a few words about motivation for standalone JTAG debugger.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD
55 * Developers:: OpenOCD Developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * Tcl Scripting API:: Tcl Scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target Library:: Target Library
76 * FAQ:: Frequently Asked Questions
77 * Tcl Crash Course:: Tcl Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main Index
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) compliant taps on your target board.
96
97 @b{Dongles:} OpenOCD currently supports many types of hardware dongles: USB
98 based, parallel port based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920T,
102 ARM922T, ARM926EJ--S, ARM966E--S), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3, and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}.
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 You are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} i.e.: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} i.e.: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with printer ports enabled.}
155 @item @b{Try to use LIBFTDI + LIBUSB where possible. You cover more bases.}
156 @end enumerate
157
158 @itemize @bullet
159 @item @b{Why YES to LIBFTDI + LIBUSB?}
160 @itemize @bullet
161 @item @b{LESS} work - libusb perhaps already there
162 @item @b{LESS} work - identical code, multiple platforms
163 @item @b{MORE} dongles are supported
164 @item @b{MORE} platforms are supported
165 @item @b{MORE} complete solution
166 @end itemize
167 @item @b{Why not LIBFTDI + LIBUSB} (i.e.: ftd2xx instead)?
168 @itemize @bullet
169 @item @b{LESS} speed - some say it is slower
170 @item @b{LESS} complex to distribute (external dependencies)
171 @end itemize
172 @end itemize
173
174 @section Building From Source
175
176 You can download the current SVN version with an SVN client of your choice from the
177 following repositories:
178
179 @uref{svn://svn.berlios.de/openocd/trunk}
180
181 or
182
183 @uref{http://svn.berlios.de/svnroot/repos/openocd/trunk}
184
185 Using the SVN command line client, you can use the following command to fetch the
186 latest version (make sure there is no (non-svn) directory called "openocd" in the
187 current directory):
188
189 @example
190 svn checkout svn://svn.berlios.de/openocd/trunk openocd
191 @end example
192
193 Building OpenOCD requires a recent version of the GNU autotools (autoconf >= 2.59 and automake >= 1.9).
194 For building on Windows,
195 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
196 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
197 paths, resulting in obscure dependency errors (This is an observation I've gathered
198 from the logs of one user - correct me if I'm wrong).
199
200 You further need the appropriate driver files, if you want to build support for
201 a FTDI FT2232 based interface:
202
203 @itemize @bullet
204 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
205 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
206 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
207 homepage (@uref{http://www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
208 @end itemize
209
210 libftdi is supported under Windows. Do not use versions earlier than 0.14.
211
212 In general, the D2XX driver provides superior performance (several times as fast),
213 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
214 a kernel module, only a user space library.
215
216 To build OpenOCD (on both Linux and Cygwin), use the following commands:
217
218 @example
219 ./bootstrap
220 @end example
221
222 Bootstrap generates the configure script, and prepares building on your system.
223
224 @example
225 ./configure [options, see below]
226 @end example
227
228 Configure generates the Makefiles used to build OpenOCD.
229
230 @example
231 make
232 make install
233 @end example
234
235 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
236
237 The configure script takes several options, specifying which JTAG interfaces
238 should be included (among other things):
239
240 @itemize @bullet
241 @item
242 @option{--enable-parport} - Enable building the PC parallel port driver.
243 @item
244 @option{--enable-parport_ppdev} - Enable use of ppdev (/dev/parportN) for parport.
245 @item
246 @option{--enable-parport_giveio} - Enable use of giveio for parport instead of ioperm.
247 @item
248 @option{--enable-amtjtagaccel} - Enable building the Amontec JTAG-Accelerator driver.
249 @item
250 @option{--enable-ecosboard} - Enable building support for eCosBoard based JTAG debugger.
251 @item
252 @option{--enable-ioutil} - Enable ioutil functions - useful for standalone OpenOCD implementations.
253 @item
254 @option{--enable-httpd} - Enable builtin httpd server - useful for standalone OpenOCD implementations.
255 @item
256 @option{--enable-ep93xx} - Enable building support for EP93xx based SBCs.
257 @item
258 @option{--enable-at91rm9200} - Enable building support for AT91RM9200 based SBCs.
259 @item
260 @option{--enable-gw16012} - Enable building support for the Gateworks GW16012 JTAG programmer.
261 @item
262 @option{--enable-ft2232_ftd2xx} - Numerous USB type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
263 @item
264 @option{--enable-ft2232_libftdi} - An open source (free) alternative to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin).
265 @item
266 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
267 @item
268 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only. Equivalent of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
269 @item
270 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static. Specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note: 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. The 'shared' value is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
271 @item
272 @option{--enable-presto_libftdi} - Enable building support for ASIX Presto programmer using the libftdi driver.
273 @item
274 @option{--enable-presto_ftd2xx} - Enable building support for ASIX Presto programmer using the FTD2XX driver.
275 @item
276 @option{--enable-usbprog} - Enable building support for the USBprog JTAG programmer.
277 @item
278 @option{--enable-oocd_trace} - Enable building support for the OpenOCD+trace ETM capture device.
279 @item
280 @option{--enable-jlink} - Enable building support for the Segger J-Link JTAG programmer.
281 @item
282 @option{--enable-vsllink} - Enable building support for the Versaloon-Link JTAG programmer.
283 @item
284 @option{--enable-rlink} - Enable building support for the Raisonance RLink JTAG programmer.
285 @item
286 @option{--enable-arm-jtag-ew} - Enable building support for the Olimex ARM-JTAG-EW programmer.
287 @item
288 @option{--enable-dummy} - Enable building the dummy port driver.
289 @end itemize
290
291 @section Parallel Port Dongles
292
293 If you want to access the parallel port using the PPDEV interface you have to specify
294 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
295 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
296 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
297
298 The same is true for the @option{--enable-parport_giveio} option, you have to
299 use both the @option{--enable-parport} AND the @option{--enable-parport_giveio} option if you want to use giveio instead of ioperm parallel port access method.
300
301 @section FT2232C Based USB Dongles
302
303 There are 2 methods of using the FTD2232, either (1) using the
304 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
305 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
306
307 The FTDICHIP drivers come as either a (win32) ZIP file, or a (Linux)
308 TAR.GZ file. You must unpack them ``some where'' convient. As of this
309 writing (12/26/2008) FTDICHIP does not supply means to install these
310 files ``in an appropriate place'' As a result, there are two
311 ``./configure'' options that help.
312
313 Below is an example build process:
314
315 1) Check out the latest version of ``openocd'' from SVN.
316
317 2) Download & unpack either the Windows or Linux FTD2xx drivers
318 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm}).
319
320 @example
321 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
322 /home/duane/libftd2xx0.4.16 => the Linux TAR.GZ file contents.
323 @end example
324
325 3) Configure with these options:
326
327 @example
328 Cygwin FTDICHIP solution:
329 ./configure --prefix=/home/duane/mytools \
330 --enable-ft2232_ftd2xx \
331 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
332
333 Linux FTDICHIP solution:
334 ./configure --prefix=/home/duane/mytools \
335 --enable-ft2232_ftd2xx \
336 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
337
338 Cygwin/Linux LIBFTDI solution:
339 Assumes:
340 1a) For Windows: The Windows port of LIBUSB is in place.
341 1b) For Linux: libusb has been built/installed and is in place.
342
343 2) And libftdi has been built and installed
344 Note: libftdi - relies upon libusb.
345
346 ./configure --prefix=/home/duane/mytools \
347 --enable-ft2232_libftdi
348
349 @end example
350
351 4) Then just type ``make'', and perhaps ``make install''.
352
353
354 @section Miscellaneous Configure Options
355
356 @itemize @bullet
357 @item
358 @option{--disable-option-checking} - Ignore unrecognized @option{--enable} and @option{--with} options.
359 @item
360 @option{--enable-gccwarnings} - Enable extra gcc warnings during build.
361 Default is enabled.
362 @item
363 @option{--enable-release} - Enable building of an OpenOCD release, generally
364 this is for developers. It simply omits the svn version string when the
365 openocd @option{-v} is executed.
366 @end itemize
367
368 @node JTAG Hardware Dongles
369 @chapter JTAG Hardware Dongles
370 @cindex dongles
371 @cindex FTDI
372 @cindex wiggler
373 @cindex zy1000
374 @cindex printer port
375 @cindex USB Adapter
376 @cindex rtck
377
378 Defined: @b{dongle}: A small device that plugins into a computer and serves as
379 an adapter .... [snip]
380
381 In the OpenOCD case, this generally refers to @b{a small adapater} one
382 attaches to your computer via USB or the Parallel Printer Port. The
383 execption being the Zylin ZY1000 which is a small box you attach via
384 an ethernet cable. The Zylin ZY1000 has the advantage that it does not
385 require any drivers to be installed on the developer PC. It also has
386 a built in web interface. It supports RTCK/RCLK or adaptive clocking
387 and has a built in relay to power cycle targets remotely.
388
389
390 @section Choosing a Dongle
391
392 There are three things you should keep in mind when choosing a dongle.
393
394 @enumerate
395 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
396 @item @b{Connection} Printer Ports - Does your computer have one?
397 @item @b{Connection} Is that long printer bit-bang cable practical?
398 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
399 @end enumerate
400
401 @section Stand alone Systems
402
403 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
404 dongle, but a standalone box. The ZY1000 has the advantage that it does
405 not require any drivers installed on the developer PC. It also has
406 a built in web interface. It supports RTCK/RCLK or adaptive clocking
407 and has a built in relay to power cycle targets remotely.
408
409 @section USB FT2232 Based
410
411 There are many USB JTAG dongles on the market, many of them are based
412 on a chip from ``Future Technology Devices International'' (FTDI)
413 known as the FTDI FT2232.
414
415 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
416
417 As of 28/Nov/2008, the following are supported:
418
419 @itemize @bullet
420 @item @b{usbjtag}
421 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
422 @item @b{jtagkey}
423 @* See: @url{http://www.amontec.com/jtagkey.shtml}
424 @item @b{oocdlink}
425 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
426 @item @b{signalyzer}
427 @* See: @url{http://www.signalyzer.com}
428 @item @b{evb_lm3s811}
429 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
430 @item @b{olimex-jtag}
431 @* See: @url{http://www.olimex.com}
432 @item @b{flyswatter}
433 @* See: @url{http://www.tincantools.com}
434 @item @b{turtelizer2}
435 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
436 @item @b{comstick}
437 @* Link: @url{http://www.hitex.com/index.php?id=383}
438 @item @b{stm32stick}
439 @* Link @url{http://www.hitex.com/stm32-stick}
440 @item @b{axm0432_jtag}
441 @* Axiom AXM-0432 Link @url{http://www.axman.com}
442 @end itemize
443
444 @section USB JLINK based
445 There are several OEM versions of the Segger @b{JLINK} adapter. It is
446 an example of a micro controller based JTAG adapter, it uses an
447 AT91SAM764 internally.
448
449 @itemize @bullet
450 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
451 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
452 @item @b{SEGGER JLINK}
453 @* Link: @url{http://www.segger.com/jlink.html}
454 @item @b{IAR J-Link}
455 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
456 @end itemize
457
458 @section USB RLINK based
459 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
460
461 @itemize @bullet
462 @item @b{Raisonance RLink}
463 @* Link: @url{http://www.raisonance.com/products/RLink.php}
464 @item @b{STM32 Primer}
465 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
466 @item @b{STM32 Primer2}
467 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
468 @end itemize
469
470 @section USB Other
471 @itemize @bullet
472 @item @b{USBprog}
473 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
474
475 @item @b{USB - Presto}
476 @* Link: @url{http://tools.asix.net/prg_presto.htm}
477
478 @item @b{Versaloon-Link}
479 @* Link: @url{http://www.simonqian.com/en/Versaloon}
480
481 @item @b{ARM-JTAG-EW}
482 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
483 @end itemize
484
485 @section IBM PC Parallel Printer Port Based
486
487 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
488 and the MacGraigor Wiggler. There are many clones and variations of
489 these on the market.
490
491 @itemize @bullet
492
493 @item @b{Wiggler} - There are many clones of this.
494 @* Link: @url{http://www.macraigor.com/wiggler.htm}
495
496 @item @b{DLC5} - From XILINX - There are many clones of this
497 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
498 produced, PDF schematics are easily found and it is easy to make.
499
500 @item @b{Amontec - JTAG Accelerator}
501 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
502
503 @item @b{GW16402}
504 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
505
506 @item @b{Wiggler2}
507 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
508
509 @item @b{Wiggler_ntrst_inverted}
510 @* Yet another variation - See the source code, src/jtag/parport.c
511
512 @item @b{old_amt_wiggler}
513 @* Unknown - probably not on the market today
514
515 @item @b{arm-jtag}
516 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
517
518 @item @b{chameleon}
519 @* Link: @url{http://www.amontec.com/chameleon.shtml}
520
521 @item @b{Triton}
522 @* Unknown.
