cross compile fix
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 @node Running
197 @chapter Running
198 @cindex running OpenOCD
199 @cindex --configfile
200 @cindex --debug_level
201 @cindex --logfile
202 @cindex --search
203 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
204 Run with @option{--help} or @option{-h} to view the available command line switches.
205
206 It reads its configuration by default from the file openocd.cfg located in the current
207 working directory. This may be overwritten with the @option{-f <configfile>} command line
208 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
209 are executed in order.
210
211 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
212
213 To enable debug output (when reporting problems or working on OpenOCD itself), use
214 the @option{-d} command line switch. This sets the debug_level to "3", outputting
215 the most information, including debug messages. The default setting is "2", outputting
216 only informational messages, warnings and errors. You can also change this setting
217 from within a telnet or gdb session (@option{debug_level <n>}).
218
219 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
220
221 Search paths for config/script files can be added to OpenOCD by using
222 the @option{-s <search>} switch. The current directory and the OpenOCD target library
223 is in the search path by default.
224
225 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
226 with the target. In general, it is possible for the JTAG controller to be unresponsive until
227 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
228
229 @node Configuration
230 @chapter Configuration
231 @cindex configuration
232 OpenOCD runs as a daemon, and reads it current configuration
233 by default from the file openocd.cfg in the current directory. A different configuration
234 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
235
236 The configuration file is used to specify on which ports the daemon listens for new
237 connections, the JTAG interface used to connect to the target, the layout of the JTAG
238 chain, the targets that should be debugged, and connected flashes.
239
240 @section Daemon configuration
241
242 @itemize @bullet
243 @item @b{init} This command terminates the configuration stage and enters the normal
244 command mode. This can be useful to add commands to the startup scripts and commands
245 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
246 add "init" and "reset" at the end of the config script or at the end of the
247 OpenOCD command line using the @option{-c} command line switch.
248 @cindex init
249 @item @b{telnet_port} <@var{number}>
250 @cindex telnet_port
251 Port on which to listen for incoming telnet connections
252 @item @b{gdb_port} <@var{number}>
253 @cindex gdb_port
254 First port on which to listen for incoming GDB connections. The GDB port for the
255 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
256 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
257 @cindex gdb_detach
258 Configures what OpenOCD will do when gdb detaches from the daeman.
259 Default behaviour is <@var{resume}>
260 @item @b{gdb_memory_map} <@var{enable|disable}>
261 @cindex gdb_memory_map
262 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
263 requested. gdb will then know when to set hardware breakpoints, and program flash
264 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
265 for flash programming to work.
266 Default behaviour is <@var{enable}>
267 @item @b{gdb_flash_program} <@var{enable|disable}>
268 @cindex gdb_flash_program
269 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
270 vFlash packet is received.
271 Default behaviour is <@var{enable}>
272 at item @b{tcl_port} <@var{number}>
273 at cindex tcl_port
274 Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @end itemize
278
279 @section JTAG interface configuration
280
281 @itemize @bullet
282 @item @b{interface} <@var{name}>
283 @cindex interface
284 Use the interface driver <@var{name}> to connect to the target. Currently supported
285 interfaces are
286 @itemize @minus
287 @item @b{parport}
288 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
289 @end itemize
290 @itemize @minus
291 @item @b{amt_jtagaccel}
292 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
293 mode parallel port
294 @end itemize
295 @itemize @minus
296 @item @b{ft2232}
297 FTDI FT2232 based devices using either the open-source libftdi or the binary only
298 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
299 platform. The libftdi uses libusb, and should be portable to all systems that provide
300 libusb.
301 @end itemize
302 @itemize @minus
303 @item @b{ep93xx}
304 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
305 @end itemize
306 @itemize @minus
307 @item @b{presto}
308 ASIX PRESTO USB JTAG programmer.
309 @end itemize
310 @itemize @minus
311 @item @b{usbprog}
312 usbprog is a freely programmable USB adapter.
313 @end itemize
314 @itemize @minus
315 @item @b{gw16012}
316 Gateworks GW16012 JTAG programmer.
317 @end itemize
318 @itemize @minus
319 @item @b{jlink}
320 Segger jlink usb adapter
321 @end itemize
322 @end itemize
323
324 @itemize @bullet
325 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
326 @cindex jtag_speed
327 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
328 speed. The actual effect of this option depends on the JTAG interface used. Reset
329 speed is used during reset and post reset speed after reset. post reset speed
330 is optional, in which case the reset speed is used.
331 @itemize @minus
332
333 @item wiggler: maximum speed / @var{number}
334 @item ft2232: 6MHz / (@var{number}+1)
335 @item amt jtagaccel: 8 / 2**@var{number}
336 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
337 @end itemize
338
339 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
340 especially true for synthesized cores (-S).
341
342 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
343 @cindex jtag_khz
344 Same as jtag_speed, except that the speed is specified in maximum kHz. If
345 the device can not support the rate asked for, or can not translate from
346 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
347 is not supported, then an error is reported.
348
349 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
350 @cindex reset_config
351 The configuration of the reset signals available on the JTAG interface AND the target.
352 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
353 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
354 @option{srst_only} or @option{trst_and_srst}.
355
356 [@var{combination}] is an optional value specifying broken reset signal implementations.
357 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
358 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
359 that the system is reset together with the test logic (only hypothetical, I haven't
360 seen hardware with such a bug, and can be worked around).
