1961 @item @b{arm920t}
1962 @* None.
1963 @item @b{arm966e}
1964 @* None (this is also used as the ARM946)
1965 @item @b{cortex_m3}
1966 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
1967 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
1968 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
1969 be detected and the normal reset behaviour used.
1970 @item @b{xscale}
1971 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
1972 @item @b{arm11}
1973 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
1974 @item @b{mips_m4k}
1975 @* Use variant @option{ejtag_srst} when debugging targets that do not
1976 provide a functional SRST line on the EJTAG connector. This causes
1977 OpenOCD to instead use an EJTAG software reset command to reset the
1978 processor. You still need to enable @option{srst} on the reset
1979 configuration command to enable OpenOCD hardware reset functionality.
1980 @comment END varients
1981 @end itemize
1982 @section working_area - Command Removed
1983 @cindex working_area
1984 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
1985 @* This documentation remains because there are existing scripts that
1986 still use this that need to be converted.
1987 @example
1988 working_area target# address size backup| [virtualaddress]
1989 @end example
1990 @* The target# is a the 0 based target numerical index.
1991
1992 This command specifies a working area for the debugger to use. This
1993 may be used to speed-up downloads to target memory and flash
1994 operations, or to perform otherwise unavailable operations (some
1995 coprocessor operations on ARM7/9 systems, for example). The last
1996 parameter decides whether the memory should be preserved
1997 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
1998 possible, use a working_area that doesn't need to be backed up, as
1999 performing a backup slows down operation.
2000
2001 @node Flash Configuration
2002 @chapter Flash Programing
2003 @cindex Flash Configuration
2004
2005 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2006 flash that a micro may boot from. Perhaps you the reader would like to
2007 contribute support for this.
2008
2009 Flash Steps:
2010 @enumerate
2011 @item Configure via the command @b{flash bank}
2012 @* Normally this is done in a configuration file.
2013 @item Operate on the flash via @b{flash SOMECOMMAND}
2014 @* Often commands to manipulate the flash are typed by a human, or run
2015 via a script in some automated way. For example: To program the boot
2016 flash on your board.
2017 @item GDB Flashing
2018 @* Flashing via GDB requires the flash be configured via ``flash
2019 bank'', and the GDB flash features be enabled. See the Daemon
2020 configuration section for more details.
2021 @end enumerate
2022
2023 @section Flash commands
2024 @cindex Flash commands
2025 @subsection flash banks
2026 @b{flash banks}
2027 @cindex flash banks
2028 @*List configured flash banks
2029 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2030 @subsection flash info
2031 @b{flash info} <@var{num}>
2032 @cindex flash info
2033 @*Print info about flash bank <@option{num}>
2034 @subsection flash probe
2035 @b{flash probe} <@var{num}>
2036 @cindex flash probe
2037 @*Identify the flash, or validate the parameters of the configured flash. Operation
2038 depends on the flash type.
2039 @subsection flash erase_check
2040 @b{flash erase_check} <@var{num}>
2041 @cindex flash erase_check
2042 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2043 updates the erase state information displayed by @option{flash info}. That means you have
2044 to issue an @option{erase_check} command after erasing or programming the device to get
2045 updated information.
2046 @subsection flash protect_check
2047 @b{flash protect_check} <@var{num}>
2048 @cindex flash protect_check
2049 @*Check protection state of sectors in flash bank <num>.
2050 @option{flash erase_sector} using the same syntax.
2051 @subsection flash erase_sector
2052 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2053 @cindex flash erase_sector
2054 @anchor{flash erase_sector}
2055 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2056 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2057 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2058 the CFI driver).
2059 @subsection flash erase_address
2060 @b{flash erase_address} <@var{address}> <@var{length}>
2061 @cindex flash erase_address
2062 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2063 @subsection flash write_bank
2064 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2065 @cindex flash write_bank
2066 @anchor{flash write_bank}
2067 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2068 <@option{offset}> bytes from the beginning of the bank.
2069 @subsection flash write_image
2070 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2071 @cindex flash write_image
2072 @anchor{flash write_image}
2073 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2074 [@var{offset}] can be specified and the file [@var{type}] can be specified
2075 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2076 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2077 if the @option{erase} parameter is given.
2078 @subsection flash protect
2079 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2080 @cindex flash protect
2081 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2082 <@var{last}> of @option{flash bank} <@var{num}>.
2083
2084 @subsection mFlash commands
2085 @cindex mFlash commands
2086 @itemize @bullet
2087 @item @b{mflash probe}
2088 @cindex mflash probe
2089 Probe mflash.
2090 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2091 @cindex mflash write
2092 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2093 <@var{offset}> bytes from the beginning of the bank.
2094 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2095 @cindex mflash dump
2096 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2097 to a <@var{file}>.
2098 @end itemize
2099
2100 @section flash bank command
2101 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2102
2103 @example
2104 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2105 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2106 @end example
2107 @cindex flash bank
2108 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2109 and <@var{bus_width}> bytes using the selected flash <driver>.
2110
2111 @subsection External Flash - cfi options
2112 @cindex cfi options
2113 CFI flash are external flash chips - often they are connected to a
2114 specific chip select on the micro. By default at hard reset most
2115 micros have the ablity to ``boot'' from some flash chip - typically
2116 attached to the chips CS0 pin.
2117
2118 For other chip selects: OpenOCD does not know how to configure, or
2119 access a specific chip select. Instead you the human might need to via
2120 other commands (like: mww) configure additional chip selects, or
2121 perhaps configure a GPIO pin that controls the ``write protect'' pin
2122 on the FLASH chip.
2123
2124 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2125 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2126 @*CFI flashes require the number of the target they're connected to as an additional
2127 argument. The CFI driver makes use of a working area (specified for the target)
2128 to significantly speed up operation.
2129
2130 @var{chip_width} and @var{bus_width} are specified in bytes.
2131
2132 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2133
2134 @var{x16_as_x8} ???
2135
2136 @subsection Internal Flash (Micro Controllers)
2137 @subsubsection lpc2000 options
2138 @cindex lpc2000 options
2139
2140 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2141 <@var{clock}> [@var{calc_checksum}]
2142 @*LPC flashes don't require the chip and bus width to be specified. Additional
2143 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2144 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2145 of the target this flash belongs to (first is 0), the frequency at which the core
2146 is currently running (in kHz - must be an integral number), and the optional keyword
2147 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2148 vector table.
2149
2150
2151 @subsubsection at91sam7 options
2152 @cindex at91sam7 options
2153
2154 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2155 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2156 reading the chip-id and type.
2157
2158 @subsubsection str7 options
2159 @cindex str7 options
2160
2161 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2162 @*variant can be either STR71x, STR73x or STR75x.
2163
2164 @subsubsection str9 options
2165 @cindex str9 options
2166
2167 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2168 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2169 @example
2170 str9x flash_config 0 4 2 0 0x80000
2171 @end example
2172 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2173
2174 @subsubsection str9 options (str9xpec driver)
2175
2176 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2177 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2178 @option{enable_turbo} <@var{num>.}
2179
2180 Only use this driver for locking/unlocking the device or configuring the option bytes.
2181 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2182
2183 @subsubsection stellaris (LM3Sxxx) options
2184 @cindex stellaris (LM3Sxxx) options
2185
2186 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2187 @*stellaris flash plugin only require the @var{target#}.