523
524 @item @b{Lattice}
525 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
526
527 @item @b{flashlink}
528 @* From ST Microsystems, link:
529 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
530 Title: FlashLINK JTAG programing cable for PSD and uPSD
531
532 @end itemize
533
534 @section Other...
535 @itemize @bullet
536
537 @item @b{ep93xx}
538 @* An EP93xx based Linux machine using the GPIO pins directly.
539
540 @item @b{at91rm9200}
541 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
542
543 @end itemize
544
545 @node Running
546 @chapter Running
547 @cindex running OpenOCD
548 @cindex --configfile
549 @cindex --debug_level
550 @cindex --logfile
551 @cindex --search
552
553 The @option{--help} option shows:
554 @verbatim
555 bash$ openocd --help
556
557 --help | -h display this help
558 --version | -v display OpenOCD version
559 --file | -f use configuration file <name>
560 --search | -s dir to search for config files and scripts
561 --debug | -d set debug level <0-3>
562 --log_output | -l redirect log output to file <name>
563 --command | -c run <command>
564 --pipe | -p use pipes when talking to gdb
565 @end verbatim
566
567 By default OpenOCD reads the file configuration file ``openocd.cfg''
568 in the current directory. To specify a different (or multiple)
569 configuration file, you can use the ``-f'' option. For example:
570
571 @example
572 openocd -f config1.cfg -f config2.cfg -f config3.cfg
573 @end example
574
575 Once started, OpenOCD runs as a daemon, waiting for connections from
576 clients (Telnet, GDB, Other).
577
578 If you are having problems, you can enable internal debug messages via
579 the ``-d'' option.
580
581 Also it is possible to interleave commands w/config scripts using the
582 @option{-c} command line switch.
583
584 To enable debug output (when reporting problems or working on OpenOCD
585 itself), use the @option{-d} command line switch. This sets the
586 @option{debug_level} to "3", outputting the most information,
587 including debug messages. The default setting is "2", outputting only
588 informational messages, warnings and errors. You can also change this
589 setting from within a telnet or gdb session using @option{debug_level
590 <n>} @xref{debug_level}.
591
592 You can redirect all output from the daemon to a file using the
593 @option{-l <logfile>} switch.
594
595 Search paths for config/script files can be added to OpenOCD by using
596 the @option{-s <search>} switch. The current directory and the OpenOCD
597 target library is in the search path by default.
598
599 For details on the @option{-p} option. @xref{Connecting to GDB}.
600
601 Note! OpenOCD will launch the GDB & telnet server even if it can not
602 establish a connection with the target. In general, it is possible for
603 the JTAG controller to be unresponsive until the target is set up
604 correctly via e.g. GDB monitor commands in a GDB init script.
605
606 @node Simple Configuration Files
607 @chapter Simple Configuration Files
608 @cindex configuration
609
610 @section Outline
611 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
612
613 @enumerate
614 @item A small openocd.cfg file which ``sources'' other configuration files
615 @item A monolithic openocd.cfg file
616 @item Many -f filename options on the command line
617 @item Your Mixed Solution
618 @end enumerate
619
620 @section Small configuration file method
621
622 This is the preferred method. It is simple and works well for many
623 people. The developers of OpenOCD would encourage you to use this
624 method. If you create a new configuration please email new
625 configurations to the development list.
626
627 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
628
629 @example
630 source [find interface/signalyzer.cfg]
631
632 # Change the default telnet port...
633 telnet_port 4444
634 # GDB connects here
635 gdb_port 3333
636 # GDB can also flash my flash!
637 gdb_memory_map enable
638 gdb_flash_program enable
639
640 source [find target/sam7x256.cfg]
641 @end example
642
643 There are many example configuration scripts you can work with. You
644 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
645 should find:
646
647 @enumerate
648 @item @b{board} - eval board level configurations
649 @item @b{interface} - specific dongle configurations
650 @item @b{target} - the target chips
651 @item @b{tcl} - helper scripts
652 @item @b{xscale} - things specific to the xscale.
653 @end enumerate
654
655 Look first in the ``boards'' area, then the ``targets'' area. Often a board
656 configuration is a good example to work from.
657
658 @section Many -f filename options
659 Some believe this is a wonderful solution, others find it painful.
660
661 You can use a series of ``-f filename'' options on the command line,
662 OpenOCD will read each filename in sequence, for example:
663
664 @example
665 openocd -f file1.cfg -f file2.cfg -f file2.cfg
666 @end example
667
668 You can also intermix various commands with the ``-c'' command line
669 option.
670
671 @section Monolithic file
672 The ``Monolithic File'' dispenses with all ``source'' statements and
673 puts everything in one self contained (monolithic) file. This is not
674 encouraged.
675
676 Please try to ``source'' various files or use the multiple -f
677 technique.
678
679 @section Advice for you
680 Often, one uses a ``mixed approach''. Where possible, please try to
681 ``source'' common things, and if needed cut/paste parts of the
682 standard distribution configuration files as needed.
683
684 @b{REMEMBER:} The ``important parts'' of your configuration file are:
685
686 @enumerate
687 @item @b{Interface} - Defines the dongle
688 @item @b{Taps} - Defines the JTAG Taps
689 @item @b{GDB Targets} - What GDB talks to
690 @item @b{Flash Programing} - Very Helpful
691 @end enumerate
692
693 Some key things you should look at and understand are:
694
695 @enumerate
696 @item The reset configuration of your debug environment as a whole
697 @item Is there a ``work area'' that OpenOCD can use?
698 @* For ARM - work areas mean up to 10x faster downloads.
699 @item For MMU/MPU based ARM chips (i.e.: ARM9 and later) will that work area still be available?
700 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
701 @end enumerate
702
703
704
705 @node Config File Guidelines
706 @chapter Config File Guidelines
707
708 This section/chapter is aimed at developers and integrators of
709 OpenOCD. These are guidelines for creating new boards and new target
710 configurations as of 28/Nov/2008.
711
712 However, you, the user of OpenOCD, should be somewhat familiar with
713 this section as it should help explain some of the internals of what
714 you might be looking at.
715
716 The user should find the following directories under @t{$(INSTALLDIR)/lib/openocd} :
717
718 @itemize @bullet
719 @item @b{interface}
720 @*Think JTAG Dongle. Files that configure the JTAG dongle go here.
721 @item @b{board}
722 @* Think Circuit Board, PWA, PCB, they go by many names. Board files
723 contain initialization items that are specific to a board - for
724 example: The SDRAM initialization sequence for the board, or the type
725 of external flash and what address it is found at. Any initialization
726 sequence to enable that external flash or SDRAM should be found in the
727 board file. Boards may also contain multiple targets, i.e.: Two CPUs, or
728 a CPU and an FPGA or CPLD.
729 @item @b{target}
730 @* Think chip. The ``target'' directory represents a JTAG tap (or
731 chip) OpenOCD should control, not a board. Two common types of targets
732 are ARM chips and FPGA or CPLD chips.
733 @end itemize
734
735 @b{If needed...} The user in their ``openocd.cfg'' file or the board
736 file might override a specific feature in any of the above files by
737 setting a variable or two before sourcing the target file. Or adding
738 various commands specific to their situation.
739
740 @section Interface Config Files
741
742 The user should be able to source one of these files via a command like this:
743
744 @example
745 source [find interface/FOOBAR.cfg]
746 Or:
747 openocd -f interface/FOOBAR.cfg
748 @end example
749
750 A preconfigured interface file should exist for every interface in use
751 today, that said, perhaps some interfaces have only been used by the
752 sole developer who created it.
753
754 @b{FIXME/NOTE:} We need to add support for a variable like Tcl variable
755 tcl_platform(platform), it should be called jim_platform (because it
756 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
757 ``cygwin'' or ``mingw''
758
759 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
760
761 @section Board Config Files
762
763 @b{Note: BOARD directory NEW as of 28/nov/2008}
764
765 The user should be able to source one of these files via a command like this:
766
767 @example
768 source [find board/FOOBAR.cfg]
769 Or:
770 openocd -f board/FOOBAR.cfg
771 @end example
772
773
774 The board file should contain one or more @t{source [find
775 target/FOO.cfg]} statements along with any board specific things.
776
777 In summary the board files should contain (if present)
778
779 @enumerate
780 @item External flash configuration (i.e.: the flash on CS0)
781 @item SDRAM configuration (size, speed, etc.
782 @item Board specific IO configuration (i.e.: GPIO pins might disable a 2nd flash)
783 @item Multiple TARGET source statements
784 @item All things that are not ``inside a chip''
785 @item Things inside a chip go in a 'target' file
786 @end enumerate
787
788 @section Target Config Files
789
790 The user should be able to source one of these files via a command like this:
791
792 @example
793 source [find target/FOOBAR.cfg]
794 Or:
795 openocd -f target/FOOBAR.cfg
796 @end example
797
798 In summary the target files should contain
799
800 @enumerate
801 @item Set defaults
802 @item Create taps
803 @item Reset configuration
804 @item Work areas
805 @item CPU/Chip/CPU-Core specific features
806 @item On-Chip flash
807 @end enumerate
808
809 @subsection Important variable names
810
811 By default, the end user should never need to set these
812 variables. However, if the user needs to override a setting they only
813 need to set the variable in a simple way.
814
815 @itemize @bullet
816 @item @b{CHIPNAME}
817 @* This gives a name to the overall chip, and is used as part of the
818 tap identifier dotted name.
819 @item @b{ENDIAN}
820 @* By default little - unless the chip or board is not normally used that way.
821 @item @b{CPUTAPID}
822 @* When OpenOCD examines the JTAG chain, it will attempt to identify
823 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
824 to verify the tap id number verses configuration file and may issue an
825 error or warning like this. The hope is that this will help to pinpoint
826 problems in OpenOCD configurations.
827
828 @example
829 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
830 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
831 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
832 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
833 @end example
834
835 @item @b{_TARGETNAME}
836 @* By convention, this variable is created by the target configuration
837 script. The board configuration file may make use of this variable to
838 configure things like a ``reset init'' script, or other things
839 specific to that board and that target.
840
841 If the chip has 2 targets, use the names @b{_TARGETNAME0},
842 @b{_TARGETNAME1}, ... etc.
843
844 @b{Remember:} The ``board file'' may include multiple targets.
845
846 At no time should the name ``target0'' (the default target name if
847 none was specified) be used. The name ``target0'' is a hard coded name
848 - the next target on the board will be some other number.
849
850 The user (or board file) should reasonably be able to:
851
852 @example
853 source [find target/FOO.cfg]
854 $_TARGETNAME configure ... FOO specific parameters
855
856 source [find target/BAR.cfg]
857 $_TARGETNAME configure ... BAR specific parameters
858 @end example
859
860 @end itemize
861
862 @subsection Tcl Variables Guide Line
863 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
864
865 Thus the rule we follow in OpenOCD is this: Variables that begin with
866 a leading underscore are temporary in nature, and can be modified and
867 used at will within a ?TARGET? configuration file.
868
869 @b{EXAMPLE:} The user should be able to do this:
870
871 @example
872 # Board has 3 chips,
873 # PXA270 #1 network side, big endian
874 # PXA270 #2 video side, little endian
875 # Xilinx Glue logic
876 set CHIPNAME network
877 set ENDIAN big
878 source [find target/pxa270.cfg]
879 # variable: _TARGETNAME = network.cpu
880 # other commands can refer to the "network.cpu" tap.
881 $_TARGETNAME configure .... params for this CPU..
882
883 set ENDIAN little
884 set CHIPNAME video
885 source [find target/pxa270.cfg]
886 # variable: _TARGETNAME = video.cpu
887 # other commands can refer to the "video.cpu" tap.
888 $_TARGETNAME configure .... params for this CPU..
889
890 unset ENDIAN
891 set CHIPNAME xilinx
892 source [find target/spartan3.cfg]
893
894 # Since $_TARGETNAME is temporal..
895 # these names still work!
896 network.cpu configure ... params
897 video.cpu configure ... params
898
899 @end example
900
901 @subsection Default Value Boiler Plate Code
902
903 All target configuration files should start with this (or a modified form)
904
905 @example
906 # SIMPLE example
907 if @{ [info exists CHIPNAME] @} @{
908 set _CHIPNAME $CHIPNAME
909 @} else @{
910 set _CHIPNAME sam7x256
911 @}
912
913 if @{ [info exists ENDIAN] @} @{
914 set _ENDIAN $ENDIAN
915 @} else @{
916 set _ENDIAN little
917 @}
918
919 if @{ [info exists CPUTAPID ] @} @{
920 set _CPUTAPID $CPUTAPID
921 @} else @{
922 set _CPUTAPID 0x3f0f0f0f
923 @}
924
925 @end example
926
927 @subsection Creating Taps
928 After the ``defaults'' are choosen [see above] the taps are created.
929
930 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
931
932 @example
933 # for an ARM7TDMI.