361 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
362 The default behaviour if no option given is @option{separate}.
363
364 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
365 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
366 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
367 (default) and @option{srst_push_pull} for the system reset. These values only affect
368 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
369
370 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
371 @cindex jtag_device
372 Describes the devices that form the JTAG daisy chain, with the first device being
373 the one closest to TDO. The parameters are the length of the instruction register
374 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
375 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
376 The IDCODE instruction will in future be used to query devices for their JTAG
377 identification code. This line is the same for all ARM7 and ARM9 devices.
378 Other devices, like CPLDs, require different parameters. An example configuration
379 line for a Xilinx XC9500 CPLD would look like this:
380 @smallexample
381 jtag_device 8 0x01 0x0e3 0xfe
382 @end smallexample
383 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
384 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
385 The IDCODE instruction is 0xfe.
386
387 @item @b{jtag_nsrst_delay} <@var{ms}>
388 @cindex jtag_nsrst_delay
389 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
390 starting new JTAG operations.
391 @item @b{jtag_ntrst_delay} <@var{ms}>
392 @cindex jtag_ntrst_delay
393 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
394 starting new JTAG operations.
395
396 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
397 or on-chip features) keep a reset line asserted for some time after the external reset
398 got deasserted.
399 @end itemize
400
401 @section parport options
402
403 @itemize @bullet
404 @item @b{parport_port} <@var{number}>
405 @cindex parport_port
406 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
407 the @file{/dev/parport} device
408
409 When using PPDEV to access the parallel port, use the number of the parallel port:
410 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
411 you may encounter a problem.
412 @item @b{parport_cable} <@var{name}>
413 @cindex parport_cable
414 The layout of the parallel port cable used to connect to the target.
415 Currently supported cables are
416 @itemize @minus
417 @item @b{wiggler}
418 @cindex wiggler
419 The original Wiggler layout, also supported by several clones, such
420 as the Olimex ARM-JTAG
421 @item @b{old_amt_wiggler}
422 @cindex old_amt_wiggler
423 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
424 version available from the website uses the original Wiggler layout ('@var{wiggler}')
425 @item @b{chameleon}
426 @cindex chameleon
427 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
428 @item @b{dlc5}
429 @cindex dlc5
430 The Xilinx Parallel cable III.
431 @item @b{triton}
432 @cindex triton
433 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
434 This is also the layout used by the HollyGates design
435 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
436 @item @b{flashlink}
437 @cindex flashlink
438 The ST Parallel cable.
439 @end itemize
440 @item @b{parport_write_on_exit} <@var{on|off}>
441 @cindex parport_write_on_exit
442 This will configure the parallel driver to write a known value to the parallel
443 interface on exiting OpenOCD
444 @end itemize
445
446 @section amt_jtagaccel options
447 @itemize @bullet
448 @item @b{parport_port} <@var{number}>
449 @cindex parport_port
450 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
451 @file{/dev/parport} device
452 @end itemize
453 @section ft2232 options
454
455 @itemize @bullet
456 @item @b{ft2232_device_desc} <@var{description}>
457 @cindex ft2232_device_desc
458 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
459 default value is used. This setting is only valid if compiled with FTD2XX support.
460 @item @b{ft2232_layout} <@var{name}>
461 @cindex ft2232_layout
462 The layout of the FT2232 GPIO signals used to control output-enables and reset
463 signals. Valid layouts are
464 @itemize @minus
465 @item @b{usbjtag}
466 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
467 @item @b{jtagkey}
468 Amontec JTAGkey and JTAGkey-tiny
469 @item @b{signalyzer}
470 Signalyzer
471 @item @b{olimex-jtag}
472 Olimex ARM-USB-OCD
473 @item @b{m5960}
474 American Microsystems M5960
475 @item @b{evb_lm3s811}
476 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
477 SRST signals on external connector
478 @item @b{comstick}
479 Hitex STR9 comstick
480 @item @b{stm32stick}
481 Hitex STM32 Performance Stick
482 @item @b{flyswatter}
483 Tin Can Tools Flyswatter
484 @item @b{turtelizer2}
485 egnite Software turtelizer2
486 @item @b{oocdlink}
487 OOCDLink
488 @end itemize
489
490 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
491 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
492 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
493 @smallexample
494 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
495 @end smallexample
496 @item @b{ft2232_latency} <@var{ms}>
497 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
498 ft2232_read() fails to return the expected number of bytes. This can be caused by
499 USB communication delays and has proved hard to reproduce and debug. Setting the
500 FT2232 latency timer to a larger value increases delays for short USB packages but it
501 also reduces the risk of timeouts before receiving the expected number of bytes.
502 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
503 @end itemize
504
505 @section ep93xx options
506 @cindex ep93xx options
507 Currently, there are no options available for the ep93xx interface.
508
509 @page
510 @section Target configuration
511
512 @itemize @bullet
513 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
514 <@var{variant}>
515 @cindex target
516 Defines a target that should be debugged. Currently supported types are:
517 @itemize @minus
518 @item @b{arm7tdmi}
519 @item @b{arm720t}
520 @item @b{arm9tdmi}
521 @item @b{arm920t}
522 @item @b{arm922t}
523 @item @b{arm926ejs}
524 @item @b{arm966e}
525 @item @b{cortex_m3}
526 @item @b{feroceon}
527 @item @b{xscale}
528 @end itemize
529
530 If you want to use a target board that is not on this list, see Adding a new
531 target board
532
533 Endianess may be @option{little} or @option{big}.
534
535 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
536 @cindex target_script
537 Event is one of the following:
538 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
539 @option{pre_resume} or @option{gdb_program_config}.