2188
2189 @subsubsection stm32x options
2190 @cindex stm32x options
2191
2192 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2193 @*stm32x flash plugin only require the @var{target#}.
2194
2195 @subsubsection aduc702x options
2196 @cindex aduc702x options
2197
2198 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2199 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
2200
2201 @subsection mFlash configuration
2202 @cindex mFlash configuration
2203 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2204 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2205 @cindex mflash bank
2206 @*Configures a mflash for <@var{soc}> host bank at
2207 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2208 order. Pin number format is dependent on host GPIO calling convention.
2209 If WP or DPD pin was not used, write -1. Currently, mflash bank
2210 support s3c2440 and pxa270.
2211
2212 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2213 @example
2214 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2215 @end example
2216 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2217 @example
2218 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2219 @end example
2220
2221 @section Micro Controller Specific Flash Commands
2222
2223 @subsection AT91SAM7 specific commands
2224 @cindex AT91SAM7 specific commands
2225 The flash configuration is deduced from the chip identification register. The flash
2226 controller handles erases automatically on a page (128/265 byte) basis so erase is
2227 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2228 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2229 that can be erased separatly. Only an EraseAll command is supported by the controller
2230 for each flash plane and this is called with
2231 @itemize @bullet
2232 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2233 @*bulk erase flash planes first_plane to last_plane.
2234 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2235 @cindex at91sam7 gpnvm
2236 @*set or clear a gpnvm bit for the processor
2237 @end itemize
2238
2239 @subsection STR9 specific commands
2240 @cindex STR9 specific commands
2241 @anchor{STR9 specific commands}
2242 These are flash specific commands when using the str9xpec driver.
2243 @itemize @bullet
2244 @item @b{str9xpec enable_turbo} <@var{num}>
2245 @cindex str9xpec enable_turbo
2246 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2247 directly to the embedded flash controller.
2248 @item @b{str9xpec disable_turbo} <@var{num}>
2249 @cindex str9xpec disable_turbo
2250 @*restore the str9 into jtag chain.
2251 @item @b{str9xpec lock} <@var{num}>
2252 @cindex str9xpec lock
2253 @*lock str9 device. The str9 will only respond to an unlock command that will
2254 erase the device.
2255 @item @b{str9xpec unlock} <@var{num}>
2256 @cindex str9xpec unlock
2257 @*unlock str9 device.
2258 @item @b{str9xpec options_read} <@var{num}>
2259 @cindex str9xpec options_read
2260 @*read str9 option bytes.
2261 @item @b{str9xpec options_write} <@var{num}>
2262 @cindex str9xpec options_write
2263 @*write str9 option bytes.
2264 @end itemize
2265
2266 Note: Before using the str9xpec driver here is some background info to help
2267 you better understand how the drivers works. OpenOCD has two flash drivers for
2268 the str9.
2269 @enumerate
2270 @item
2271 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2272 flash programming as it is faster than the @option{str9xpec} driver.
2273 @item
2274 Direct programming @option{str9xpec} using the flash controller, this is
2275 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2276 core does not need to be running to program using this flash driver. Typical use
2277 for this driver is locking/unlocking the target and programming the option bytes.
2278 @end enumerate
2279
2280 Before we run any cmds using the @option{str9xpec} driver we must first disable
2281 the str9 core. This example assumes the @option{str9xpec} driver has been
2282 configured for flash bank 0.
2283 @example
2284 # assert srst, we do not want core running
2285 # while accessing str9xpec flash driver
2286 jtag_reset 0 1
2287 # turn off target polling
2288 poll off
2289 # disable str9 core
2290 str9xpec enable_turbo 0
2291 # read option bytes
2292 str9xpec options_read 0
2293 # re-enable str9 core
2294 str9xpec disable_turbo 0
2295 poll on
2296 reset halt
2297 @end example
2298 The above example will read the str9 option bytes.
2299 When performing a unlock remember that you will not be able to halt the str9 - it
2300 has been locked. Halting the core is not required for the @option{str9xpec} driver
2301 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2302
2303 @subsection STR9 configuration
2304 @cindex STR9 configuration
2305 @itemize @bullet
2306 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2307 <@var{BBADR}> <@var{NBBADR}>
2308 @cindex str9x flash_config
2309 @*Configure str9 flash controller.
2310 @example
2311 eg. str9x flash_config 0 4 2 0 0x80000
2312 This will setup
2313 BBSR - Boot Bank Size register
2314 NBBSR - Non Boot Bank Size register
2315 BBADR - Boot Bank Start Address register
2316 NBBADR - Boot Bank Start Address register
2317 @end example
2318 @end itemize
2319
2320 @subsection STR9 option byte configuration
2321 @cindex STR9 option byte configuration
2322 @itemize @bullet
2323 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2324 @cindex str9xpec options_cmap
2325 @*configure str9 boot bank.
2326 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2327 @cindex str9xpec options_lvdthd
2328 @*configure str9 lvd threshold.
2329 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2330 @cindex str9xpec options_lvdsel
2331 @*configure str9 lvd source.
2332 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2333 @cindex str9xpec options_lvdwarn
2334 @*configure str9 lvd reset warning source.
2335 @end itemize
2336
2337 @subsection STM32x specific commands
2338 @cindex STM32x specific commands
2339
2340 These are flash specific commands when using the stm32x driver.
2341 @itemize @bullet
2342 @item @b{stm32x lock} <@var{num}>
2343 @cindex stm32x lock
2344 @*lock stm32 device.
2345 @item @b{stm32x unlock} <@var{num}>
2346 @cindex stm32x unlock
2347 @*unlock stm32 device.
2348 @item @b{stm32x options_read} <@var{num}>
2349 @cindex stm32x options_read
2350 @*read stm32 option bytes.
2351 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2352 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2353 @cindex stm32x options_write
2354 @*write stm32 option bytes.
2355 @item @b{stm32x mass_erase} <@var{num}>
2356 @cindex stm32x mass_erase
2357 @*mass erase flash memory.
2358 @end itemize
2359
2360 @subsection Stellaris specific commands
2361 @cindex Stellaris specific commands
2362
2363 These are flash specific commands when using the Stellaris driver.
2364 @itemize @bullet
2365 @item @b{stellaris mass_erase} <@var{num}>
2366 @cindex stellaris mass_erase
2367 @*mass erase flash memory.
2368 @end itemize
2369
2370
2371 @node General Commands
2372 @chapter General Commands
2373 @cindex commands
2374
2375 The commands documented in this chapter here are common commands that
2376 you a human may want to type and see the output of. Configuration type
2377 commands are documented elsewhere.
2378
2379 Intent:
2380 @itemize @bullet
2381 @item @b{Source Of Commands}
2382 @* OpenOCD commands can occur in a configuration script (discussed
2383 elsewhere) or typed manually by a human or supplied programatically,
2384 or via one of several Tcp/Ip Ports.
2385
2386 @item @b{From the human}
2387 @* A human should interact with the Telnet interface (default port: 4444,
2388 or via GDB, default port 3333)
2389
2390 To issue commands from within a GDB session, use the @option{monitor}
2391 command, e.g. use @option{monitor poll} to issue the @option{poll}
2392 command. All output is relayed through the GDB session.