934 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
935 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
936 @end example
937
938 @b{COMPLEX example:}
939
940 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
941
942 @enumerate
943 @item @b{Unform tap names} - See: Tap Naming Convention
944 @item @b{_TARGETNAME} is created at the end where used.
945 @end enumerate
946
947 @example
948 if @{ [info exists FLASHTAPID ] @} @{
949 set _FLASHTAPID $FLASHTAPID
950 @} else @{
951 set _FLASHTAPID 0x25966041
952 @}
953 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
954
955 if @{ [info exists CPUTAPID ] @} @{
956 set _CPUTAPID $CPUTAPID
957 @} else @{
958 set _CPUTAPID 0x25966041
959 @}
960 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
961
962
963 if @{ [info exists BSTAPID ] @} @{
964 set _BSTAPID $BSTAPID
965 @} else @{
966 set _BSTAPID 0x1457f041
967 @}
968 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
969
970 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
971 @end example
972
973 @b{Tap Naming Convention}
974
975 See the command ``jtag newtap'' for detail, but in brief the names you should use are:
976
977 @itemize @bullet
978 @item @b{tap}
979 @item @b{cpu}
980 @item @b{flash}
981 @item @b{bs}
982 @item @b{jrc}
983 @item @b{unknownN} - it happens :-(
984 @end itemize
985
986 @subsection Reset Configuration
987
988 Some chips have specific ways the TRST and SRST signals are
989 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
990 @b{BOARD SPECIFIC} they go in the board file.
991
992 @subsection Work Areas
993
994 Work areas are small RAM areas used by OpenOCD to speed up downloads,
995 and to download small snippets of code to program flash chips.
996
997 If the chip includes a form of ``on-chip-ram'' - and many do - define
998 a reasonable work area and use the ``backup'' option.
999
1000 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
1001 inaccessible if/when the application code enables or disables the MMU.
1002
1003 @subsection ARM Core Specific Hacks
1004
1005 If the chip has a DCC, enable it. If the chip is an ARM9 with some
1006 special high speed download features - enable it.
1007
1008 If the chip has an ARM ``vector catch'' feature - by default enable
1009 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
1010 user is really writing a handler for those situations - they can
1011 easily disable it. Experiance has shown the ``vector catch'' is
1012 helpful - for common programing errors.
1013
1014 If present, the MMU, the MPU and the CACHE should be disabled.
1015
1016 @subsection Internal Flash Configuration
1017
1018 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
1019
1020 @b{Never ever} in the ``target configuration file'' define any type of
1021 flash that is external to the chip. (For example the BOOT flash on
1022 Chip Select 0). The BOOT flash information goes in a board file - not
1023 the TARGET (chip) file.
1024
1025 Examples:
1026 @itemize @bullet
1027 @item at91sam7x256 - has 256K flash YES enable it.
1028 @item str912 - has flash internal YES enable it.
1029 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1030 @item pxa270 - again - CS0 flash - it goes in the board file.
1031 @end itemize
1032
1033 @node About JIM-Tcl
1034 @chapter About JIM-Tcl
1035 @cindex JIM Tcl
1036 @cindex tcl
1037
1038 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1039 learn more about JIM here: @url{http://jim.berlios.de}
1040
1041 @itemize @bullet
1042 @item @b{JIM vs. Tcl}
1043 @* JIM-TCL is a stripped down version of the well known Tcl language,
1044 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1045 fewer features. JIM-Tcl is a single .C file and a single .H file and
1046 impliments the basic Tcl command set along. In contrast: Tcl 8.6 is a
1047 4.2 MB .zip file containing 1540 files.
1048
1049 @item @b{Missing Features}
1050 @* Our practice has been: Add/clone the real Tcl feature if/when
1051 needed. We welcome JIM Tcl improvements, not bloat.
1052
1053 @item @b{Scripts}
1054 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1055 command interpreter today (28/nov/2008) is a mixture of (newer)
1056 JIM-Tcl commands, and (older) the orginal command interpreter.
1057
1058 @item @b{Commands}
1059 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1060 can type a Tcl for() loop, set variables, etc.
1061
1062 @item @b{Historical Note}
1063 @* JIM-Tcl was introduced to OpenOCD in spring 2008.
1064
1065 @item @b{Need a crash course in Tcl?}
1066 @* See: @xref{Tcl Crash Course}.
1067 @end itemize
1068
1069
1070 @node Daemon Configuration
1071 @chapter Daemon Configuration
1072 The commands here are commonly found in the openocd.cfg file and are
1073 used to specify what TCP/IP ports are used, and how GDB should be
1074 supported.
1075 @section init
1076 @cindex init
1077 This command terminates the configuration stage and
1078 enters the normal command mode. This can be useful to add commands to
1079 the startup scripts and commands such as resetting the target,
1080 programming flash, etc. To reset the CPU upon startup, add "init" and
1081 "reset" at the end of the config script or at the end of the OpenOCD
1082 command line using the @option{-c} command line switch.
1083
1084 If this command does not appear in any startup/configuration file
1085 OpenOCD executes the command for you after processing all
1086 configuration files and/or command line options.
1087
1088 @b{NOTE:} This command normally occurs at or near the end of your
1089 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1090 targets ready. For example: If your openocd.cfg file needs to
1091 read/write memory on your target - the init command must occur before
1092 the memory read/write commands.
1093
1094 @section TCP/IP Ports
1095 @itemize @bullet
1096 @item @b{telnet_port} <@var{number}>
1097 @cindex telnet_port
1098 @*Intended for a human. Port on which to listen for incoming telnet connections.
1099
1100 @item @b{tcl_port} <@var{number}>
1101 @cindex tcl_port
1102 @*Intended as a machine interface. Port on which to listen for
1103 incoming Tcl syntax. This port is intended as a simplified RPC
1104 connection that can be used by clients to issue commands and get the
1105 output from the Tcl engine.
1106
1107 @item @b{gdb_port} <@var{number}>
1108 @cindex gdb_port
1109 @*First port on which to listen for incoming GDB connections. The GDB port for the
1110 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1111 @end itemize
1112
1113 @section GDB Items
1114 @itemize @bullet
1115 @item @b{gdb_breakpoint_override} <@var{hard|soft|disable}>
1116 @cindex gdb_breakpoint_override
1117 @anchor{gdb_breakpoint_override}
1118 @*Force breakpoint type for gdb 'break' commands.
1119 The raison d'etre for this option is to support GDB GUI's without
1120 a hard/soft breakpoint concept where the default OpenOCD and
1121 GDB behaviour is not sufficient. Note that GDB will use hardware
1122 breakpoints if the memory map has been set up for flash regions.
1123
1124 This option replaces older arm7_9 target commands that addressed
1125 the same issue.
1126
1127 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1128 @cindex gdb_detach
1129 @*Configures what OpenOCD will do when GDB detaches from the daemon.
1130 Default behaviour is <@var{resume}>
1131
1132 @item @b{gdb_memory_map} <@var{enable|disable}>
1133 @cindex gdb_memory_map
1134 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to GDB when
1135 requested. GDB will then know when to set hardware breakpoints, and program flash
1136 using the GDB load command. @option{gdb_flash_program enable} must also be enabled
1137 for flash programming to work.
1138 Default behaviour is <@var{enable}>
1139 @xref{gdb_flash_program}.
1140
1141 @item @b{gdb_flash_program} <@var{enable|disable}>
1142 @cindex gdb_flash_program
1143 @anchor{gdb_flash_program}
1144 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1145 vFlash packet is received.
1146 Default behaviour is <@var{enable}>
1147 @comment END GDB Items
1148 @end itemize
1149
1150 @node Interface - Dongle Configuration
1151 @chapter Interface - Dongle Configuration
1152 Interface commands are normally found in an interface configuration
1153 file which is sourced by your openocd.cfg file. These commands tell
1154 OpenOCD what type of JTAG dongle you have and how to talk to it.
1155 @section Simple Complete Interface Examples
1156 @b{A Turtelizer FT2232 Based JTAG Dongle}
1157 @verbatim
1158 #interface
1159 interface ft2232
1160 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1161 ft2232_layout turtelizer2
1162 ft2232_vid_pid 0x0403 0xbdc8
1163 @end verbatim
1164 @b{A SEGGER Jlink}
1165 @verbatim
1166 # jlink interface
1167 interface jlink
1168 @end verbatim
1169 @b{A Raisonance RLink}
1170 @verbatim
1171 # rlink interface
1172 interface rlink
1173 @end verbatim
1174 @b{Parallel Port}
1175 @verbatim
1176 interface parport
1177 parport_port 0xc8b8
1178 parport_cable wiggler
1179 jtag_speed 0
1180 @end verbatim
1181 @b{ARM-JTAG-EW}
1182 @verbatim
1183 interface arm-jtag-ew
1184 @end verbatim
1185 @section Interface Command
1186
1187 The interface command tells OpenOCD what type of JTAG dongle you are
1188 using. Depending on the type of dongle, you may need to have one or
1189 more additional commands.
1190
1191 @itemize @bullet
1192
1193 @item @b{interface} <@var{name}>
1194 @cindex interface
1195 @*Use the interface driver <@var{name}> to connect to the
1196 target. Currently supported interfaces are
1197
1198 @itemize @minus
1199
1200 @item @b{parport}
1201 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1202
1203 @item @b{amt_jtagaccel}
1204 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1205 mode parallel port
1206
1207 @item @b{ft2232}
1208 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1209 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1210 platform. The libftdi uses libusb, and should be portable to all systems that provide
1211 libusb.
1212
1213 @item @b{ep93xx}
1214 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1215
1216 @item @b{presto}
1217 @* ASIX PRESTO USB JTAG programmer.
1218
1219 @item @b{usbprog}
1220 @* usbprog is a freely programmable USB adapter.
1221
1222 @item @b{gw16012}
1223 @* Gateworks GW16012 JTAG programmer.
1224
1225 @item @b{jlink}
1226 @* Segger jlink USB adapter
1227
1228 @item @b{rlink}
1229 @* Raisonance RLink USB adapter
1230
1231 @item @b{vsllink}
1232 @* vsllink is part of Versaloon which is a versatile USB programmer.
1233
1234 @item @b{arm-jtag-ew}
1235 @* Olimex ARM-JTAG-EW USB adapter
1236 @comment - End parameters
1237 @end itemize
1238 @comment - End Interface
1239 @end itemize
1240 @subsection parport options
1241
1242 @itemize @bullet
1243 @item @b{parport_port} <@var{number}>
1244 @cindex parport_port
1245 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1246 the @file{/dev/parport} device
1247
1248 When using PPDEV to access the parallel port, use the number of the parallel port:
1249 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1250 you may encounter a problem.
1251 @item @b{parport_cable} <@var{name}>
1252 @cindex parport_cable
1253 @*The layout of the parallel port cable used to connect to the target.
1254 Currently supported cables are
1255 @itemize @minus
1256 @item @b{wiggler}
1257 @cindex wiggler
1258 The original Wiggler layout, also supported by several clones, such
1259 as the Olimex ARM-JTAG
1260 @item @b{wiggler2}
1261 @cindex wiggler2
1262 Same as original wiggler except an led is fitted on D5.
1263 @item @b{wiggler_ntrst_inverted}
1264 @cindex wiggler_ntrst_inverted
1265 Same as original wiggler except TRST is inverted.
1266 @item @b{old_amt_wiggler}
1267 @cindex old_amt_wiggler
1268 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1269 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1270 @item @b{chameleon}
1271 @cindex chameleon
1272 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1273 program the Chameleon itself, not a connected target.
1274 @item @b{dlc5}
1275 @cindex dlc5
1276 The Xilinx Parallel cable III.
1277 @item @b{triton}
1278 @cindex triton
1279 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1280 This is also the layout used by the HollyGates design
1281 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1282 @item @b{flashlink}
1283 @cindex flashlink
1284 The ST Parallel cable.
1285 @item @b{arm-jtag}
1286 @cindex arm-jtag
1287 Same as original wiggler except SRST and TRST connections reversed and
1288 TRST is also inverted.
1289 @item @b{altium}
1290 @cindex altium
1291 Altium Universal JTAG cable.
1292 @end itemize
1293 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1294 @cindex parport_write_on_exit
1295 @*This will configure the parallel driver to write a known value to the parallel
1296 interface on exiting OpenOCD
1297 @end itemize
1298
1299 @subsection amt_jtagaccel options
1300 @itemize @bullet
1301 @item @b{parport_port} <@var{number}>
1302 @cindex parport_port
1303 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1304 @file{/dev/parport} device
1305 @end itemize
1306 @subsection ft2232 options
1307
1308 @itemize @bullet
1309 @item @b{ft2232_device_desc} <@var{description}>
1310 @cindex ft2232_device_desc
1311 @*The USB device description of the FTDI FT2232 device. If not
1312 specified, the FTDI default value is used. This setting is only valid
1313 if compiled with FTD2XX support.