540 @option{post_reset} and @option{reset} will produce the same results.
541
542 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
543 @cindex run_and_halt_time
544 The amount of time the debugger should wait after releasing reset before it asserts
545 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
546 reset modes.
547 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
548 <@var{backup}|@var{nobackup}>
549 @cindex working_area
550 Specifies a working area for the debugger to use. This may be used to speed-up
551 downloads to target memory and flash operations, or to perform otherwise unavailable
552 operations (some coprocessor operations on ARM7/9 systems, for example). The last
553 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
554 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
555 @end itemize
556
557 @subsection arm7tdmi options
558 @cindex arm7tdmi options
559 target arm7tdmi <@var{endianess}> <@var{jtag#}>
560 The arm7tdmi target definition requires at least one additional argument, specifying
561 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
562 The optional [@var{variant}] parameter has been removed in recent versions.
563 The correct feature set is determined at runtime.
564
565 @subsection arm720t options
566 @cindex arm720t options
567 ARM720t options are similar to ARM7TDMI options.
568
569 @subsection arm9tdmi options
570 @cindex arm9tdmi options
571 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
572 @option{arm920t}, @option{arm922t} and @option{arm940t}.
573 This enables the hardware single-stepping support found on these cores.
574
575 @subsection arm920t options
576 @cindex arm920t options
577 ARM920t options are similar to ARM9TDMI options.
578
579 @subsection arm966e options
580 @cindex arm966e options
581 ARM966e options are similar to ARM9TDMI options.
582
583 @subsection cortex_m3 options
584 @cindex cortex_m3 options
585 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
586 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
587 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
588 be detected and the normal reset behaviour used.
589
590 @subsection xscale options
591 @cindex xscale options
592 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
593 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
594
595 @section Flash configuration
596 @cindex Flash configuration
597
598 @itemize @bullet
599 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
600 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
601 @cindex flash bank
602 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
603 and <@var{bus_width}> bytes using the selected flash <driver>.
604 @end itemize
605
606 @subsection lpc2000 options
607 @cindex lpc2000 options
608
609 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
610 <@var{clock}> [@var{calc_checksum}]
611 LPC flashes don't require the chip and bus width to be specified. Additional
612 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
613 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
614 of the target this flash belongs to (first is 0), the frequency at which the core
615 is currently running (in kHz - must be an integral number), and the optional keyword
616 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
617 vector table.
618
619 @subsection cfi options
620 @cindex cfi options
621
622 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
623 <@var{target#}>
624 CFI flashes require the number of the target they're connected to as an additional
625 argument. The CFI driver makes use of a working area (specified for the target)
626 to significantly speed up operation.
627
628 @var{chip_width} and @var{bus_width} are specified in bytes.
629
630 @subsection at91sam7 options
631 @cindex at91sam7 options
632
633 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
634 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
635 reading the chip-id and type.
636
637 @subsection str7 options
638 @cindex str7 options
639
640 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
641 variant can be either STR71x, STR73x or STR75x.
642
643 @subsection str9 options
644 @cindex str9 options
645
646 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
647 The str9 needs the flash controller to be configured prior to Flash programming, eg.
648 @smallexample
649 str9x flash_config 0 4 2 0 0x80000
650 @end smallexample
651 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
652
653 @subsection str9 options (str9xpec driver)
654
655 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
656 Before using the flash commands the turbo mode will need enabling using str9xpec
657 @option{enable_turbo} <@var{num>.}
658
659 Only use this driver for locking/unlocking the device or configuring the option bytes.
660 Use the standard str9 driver for programming.
661
662 @subsection stellaris (LM3Sxxx) options
663 @cindex stellaris (LM3Sxxx) options
664
665 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
666 stellaris flash plugin only require the @var{target#}.
667
668 @subsection stm32x options
669 @cindex stm32x options
670
671 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
672 stm32x flash plugin only require the @var{target#}.
673
674 @node Target library
675 @chapter Target library
676 @cindex Target library
677
678 OpenOCD comes with a target configuration script library. These scripts can be
679 used as-is or serve as a starting point.
680
681 The target library is published together with the openocd executable and
682 the path to the target library is in the OpenOCD script search path.
683 Similarly there are example scripts for configuring the JTAG interface.
684
685 The command line below uses the example parport configuration scripts
686 that ship with OpenOCD, then configures the str710.cfg target and
687 finally issues the init and reset command. The communication speed
688 is set to 10kHz for reset and 8MHz for post reset.
689
690
691 @smallexample
692 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
693 @end smallexample
694
695
696 To list the target scripts available:
697
698 @smallexample
699 $ ls /usr/local/lib/openocd/target
700
701 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
702 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
703 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
704 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
705 @end smallexample
706
707
708 @node Commands
709 @chapter Commands
710 @cindex commands
711
712 OpenOCD allows user interaction through a GDB server (default: port 3333),
713 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
714 is available from both the telnet interface and a GDB session. To issue commands to the
715 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
716 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
717 GDB session.
718
719 The TCL interface is used as a simplified RPC mechanism that feeds all the
720 input into the TCL interpreter and returns the output from the evaluation of
721 the commands.
722
723 @section Daemon
724
725 @itemize @bullet
726 @item @b{sleep} <@var{msec}>
727 @cindex sleep
728 Wait for n milliseconds before resuming. Useful in connection with script files
729 (@var{script} command and @var{target_script} configuration).