2393
2394 @item @b{Machine Interface}
2395 The TCL interface intent is to be a machine interface. The default TCL
2396 port is 5555.
2397 @end itemize
2398
2399
2400 @section Daemon Commands
2401
2402 @subsection sleep
2403 @b{sleep} <@var{msec}>
2404 @cindex sleep
2405 @*Wait for n milliseconds before resuming. Useful in connection with script files
2406 (@var{script} command and @var{target_script} configuration).
2407
2408 @subsection sleep
2409 @b{shutdown}
2410 @cindex shutdown
2411 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2412
2413 @subsection debug_level [@var{n}]
2414 @cindex debug_level
2415 @anchor{debug_level}
2416 @*Display or adjust debug level to n<0-3>
2417
2418 @subsection fast [@var{enable|disable}]
2419 @cindex fast
2420 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2421 downloads and fast memory access will work if the JTAG interface isn't too fast and
2422 the core doesn't run at a too low frequency. Note that this option only changes the default
2423 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2424 individually.
2425
2426 The target specific "dangerous" optimisation tweaking options may come and go
2427 as more robust and user friendly ways are found to ensure maximum throughput
2428 and robustness with a minimum of configuration.
2429
2430 Typically the "fast enable" is specified first on the command line:
2431
2432 @example
2433 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2434 @end example
2435
2436 @subsection log_output <@var{file}>
2437 @cindex log_output
2438 @*Redirect logging to <file> (default: stderr)
2439
2440 @subsection script <@var{file}>
2441 @cindex script
2442 @*Execute commands from <file>
2443 Also see: ``source [find FILENAME]''
2444
2445 @section Target state handling
2446 @subsection power <@var{on}|@var{off}>
2447 @cindex reg
2448 @*Turn power switch to target on/off.
2449 No arguments: print status.
2450 Not all interfaces support this.
2451
2452 @subsection reg [@option{#}|@option{name}] [value]
2453 @cindex reg
2454 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2455 No arguments: list all available registers for the current target.
2456 Number or name argument: display a register
2457 Number or name and value arguments: set register value
2458
2459 @subsection poll [@option{on}|@option{off}]
2460 @cindex poll
2461 @*Poll the target for its current state. If the target is in debug mode, architecture
2462 specific information about the current state is printed. An optional parameter
2463 allows continuous polling to be enabled and disabled.
2464
2465 @subsection halt [@option{ms}]
2466 @cindex halt
2467 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2468 Default [@option{ms}] is 5 seconds if no arg given.
2469 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2470 will stop OpenOCD from waiting.
2471
2472 @subsection wait_halt [@option{ms}]
2473 @cindex wait_halt
2474 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2475 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2476 arg given.
2477
2478 @subsection resume [@var{address}]
2479 @cindex resume
2480 @*Resume the target at its current code position, or at an optional address.
2481 OpenOCD will wait 5 seconds for the target to resume.
2482
2483 @subsection step [@var{address}]
2484 @cindex step
2485 @*Single-step the target at its current code position, or at an optional address.
2486
2487 @subsection reset [@option{run}|@option{halt}|@option{init}]
2488 @cindex reset
2489 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2490
2491 With no arguments a "reset run" is executed
2492 @itemize @minus
2493 @item @b{run}
2494 @cindex reset run
2495 @*Let the target run.
2496 @item @b{halt}
2497 @cindex reset halt
2498 @*Immediately halt the target (works only with certain configurations).
2499 @item @b{init}
2500 @cindex reset init
2501 @*Immediately halt the target, and execute the reset script (works only with certain
2502 configurations)
2503 @end itemize
2504
2505 @subsection soft_reset_halt
2506 @cindex reset
2507 @*Requesting target halt and executing a soft reset. This often used
2508 when a target cannot be reset and halted. The target, after reset is
2509 released begins to execute code. OpenOCD attempts to stop the CPU and
2510 then sets the Program counter back at the reset vector. Unfortunatlly
2511 that code that was executed may have left hardware in an unknown
2512 state.
2513
2514
2515 @section Memory access commands
2516 @subsection meminfo
2517 display available ram memory.
2518 @subsection Memory Peek/Poke type commands
2519 These commands allow accesses of a specific size to the memory
2520 system. Often these are used to configure the current target in some
2521 special way. For example - one may need to write certian values to the
2522 SDRAM controller to enable SDRAM.
2523
2524 @enumerate
2525 @item To change the current target see the ``targets'' (plural) command
2526 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2527 @end enumerate
2528
2529 @itemize @bullet
2530 @item @b{mdw} <@var{addr}> [@var{count}]
2531 @cindex mdw
2532 @*display memory words (32bit)
2533 @item @b{mdh} <@var{addr}> [@var{count}]
2534 @cindex mdh
2535 @*display memory half-words (16bit)
2536 @item @b{mdb} <@var{addr}> [@var{count}]
2537 @cindex mdb
2538 @*display memory bytes (8bit)
2539 @item @b{mww} <@var{addr}> <@var{value}>
2540 @cindex mww
2541 @*write memory word (32bit)
2542 @item @b{mwh} <@var{addr}> <@var{value}>
2543 @cindex mwh
2544 @*write memory half-word (16bit)
2545 @item @b{mwb} <@var{addr}> <@var{value}>
2546 @cindex mwb
2547 @*write memory byte (8bit)
2548 @end itemize
2549
2550 @section Image Loading Commands
2551 @subsection load_image
2552 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2553 @cindex load_image
2554 @anchor{load_image}
2555 @*Load image <@var{file}> to target memory at <@var{address}>
2556 @subsection fast_load_image
2557 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2558 @cindex fast_load_image
2559 @anchor{fast_load_image}
2560 @*Normally you should be using @b{load_image} or GDB load. However, for
2561 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2562 host), then storing the image in memory and uploading the image to the target
2563 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2564 Arguments as @b{load_image}, but image is stored in OpenOCD host
2565 memory, i.e. does not affect target. This approach is also useful when profiling
2566 target programming performance as IO and target programming can easily be profiled
2567 seperately.
2568 @subsection fast_load
2569 @b{fast_load}
2570 @cindex fast_image
2571 @anchor{fast_image}
2572 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2573 @subsection dump_image
2574 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2575 @cindex dump_image
2576 @anchor{dump_image}
2577 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2578 (binary) <@var{file}>.
2579 @subsection verify_image
2580 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2581 @cindex verify_image
2582 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2583 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2584
2585
2586 @section Breakpoint commands
2587 @cindex Breakpoint commands
2588 @itemize @bullet
2589 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2590 @cindex bp
2591 @*set breakpoint <address> <length> [hw]
2592 @item @b{rbp} <@var{addr}>
2593 @cindex rbp
2594 @*remove breakpoint <adress>
2595 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2596 @cindex wp
2597 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2598 @item @b{rwp} <@var{addr}>
2599 @cindex rwp
2600 @*remove watchpoint <adress>
2601 @end itemize
2602
2603 @section Misc Commands
2604 @cindex Other Target Commands
2605 @itemize
2606 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2607
2608 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2609 @end itemize
2610
2611 @section Target Specific Commands
2612 @cindex Target Specific Commands
2613
2614
2615 @page
2616 @section Architecture Specific Commands
2617 @cindex Architecture Specific Commands
2618
2619 @subsection ARMV4/5 specific commands
2620 @cindex ARMV4/5 specific commands
2621
2622 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2623 or Intel XScale (XScale isn't supported yet).