1314
1315 @b{TODO:} Confirm the following: On Windows the name needs to end with
1316 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1317 this be added and when must it not be added? Why can't the code in the
1318 interface or in OpenOCD automatically add this if needed? -- Duane.
1319
1320 @item @b{ft2232_serial} <@var{serial-number}>
1321 @cindex ft2232_serial
1322 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1323 values are used.
1324 @item @b{ft2232_layout} <@var{name}>
1325 @cindex ft2232_layout
1326 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1327 signals. Valid layouts are
1328 @itemize @minus
1329 @item @b{usbjtag}
1330 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1331 @item @b{jtagkey}
1332 Amontec JTAGkey and JTAGkey-Tiny
1333 @item @b{signalyzer}
1334 Signalyzer
1335 @item @b{olimex-jtag}
1336 Olimex ARM-USB-OCD
1337 @item @b{m5960}
1338 American Microsystems M5960
1339 @item @b{evb_lm3s811}
1340 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1341 SRST signals on external connector
1342 @item @b{comstick}
1343 Hitex STR9 comstick
1344 @item @b{stm32stick}
1345 Hitex STM32 Performance Stick
1346 @item @b{flyswatter}
1347 Tin Can Tools Flyswatter
1348 @item @b{turtelizer2}
1349 egnite Software turtelizer2
1350 @item @b{oocdlink}
1351 OOCDLink
1352 @item @b{axm0432_jtag}
1353 Axiom AXM-0432
1354 @end itemize
1355
1356 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1357 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1358 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, e.g.
1359 @example
1360 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1361 @end example
1362 @item @b{ft2232_latency} <@var{ms}>
1363 @*On some systems using FT2232 based JTAG interfaces the FT_Read function call in
1364 ft2232_read() fails to return the expected number of bytes. This can be caused by
1365 USB communication delays and has proved hard to reproduce and debug. Setting the
1366 FT2232 latency timer to a larger value increases delays for short USB packets but it
1367 also reduces the risk of timeouts before receiving the expected number of bytes.
1368 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1369 @end itemize
1370
1371 @subsection ep93xx options
1372 @cindex ep93xx options
1373 Currently, there are no options available for the ep93xx interface.
1374
1375 @section JTAG Speed
1376 @itemize @bullet
1377 @item @b{jtag_khz} <@var{reset speed kHz}>
1378 @cindex jtag_khz
1379
1380 It is debatable if this command belongs here - or in a board
1381 configuration file. In fact, in some situations the JTAG speed is
1382 changed during the target initialisation process (i.e.: (1) slow at
1383 reset, (2) program the CPU clocks, (3) run fast)
1384
1385 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1386
1387 Not all interfaces support ``rtck''. If the interface device can not
1388 support the rate asked for, or can not translate from kHz to
1389 jtag_speed, then an error is returned.
1390
1391 Make sure the JTAG clock is no more than @math{1/6th CPU-Clock}. This is
1392 especially true for synthesized cores (-S). Also see RTCK.
1393
1394 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1395 please use the command: 'jtag_rclk FREQ'. This Tcl proc (in
1396 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1397 the specified frequency.
1398
1399 @example
1400 # Fall back to 3mhz if RCLK is not supported
1401 jtag_rclk 3000
1402 @end example
1403
1404 @item @b{DEPRECATED} @b{jtag_speed} - please use jtag_khz above.
1405 @cindex jtag_speed
1406 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1407 speed. The actual effect of this option depends on the JTAG interface used.
1408
1409 The speed used during reset can be adjusted using setting jtag_speed during
1410 pre_reset and post_reset events.
1411 @itemize @minus
1412
1413 @item wiggler: maximum speed / @var{number}
1414 @item ft2232: 6MHz / (@var{number}+1)
1415 @item amt jtagaccel: 8 / 2**@var{number}
1416 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1417 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1418 @comment end speed list.
1419 @end itemize
1420
1421 @comment END command list
1422 @end itemize
1423
1424 @node Reset Configuration
1425 @chapter Reset Configuration
1426 @cindex Reset Configuration
1427
1428 Every system configuration may require a different reset
1429 configuration. This can also be quite confusing. Please see the
1430 various board files for example.
1431
1432 @section jtag_nsrst_delay <@var{ms}>
1433 @cindex jtag_nsrst_delay
1434 @*How long (in milliseconds) OpenOCD should wait after deasserting
1435 nSRST before starting new JTAG operations.
1436
1437 @section jtag_ntrst_delay <@var{ms}>
1438 @cindex jtag_ntrst_delay
1439 @*Same @b{jtag_nsrst_delay}, but for nTRST
1440
1441 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1442 big resistor/capacitor, reset supervisor, or on-chip features). This
1443 keeps the signal asserted for some time after the external reset got
1444 deasserted.
1445
1446 @section reset_config
1447
1448 @b{Note:} To maintainers and integrators: Where exactly the
1449 ``reset configuration'' goes is a good question. It touches several
1450 things at once. In the end, if you have a board file - the board file
1451 should define it and assume 100% that the DONGLE supports
1452 anything. However, that does not mean the target should not also make
1453 not of something the silicon vendor has done inside the
1454 chip. @i{Grr.... nothing is every pretty.}
1455
1456 @* @b{Problems:}
1457 @enumerate
1458 @item Every JTAG Dongle is slightly different, some dongles implement reset differently.
1459 @item Every board is also slightly different; some boards tie TRST and SRST together.
1460 @item Every chip is slightly different; some chips internally tie the two signals together.
1461 @item Some may not implement all of the signals the same way.
1462 @item Some signals might be push-pull, others open-drain/collector.
1463 @end enumerate
1464 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1465 reset the TAP via TRST and send commands through the JTAG tap to halt
1466 the CPU at the reset vector before the 1st instruction is executed,
1467 and finally release the SRST signal.
1468 @*Depending on your board vendor, chip vendor, etc., these
1469 signals may have slightly different names.
1470
1471 OpenOCD defines these signals in these terms:
1472 @itemize @bullet
1473 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1474 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1475 @end itemize
1476
1477 The Command:
1478
1479 @itemize @bullet
1480 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1481 @cindex reset_config
1482 @* The @t{reset_config} command tells OpenOCD the reset configuration
1483 of your combination of Dongle, Board, and Chips.
1484 If the JTAG interface provides SRST, but the target doesn't connect
1485 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1486 be @option{none}, @option{trst_only}, @option{srst_only} or
1487 @option{trst_and_srst}.
1488
1489 [@var{combination}] is an optional value specifying broken reset
1490 signal implementations. @option{srst_pulls_trst} states that the
1491 test logic is reset together with the reset of the system (e.g. Philips
1492 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1493 the system is reset together with the test logic (only hypothetical, I
1494 haven't seen hardware with such a bug, and can be worked around).
1495 @option{combined} implies both @option{srst_pulls_trst} and
1496 @option{trst_pulls_srst}. The default behaviour if no option given is
1497 @option{separate}.
1498
1499 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1500 driver type of the reset lines to be specified. Possible values are
1501 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1502 test reset signal, and @option{srst_open_drain} (default) and
1503 @option{srst_push_pull} for the system reset. These values only affect
1504 JTAG interfaces with support for different drivers, like the Amontec
1505 JTAGkey and JTAGAccelerator.
1506
1507 @comment - end command
1508 @end itemize
1509
1510
1511
1512 @node Tap Creation
1513 @chapter Tap Creation
1514 @cindex tap creation
1515 @cindex tap configuration
1516
1517 In order for OpenOCD to control a target, a JTAG tap must be
1518 defined/created.
1519
1520 Commands to create taps are normally found in a configuration file and
1521 are not normally typed by a human.
1522
1523 When a tap is created a @b{dotted.name} is created for the tap. Other
1524 commands use that dotted.name to manipulate or refer to the tap.
1525
1526 Tap Uses:
1527 @itemize @bullet
1528 @item @b{Debug Target} A tap can be used by a GDB debug target
1529 @item @b{Flash Programing} Some chips program the flash via JTAG
1530 @item @b{Boundry Scan} Some chips support boundary scan.
1531 @end itemize
1532
1533
1534 @section jtag newtap
1535 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1536 @cindex jtag_device
1537 @cindex jtag newtap
1538 @cindex tap
1539 @cindex tap order
1540 @cindex tap geometry
1541
1542 @comment START options
1543 @itemize @bullet
1544 @item @b{CHIPNAME}
1545 @* is a symbolic name of the chip.
1546 @item @b{TAPNAME}
1547 @* is a symbol name of a tap present on the chip.
1548 @item @b{Required configparams}
1549 @* Every tap has 3 required configparams, and several ``optional
1550 parameters'', the required parameters are:
1551 @comment START REQUIRED
1552 @itemize @bullet
1553 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1554 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1555 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1556 some devices, there are bits in the IR that aren't used. This lets you mask
1557 them off when doing comparisons. In general, this should just be all ones for
1558 the size of the IR.
1559 @comment END REQUIRED
1560 @end itemize
1561 An example of a FOOBAR Tap
1562 @example
1563 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1564 @end example
1565 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1566 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1567 [6,4,2,0] are checked.
1568
1569 @item @b{Optional configparams}
1570 @comment START Optional
1571 @itemize @bullet
1572 @item @b{-expected-id NUMBER}
1573 @* By default it is zero. If non-zero represents the
1574 expected tap ID used when the JTAG chain is examined. See below.
1575 @item @b{-disable}
1576 @item @b{-enable}
1577 @* By default not specified the tap is enabled. Some chips have a
1578 JTAG route controller (JRC) that is used to enable and/or disable
1579 specific JTAG taps. You can later enable or disable any JTAG tap via
1580 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1581 DOTTED.NAME}
1582 @comment END Optional
1583 @end itemize
1584
1585 @comment END OPTIONS
1586 @end itemize
1587 @b{Notes:}
1588 @comment START NOTES
1589 @itemize @bullet
1590 @item @b{Technically}
1591 @* newtap is a sub command of the ``jtag'' command
1592 @item @b{Big Picture Background}
1593 @*GDB Talks to OpenOCD using the GDB protocol via
1594 TCP/IP. OpenOCD then uses the JTAG interface (the dongle) to
1595 control the JTAG chain on your board. Your board has one or more chips
1596 in a @i{daisy chain configuration}. Each chip may have one or more
1597 JTAG taps. GDB ends up talking via OpenOCD to one of the taps.
1598 @item @b{NAME Rules}
1599 @*Names follow ``C'' symbol name rules (start with alpha ...)
1600 @item @b{TAPNAME - Conventions}
1601 @itemize @bullet
1602 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1603 @item @b{cpu} - the main CPU of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1604 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1605 @item @b{bs} - for boundary scan if this is a seperate tap.
1606 @item @b{jrc} - for JTAG route controller (example: OMAP3530 found on Beagleboards)
1607 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1608 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1609 @item @b{When in doubt} - use the chip maker's name in their data sheet.
1610 @end itemize
1611 @item @b{DOTTED.NAME}
1612 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1613 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1614 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1615 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1616 numerous other places to refer to various taps.
1617 @item @b{ORDER}
1618 @* The order this command appears via the config files is
1619 important.
1620 @item @b{Multi Tap Example}
1621 @* This example is based on the ST Microsystems STR912. See the ST
1622 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1623 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
1624
1625 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1626 @*@b{checked: 28/nov/2008}
1627
1628 The diagram shows that the TDO pin connects to the flash tap, flash TDI
1629 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1630 tap which then connects to the TDI pin.
1631
1632 @example
1633 # The order is...
1634 # create tap: 'str912.flash'
1635 jtag newtap str912 flash ... params ...
1636 # create tap: 'str912.cpu'
1637 jtag newtap str912 cpu ... params ...
1638 # create tap: 'str912.bs'
1639 jtag newtap str912 bs ... params ...
1640 @end example
1641
1642 @item @b{Note: Deprecated} - Index Numbers
1643 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1644 feature is still present, however its use is highly discouraged and
1645 should not be counted upon.
1646 @item @b{Multiple chips}
1647 @* If your board has multiple chips, you should be
1648 able to @b{source} two configuration files, in the proper order, and
1649 have the taps created in the proper order.