730
731 @item @b{shutdown}
732 @cindex shutdown
733 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
734
735 @item @b{debug_level} [@var{n}]
736 @cindex debug_level
737 Display or adjust debug level to n<0-3>
738
739 @item @b{fast} [@var{enable/disable}]
740 @cindex fast
741 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
742 downloads and fast memory access will work if the JTAG interface isn't too fast and
743 the core doesn't run at a too low frequency. Note that this option only changes the default
744 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
745 individually.
746
747 The target specific "dangerous" optimisation tweaking options may come and go
748 as more robust and user friendly ways are found to ensure maximum throughput
749 and robustness with a minimum of configuration.
750
751 Typically the "fast enable" is specified first on the command line:
752
753 @smallexample
754 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
755 @end smallexample
756
757 @item @b{log_output} <@var{file}>
758 @cindex log_output
759 Redirect logging to <file> (default: stderr)
760
761 @item @b{script} <@var{file}>
762 @cindex script
763 Execute commands from <file>
764
765 @end itemize
766
767 @subsection Target state handling
768 @itemize @bullet
769 @item @b{poll} [@option{on}|@option{off}]
770 @cindex poll
771 Poll the target for its current state. If the target is in debug mode, architecture
772 specific information about the current state is printed. An optional parameter
773 allows continuous polling to be enabled and disabled.
774
775 @item @b{halt} [@option{ms}]
776 @cindex halt
777 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
778 Default [@option{ms}] is 5 seconds if no arg given.
779 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
780 will stop OpenOCD from waiting.
781
782 @item @b{wait_halt} [@option{ms}]
783 @cindex wait_halt
784 Wait for the target to enter debug mode. Optional [@option{ms}] is
785 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
786 arg given.
787
788 @item @b{resume} [@var{address}]
789 @cindex resume
790 Resume the target at its current code position, or at an optional address.
791 OpenOCD will wait 5 seconds for the target to resume.
792
793 @item @b{step} [@var{address}]
794 @cindex step
795 Single-step the target at its current code position, or at an optional address.
796
797 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
798 |@option{run_and_init}]
799 @cindex reset
800 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
801
802 With no arguments a "reset run" is executed
803 @itemize @minus
804 @item @b{run}
805 @cindex reset run
806 Let the target run.
807 @item @b{halt}
808 @cindex reset halt
809 Immediately halt the target (works only with certain configurations).
810 @item @b{init}
811 @cindex reset init
812 Immediately halt the target, and execute the reset script (works only with certain
813 configurations)
814 @item @b{run_and_halt}
815 @cindex reset run_and_halt
816 Let the target run for a certain amount of time, then request a halt.
817 @item @b{run_and_init}
818 @cindex reset run_and_init
819 Let the target run for a certain amount of time, then request a halt. Execute the
820 reset script once the target enters debug mode.
821 @end itemize
822 The runtime can be set using the @option{run_and_halt_time} command.
823 @end itemize
824
825 @subsection Memory access commands
826 These commands allow accesses of a specific size to the memory system:
827 @itemize @bullet
828 @item @b{mdw} <@var{addr}> [@var{count}]
829 @cindex mdw
830 display memory words
831 @item @b{mdh} <@var{addr}> [@var{count}]
832 @cindex mdh
833 display memory half-words
834 @item @b{mdb} <@var{addr}> [@var{count}]
835 @cindex mdb
836 display memory bytes
837 @item @b{mww} <@var{addr}> <@var{value}>
838 @cindex mww
839 write memory word
840 @item @b{mwh} <@var{addr}> <@var{value}>
841 @cindex mwh
842 write memory half-word
843 @item @b{mwb} <@var{addr}> <@var{value}>
844 @cindex mwb
845 write memory byte
846
847 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
848 @cindex load_image
849 Load image <@var{file}> to target memory at <@var{address}>
850 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
851 @cindex dump_image
852 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
853 (binary) <@var{file}>.
854 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
855 @cindex verify_image
856 Verify <@var{file}> against target memory starting at <@var{address}>.
857 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
858 @end itemize
859
860 @subsection Flash commands
861 @cindex Flash commands
862 @itemize @bullet
863 @item @b{flash banks}
864 @cindex flash banks
865 List configured flash banks
866 @item @b{flash info} <@var{num}>
867 @cindex flash info
868 Print info about flash bank <@option{num}>
869 @item @b{flash probe} <@var{num}>
870 @cindex flash probe
871 Identify the flash, or validate the parameters of the configured flash. Operation
872 depends on the flash type.
873 @item @b{flash erase_check} <@var{num}>
874 @cindex flash erase_check
875 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
876 updates the erase state information displayed by @option{flash info}. That means you have
877 to issue an @option{erase_check} command after erasing or programming the device to get
878 updated information.
879 @item @b{flash protect_check} <@var{num}>
880 @cindex flash protect_check
881 Check protection state of sectors in flash bank <num>.
882 @option{flash erase_sector} using the same syntax.
883 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
884 @cindex flash erase_sector
885 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
886 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
887 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
888 the CFI driver).
889 @item @b{flash erase_address} <@var{address}> <@var{length}>
890 @cindex flash erase_address
891 Erase sectors starting at <@var{address}> for <@var{length}> bytes
892 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
893 @cindex flash write_bank
894 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
895 <@option{offset}> bytes from the beginning of the bank.
896 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
897 @cindex flash write_image
898 Write the image <@var{file}> to the current target's flash bank(s). A relocation
899 [@var{offset}] can be specified and the file [@var{type}] can be specified
900 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
901 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
902 if the @option{erase} parameter is given.