2624 @itemize @bullet
2625 @item @b{armv4_5 reg}
2626 @cindex armv4_5 reg
2627 @*Display a list of all banked core registers, fetching the current value from every
2628 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2629 register value.
2630 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2631 @cindex armv4_5 core_mode
2632 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2633 The target is resumed in the currently set @option{core_mode}.
2634 @end itemize
2635
2636 @subsection ARM7/9 specific commands
2637 @cindex ARM7/9 specific commands
2638
2639 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2640 ARM920t or ARM926EJ-S.
2641 @itemize @bullet
2642 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2643 @cindex arm7_9 dbgrq
2644 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2645 safe for all but ARM7TDMI--S cores (like Philips LPC).
2646 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2647 @cindex arm7_9 fast_memory_access
2648 @anchor{arm7_9 fast_memory_access}
2649 @*Allow OpenOCD to read and write memory without checking completion of
2650 the operation. This provides a huge speed increase, especially with USB JTAG
2651 cables (FT2232), but might be unsafe if used with targets running at a very low
2652 speed, like the 32kHz startup clock of an AT91RM9200.
2653 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2654 @cindex arm7_9 dcc_downloads
2655 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2656 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2657 unsafe, especially with targets running at a very low speed. This command was introduced
2658 with OpenOCD rev. 60.
2659 @end itemize
2660
2661 @subsection ARM720T specific commands
2662 @cindex ARM720T specific commands
2663
2664 @itemize @bullet
2665 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2666 @cindex arm720t cp15
2667 @*display/modify cp15 register <@option{num}> [@option{value}].
2668 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2669 @cindex arm720t md<bhw>_phys
2670 @*Display memory at physical address addr.
2671 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2672 @cindex arm720t mw<bhw>_phys
2673 @*Write memory at physical address addr.
2674 @item @b{arm720t virt2phys} <@var{va}>
2675 @cindex arm720t virt2phys
2676 @*Translate a virtual address to a physical address.
2677 @end itemize
2678
2679 @subsection ARM9TDMI specific commands
2680 @cindex ARM9TDMI specific commands
2681
2682 @itemize @bullet
2683 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2684 @cindex arm9tdmi vector_catch
2685 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2686 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2687 @option{irq} @option{fiq}.
2688
2689 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2690 @end itemize
2691
2692 @subsection ARM966E specific commands
2693 @cindex ARM966E specific commands
2694
2695 @itemize @bullet
2696 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2697 @cindex arm966e cp15
2698 @*display/modify cp15 register <@option{num}> [@option{value}].
2699 @end itemize
2700
2701 @subsection ARM920T specific commands
2702 @cindex ARM920T specific commands
2703
2704 @itemize @bullet
2705 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2706 @cindex arm920t cp15
2707 @*display/modify cp15 register <@option{num}> [@option{value}].
2708 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2709 @cindex arm920t cp15i
2710 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2711 @item @b{arm920t cache_info}
2712 @cindex arm920t cache_info
2713 @*Print information about the caches found. This allows you to see if your target
2714 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2715 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2716 @cindex arm920t md<bhw>_phys
2717 @*Display memory at physical address addr.
2718 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2719 @cindex arm920t mw<bhw>_phys
2720 @*Write memory at physical address addr.
2721 @item @b{arm920t read_cache} <@var{filename}>
2722 @cindex arm920t read_cache
2723 @*Dump the content of ICache and DCache to a file.
2724 @item @b{arm920t read_mmu} <@var{filename}>
2725 @cindex arm920t read_mmu
2726 @*Dump the content of the ITLB and DTLB to a file.
2727 @item @b{arm920t virt2phys} <@var{va}>
2728 @cindex arm920t virt2phys
2729 @*Translate a virtual address to a physical address.
2730 @end itemize
2731
2732 @subsection ARM926EJS specific commands
2733 @cindex ARM926EJS specific commands
2734
2735 @itemize @bullet
2736 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2737 @cindex arm926ejs cp15
2738 @*display/modify cp15 register <@option{num}> [@option{value}].
2739 @item @b{arm926ejs cache_info}
2740 @cindex arm926ejs cache_info
2741 @*Print information about the caches found.
2742 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2743 @cindex arm926ejs md<bhw>_phys
2744 @*Display memory at physical address addr.
2745 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2746 @cindex arm926ejs mw<bhw>_phys
2747 @*Write memory at physical address addr.
2748 @item @b{arm926ejs virt2phys} <@var{va}>
2749 @cindex arm926ejs virt2phys
2750 @*Translate a virtual address to a physical address.
2751 @end itemize
2752
2753 @subsection CORTEX_M3 specific commands
2754 @cindex CORTEX_M3 specific commands
2755
2756 @itemize @bullet
2757 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2758 @cindex cortex_m3 maskisr
2759 @*Enable masking (disabling) interrupts during target step/resume.
2760 @end itemize
2761
2762 @page
2763 @section Debug commands
2764 @cindex Debug commands
2765 The following commands give direct access to the core, and are most likely
2766 only useful while debugging OpenOCD.
2767 @itemize @bullet
2768 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2769 @cindex arm7_9 write_xpsr
2770 @*Immediately write either the current program status register (CPSR) or the saved
2771 program status register (SPSR), without changing the register cache (as displayed
2772 by the @option{reg} and @option{armv4_5 reg} commands).
2773 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2774 <@var{0=cpsr},@var{1=spsr}>
2775 @cindex arm7_9 write_xpsr_im8
2776 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2777 operation (similar to @option{write_xpsr}).
2778 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2779 @cindex arm7_9 write_core_reg
2780 @*Write a core register, without changing the register cache (as displayed by the
2781 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2782 encoding of the [M4:M0] bits of the PSR.
2783 @end itemize
2784
2785 @section Target Requests
2786 @cindex Target Requests
2787 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2788 See libdcc in the contrib dir for more details.
2789 @itemize @bullet
2790 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2791 @cindex target_request debugmsgs
2792 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2793 @end itemize
2794
2795 @node JTAG Commands
2796 @chapter JTAG Commands
2797 @cindex JTAG commands
2798 Generally most people will not use the bulk of these commands. They
2799 are mostly used by the OpenOCD developers or those who need to
2800 directly manipulate the JTAG taps.
2801
2802 In general these commands control JTAG taps at a very low level. For
2803 example if you need to control a JTAG Route Controller (ie: the
2804 OMAP3530 on the Beagle Board has one) you might use these commands in
2805 a script or an event procedure.
2806
2807 @itemize @bullet
2808 @item @b{scan_chain}
2809 @cindex scan_chain
2810 @*Print current scan chain configuration.
2811 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2812 @cindex jtag_reset
2813 @*Toggle reset lines.
2814 @item @b{endstate} <@var{tap_state}>
2815 @cindex endstate
2816 @*Finish JTAG operations in <@var{tap_state}>.
2817 @item @b{runtest} <@var{num_cycles}>
2818 @cindex runtest
2819 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2820 @item @b{statemove} [@var{tap_state}]
2821 @cindex statemove
2822 @*Move to current endstate or [@var{tap_state}]
2823 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2824 @cindex irscan
2825 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2826 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2827 @cindex drscan
2828 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2829 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2830 @cindex verify_ircapture
2831 @*Verify value captured during Capture-IR. Default is enabled.