1650 @comment END NOTES
1651 @end itemize
1652 @comment at command level
1653 @comment DOCUMENT old command
1654 @section jtag_device - REMOVED
1655 @example
1656 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1657 @end example
1658 @cindex jtag_device
1659
1660 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1661 by the ``jtag newtap'' command. The documentation remains here so that
1662 one can easily convert the old syntax to the new syntax. About the old
1663 syntax: The old syntax is positional, i.e.: The 3rd parameter is the
1664 ``irmask''. The new syntax requires named prefixes, and supports
1665 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1666 @b{jtag newtap} command for details.
1667 @example
1668 OLD: jtag_device 8 0x01 0xe3 0xfe
1669 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1670 @end example
1671
1672 @section Enable/Disable Taps
1673 @b{Note:} These commands are intended to be used as a machine/script
1674 interface. Humans might find the ``scan_chain'' command more helpful
1675 when querying the state of the JTAG taps.
1676
1677 @b{By default, all taps are enabled}
1678
1679 @itemize @bullet
1680 @item @b{jtag tapenable} @var{DOTTED.NAME}
1681 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1682 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1683 @end itemize
1684 @cindex tap enable
1685 @cindex tap disable
1686 @cindex JRC
1687 @cindex route controller
1688
1689 These commands are used when your target has a JTAG route controller
1690 that effectively adds or removes a tap from the JTAG chain in a
1691 non-standard way.
1692
1693 The ``standard way'' to remove a tap would be to place the tap in
1694 bypass mode. But with the advent of modern chips, this is not always a
1695 good solution. Some taps operate slowly, others operate fast, and
1696 there are other JTAG clock synchronisation problems one must face. To
1697 solve that problem, the JTAG route controller was introduced. Rather
1698 than ``bypass'' the tap, the tap is completely removed from the
1699 circuit and skipped.
1700
1701
1702 From OpenOCD's point of view, a JTAG tap is in one of 3 states:
1703
1704 @itemize @bullet
1705 @item @b{Enabled - Not In ByPass} and has a variable bit length
1706 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1707 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1708 @end itemize
1709
1710 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1711 @b{Historical note:} this feature was added 28/nov/2008
1712
1713 @b{jtag tapisenabled DOTTED.NAME}
1714
1715 This command returns 1 if the named tap is currently enabled, 0 if not.
1716 This command exists so that scripts that manipulate a JRC (like the
1717 OMAP3530 has) can determine if OpenOCD thinks a tap is presently
1718 enabled or disabled.
1719
1720 @page
1721 @node Target Configuration
1722 @chapter Target Configuration
1723
1724 This chapter discusses how to create a GDB debug target. Before
1725 creating a ``target'' a JTAG tap DOTTED.NAME must exist first.
1726
1727 @section targets [NAME]
1728 @b{Note:} This command name is PLURAL - not singular.
1729
1730 With NO parameter, this plural @b{targets} command lists all known
1731 targets in a human friendly form.
1732
1733 With a parameter, this plural @b{targets} command sets the current
1734 target to the given name. (i.e.: If there are multiple debug targets)
1735
1736 Example:
1737 @verbatim
1738 (gdb) mon targets
1739 CmdName Type Endian ChainPos State
1740 -- ---------- ---------- ---------- -------- ----------
1741 0: target0 arm7tdmi little 0 halted
1742 @end verbatim
1743
1744 @section target COMMANDS
1745 @b{Note:} This command name is SINGULAR - not plural. It is used to
1746 manipulate specific targets, to create targets and other things.
1747
1748 Once a target is created, a TARGETNAME (object) command is created;
1749 see below for details.
1750
1751 The TARGET command accepts these sub-commands:
1752 @itemize @bullet
1753 @item @b{create} .. parameters ..
1754 @* creates a new target, see below for details.
1755 @item @b{types}
1756 @* Lists all supported target types (perhaps some are not yet in this document).
1757 @item @b{names}
1758 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1759 @verbatim
1760 foreach t [target names] {
1761 puts [format "Target: %s\n" $t]
1762 }
1763 @end verbatim
1764 @item @b{current}
1765 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1766 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1767 @item @b{number} @b{NUMBER}
1768 @* Internally OpenOCD maintains a list of targets - in numerical index
1769 (0..N-1) this command returns the name of the target at index N.
1770 Example usage:
1771 @verbatim
1772 set thename [target number $x]
1773 puts [format "Target %d is: %s\n" $x $thename]
1774 @end verbatim
1775 @item @b{count}
1776 @* Returns the number of targets known to OpenOCD (see number above)
1777 Example:
1778 @verbatim
1779 set c [target count]
1780 for { set x 0 } { $x < $c } { incr x } {
1781 # Assuming you have created this function
1782 print_target_details $x
1783 }
1784 @end verbatim
1785
1786 @end itemize
1787
1788 @section TARGETNAME (object) commands
1789 @b{Use:} Once a target is created, an ``object name'' that represents the
1790 target is created. By convention, the target name is identical to the
1791 tap name. In a multiple target system, one can preceed many common
1792 commands with a specific target name and effect only that target.
1793 @example
1794 str912.cpu mww 0x1234 0x42
1795 omap3530.cpu mww 0x5555 123
1796 @end example
1797
1798 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1799 good example is a on screen button, once a button is created a button
1800 has a name (a path in Tk terms) and that name is useable as a 1st
1801 class command. For example in Tk, one can create a button and later
1802 configure it like this:
1803
1804 @example
1805 # Create
1806 button .foobar -background red -command @{ foo @}
1807 # Modify
1808 .foobar configure -foreground blue
1809 # Query
1810 set x [.foobar cget -background]
1811 # Report
1812 puts [format "The button is %s" $x]
1813 @end example
1814
1815 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1816 button. Commands available as a ``target object'' are:
1817
1818 @comment START targetobj commands.
1819 @itemize @bullet
1820 @item @b{configure} - configure the target; see Target Config/Cget Options below
1821 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1822 @item @b{curstate} - current target state (running, halt, etc.
1823 @item @b{eventlist}
1824 @* Intended for a human to see/read the currently configure target events.
1825 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1826 @comment start memory
1827 @itemize @bullet
1828 @item @b{mww} ...
1829 @item @b{mwh} ...
1830 @item @b{mwb} ...
1831 @item @b{mdw} ...
1832 @item @b{mdh} ...
1833 @item @b{mdb} ...
1834 @comment end memory
1835 @end itemize
1836 @item @b{Memory To Array, Array To Memory}
1837 @* These are aimed at a machine interface to memory
1838 @itemize @bullet
1839 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1840 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1841 @* Where:
1842 @* @b{ARRAYNAME} is the name of an array variable
1843 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1844 @* @b{ADDRESS} is the target memory address
1845 @* @b{COUNT} is the number of elements to process
1846 @end itemize
1847 @item @b{Used during ``reset''}
1848 @* These commands are used internally by the OpenOCD scripts to deal
1849 with odd reset situations and are not documented here.
1850 @itemize @bullet
1851 @item @b{arp_examine}
1852 @item @b{arp_poll}
1853 @item @b{arp_reset}
1854 @item @b{arp_halt}
1855 @item @b{arp_waitstate}
1856 @end itemize
1857 @item @b{invoke-event} @b{EVENT-NAME}
1858 @* Invokes the specific event manually for the target
1859 @end itemize
1860
1861 @section Target Events
1862 At various times, certain things can happen, or you want them to happen.
1863
1864 Examples:
1865 @itemize @bullet
1866 @item What should happen when GDB connects? Should your target reset?
1867 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1868 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1869 @end itemize
1870
1871 All of the above items are handled by target events.
1872
1873 To specify an event action, either during target creation, or later
1874 via ``$_TARGETNAME configure'' see this example.
1875
1876 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1877 target event name, and BODY is a Tcl procedure or string of commands
1878 to execute.
1879
1880 The programmers model is the ``-command'' option used in Tcl/Tk
1881 buttons and events. Below are two identical examples, the first
1882 creates and invokes small procedure. The second inlines the procedure.
1883
1884 @example
1885 proc my_attach_proc @{ @} @{
1886 puts "RESET...."
1887 reset halt
1888 @}
1889 mychip.cpu configure -event gdb-attach my_attach_proc
1890 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1891 @end example
1892
1893 @section Current Events
1894 The following events are available:
1895 @itemize @bullet
1896 @item @b{debug-halted}
1897 @* The target has halted for debug reasons (i.e.: breakpoint)
1898 @item @b{debug-resumed}
1899 @* The target has resumed (i.e.: gdb said run)
1900 @item @b{early-halted}
1901 @* Occurs early in the halt process
1902 @item @b{examine-end}
1903 @* Currently not used (goal: when JTAG examine completes)
1904 @item @b{examine-start}
1905 @* Currently not used (goal: when JTAG examine starts)
1906 @item @b{gdb-attach}
1907 @* When GDB connects
1908 @item @b{gdb-detach}
1909 @* When GDB disconnects
1910 @item @b{gdb-end}
1911 @* When the taret has halted and GDB is not doing anything (see early halt)
1912 @item @b{gdb-flash-erase-start}
1913 @* Before the GDB flash process tries to erase the flash
1914 @item @b{gdb-flash-erase-end}
1915 @* After the GDB flash process has finished erasing the flash
1916 @item @b{gdb-flash-write-start}
1917 @* Before GDB writes to the flash
1918 @item @b{gdb-flash-write-end}
1919 @* After GDB writes to the flash
1920 @item @b{gdb-start}
1921 @* Before the taret steps, gdb is trying to start/resume the target
1922 @item @b{halted}
1923 @* The target has halted
1924 @item @b{old-gdb_program_config}
1925 @* DO NOT USE THIS: Used internally
1926 @item @b{old-pre_resume}
1927 @* DO NOT USE THIS: Used internally
1928 @item @b{reset-assert-pre}
1929 @* Before reset is asserted on the tap.
1930 @item @b{reset-assert-post}
1931 @* Reset is now asserted on the tap.
1932 @item @b{reset-deassert-pre}
1933 @* Reset is about to be released on the tap
1934 @item @b{reset-deassert-post}
1935 @* Reset has been released on the tap
1936 @item @b{reset-end}
1937 @* Currently not used.
1938 @item @b{reset-halt-post}
1939 @* Currently not usd
1940 @item @b{reset-halt-pre}
1941 @* Currently not used
1942 @item @b{reset-init}
1943 @* Currently not used
1944 @item @b{reset-start}
1945 @* Currently not used
1946 @item @b{reset-wait-pos}
1947 @* Currently not used
1948 @item @b{reset-wait-pre}
1949 @* Currently not used
1950 @item @b{resume-start}
1951 @* Before any target is resumed
1952 @item @b{resume-end}
1953 @* After all targets have resumed
1954 @item @b{resume-ok}
1955 @* Success
1956 @item @b{resumed}
1957 @* Target has resumed
1958 @item @b{tap-enable}
1959 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1960 @example
1961 jtag configure DOTTED.NAME -event tap-enable @{
1962 puts "Enabling CPU"
1963 ...
1964 @}
1965 @end example
1966 @item @b{tap-disable}
1967 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1968 @example
1969 jtag configure DOTTED.NAME -event tap-disable @{
1970 puts "Disabling CPU"
1971 ...
1972 @}
1973 @end example
1974 @end itemize
1975
1976 @section target create
1977 @cindex target
1978 @cindex target creation
1979
1980 @example
1981 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1982 @end example
1983 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1984 @comment START params
1985 @itemize @bullet
1986 @item @b{NAME}
1987 @* Is the name of the debug target. By convention it should be the tap
1988 DOTTED.NAME, this name is also used to create the target object
1989 command.
1990 @item @b{TYPE}
1991 @* Specifies the target type, i.e.: ARM7TDMI, or Cortex-M3. Currently supported targets are:
1992 @comment START types
1993 @itemize @minus
1994 @item @b{arm7tdmi}
1995 @item @b{arm720t}
1996 @item @b{arm9tdmi}
1997 @item @b{arm920t}
1998 @item @b{arm922t}
1999 @item @b{arm926ejs}
2000 @item @b{arm966e}
2001 @item @b{cortex_m3}
2002 @item @b{feroceon}
2003 @item @b{xscale}
2004 @item @b{arm11}
2005 @item @b{mips_m4k}
2006 @comment end TYPES
2007 @end itemize
2008 @item @b{PARAMS}
2009 @*PARAMs are various target configuration parameters. The following ones are mandatory:
2010 @comment START mandatory
2011 @itemize @bullet
2012 @item @b{-endian big|little}
2013 @item @b{-chain-position DOTTED.NAME}
2014 @comment end MANDATORY
2015 @end itemize
2016 @comment END params
2017 @end itemize
2018
2019 @section Target Config/Cget Options
2020 These options can be specified when the target is created, or later
2021 via the configure option or to query the target via cget.