903 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
904 @cindex flash protect
905 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
906 <@var{last}> of @option{flash bank} <@var{num}>.
907 @end itemize
908
909 @page
910 @section Target Specific Commands
911 @cindex Target Specific Commands
912
913 @subsection AT91SAM7 specific commands
914 @cindex AT91SAM7 specific commands
915 The flash configuration is deduced from the chip identification register. The flash
916 controller handles erases automatically on a page (128/265 byte) basis so erase is
917 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
918 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
919 that can be erased separatly. Only an EraseAll command is supported by the controller
920 for each flash plane and this is called with
921 @itemize @bullet
922 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
923 bulk erase flash planes first_plane to last_plane.
924 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
925 @cindex at91sam7 gpnvm
926 set or clear a gpnvm bit for the processor
927 @end itemize
928
929 @subsection STR9 specific commands
930 @cindex STR9 specific commands
931 These are flash specific commands when using the str9xpec driver.
932 @itemize @bullet
933 @item @b{str9xpec enable_turbo} <@var{num}>
934 @cindex str9xpec enable_turbo
935 enable turbo mode, simply this will remove the str9 from the chain and talk
936 directly to the embedded flash controller.
937 @item @b{str9xpec disable_turbo} <@var{num}>
938 @cindex str9xpec disable_turbo
939 restore the str9 into jtag chain.
940 @item @b{str9xpec lock} <@var{num}>
941 @cindex str9xpec lock
942 lock str9 device. The str9 will only respond to an unlock command that will
943 erase the device.
944 @item @b{str9xpec unlock} <@var{num}>
945 @cindex str9xpec unlock
946 unlock str9 device.
947 @item @b{str9xpec options_read} <@var{num}>
948 @cindex str9xpec options_read
949 read str9 option bytes.
950 @item @b{str9xpec options_write} <@var{num}>
951 @cindex str9xpec options_write
952 write str9 option bytes.
953 @end itemize
954
955 @subsection STR9 configuration
956 @cindex STR9 configuration
957 @itemize @bullet
958 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
959 <@var{BBADR}> <@var{NBBADR}>
960 @cindex str9x flash_config
961 Configure str9 flash controller.
962 @smallexample
963 eg. str9x flash_config 0 4 2 0 0x80000
964 This will setup
965 BBSR - Boot Bank Size register
966 NBBSR - Non Boot Bank Size register
967 BBADR - Boot Bank Start Address register
968 NBBADR - Boot Bank Start Address register
969 @end smallexample
970 @end itemize
971
972 @subsection STR9 option byte configuration
973 @cindex STR9 option byte configuration
974 @itemize @bullet
975 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
976 @cindex str9xpec options_cmap
977 configure str9 boot bank.
978 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
979 @cindex str9xpec options_lvdthd
980 configure str9 lvd threshold.
981 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
982 @cindex str9xpec options_lvdsel
983 configure str9 lvd source.
984 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
985 @cindex str9xpec options_lvdwarn
986 configure str9 lvd reset warning source.
987 @end itemize
988
989 @subsection STM32x specific commands
990 @cindex STM32x specific commands
991
992 These are flash specific commands when using the stm32x driver.
993 @itemize @bullet
994 @item @b{stm32x lock} <@var{num}>
995 @cindex stm32x lock
996 lock stm32 device.
997 @item @b{stm32x unlock} <@var{num}>
998 @cindex stm32x unlock
999 unlock stm32 device.
1000 @item @b{stm32x options_read} <@var{num}>
1001 @cindex stm32x options_read
1002 read stm32 option bytes.
1003 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1004 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1005 @cindex stm32x options_write
1006 write stm32 option bytes.
1007 @item @b{stm32x mass_erase} <@var{num}>
1008 @cindex stm32x mass_erase
1009 mass erase flash memory.
1010 @end itemize
1011
1012 @subsection Stellaris specific commands
1013 @cindex Stellaris specific commands
1014
1015 These are flash specific commands when using the Stellaris driver.
1016 @itemize @bullet
1017 @item @b{stellaris mass_erase} <@var{num}>
1018 @cindex stellaris mass_erase
1019 mass erase flash memory.
1020 @end itemize
1021
1022 @page
1023 @section Architecture Specific Commands
1024 @cindex Architecture Specific Commands
1025
1026 @subsection ARMV4/5 specific commands
1027 @cindex ARMV4/5 specific commands
1028
1029 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1030 or Intel XScale (XScale isn't supported yet).
1031 @itemize @bullet
1032 @item @b{armv4_5 reg}
1033 @cindex armv4_5 reg
1034 Display a list of all banked core registers, fetching the current value from every
1035 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1036 register value.
1037 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1038 @cindex armv4_5 core_mode
1039 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1040 The target is resumed in the currently set @option{core_mode}.
1041 @end itemize
1042
1043 @subsection ARM7/9 specific commands
1044 @cindex ARM7/9 specific commands
1045
1046 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1047 ARM920t or ARM926EJ-S.
1048 @itemize @bullet
1049 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1050 @cindex arm7_9 sw_bkpts
1051 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1052 one of the watchpoint registers to implement software breakpoints. Disabling
1053 SW Bkpts frees that register again.
1054 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1055 @cindex arm7_9 force_hw_bkpts
1056 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1057 breakpoints are turned into hardware breakpoints.
1058 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1059 @cindex arm7_9 dbgrq
1060 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1061 safe for all but ARM7TDMI--S cores (like Philips LPC).