2832 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2833 @cindex var
2834 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2835 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2836 @cindex field
2837 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2838 @end itemize
2839
2840
2841 @node TFTP
2842 @chapter TFTP
2843 @cindex TFTP
2844 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2845 be used to access files on PCs(either developer PC or some other PC).
2846
2847 The way this works on the ZY1000 is to prefix a filename by
2848 "/tftp/ip/" and append the tftp path on the tftp
2849 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2850 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2851 if the file was hosted on the embedded host.
2852
2853 In order to achieve decent performance, you must choose a tftp server
2854 that supports a packet size bigger than the default packet size(512 bytes). There
2855 are numerous tftp servers out there(free and commercial) and you will have to do
2856 a bit of googling to find something that fits your requirements.
2857
2858 @node Sample Scripts
2859 @chapter Sample Scripts
2860 @cindex scripts
2861
2862 This page shows how to use the target library.
2863
2864 The configuration script can be divided in the following section:
2865 @itemize @bullet
2866 @item daemon configuration
2867 @item interface
2868 @item jtag scan chain
2869 @item target configuration
2870 @item flash configuration
2871 @end itemize
2872
2873 Detailed information about each section can be found at OpenOCD configuration.
2874
2875 @section AT91R40008 example
2876 @cindex AT91R40008 example
2877 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2878 the CPU upon startup of the OpenOCD daemon.
2879 @example
2880 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2881 @end example
2882
2883
2884 @node GDB and OpenOCD
2885 @chapter GDB and OpenOCD
2886 @cindex GDB and OpenOCD
2887 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2888 to debug remote targets.
2889
2890 @section Connecting to GDB
2891 @cindex Connecting to GDB
2892 @anchor{Connecting to GDB}
2893 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2894 instance 6.3 has a known bug where it produces bogus memory access
2895 errors, which has since been fixed: look up 1836 in
2896 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2897
2898 @*OpenOCD can communicate with GDB in two ways:
2899 @enumerate
2900 @item
2901 A socket (tcp) connection is typically started as follows:
2902 @example
2903 target remote localhost:3333
2904 @end example
2905 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2906 @item
2907 A pipe connection is typically started as follows:
2908 @example
2909 target remote openocd --pipe
2910 @end example
2911 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
2912 Using this method has the advantage of GDB starting/stopping OpenOCD for debug session.
2913 @end enumerate
2914
2915 @*To see a list of available OpenOCD commands type @option{monitor help} on the
2916 GDB commandline.
2917
2918 OpenOCD supports the gdb @option{qSupported} packet, this enables information
2919 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
2920 packet size and device memory map.
2921
2922 Previous versions of OpenOCD required the following GDB options to increase
2923 the packet size and speed up GDB communication.
2924 @example
2925 set remote memory-write-packet-size 1024
2926 set remote memory-write-packet-size fixed
2927 set remote memory-read-packet-size 1024
2928 set remote memory-read-packet-size fixed
2929 @end example
2930 This is now handled in the @option{qSupported} PacketSize and should not be required.
2931
2932 @section Programming using GDB
2933 @cindex Programming using GDB
2934
2935 By default the target memory map is sent to GDB, this can be disabled by
2936 the following OpenOCD config option:
2937 @example
2938 gdb_memory_map disable
2939 @end example
2940 For this to function correctly a valid flash config must also be configured
2941 in OpenOCD. For faster performance you should also configure a valid
2942 working area.
2943
2944 Informing GDB of the memory map of the target will enable GDB to protect any
2945 flash area of the target and use hardware breakpoints by default. This means
2946 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
2947 using a memory map. @xref{gdb_breakpoint_override}.
2948
2949 To view the configured memory map in GDB, use the gdb command @option{info mem}
2950 All other unasigned addresses within GDB are treated as RAM.
2951
2952 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
2953 this can be changed to the old behaviour by using the following GDB command.
2954 @example
2955 set mem inaccessible-by-default off
2956 @end example
2957
2958 If @option{gdb_flash_program enable} is also used, GDB will be able to
2959 program any flash memory using the vFlash interface.
2960
2961 GDB will look at the target memory map when a load command is given, if any
2962 areas to be programmed lie within the target flash area the vFlash packets
2963 will be used.
2964
2965 If the target needs configuring before GDB programming, an event
2966 script can be executed.
2967 @example
2968 $_TARGETNAME configure -event EVENTNAME BODY
2969 @end example
2970
2971 To verify any flash programming the GDB command @option{compare-sections}
2972 can be used.
2973
2974 @node TCL scripting API
2975 @chapter TCL scripting API
2976 @cindex TCL scripting API
2977 API rules
2978
2979 The commands are stateless. E.g. the telnet command line has a concept
2980 of currently active target, the Tcl API proc's take this sort of state
2981 information as an argument to each proc.
2982
2983 There are three main types of return values: single value, name value
2984 pair list and lists.
2985
2986 Name value pair. The proc 'foo' below returns a name/value pair
2987 list.
2988
2989 @verbatim
2990
2991 > set foo(me) Duane
2992 > set foo(you) Oyvind
2993 > set foo(mouse) Micky
2994 > set foo(duck) Donald
2995
2996 If one does this:
2997
2998 > set foo
2999
3000 The result is:
3001
3002 me Duane you Oyvind mouse Micky duck Donald
3003
3004 Thus, to get the names of the associative array is easy:
3005
3006 foreach { name value } [set foo] {
3007 puts "Name: $name, Value: $value"
3008 }
3009 @end verbatim
3010
3011 Lists returned must be relatively small. Otherwise a range
3012 should be passed in to the proc in question.
3013
3014 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
3015 is the low level API upon which "flash banks" is implemented.
3016
3017 @itemize @bullet
3018 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3019
3020 Read memory and return as a TCL array for script processing
3021 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3022
3023 Convert a TCL array to memory locations and write the values
3024 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3025
3026 Return information about the flash banks
3027 @end itemize
3028
3029 OpenOCD commands can consist of two words, e.g. "flash banks". The
3030 startup.tcl "unknown" proc will translate this into a tcl proc
3031 called "flash_banks".
3032
3033
3034 @node Upgrading
3035 @chapter Deprecated/Removed Commands
3036 @cindex Deprecated/Removed Commands
3037 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3038
3039 @itemize @bullet
3040 @item @b{arm7_9 fast_writes}
3041 @cindex arm7_9 fast_writes
3042 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3043 @item @b{arm7_9 force_hw_bkpts}
3044 @cindex arm7_9 force_hw_bkpts
3045 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3046 for flash if the gdb memory map has been set up(default when flash is declared in
3047 target configuration). @xref{gdb_breakpoint_override}.
3048 @item @b{arm7_9 sw_bkpts}
3049 @cindex arm7_9 sw_bkpts
3050 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3051 @item @b{daemon_startup}
3052 @cindex daemon_startup
3053 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3054 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3055 and @option{target cortex_m3 little reset_halt 0}.
3056 @item @b{dump_binary}
3057 @cindex dump_binary
3058 @*use @option{dump_image} command with same args. @xref{dump_image}.