2022 @itemize @bullet
2023 @item @b{-type} - returns the target type
2024 @item @b{-event NAME BODY} see Target events
2025 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
2026 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
2027 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2028 @item @b{-work-area-backup [0|1]} does the work area get backed up
2029 @item @b{-endian [big|little]}
2030 @item @b{-variant [NAME]} some chips have variants OpenOCD needs to know about
2031 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2032 @end itemize
2033 Example:
2034 @example
2035 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2036 set name [target number $x]
2037 set y [$name cget -endian]
2038 set z [$name cget -type]
2039 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2040 @}
2041 @end example
2042
2043 @section Target Variants
2044 @itemize @bullet
2045 @item @b{arm7tdmi}
2046 @* Unknown (please write me)
2047 @item @b{arm720t}
2048 @* Unknown (please write me) (similar to arm7tdmi)
2049 @item @b{arm9tdmi}
2050 @* Variants: @option{arm920t}, @option{arm922t} and @option{arm940t}
2051 This enables the hardware single-stepping support found on these
2052 cores.
2053 @item @b{arm920t}
2054 @* None.
2055 @item @b{arm966e}
2056 @* None (this is also used as the ARM946)
2057 @item @b{cortex_m3}
2058 @* use variant <@var{-variant lm3s}> when debugging Luminary lm3s targets. This will cause
2059 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2060 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2061 be detected and the normal reset behaviour used.
2062 @item @b{xscale}
2063 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2064 @item @b{arm11}
2065 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2066 @item @b{mips_m4k}
2067 @* Use variant @option{ejtag_srst} when debugging targets that do not
2068 provide a functional SRST line on the EJTAG connector. This causes
2069 OpenOCD to instead use an EJTAG software reset command to reset the
2070 processor. You still need to enable @option{srst} on the reset
2071 configuration command to enable OpenOCD hardware reset functionality.
2072 @comment END variants
2073 @end itemize
2074 @section working_area - Command Removed
2075 @cindex working_area
2076 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2077 @* This documentation remains because there are existing scripts that
2078 still use this that need to be converted.
2079 @example
2080 working_area target# address size backup| [virtualaddress]
2081 @end example
2082 @* The target# is a the 0 based target numerical index.
2083
2084 This command specifies a working area for the debugger to use. This
2085 may be used to speed-up downloads to target memory and flash
2086 operations, or to perform otherwise unavailable operations (some
2087 coprocessor operations on ARM7/9 systems, for example). The last
2088 parameter decides whether the memory should be preserved
2089 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2090 possible, use a working_area that doesn't need to be backed up, as
2091 performing a backup slows down operation.
2092
2093 @node Flash Configuration
2094 @chapter Flash programming
2095 @cindex Flash Configuration
2096
2097 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2098 flash that a micro may boot from. Perhaps you, the reader, would like to
2099 contribute support for this.
2100
2101 Flash Steps:
2102 @enumerate
2103 @item Configure via the command @b{flash bank}
2104 @* Normally this is done in a configuration file.
2105 @item Operate on the flash via @b{flash SOMECOMMAND}
2106 @* Often commands to manipulate the flash are typed by a human, or run
2107 via a script in some automated way. For example: To program the boot
2108 flash on your board.
2109 @item GDB Flashing
2110 @* Flashing via GDB requires the flash be configured via ``flash
2111 bank'', and the GDB flash features be enabled. See the daemon
2112 configuration section for more details.
2113 @end enumerate
2114
2115 @section Flash commands
2116 @cindex Flash commands
2117 @subsection flash banks
2118 @b{flash banks}
2119 @cindex flash banks
2120 @*List configured flash banks
2121 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2122 @subsection flash info
2123 @b{flash info} <@var{num}>
2124 @cindex flash info
2125 @*Print info about flash bank <@option{num}>
2126 @subsection flash probe
2127 @b{flash probe} <@var{num}>
2128 @cindex flash probe
2129 @*Identify the flash, or validate the parameters of the configured flash. Operation
2130 depends on the flash type.
2131 @subsection flash erase_check
2132 @b{flash erase_check} <@var{num}>
2133 @cindex flash erase_check
2134 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2135 updates the erase state information displayed by @option{flash info}. That means you have
2136 to issue an @option{erase_check} command after erasing or programming the device to get
2137 updated information.
2138 @subsection flash protect_check
2139 @b{flash protect_check} <@var{num}>
2140 @cindex flash protect_check
2141 @*Check protection state of sectors in flash bank <num>.
2142 @option{flash erase_sector} using the same syntax.
2143 @subsection flash erase_sector
2144 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2145 @cindex flash erase_sector
2146 @anchor{flash erase_sector}
2147 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2148 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2149 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2150 the CFI driver).
2151 @subsection flash erase_address
2152 @b{flash erase_address} <@var{address}> <@var{length}>
2153 @cindex flash erase_address
2154 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2155 @subsection flash write_bank
2156 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2157 @cindex flash write_bank
2158 @anchor{flash write_bank}
2159 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2160 <@option{offset}> bytes from the beginning of the bank.
2161 @subsection flash write_image
2162 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2163 @cindex flash write_image
2164 @anchor{flash write_image}
2165 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2166 [@var{offset}] can be specified and the file [@var{type}] can be specified
2167 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2168 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2169 if the @option{erase} parameter is given.
2170 @subsection flash protect
2171 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2172 @cindex flash protect
2173 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2174 <@var{last}> of @option{flash bank} <@var{num}>.
2175
2176 @subsection mFlash commands
2177 @cindex mFlash commands
2178 @itemize @bullet
2179 @item @b{mflash probe}
2180 @cindex mflash probe
2181 Probe mflash.
2182 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2183 @cindex mflash write
2184 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2185 <@var{offset}> bytes from the beginning of the bank.
2186 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2187 @cindex mflash dump
2188 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2189 to a <@var{file}>.
2190 @end itemize
2191
2192 @section flash bank command
2193 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2194
2195 @example
2196 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2197 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2198 @end example
2199 @cindex flash bank
2200 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2201 and <@var{bus_width}> bytes using the selected flash <driver>.
2202
2203 @subsection External Flash - cfi options
2204 @cindex cfi options
2205 CFI flashes are external flash chips - often they are connected to a
2206 specific chip select on the CPU. By default, at hard reset, most
2207 CPUs have the ablity to ``boot'' from some flash chip - typically
2208 attached to the CPU's CS0 pin.
2209
2210 For other chip selects: OpenOCD does not know how to configure, or
2211 access a specific chip select. Instead you, the human, might need to
2212 configure additional chip selects via other commands (like: mww) , or
2213 perhaps configure a GPIO pin that controls the ``write protect'' pin
2214 on the flash chip.
2215
2216 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2217 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2218 @*CFI flashes require the number of the target they're connected to as an additional
2219 argument. The CFI driver makes use of a working area (specified for the target)
2220 to significantly speed up operation.
2221
2222 @var{chip_width} and @var{bus_width} are specified in bytes.
2223
2224 The @var{jedec_probe} option is used to detect certain non-CFI flash ROMs, like AM29LV010 and similar types.
2225
2226 @var{x16_as_x8} ???
2227
2228 @subsection Internal Flash (Microcontrollers)
2229 @subsubsection lpc2000 options
2230 @cindex lpc2000 options
2231
2232 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2233 <@var{clock}> [@var{calc_checksum}]
2234 @*LPC flashes don't require the chip and bus width to be specified. Additional
2235 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2236 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2237 of the target this flash belongs to (first is 0), the frequency at which the core
2238 is currently running (in kHz - must be an integral number), and the optional keyword
2239 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2240 vector table.
2241
2242
2243 @subsubsection at91sam7 options
2244 @cindex at91sam7 options
2245
2246 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2247 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2248 reading the chip-id and type.
2249
2250 @subsubsection str7 options
2251 @cindex str7 options
2252
2253 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2254 @*variant can be either STR71x, STR73x or STR75x.
2255
2256 @subsubsection str9 options
2257 @cindex str9 options
2258
2259 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2260 @*The str9 needs the flash controller to be configured prior to Flash programming, e.g.
2261 @example
2262 str9x flash_config 0 4 2 0 0x80000
2263 @end example
2264 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2265
2266 @subsubsection str9 options (str9xpec driver)
2267
2268 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2269 @*Before using the flash commands the turbo mode must be enabled using str9xpec
2270 @option{enable_turbo} <@var{num>.}
2271
2272 Only use this driver for locking/unlocking the device or configuring the option bytes.
2273 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2274
2275 @subsubsection Stellaris (LM3Sxxx) options
2276 @cindex Stellaris (LM3Sxxx) options
2277
2278 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2279 @*Stellaris flash plugin only require the @var{target#}.
2280
2281 @subsubsection stm32x options
2282 @cindex stm32x options
2283
2284 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2285 @*stm32x flash plugin only require the @var{target#}.
2286
2287 @subsubsection aduc702x options
2288 @cindex aduc702x options
2289
2290 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2291 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2292
2293 @subsection mFlash Configuration
2294 @cindex mFlash Configuration
2295 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2296 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2297 @cindex mflash bank
2298 @*Configures a mflash for <@var{soc}> host bank at
2299 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2300 order. Pin number format is dependent on host GPIO calling convention.
2301 If WP or DPD pin was not used, write -1. Currently, mflash bank
2302 support s3c2440 and pxa270.
2303
2304 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2305 @example
2306 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2307 @end example
2308 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2309 @example
2310 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2311 @end example
2312
2313 @section Microcontroller specific Flash Commands
2314
2315 @subsection AT91SAM7 specific commands
2316 @cindex AT91SAM7 specific commands
2317 The flash configuration is deduced from the chip identification register. The flash
2318 controller handles erases automatically on a page (128/265 byte) basis, so erase is
2319 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2320 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2321 that can be erased separatly. Only an EraseAll command is supported by the controller
2322 for each flash plane and this is called with
2323 @itemize @bullet
2324 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2325 @*bulk erase flash planes first_plane to last_plane.
2326 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2327 @cindex at91sam7 gpnvm
2328 @*set or clear a gpnvm bit for the processor
2329 @end itemize
2330
2331 @subsection STR9 specific commands
2332 @cindex STR9 specific commands
2333 @anchor{STR9 specific commands}
2334 These are flash specific commands when using the str9xpec driver.
2335 @itemize @bullet
2336 @item @b{str9xpec enable_turbo} <@var{num}>
2337 @cindex str9xpec enable_turbo
2338 @*enable turbo mode, will simply remove the str9 from the chain and talk
2339 directly to the embedded flash controller.
2340 @item @b{str9xpec disable_turbo} <@var{num}>
2341 @cindex str9xpec disable_turbo
2342 @*restore the str9 into JTAG chain.
2343 @item @b{str9xpec lock} <@var{num}>
2344 @cindex str9xpec lock
2345 @*lock str9 device. The str9 will only respond to an unlock command that will
2346 erase the device.
2347 @item @b{str9xpec unlock} <@var{num}>
2348 @cindex str9xpec unlock
2349 @*unlock str9 device.
2350 @item @b{str9xpec options_read} <@var{num}>
2351 @cindex str9xpec options_read
2352 @*read str9 option bytes.
2353 @item @b{str9xpec options_write} <@var{num}>
2354 @cindex str9xpec options_write
2355 @*write str9 option bytes.
2356 @end itemize
2357
2358 Note: Before using the str9xpec driver here is some background info to help
2359 you better understand how the drivers works. OpenOCD has two flash drivers for
2360 the str9.
2361 @enumerate
2362 @item
2363 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2364 flash programming as it is faster than the @option{str9xpec} driver.
2365 @item
2366 Direct programming @option{str9xpec} using the flash controller. This is an
2367 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2368 core does not need to be running to program using this flash driver. Typical use
2369 for this driver is locking/unlocking the target and programming the option bytes.
2370 @end enumerate
2371
2372 Before we run any commands using the @option{str9xpec} driver we must first disable
2373 the str9 core. This example assumes the @option{str9xpec} driver has been
2374 configured for flash bank 0.
2375 @example
2376 # assert srst, we do not want core running
2377 # while accessing str9xpec flash driver
2378 jtag_reset 0 1
2379 # turn off target polling
2380 poll off
2381 # disable str9 core
2382 str9xpec enable_turbo 0
2383 # read option bytes
2384 str9xpec options_read 0
2385 # re-enable str9 core
2386 str9xpec disable_turbo 0
2387 poll on
2388 reset halt
2389 @end example
2390 The above example will read the str9 option bytes.
2391 When performing a unlock remember that you will not be able to halt the str9 - it
2392 has been locked. Halting the core is not required for the @option{str9xpec} driver
2393 as mentioned above, just issue the commands above manually or from a telnet prompt.