1062 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1063 @cindex arm7_9 fast_memory_access
1064 Allow OpenOCD to read and write memory without checking completion of
1065 the operation. This provides a huge speed increase, especially with USB JTAG
1066 cables (FT2232), but might be unsafe if used with targets running at a very low
1067 speed, like the 32kHz startup clock of an AT91RM9200.
1068 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1069 @cindex arm7_9 dcc_downloads
1070 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1071 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1072 unsafe, especially with targets running at a very low speed. This command was introduced
1073 with OpenOCD rev. 60.
1074 @end itemize
1075
1076 @subsection ARM720T specific commands
1077 @cindex ARM720T specific commands
1078
1079 @itemize @bullet
1080 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1081 @cindex arm720t cp15
1082 display/modify cp15 register <@option{num}> [@option{value}].
1083 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1084 @cindex arm720t md<bhw>_phys
1085 Display memory at physical address addr.
1086 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1087 @cindex arm720t mw<bhw>_phys
1088 Write memory at physical address addr.
1089 @item @b{arm720t virt2phys} <@var{va}>
1090 @cindex arm720t virt2phys
1091 Translate a virtual address to a physical address.
1092 @end itemize
1093
1094 @subsection ARM9TDMI specific commands
1095 @cindex ARM9TDMI specific commands
1096
1097 @itemize @bullet
1098 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1099 @cindex arm9tdmi vector_catch
1100 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1101 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1102 @option{irq} @option{fiq}.
1103
1104 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1105 @end itemize
1106
1107 @subsection ARM966E specific commands
1108 @cindex ARM966E specific commands
1109
1110 @itemize @bullet
1111 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1112 @cindex arm966e cp15
1113 display/modify cp15 register <@option{num}> [@option{value}].
1114 @end itemize
1115
1116 @subsection ARM920T specific commands
1117 @cindex ARM920T specific commands
1118
1119 @itemize @bullet
1120 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1121 @cindex arm920t cp15
1122 display/modify cp15 register <@option{num}> [@option{value}].
1123 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1124 @cindex arm920t cp15i
1125 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1126 @item @b{arm920t cache_info}
1127 @cindex arm920t cache_info
1128 Print information about the caches found. This allows you to see if your target
1129 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1130 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1131 @cindex arm920t md<bhw>_phys
1132 Display memory at physical address addr.
1133 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1134 @cindex arm920t mw<bhw>_phys
1135 Write memory at physical address addr.
1136 @item @b{arm920t read_cache} <@var{filename}>
1137 @cindex arm920t read_cache
1138 Dump the content of ICache and DCache to a file.
1139 @item @b{arm920t read_mmu} <@var{filename}>
1140 @cindex arm920t read_mmu
1141 Dump the content of the ITLB and DTLB to a file.
1142 @item @b{arm920t virt2phys} <@var{va}>
1143 @cindex arm920t virt2phys
1144 Translate a virtual address to a physical address.
1145 @end itemize
1146
1147 @subsection ARM926EJS specific commands
1148 @cindex ARM926EJS specific commands
1149
1150 @itemize @bullet
1151 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1152 @cindex arm926ejs cp15
1153 display/modify cp15 register <@option{num}> [@option{value}].
1154 @item @b{arm926ejs cache_info}
1155 @cindex arm926ejs cache_info
1156 Print information about the caches found.
1157 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1158 @cindex arm926ejs md<bhw>_phys
1159 Display memory at physical address addr.
1160 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1161 @cindex arm926ejs mw<bhw>_phys
1162 Write memory at physical address addr.
1163 @item @b{arm926ejs virt2phys} <@var{va}>
1164 @cindex arm926ejs virt2phys
1165 Translate a virtual address to a physical address.
1166 @end itemize
1167
1168 @page
1169 @section Debug commands
1170 @cindex Debug commands
1171 The following commands give direct access to the core, and are most likely
1172 only useful while debugging OpenOCD.
1173 @itemize @bullet
1174 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1175 @cindex arm7_9 write_xpsr
1176 Immediately write either the current program status register (CPSR) or the saved
1177 program status register (SPSR), without changing the register cache (as displayed
1178 by the @option{reg} and @option{armv4_5 reg} commands).
1179 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1180 <@var{0=cpsr},@var{1=spsr}>
1181 @cindex arm7_9 write_xpsr_im8
1182 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1183 operation (similar to @option{write_xpsr}).
1184 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1185 @cindex arm7_9 write_core_reg
1186 Write a core register, without changing the register cache (as displayed by the
1187 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1188 encoding of the [M4:M0] bits of the PSR.
1189 @end itemize
1190
1191 @page
1192 @section JTAG commands
1193 @cindex JTAG commands
1194 @itemize @bullet
1195 @item @b{scan_chain}
1196 @cindex scan_chain
1197 Print current scan chain configuration.
1198 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1199 @cindex jtag_reset
1200 Toggle reset lines.
1201 @item @b{endstate} <@var{tap_state}>
1202 @cindex endstate
1203 Finish JTAG operations in <@var{tap_state}>.
1204 @item @b{runtest} <@var{num_cycles}>
1205 @cindex runtest
1206 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1207 @item @b{statemove} [@var{tap_state}]
1208 @cindex statemove
1209 Move to current endstate or [@var{tap_state}]
1210 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1211 @cindex irscan
1212 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1213 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1214 @cindex drscan
1215 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1216 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1217 @cindex verify_ircapture
1218 Verify value captured during Capture-IR. Default is enabled.
1219 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1220 @cindex var
1221 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1222 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1223 @cindex field
1224 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1225 @end itemize
1226
1227 @page
1228 @section Target Requests
1229 @cindex Target Requests
1230 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1231 See libdcc in the contrib dir for more details.