3059 @item @b{flash erase}
3060 @cindex flash erase
3061 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3062 @item @b{flash write}
3063 @cindex flash write
3064 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3065 @item @b{flash write_binary}
3066 @cindex flash write_binary
3067 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3068 @item @b{flash auto_erase}
3069 @cindex flash auto_erase
3070 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3071 @item @b{load_binary}
3072 @cindex load_binary
3073 @*use @option{load_image} command with same args. @xref{load_image}.
3074 @item @b{run_and_halt_time}
3075 @cindex run_and_halt_time
3076 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3077 following commands:
3078 @smallexample
3079 reset run
3080 sleep 100
3081 halt
3082 @end smallexample
3083 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3084 @cindex target
3085 @*use the create subcommand of @option{target}.
3086 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3087 @cindex target_script
3088 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3089 @item @b{working_area}
3090 @cindex working_area
3091 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3092 @end itemize
3093
3094 @node FAQ
3095 @chapter FAQ
3096 @cindex faq
3097 @enumerate
3098 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3099 @cindex RTCK
3100 @cindex adaptive clocking
3101 @*
3102
3103 In digital circuit design it is often refered to as ``clock
3104 syncronization'' the JTAG interface uses one clock (TCK or TCLK)
3105 operating at some speed, your target is operating at another. The two
3106 clocks are not syncronized, they are ``asynchronous''
3107
3108 In order for the two to work together they must syncronize. Otherwise
3109 the two systems will get out of sync with each other and nothing will
3110 work. There are 2 basic options. @b{1.} use a special circuit or
3111 @b{2.} one clock must be some multile slower the the other.
3112
3113 @b{Does this really matter?} For some chips and some situations, this
3114 is a non-issue (ie: A 500mhz ARM926) but for others - for example some
3115 ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
3116 program/enable the oscillators and eventually the main clock. It is in
3117 those critical times you must slow the jtag clock to sometimes 1 to
3118 4khz.
3119
3120 Imagine debugging that 500mhz arm926 hand held battery powered device
3121 that ``deep sleeps'' at 32khz between every keystroke. It can be
3122 painful.
3123
3124 @b{Solution #1 - A special circuit}
3125
3126 In order to make use of this your jtag dongle must support the RTCK
3127 feature. Not all dongles support this - keep reading!
3128
3129 The RTCK signal often found in some ARM chips is used to help with
3130 this problem. ARM has a good description of the problem described at
3131 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3132 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3133 work? / how does adaptive clocking working?''.
3134
3135 The nice thing about adaptive clocking is that ``battery powered hand
3136 held device example'' - the adaptiveness works perfectly all the
3137 time. One can set a break point or halt the system in the deep power
3138 down code, slow step out until the system speeds up.
3139
3140 @b{Solution #2 - Always works - but is slower}
3141
3142 Often this is a perfectly acceptable solution.
3143
3144 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3145 the target clock speed. But what is that ``magic division'' it varies
3146 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3147 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3148 1/12 the clock speed.
3149
3150 Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
3151
3152 You can still debug the 'lower power' situations - you just need to
3153 manually adjust the clock speed at every step. While painful and
3154 teadious, it is not always practical.
3155
3156 It is however easy to ``code your way around it'' - ie: Cheat a little
3157 have a special debug mode in your application that does a ``high power
3158 sleep''. If you are careful - 98% of your problems can be debugged
3159 this way.
3160
3161 To set the JTAG frequency use the command:
3162
3163 @example
3164 # Example: 1.234mhz
3165 jtag_khz 1234
3166 @end example
3167
3168
3169 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3170
3171 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3172 around Windows filenames.
3173
3174 @example
3175 > echo \a
3176
3177 > echo @{\a@}
3178 \a
3179 > echo "\a"
3180
3181 >
3182 @end example
3183
3184
3185 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3186
3187 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3188 claims to come with all the necessary dlls. When using Cygwin, try launching
3189 OpenOCD from the Cygwin shell.
3190
3191 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3192 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3193 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3194
3195 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3196 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3197 software breakpoints consume one of the two available hardware breakpoints.
3198
3199 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3200 and works sometimes fine.
3201
3202 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3203 clock at the time you're programming the flash. If you've specified the crystal's
3204 frequency, make sure the PLL is disabled, if you've specified the full core speed
3205 (e.g. 60MHz), make sure the PLL is enabled.
3206
3207 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3208 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3209 out while waiting for end of scan, rtck was disabled".
3210
3211 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3212 settings in your PC BIOS (ECP, EPP, and different versions of those).
3213
3214 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3215 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3216 memory read caused data abort".
3217
3218 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3219 beyond the last valid frame. It might be possible to prevent this by setting up
3220 a proper "initial" stack frame, if you happen to know what exactly has to
3221 be done, feel free to add this here.
3222
3223 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3224 stack before calling main(). What GDB is doing is ``climbing'' the run
3225 time stack by reading various values on the stack using the standard
3226 call frame for the target. GDB keeps going - until one of 2 things
3227 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3228 stackframes have been processed. By pushing ZEROs on the stack, GDB
3229 gracefully stops.
3230
3231 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3232 your C code, do the same, artifically push some zeros on to the stack,
3233 remember to pop them off when the ISR is done.
3234
3235 @b{Also note:} If you have a multi-threaded operating system, they
3236 often do not @b{in the intrest of saving memory} waste these few
3237 bytes. Painful...
3238
3239
3240 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3241 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3242
3243 This warning doesn't indicate any serious problem, as long as you don't want to
3244 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3245 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3246 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3247 independently. With this setup, it's not possible to halt the core right out of
3248 reset, everything else should work fine.
3249
3250 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3251 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3252 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3253 quit with an error message. Is there a stability issue with OpenOCD?
3254
3255 No, this is not a stability issue concerning OpenOCD. Most users have solved
3256 this issue by simply using a self-powered USB hub, which they connect their
3257 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3258 supply stable enough for the Amontec JTAGkey to be operated.
3259
3260 @b{Laptops running on battery have this problem too...}
3261
3262 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3263 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3264 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3265 What does that mean and what might be the reason for this?
3266
3267 First of all, the reason might be the USB power supply. Try using a self-powered
3268 hub instead of a direct connection to your computer. Secondly, the error code 4
3269 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3270 chip ran into some sort of error - this points us to a USB problem.
3271
3272 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3273 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3274 What does that mean and what might be the reason for this?
3275
3276 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3277 has closed the connection to OpenOCD. This might be a GDB issue.
3278
3279 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3280 are described, there is a parameter for specifying the clock frequency
3281 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3282 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3283 specified in kilohertz. However, I do have a quartz crystal of a
3284 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3285 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3286 clock frequency?
3287
3288 No. The clock frequency specified here must be given as an integral number.
3289 However, this clock frequency is used by the In-Application-Programming (IAP)
3290 routines of the LPC2000 family only, which seems to be very tolerant concerning
3291 the given clock frequency, so a slight difference between the specified clock
3292 frequency and the actual clock frequency will not cause any trouble.
3293
3294 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3295
3296 Well, yes and no. Commands can be given in arbitrary order, yet the
3297 devices listed for the JTAG scan chain must be given in the right
3298 order (jtag newdevice), with the device closest to the TDO-Pin being
3299 listed first. In general, whenever objects of the same type exist
3300 which require an index number, then these objects must be given in the
3301 right order (jtag newtap, targets and flash banks - a target
3302 references a jtag newtap and a flash bank references a target).