2394
2395 @subsection STR9 configuration
2396 @cindex STR9 configuration
2397 @itemize @bullet
2398 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2399 <@var{BBADR}> <@var{NBBADR}>
2400 @cindex str9x flash_config
2401 @*Configure str9 flash controller.
2402 @example
2403 e.g. str9x flash_config 0 4 2 0 0x80000
2404 This will setup
2405 BBSR - Boot Bank Size register
2406 NBBSR - Non Boot Bank Size register
2407 BBADR - Boot Bank Start Address register
2408 NBBADR - Boot Bank Start Address register
2409 @end example
2410 @end itemize
2411
2412 @subsection STR9 option byte configuration
2413 @cindex STR9 option byte configuration
2414 @itemize @bullet
2415 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2416 @cindex str9xpec options_cmap
2417 @*configure str9 boot bank.
2418 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2419 @cindex str9xpec options_lvdthd
2420 @*configure str9 lvd threshold.
2421 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2422 @cindex str9xpec options_lvdsel
2423 @*configure str9 lvd source.
2424 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2425 @cindex str9xpec options_lvdwarn
2426 @*configure str9 lvd reset warning source.
2427 @end itemize
2428
2429 @subsection STM32x specific commands
2430 @cindex STM32x specific commands
2431
2432 These are flash specific commands when using the stm32x driver.
2433 @itemize @bullet
2434 @item @b{stm32x lock} <@var{num}>
2435 @cindex stm32x lock
2436 @*lock stm32 device.
2437 @item @b{stm32x unlock} <@var{num}>
2438 @cindex stm32x unlock
2439 @*unlock stm32 device.
2440 @item @b{stm32x options_read} <@var{num}>
2441 @cindex stm32x options_read
2442 @*read stm32 option bytes.
2443 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2444 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2445 @cindex stm32x options_write
2446 @*write stm32 option bytes.
2447 @item @b{stm32x mass_erase} <@var{num}>
2448 @cindex stm32x mass_erase
2449 @*mass erase flash memory.
2450 @end itemize
2451
2452 @subsection Stellaris specific commands
2453 @cindex Stellaris specific commands
2454
2455 These are flash specific commands when using the Stellaris driver.
2456 @itemize @bullet
2457 @item @b{stellaris mass_erase} <@var{num}>
2458 @cindex stellaris mass_erase
2459 @*mass erase flash memory.
2460 @end itemize
2461
2462 @node General Commands
2463 @chapter General Commands
2464 @cindex commands
2465
2466 The commands documented in this chapter here are common commands that
2467 you, as a human, may want to type and see the output of. Configuration type
2468 commands are documented elsewhere.
2469
2470 Intent:
2471 @itemize @bullet
2472 @item @b{Source Of Commands}
2473 @* OpenOCD commands can occur in a configuration script (discussed
2474 elsewhere) or typed manually by a human or supplied programatically,
2475 or via one of several TCP/IP Ports.
2476
2477 @item @b{From the human}
2478 @* A human should interact with the telnet interface (default port: 4444,
2479 or via GDB, default port 3333)
2480
2481 To issue commands from within a GDB session, use the @option{monitor}
2482 command, e.g. use @option{monitor poll} to issue the @option{poll}
2483 command. All output is relayed through the GDB session.
2484
2485 @item @b{Machine Interface}
2486 The Tcl interface's intent is to be a machine interface. The default Tcl
2487 port is 5555.
2488 @end itemize
2489
2490
2491 @section Daemon Commands
2492
2493 @subsection sleep [@var{msec}]
2494 @cindex sleep
2495 @*Wait for n milliseconds before resuming. Useful in connection with script files
2496 (@var{script} command and @var{target_script} configuration).
2497
2498 @subsection shutdown
2499 @cindex shutdown
2500 @*Close the OpenOCD daemon, disconnecting all clients (GDB, telnet, other).
2501
2502 @subsection debug_level [@var{n}]
2503 @cindex debug_level
2504 @anchor{debug_level}
2505 @*Display or adjust debug level to n<0-3>
2506
2507 @subsection fast [@var{enable|disable}]
2508 @cindex fast
2509 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2510 downloads and fast memory access will work if the JTAG interface isn't too fast and
2511 the core doesn't run at a too low frequency. Note that this option only changes the default
2512 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2513 individually.
2514
2515 The target specific "dangerous" optimisation tweaking options may come and go
2516 as more robust and user friendly ways are found to ensure maximum throughput
2517 and robustness with a minimum of configuration.
2518
2519 Typically the "fast enable" is specified first on the command line:
2520
2521 @example
2522 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2523 @end example
2524
2525 @subsection log_output <@var{file}>
2526 @cindex log_output
2527 @*Redirect logging to <file> (default: stderr)
2528
2529 @subsection script <@var{file}>
2530 @cindex script
2531 @*Execute commands from <file>
2532 See also: ``source [find FILENAME]''
2533
2534 @section Target state handling
2535 @subsection power <@var{on}|@var{off}>
2536 @cindex reg
2537 @*Turn power switch to target on/off.
2538 No arguments: print status.
2539 Not all interfaces support this.
2540
2541 @subsection reg [@option{#}|@option{name}] [value]
2542 @cindex reg
2543 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2544 No arguments: list all available registers for the current target.
2545 Number or name argument: display a register.
2546 Number or name and value arguments: set register value.
2547
2548 @subsection poll [@option{on}|@option{off}]
2549 @cindex poll
2550 @*Poll the target for its current state. If the target is in debug mode, architecture
2551 specific information about the current state is printed. An optional parameter
2552 allows continuous polling to be enabled and disabled.
2553
2554 @subsection halt [@option{ms}]
2555 @cindex halt
2556 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2557 Default [@option{ms}] is 5 seconds if no arg given.
2558 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2559 will stop OpenOCD from waiting.
2560
2561 @subsection wait_halt [@option{ms}]
2562 @cindex wait_halt
2563 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2564 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2565 arg is given.
2566
2567 @subsection resume [@var{address}]
2568 @cindex resume
2569 @*Resume the target at its current code position, or at an optional address.
2570 OpenOCD will wait 5 seconds for the target to resume.
2571
2572 @subsection step [@var{address}]
2573 @cindex step
2574 @*Single-step the target at its current code position, or at an optional address.
2575
2576 @subsection reset [@option{run}|@option{halt}|@option{init}]
2577 @cindex reset
2578 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2579
2580 With no arguments a "reset run" is executed
2581 @itemize @minus
2582 @item @b{run}
2583 @cindex reset run
2584 @*Let the target run.
2585 @item @b{halt}
2586 @cindex reset halt
2587 @*Immediately halt the target (works only with certain configurations).
2588 @item @b{init}
2589 @cindex reset init
2590 @*Immediately halt the target, and execute the reset script (works only with certain
2591 configurations)
2592 @end itemize
2593
2594 @subsection soft_reset_halt
2595 @cindex reset
2596 @*Requesting target halt and executing a soft reset. This is often used
2597 when a target cannot be reset and halted. The target, after reset is
2598 released begins to execute code. OpenOCD attempts to stop the CPU and
2599 then sets the program counter back to the reset vector. Unfortunately
2600 the code that was executed may have left the hardware in an unknown
2601 state.
2602
2603
2604 @section Memory access commands
2605 @subsection meminfo
2606 display available RAM memory.
2607 @subsection Memory peek/poke type commands
2608 These commands allow accesses of a specific size to the memory
2609 system. Often these are used to configure the current target in some
2610 special way. For example - one may need to write certian values to the
2611 SDRAM controller to enable SDRAM.
2612
2613 @enumerate
2614 @item To change the current target see the ``targets'' (plural) command
2615 @item In system level scripts these commands are deprecated, please use the TARGET object versions.
2616 @end enumerate
2617
2618 @itemize @bullet
2619 @item @b{mdw} <@var{addr}> [@var{count}]
2620 @cindex mdw
2621 @*display memory words (32bit)
2622 @item @b{mdh} <@var{addr}> [@var{count}]
2623 @cindex mdh
2624 @*display memory half-words (16bit)
2625 @item @b{mdb} <@var{addr}> [@var{count}]
2626 @cindex mdb
2627 @*display memory bytes (8bit)
2628 @item @b{mww} <@var{addr}> <@var{value}>
2629 @cindex mww
2630 @*write memory word (32bit)
2631 @item @b{mwh} <@var{addr}> <@var{value}>
2632 @cindex mwh
2633 @*write memory half-word (16bit)
2634 @item @b{mwb} <@var{addr}> <@var{value}>
2635 @cindex mwb
2636 @*write memory byte (8bit)
2637 @end itemize
2638
2639 @section Image loading commands
2640 @subsection load_image
2641 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2642 @cindex load_image
2643 @anchor{load_image}
2644 @*Load image <@var{file}> to target memory at <@var{address}>
2645 @subsection fast_load_image
2646 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2647 @cindex fast_load_image
2648 @anchor{fast_load_image}
2649 @*Normally you should be using @b{load_image} or GDB load. However, for
2650 testing purposes or when I/O overhead is significant(OpenOCD running on an embedded
2651 host), storing the image in memory and uploading the image to the target
2652 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2653 Arguments are the same as @b{load_image}, but the image is stored in OpenOCD host
2654 memory, i.e. does not affect target. This approach is also useful when profiling
2655 target programming performance as I/O and target programming can easily be profiled
2656 separately.
2657 @subsection fast_load
2658 @b{fast_load}
2659 @cindex fast_image
2660 @anchor{fast_image}
2661 @*Loads an image stored in memory by @b{fast_load_image} to the current target. Must be preceeded by fast_load_image.
2662 @subsection dump_image
2663 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2664 @cindex dump_image
2665 @anchor{dump_image}
2666 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2667 (binary) <@var{file}>.
2668 @subsection verify_image
2669 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2670 @cindex verify_image
2671 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2672 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
2673
2674
2675 @section Breakpoint commands
2676 @cindex Breakpoint commands
2677 @itemize @bullet
2678 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2679 @cindex bp
2680 @*set breakpoint <address> <length> [hw]
2681 @item @b{rbp} <@var{addr}>
2682 @cindex rbp
2683 @*remove breakpoint <adress>
2684 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2685 @cindex wp
2686 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2687 @item @b{rwp} <@var{addr}>
2688 @cindex rwp
2689 @*remove watchpoint <adress>
2690 @end itemize
2691
2692 @section Misc Commands
2693 @cindex Other Target Commands
2694 @itemize
2695 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2696
2697 Profiling samples the CPU's program counter as quickly as possible, which is useful for non-intrusive stochastic profiling.
2698
2699 @end itemize
2700
2701 @section Target Specific Commands
2702 @cindex Target Specific Commands
2703
2704
2705 @page
2706 @section Architecture Specific Commands
2707 @cindex Architecture Specific Commands
2708
2709 @subsection ARMV4/5 specific commands
2710 @cindex ARMV4/5 specific commands
2711
2712 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2713 or Intel XScale (XScale isn't supported yet).
2714 @itemize @bullet
2715 @item @b{armv4_5 reg}
2716 @cindex armv4_5 reg
2717 @*Display a list of all banked core registers, fetching the current value from every
2718 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2719 register value.
2720 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2721 @cindex armv4_5 core_mode
2722 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2723 The target is resumed in the currently set @option{core_mode}.
2724 @end itemize
2725
2726 @subsection ARM7/9 specific commands
2727 @cindex ARM7/9 specific commands
2728
2729 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2730 ARM920T or ARM926EJ-S.
2731 @itemize @bullet
2732 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2733 @cindex arm7_9 dbgrq
2734 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2735 safe for all but ARM7TDMI--S cores (like Philips LPC).
2736 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2737 @cindex arm7_9 fast_memory_access
2738 @anchor{arm7_9 fast_memory_access}
2739 @*Allow OpenOCD to read and write memory without checking completion of
2740 the operation. This provides a huge speed increase, especially with USB JTAG
2741 cables (FT2232), but might be unsafe if used with targets running at very low
2742 speeds, like the 32kHz startup clock of an AT91RM9200.
2743 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2744 @cindex arm7_9 dcc_downloads
2745 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2746 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2747 unsafe, especially with targets running at very low speeds. This command was introduced
2748 with OpenOCD rev. 60.
2749 @end itemize
2750
2751 @subsection ARM720T specific commands
2752 @cindex ARM720T specific commands
2753
2754 @itemize @bullet
2755 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2756 @cindex arm720t cp15
2757 @*display/modify cp15 register <@option{num}> [@option{value}].