1232 @itemize @bullet
1233 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1234 @cindex target_request debugmsgs
1235 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1236 @end itemize
1237
1238 @node Sample Scripts
1239 @chapter Sample Scripts
1240 @cindex scripts
1241
1242 This page shows how to use the target library.
1243
1244 The configuration script can be divided in the following section:
1245 @itemize @bullet
1246 @item daemon configuration
1247 @item interface
1248 @item jtag scan chain
1249 @item target configuration
1250 @item flash configuration
1251 @end itemize
1252
1253 Detailed information about each section can be found at OpenOCD configuration.
1254
1255 @section AT91R40008 example
1256 @cindex AT91R40008 example
1257 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1258 the CPU upon startup of the OpenOCD daemon.
1259 @smallexample
1260 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1261 @end smallexample
1262
1263
1264 @node GDB and OpenOCD
1265 @chapter GDB and OpenOCD
1266 @cindex GDB and OpenOCD
1267 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1268 to debug remote targets.
1269
1270 @section Connecting to gdb
1271 @cindex Connecting to gdb
1272 A connection is typically started as follows:
1273 @smallexample
1274 target remote localhost:3333
1275 @end smallexample
1276 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1277
1278 To see a list of available OpenOCD commands type @option{monitor help} on the
1279 gdb commandline.
1280
1281 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1282 to be sent by the gdb server (openocd) to gdb. Typical information includes
1283 packet size and device memory map.
1284
1285 Previous versions of OpenOCD required the following gdb options to increase
1286 the packet size and speed up gdb communication.
1287 @smallexample
1288 set remote memory-write-packet-size 1024
1289 set remote memory-write-packet-size fixed
1290 set remote memory-read-packet-size 1024
1291 set remote memory-read-packet-size fixed
1292 @end smallexample
1293 This is now handled in the @option{qSupported} PacketSize.
1294
1295 @section Programming using gdb
1296 @cindex Programming using gdb
1297
1298 By default the target memory map is sent to gdb, this can be disabled by
1299 the following OpenOCD config option:
1300 @smallexample
1301 gdb_memory_map disable
1302 @end smallexample
1303 For this to function correctly a valid flash config must also be configured
1304 in OpenOCD. For faster performance you should also configure a valid
1305 working area.
1306
1307 Informing gdb of the memory map of the target will enable gdb to protect any
1308 flash area of the target and use hardware breakpoints by default. This means
1309 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1310 using a memory map.
1311
1312 To view the configured memory map in gdb, use the gdb command @option{info mem}
1313 All other unasigned addresses within gdb are treated as RAM.
1314
1315 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1316 this can be changed to the old behaviour by using the following gdb command.
1317 @smallexample
1318 set mem inaccessible-by-default off
1319 @end smallexample
1320
1321 If @option{gdb_flash_program enable} is also used, gdb will be able to
1322 program any flash memory using the vFlash interface.
1323
1324 gdb will look at the target memory map when a load command is given, if any
1325 areas to be programmed lie within the target flash area the vFlash packets
1326 will be used.
1327
1328 If the target needs configuring before gdb programming, a script can be executed.
1329 @smallexample
1330 target_script 0 gdb_program_config config.script
1331 @end smallexample
1332
1333 To verify any flash programming the gdb command @option{compare-sections}
1334 can be used.
1335
1336 @node TCL and OpenOCD
1337 @chapter TCL and OpenOCD
1338 @cindex TCL and OpenOCD
1339 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1340 support.
1341
1342 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1343
1344 The command and file interfaces are fairly straightforward, while the network
1345 port is geared toward intergration with external clients. A small example
1346 of an external TCL script that can connect to openocd is shown below.
1347
1348 @verbatim
1349 # Simple tcl client to connect to openocd
1350 puts "Use empty line to exit"
1351 set fo [socket 127.0.0.1 6666]
1352 puts -nonewline stdout "> "
1353 flush stdout
1354 while {[gets stdin line] >= 0} {
1355 if {$line eq {}} break
1356 puts $fo $line
1357 flush $fo
1358 gets $fo line
1359 puts $line
1360 puts -nonewline stdout "> "
1361 flush stdout
1362 }
1363 close $fo
1364 @end verbatim
1365
1366 This script can easily be modified to front various GUIs or be a sub
1367 component of a larger framework for control and interaction.
1368
1369
1370 @node TCL scripting API
1371 @chapter TCL scripting API
1372 @cindex TCL scripting API
1373 API rules
1374
1375 The commands are stateless. E.g. the telnet command line has a concept
1376 of currently active target, the Tcl API proc's take this sort of state
1377 information as an argument to each proc.
1378
1379 There are three main types of return values: single value, name value
1380 pair list and lists.
1381
1382 Name value pair. The proc 'foo' below returns a name/value pair
1383 list.
1384
1385 @verbatim
1386
1387 > set foo(me) Duane
1388 > set foo(you) Oyvind
1389 > set foo(mouse) Micky
1390 > set foo(duck) Donald
1391
1392 If one does this:
1393
1394 > set foo
1395
1396 The result is:
1397
1398 me Duane you Oyvind mouse Micky duck Donald
1399
1400 Thus, to get the names of the associative array is easy:
1401
1402 foreach { name value } [set foo] {
1403 puts "Name: $name, Value: $value"
1404 }
1405 @end verbatim
1406
1407 Lists returned must be relatively small. Otherwise a range
1408 should be passed in to the proc in question.