3303
3304 You can use the ``scan_chain'' command to verify and display the tap order.
3305
3306 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3307
3308 Many newer devices have multiple JTAG taps. For example: ST
3309 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3310 ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
3311 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3312 connected to the Boundary Scan Tap, which then connects to the
3313 CortexM3 Tap, which then connects to the TDO pin.
3314
3315 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3316 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3317 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3318 place it before or after the stm32 chip in the chain. For example:
3319
3320 @itemize @bullet
3321 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3322 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3323 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3324 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3325 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3326 @end itemize
3327
3328 The ``jtag device'' commands would thus be in the order shown below. Note
3329
3330 @itemize @bullet
3331 @item jtag newtap Xilinx tap -irlen ...
3332 @item jtag newtap stm32 cpu -irlen ...
3333 @item jtag newtap stm32 bs -irlen ...
3334 @item # Create the debug target and say where it is
3335 @item target create stm32.cpu -chain-position stm32.cpu ...
3336 @end itemize
3337
3338
3339 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3340 log file, I can see these error messages: Error: arm7_9_common.c:561
3341 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3342
3343 TODO.
3344
3345 @end enumerate
3346
3347 @node TCL Crash Course
3348 @chapter TCL Crash Course
3349 @cindex TCL
3350
3351 Not everyone knows TCL - this is not intended to be a replacement for
3352 learning TCL, the intent of this chapter is to give you some idea of
3353 how the TCL Scripts work.
3354
3355 This chapter is written with two audiences in mind. (1) OpenOCD users
3356 who need to understand a bit more of how JIM-Tcl works so they can do
3357 something useful, and (2) those that want to add a new command to
3358 OpenOCD.
3359
3360 @section TCL Rule #1
3361 There is a famous joke, it goes like this:
3362 @enumerate
3363 @item Rule #1: The wife is always correct
3364 @item Rule #2: If you think otherwise, See Rule #1
3365 @end enumerate
3366
3367 The TCL equal is this:
3368
3369 @enumerate
3370 @item Rule #1: Everything is a string
3371 @item Rule #2: If you think otherwise, See Rule #1
3372 @end enumerate
3373
3374 As in the famous joke, the consequences of Rule #1 are profound. Once
3375 you understand Rule #1, you will understand TCL.
3376
3377 @section TCL Rule #1b
3378 There is a second pair of rules.
3379 @enumerate
3380 @item Rule #1: Control flow does not exist. Only commands
3381 @* For example: the classic FOR loop or IF statement is not a control
3382 flow item, they are commands, there is no such thing as control flow
3383 in TCL.
3384 @item Rule #2: If you think otherwise, See Rule #1
3385 @* Actually what happens is this: There are commands that by
3386 convention, act like control flow key words in other languages. One of
3387 those commands is the word ``for'', another command is ``if''.
3388 @end enumerate
3389
3390 @section Per Rule #1 - All Results are strings
3391 Every TCL command results in a string. The word ``result'' is used
3392 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3393 Everything is a string}
3394
3395 @section TCL Quoting Operators
3396 In life of a TCL script, there are two important periods of time, the
3397 difference is subtle.
3398 @enumerate
3399 @item Parse Time
3400 @item Evaluation Time
3401 @end enumerate
3402
3403 The two key items here are how ``quoted things'' work in TCL. TCL has
3404 three primary quoting constructs, the [square-brackets] the
3405 @{curly-braces@} and ``double-quotes''
3406
3407 By now you should know $VARIABLES always start with a $DOLLAR
3408 sign. BTW, to set a variable, you actually use the command ``set'', as
3409 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3410 = 1'' statement, but without the equal sign.
3411
3412 @itemize @bullet
3413 @item @b{[square-brackets]}
3414 @* @b{[square-brackets]} are command subsitution. It operates much
3415 like Unix Shell `back-ticks`. The result of a [square-bracket]
3416 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3417 string}. These two statments are roughly identical.
3418 @example
3419 # bash example
3420 X=`date`
3421 echo "The Date is: $X"
3422 # TCL example
3423 set X [date]
3424 puts "The Date is: $X"
3425 @end example
3426 @item @b{``double-quoted-things''}
3427 @* @b{``double-quoted-things''} are just simply quoted
3428 text. $VARIABLES and [square-brackets] are expanded in place - the
3429 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3430 is a string}
3431 @example
3432 set x "Dinner"
3433 puts "It is now \"[date]\", $x is in 1 hour"
3434 @end example
3435 @item @b{@{Curly-Braces@}}
3436 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3437 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3438 'single-quote' operators in BASH shell scripts, with the added
3439 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3440 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3441 28/nov/2008, Jim/OpenOCD does not have a date command.
3442 @end itemize
3443
3444 @section Consequences of Rule 1/2/3/4
3445
3446 The consequences of Rule 1 is profound.
3447
3448 @subsection Tokenizing & Execution.
3449
3450 Of course, whitespace, blank lines and #comment lines are handled in
3451 the normal way.
3452
3453 As a script is parsed, each (multi) line in the script file is
3454 tokenized and according to the quoting rules. After tokenizing, that
3455 line is immedatly executed.
3456
3457 Multi line statements end with one or more ``still-open''
3458 @{curly-braces@} which - eventually - a few lines later closes.
3459
3460 @subsection Command Execution
3461
3462 Remember earlier: There is no such thing as ``control flow''
3463 statements in TCL. Instead there are COMMANDS that simpily act like
3464 control flow operators.
3465
3466 Commands are executed like this:
3467
3468 @enumerate
3469 @item Parse the next line into (argc) and (argv[]).
3470 @item Look up (argv[0]) in a table and call its function.
3471 @item Repeat until End Of File.
3472 @end enumerate
3473
3474 It sort of works like this:
3475 @example
3476 for(;;)@{
3477 ReadAndParse( &argc, &argv );
3478
3479 cmdPtr = LookupCommand( argv[0] );
3480
3481 (*cmdPtr->Execute)( argc, argv );
3482 @}
3483 @end example
3484
3485 When the command ``proc'' is parsed (which creates a procedure
3486 function) it gets 3 parameters on the command line. @b{1} the name of
3487 the proc (function), @b{2} the list of parameters, and @b{3} the body
3488 of the function. Not the choice of words: LIST and BODY. The PROC
3489 command stores these items in a table somewhere so it can be found by
3490 ``LookupCommand()''
3491
3492 @subsection The FOR Command
3493
3494 The most interesting command to look at is the FOR command. In TCL,
3495 the FOR command is normally implimented in C. Remember, FOR is a
3496 command just like any other command.
3497
3498 When the ascii text containing the FOR command is parsed, the parser
3499 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3500 are:
3501
3502 @enumerate 0
3503 @item The ascii text 'for'
3504 @item The start text
3505 @item The test expression
3506 @item The next text
3507 @item The body text
3508 @end enumerate
3509
3510 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3511 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3512 Often many of those parameters are in @{curly-braces@} - thus the
3513 variables inside are not expanded or replaced until later.
3514
3515 Remember that every TCL command looks like the classic ``main( argc,
3516 argv )'' function in C. In JimTCL - they actually look like this:
3517
3518 @example
3519 int
3520 MyCommand( Jim_Interp *interp,
3521 int *argc,
3522 Jim_Obj * const *argvs );
3523 @end example
3524
3525 Real TCL is nearly identical. Although the newer versions have
3526 introduced a byte-code parser and intepreter, but at the core, it
3527 still operates in the same basic way.
3528
3529 @subsection FOR Command Implimentation
3530
3531 To understand TCL it is perhaps most helpful to see the FOR
3532 command. Remember, it is a COMMAND not a control flow structure.
3533
3534 In TCL there are two underying C helper functions.
3535
3536 Remember Rule #1 - You are a string.
3537
3538 The @b{first} helper parses and executes commands found in an ascii
3539 string. Commands can be seperated by semi-colons, or newlines. While
3540 parsing, variables are expanded per the quoting rules
3541
3542 The @b{second} helper evaluates an ascii string as a numerical
3543 expression and returns a value.
3544
3545 Here is an example of how the @b{FOR} command could be
3546 implimented. The pseudo code below does not show error handling.
3547 @example
3548 void Execute_AsciiString( void *interp, const char *string );
3549
3550 int Evaluate_AsciiExpression( void *interp, const char *string );
3551
3552 int
3553 MyForCommand( void *interp,
3554 int argc,
3555 char **argv )
3556 @{
3557 if( argc != 5 )@{
3558 SetResult( interp, "WRONG number of parameters");
3559 return ERROR;
3560 @}
3561
3562 // argv[0] = the ascii string just like C
3563
3564 // Execute the start statement.
3565 Execute_AsciiString( interp, argv[1] );
3566
3567 // Top of loop test
3568 for(;;)@{
3569 i = Evaluate_AsciiExpression(interp, argv[2]);
3570 if( i == 0 )
3571 break;
3572
3573 // Execute the body
3574 Execute_AsciiString( interp, argv[3] );
3575
3576 // Execute the LOOP part
3577 Execute_AsciiString( interp, argv[4] );
3578 @}
3579
3580 // Return no error
3581 SetResult( interp, "" );
3582 return SUCCESS;
3583 @}
3584 @end example
3585
3586 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3587 in the same basic way.
3588
3589 @section OpenOCD TCL Usage
3590
3591 @subsection source and find commands
3592 @b{Where:} In many configuration files
3593 @* Example: @b{ source [find FILENAME] }
3594 @*Remember the parsing rules
3595 @enumerate
3596 @item The FIND command is in square brackets.
3597 @* The FIND command is executed with the parameter FILENAME. It should
3598 find the full path to the named file. The RESULT is a string, which is
3599 subsituted on the orginal command line.
3600 @item The command source is executed with the resulting filename.
3601 @* SOURCE reads a file and executes as a script.
3602 @end enumerate
3603 @subsection format command
3604 @b{Where:} Generally occurs in numerous places.
3605 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3606 @b{sprintf()}.
3607 @b{Example}
3608 @example
3609 set x 6
3610 set y 7
3611 puts [format "The answer: %d" [expr $x * $y]]
3612 @end example
3613 @enumerate
3614 @item The SET command creates 2 variables, X and Y.
3615 @item The double [nested] EXPR command performs math
3616 @* The EXPR command produces numerical result as a string.
3617 @* Refer to Rule #1
3618 @item The format command is executed, producing a single string
3619 @* Refer to Rule #1.
3620 @item The PUTS command outputs the text.
3621 @end enumerate
3622 @subsection Body Or Inlined Text
3623 @b{Where:} Various TARGET scripts.
3624 @example
3625 #1 Good
3626 proc someproc @{@} @{
3627 ... multiple lines of stuff ...
3628 @}
3629 $_TARGETNAME configure -event FOO someproc
3630 #2 Good - no variables
3631 $_TARGETNAME confgure -event foo "this ; that;"
3632 #3 Good Curly Braces
3633 $_TARGETNAME configure -event FOO @{
3634 puts "Time: [date]"
3635 @}
3636 #4 DANGER DANGER DANGER
3637 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3638 @end example
3639 @enumerate
3640 @item The $_TARGETNAME is an OpenOCD variable convention.
3641 @*@b{$_TARGETNAME} represents the last target created, the value changes
3642 each time a new target is created. Remember the parsing rules. When
3643 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3644 the name of the target which happens to be a TARGET (object)
3645 command.
3646 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3647 @*There are 4 examples:
3648 @enumerate
3649 @item The TCLBODY is a simple string that happens to be a proc name
3650 @item The TCLBODY is several simple commands semi-colon seperated
3651 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3652 @item The TCLBODY is a string with variables that get expanded.
3653 @end enumerate
3654
3655 In the end, when the target event FOO occurs the TCLBODY is
3656 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3657 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3658
3659 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3660 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3661 and the text is evaluated. In case #4, they are replaced before the
3662 ``Target Object Command'' is executed. This occurs at the same time
3663 $_TARGETNAME is replaced. In case #4 the date will never
3664 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3665 Jim/OpenOCD does not have a date command@}
3666 @end enumerate
3667 @subsection Global Variables
3668 @b{Where:} You might discover this when writing your own procs @* In
3669 simple terms: Inside a PROC, if you need to access a global variable
3670 you must say so. Also see ``upvar''. Example:
3671 @example
3672 proc myproc @{ @} @{
3673 set y 0 #Local variable Y
3674 global x #Global variable X
3675 puts [format "X=%d, Y=%d" $x $y]
3676 @}
3677 @end example
3678 @section Other Tcl Hacks
3679 @b{Dynamic Variable Creation}
3680 @example
3681 # Dynamically create a bunch of variables.
3682 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3683 # Create var name
3684 set vn [format "BIT%d" $x]
3685 # Make it a global
3686 global $vn
3687 # Set it.
3688 set $vn [expr (1 << $x)]
3689 @}
3690 @end example
3691 @b{Dynamic Proc/Command Creation}
3692 @example
3693 # One "X" function - 5 uart functions.
3694 foreach who @{A B C D E@}
3695 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3696 @}
3697 @end example
3698
3699 @node Target library
3700 @chapter Target library
3701 @cindex Target library
3702
3703 OpenOCD comes with a target configuration script library. These scripts can be
3704 used as-is or serve as a starting point.
3705
3706 The target library is published together with the OpenOCD executable and
3707 the path to the target library is in the OpenOCD script search path.
3708 Similarly there are example scripts for configuring the JTAG interface.
3709
3710 The command line below uses the example parport configuration scripts
3711 that ship with OpenOCD, then configures the str710.cfg target and
3712 finally issues the init and reset command. The communication speed
3713 is set to 10kHz for reset and 8MHz for post reset.
3714
3715
3716 @example
3717 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3718 @end example
3719
3720
3721 To list the target scripts available:
3722
3723 @example
3724 $ ls /usr/local/lib/openocd/target
3725
3726 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3727 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3728 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3729 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3730 @end example
3731
3732
3733
3734 @include fdl.texi
3735
3736 @node OpenOCD Index
3737 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3738 @comment case issue with ``Index.html'' and ``index.html''
3739 @comment Occurs when creating ``--html --no-split'' output
3740 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3741 @unnumbered OpenOCD Index
3742
3743 @printindex cp
3744
3745 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)