1409
1410 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1411 is the low level API upon which "flash banks" is implemented.
1412
1413 OpenOCD commands can consist of two words, e.g. "flash banks". The
1414 startup.tcl "unknown" proc will translate this into a tcl proc
1415 called "flash_banks".
1416
1417
1418 @node Upgrading
1419 @chapter Deprecated/Removed Commands
1420 @cindex Deprecated/Removed Commands
1421 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1422
1423 @itemize @bullet
1424 @item @b{load_binary}
1425 @cindex load_binary
1426 use @option{load_image} command with same args
1427 @item @b{dump_binary}
1428 @cindex dump_binary
1429 use @option{dump_image} command with same args
1430 @item @b{flash erase}
1431 @cindex flash erase
1432 use @option{flash erase_sector} command with same args
1433 @item @b{flash write}
1434 @cindex flash write
1435 use @option{flash write_bank} command with same args
1436 @item @b{flash write_binary}
1437 @cindex flash write_binary
1438 use @option{flash write_bank} command with same args
1439 @item @b{arm7_9 fast_writes}
1440 @cindex arm7_9 fast_writes
1441 use @option{arm7_9 fast_memory_access} command with same args
1442 @item @b{flash auto_erase}
1443 @cindex flash auto_erase
1444 use @option{flash write_image} command passing @option{erase} as the first parameter.
1445 @item @b{daemon_startup}
1446 @cindex daemon_startup
1447 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1448 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1449 and @option{target cortex_m3 little reset_halt 0}.
1450 @end itemize
1451
1452 @node FAQ
1453 @chapter FAQ
1454 @cindex faq
1455 @enumerate
1456 @item OpenOCD complains about a missing cygwin1.dll.
1457
1458 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1459 claims to come with all the necessary dlls. When using Cygwin, try launching
1460 OpenOCD from the Cygwin shell.
1461
1462 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1463 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1464 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1465
1466 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1467 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1468 software breakpoints consume one of the two available hardware breakpoints,
1469 and are therefore disabled by default. If your code is running from RAM, you
1470 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1471 your code resides in Flash, you can't use software breakpoints, but you can force
1472 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1473
1474 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1475 and works sometimes fine.
1476
1477 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1478 clock at the time you're programming the flash. If you've specified the crystal's
1479 frequency, make sure the PLL is disabled, if you've specified the full core speed
1480 (e.g. 60MHz), make sure the PLL is enabled.
1481
1482 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1483 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1484 out while waiting for end of scan, rtck was disabled".
1485
1486 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1487 settings in your PC BIOS (ECP, EPP, and different versions of those).
1488
1489 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1490 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1491 memory read caused data abort".
1492
1493 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1494 beyond the last valid frame. It might be possible to prevent this by setting up
1495 a proper "initial" stack frame, if you happen to know what exactly has to
1496 be done, feel free to add this here.
1497
1498 @item I get the following message in the OpenOCD console (or log file):
1499 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1500
1501 This warning doesn't indicate any serious problem, as long as you don't want to
1502 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1503 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1504 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1505 independently. With this setup, it's not possible to halt the core right out of
1506 reset, everything else should work fine.
1507
1508 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1509 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1510 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1511 quit with an error message. Is there a stability issue with OpenOCD?
1512
1513 No, this is not a stability issue concerning OpenOCD. Most users have solved
1514 this issue by simply using a self-powered USB hub, which they connect their
1515 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1516 supply stable enough for the Amontec JTAGkey to be operated.
1517
1518 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1519 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1520 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1521 What does that mean and what might be the reason for this?
1522
1523 First of all, the reason might be the USB power supply. Try using a self-powered
1524 hub instead of a direct connection to your computer. Secondly, the error code 4
1525 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1526 chip ran into some sort of error - this points us to a USB problem.
1527
1528 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1529 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1530 What does that mean and what might be the reason for this?
1531
1532 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1533 has closed the connection to OpenOCD. This might be a GDB issue.
1534
1535 @item In the configuration file in the section where flash device configurations
1536 are described, there is a parameter for specifying the clock frequency for
1537 LPC2000 internal flash devices (e.g.
1538 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1539 which must be specified in kilohertz. However, I do have a quartz crystal of a
1540 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1541 Is it possible to specify real numbers for the clock frequency?
1542
1543 No. The clock frequency specified here must be given as an integral number.
1544 However, this clock frequency is used by the In-Application-Programming (IAP)
1545 routines of the LPC2000 family only, which seems to be very tolerant concerning
1546 the given clock frequency, so a slight difference between the specified clock
1547 frequency and the actual clock frequency will not cause any trouble.
1548
1549 @item Do I have to keep a specific order for the commands in the configuration file?
1550
1551 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1552 listed for the JTAG scan chain must be given in the right order (jtag_device),
1553 with the device closest to the TDO-Pin being listed first. In general,
1554 whenever objects of the same type exist which require an index number, then
1555 these objects must be given in the right order (jtag_devices, targets and flash
1556 banks - a target references a jtag_device and a flash bank references a target).
1557
1558 @item Sometimes my debugging session terminates with an error. When I look into the
1559 log file, I can see these error messages: Error: arm7_9_common.c:561
1560 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1561
1562 TODO.
1563
1564 @end enumerate
1565
1566 @include fdl.texi
1567
1568 @node Index
1569 @unnumbered Index
1570
1571 @printindex cp
1572
1573 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)