2758 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2759 @cindex arm720t md<bhw>_phys
2760 @*Display memory at physical address addr.
2761 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2762 @cindex arm720t mw<bhw>_phys
2763 @*Write memory at physical address addr.
2764 @item @b{arm720t virt2phys} <@var{va}>
2765 @cindex arm720t virt2phys
2766 @*Translate a virtual address to a physical address.
2767 @end itemize
2768
2769 @subsection ARM9TDMI specific commands
2770 @cindex ARM9TDMI specific commands
2771
2772 @itemize @bullet
2773 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2774 @cindex arm9tdmi vector_catch
2775 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2776 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2777 @option{irq} @option{fiq}.
2778
2779 Can also be used on other ARM9 based cores such as ARM966, ARM920T and ARM926EJ-S.
2780 @end itemize
2781
2782 @subsection ARM966E specific commands
2783 @cindex ARM966E specific commands
2784
2785 @itemize @bullet
2786 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2787 @cindex arm966e cp15
2788 @*display/modify cp15 register <@option{num}> [@option{value}].
2789 @end itemize
2790
2791 @subsection ARM920T specific commands
2792 @cindex ARM920T specific commands
2793
2794 @itemize @bullet
2795 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2796 @cindex arm920t cp15
2797 @*display/modify cp15 register <@option{num}> [@option{value}].
2798 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2799 @cindex arm920t cp15i
2800 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2801 @item @b{arm920t cache_info}
2802 @cindex arm920t cache_info
2803 @*Print information about the caches found. This allows to see whether your target
2804 is an ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2805 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2806 @cindex arm920t md<bhw>_phys
2807 @*Display memory at physical address addr.
2808 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2809 @cindex arm920t mw<bhw>_phys
2810 @*Write memory at physical address addr.
2811 @item @b{arm920t read_cache} <@var{filename}>
2812 @cindex arm920t read_cache
2813 @*Dump the content of ICache and DCache to a file.
2814 @item @b{arm920t read_mmu} <@var{filename}>
2815 @cindex arm920t read_mmu
2816 @*Dump the content of the ITLB and DTLB to a file.
2817 @item @b{arm920t virt2phys} <@var{va}>
2818 @cindex arm920t virt2phys
2819 @*Translate a virtual address to a physical address.
2820 @end itemize
2821
2822 @subsection ARM926EJ-S specific commands
2823 @cindex ARM926EJ-S specific commands
2824
2825 @itemize @bullet
2826 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2827 @cindex arm926ejs cp15
2828 @*display/modify cp15 register <@option{num}> [@option{value}].
2829 @item @b{arm926ejs cache_info}
2830 @cindex arm926ejs cache_info
2831 @*Print information about the caches found.
2832 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2833 @cindex arm926ejs md<bhw>_phys
2834 @*Display memory at physical address addr.
2835 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2836 @cindex arm926ejs mw<bhw>_phys
2837 @*Write memory at physical address addr.
2838 @item @b{arm926ejs virt2phys} <@var{va}>
2839 @cindex arm926ejs virt2phys
2840 @*Translate a virtual address to a physical address.
2841 @end itemize
2842
2843 @subsection CORTEX_M3 specific commands
2844 @cindex CORTEX_M3 specific commands
2845
2846 @itemize @bullet
2847 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2848 @cindex cortex_m3 maskisr
2849 @*Enable masking (disabling) interrupts during target step/resume.
2850 @end itemize
2851
2852 @page
2853 @section Debug commands
2854 @cindex Debug commands
2855 The following commands give direct access to the core, and are most likely
2856 only useful while debugging OpenOCD.
2857 @itemize @bullet
2858 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2859 @cindex arm7_9 write_xpsr
2860 @*Immediately write either the current program status register (CPSR) or the saved
2861 program status register (SPSR), without changing the register cache (as displayed
2862 by the @option{reg} and @option{armv4_5 reg} commands).
2863 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2864 <@var{0=cpsr},@var{1=spsr}>
2865 @cindex arm7_9 write_xpsr_im8
2866 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2867 operation (similar to @option{write_xpsr}).
2868 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2869 @cindex arm7_9 write_core_reg
2870 @*Write a core register, without changing the register cache (as displayed by the
2871 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2872 encoding of the [M4:M0] bits of the PSR.
2873 @end itemize
2874
2875 @section Target Requests
2876 @cindex Target Requests
2877 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2878 See libdcc in the contrib dir for more details.
2879 @itemize @bullet
2880 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}|@var{charmsg}>
2881 @cindex target_request debugmsgs
2882 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running. @var{charmsg} receives messages if Linux kernel ``Kernel low-level debugging via EmbeddedICE DCC channel'' option is enabled.
2883 @end itemize
2884
2885 @node JTAG Commands
2886 @chapter JTAG Commands
2887 @cindex JTAG Commands
2888 Generally most people will not use the bulk of these commands. They
2889 are mostly used by the OpenOCD developers or those who need to
2890 directly manipulate the JTAG taps.
2891
2892 In general these commands control JTAG taps at a very low level. For
2893 example if you need to control a JTAG Route Controller (i.e.: the
2894 OMAP3530 on the Beagle Board has one) you might use these commands in
2895 a script or an event procedure.
2896 @section Commands
2897 @cindex Commands
2898 @itemize @bullet
2899 @item @b{scan_chain}
2900 @cindex scan_chain
2901 @*Print current scan chain configuration.
2902 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2903 @cindex jtag_reset
2904 @*Toggle reset lines.
2905 @item @b{endstate} <@var{tap_state}>
2906 @cindex endstate
2907 @*Finish JTAG operations in <@var{tap_state}>.
2908 @item @b{runtest} <@var{num_cycles}>
2909 @cindex runtest
2910 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2911 @item @b{statemove} [@var{tap_state}]
2912 @cindex statemove
2913 @*Move to current endstate or [@var{tap_state}]
2914 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2915 @cindex irscan
2916 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2917 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2918 @cindex drscan
2919 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2920 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2921 @cindex verify_ircapture
2922 @*Verify value captured during Capture-IR. Default is enabled.
2923 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2924 @cindex var
2925 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2926 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2927 @cindex field
2928 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2929 @end itemize
2930
2931 @section Tap states
2932 @cindex Tap states
2933 Available tap_states are:
2934 @itemize @bullet
2935 @item @b{RESET}
2936 @cindex RESET
2937 @item @b{IDLE}
2938 @cindex IDLE
2939 @item @b{DRSELECT}
2940 @cindex DRSELECT
2941 @item @b{DRCAPTURE}
2942 @cindex DRCAPTURE
2943 @item @b{DRSHIFT}
2944 @cindex DRSHIFT
2945 @item @b{DREXIT1}
2946 @cindex DREXIT1
2947 @item @b{DRPAUSE}
2948 @cindex DRPAUSE
2949 @item @b{DREXIT2}
2950 @cindex DREXIT2
2951 @item @b{DRUPDATE}
2952 @cindex DRUPDATE
2953 @item @b{IRSELECT}
2954 @cindex IRSELECT
2955 @item @b{IRCAPTURE}
2956 @cindex IRCAPTURE
2957 @item @b{IRSHIFT}
2958 @cindex IRSHIFT
2959 @item @b{IREXIT1}
2960 @cindex IREXIT1
2961 @item @b{IRPAUSE}
2962 @cindex IRPAUSE
2963 @item @b{IREXIT2}
2964 @cindex IREXIT2
2965 @item @b{IRUPDATE}
2966 @cindex IRUPDATE
2967 @end itemize
2968
2969
2970 @node TFTP
2971 @chapter TFTP
2972 @cindex TFTP
2973 If OpenOCD runs on an embedded host(as ZY1000 does), then TFTP can
2974 be used to access files on PCs (either the developer's PC or some other PC).
2975
2976 The way this works on the ZY1000 is to prefix a filename by
2977 "/tftp/ip/" and append the TFTP path on the TFTP
2978 server (tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2979 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2980 if the file was hosted on the embedded host.
2981
2982 In order to achieve decent performance, you must choose a TFTP server
2983 that supports a packet size bigger than the default packet size (512 bytes). There
2984 are numerous TFTP servers out there (free and commercial) and you will have to do
2985 a bit of googling to find something that fits your requirements.
2986
2987 @node Sample Scripts
2988 @chapter Sample Scripts
2989 @cindex scripts
2990
2991 This page shows how to use the Target Library.
2992
2993 The configuration script can be divided into the following sections:
2994 @itemize @bullet
2995 @item Daemon configuration
2996 @item Interface
2997 @item JTAG scan chain
2998 @item Target configuration
2999 @item Flash configuration
3000 @end itemize
3001
3002 Detailed information about each section can be found at OpenOCD configuration.
3003
3004 @section AT91R40008 example
3005 @cindex AT91R40008 example
3006 To start OpenOCD with a target script for the AT91R40008 CPU and reset
3007 the CPU upon startup of the OpenOCD daemon.
3008 @example
3009 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
3010 @end example
3011
3012
3013 @node GDB and OpenOCD
3014 @chapter GDB and OpenOCD
3015 @cindex GDB and OpenOCD
3016 OpenOCD complies with the remote gdbserver protocol, and as such can be used
3017 to debug remote targets.
3018
3019 @section Connecting to GDB
3020 @cindex Connecting to GDB
3021 @anchor{Connecting to GDB}
3022 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
3023 instance GDB 6.3 has a known bug that produces bogus memory access
3024 errors, which has since been fixed: look up 1836 in
3025 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
3026
3027 @*OpenOCD can communicate with GDB in two ways:
3028 @enumerate
3029 @item
3030 A socket (TCP/IP) connection is typically started as follows:
3031 @example
3032 target remote localhost:3333
3033 @end example
3034 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3035 @item
3036 A pipe connection is typically started as follows:
3037 @example
3038 target remote | openocd --pipe
3039 @end example
3040 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3041 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3042 session.
3043 @end enumerate
3044
3045 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3046 GDB command line.
3047
3048 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3049 to be sent by the GDB remote server (i.e. OpenOCD) to GDB. Typical information includes
3050 packet size and the device's memory map.
3051
3052 Previous versions of OpenOCD required the following GDB options to increase
3053 the packet size and speed up GDB communication:
3054 @example
3055 set remote memory-write-packet-size 1024
3056 set remote memory-write-packet-size fixed
3057 set remote memory-read-packet-size 1024
3058 set remote memory-read-packet-size fixed
3059 @end example
3060 This is now handled in the @option{qSupported} PacketSize and should not be required.
3061
3062 @section Programming using GDB
3063 @cindex Programming using GDB
3064
3065 By default the target memory map is sent to GDB. This can be disabled by
3066 the following OpenOCD configuration option:
3067 @example
3068 gdb_memory_map disable
3069 @end example
3070 For this to function correctly a valid flash configuration must also be set
3071 in OpenOCD. For faster performance you should also configure a valid
3072 working area.
3073
3074 Informing GDB of the memory map of the target will enable GDB to protect any
3075 flash areas of the target and use hardware breakpoints by default. This means
3076 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3077 using a memory map. @xref{gdb_breakpoint_override}.
3078
3079 To view the configured memory map in GDB, use the GDB command @option{info mem}
3080 All other unassigned addresses within GDB are treated as RAM.
3081
3082 GDB 6.8 and higher set any memory area not in the memory map as inaccessible.
3083 This can be changed to the old behaviour by using the following GDB command
3084 @example
3085 set mem inaccessible-by-default off
3086 @end example
3087
3088 If @option{gdb_flash_program enable} is also used, GDB will be able to
3089 program any flash memory using the vFlash interface.
3090
3091 GDB will look at the target memory map when a load command is given, if any
3092 areas to be programmed lie within the target flash area the vFlash packets
3093 will be used.
3094
3095 If the target needs configuring before GDB programming, an event
3096 script can be executed:
3097 @example
3098 $_TARGETNAME configure -event EVENTNAME BODY
3099 @end example
3100
3101 To verify any flash programming the GDB command @option{compare-sections}
3102 can be used.
3103
3104 @node Tcl Scripting API
3105 @chapter Tcl Scripting API
3106 @cindex Tcl Scripting API
3107 @cindex Tcl scripts
3108 @section API rules
3109
3110 The commands are stateless. E.g. the telnet command line has a concept
3111 of currently active target, the Tcl API proc's take this sort of state
3112 information as an argument to each proc.
3113
3114 There are three main types of return values: single value, name value
3115 pair list and lists.
3116
3117 Name value pair. The proc 'foo' below returns a name/value pair
3118 list.
3119
3120 @verbatim
3121
3122 > set foo(me) Duane
3123 > set foo(you) Oyvind
3124 > set foo(mouse) Micky
3125 > set foo(duck) Donald
3126
3127 If one does this:
3128
3129 > set foo
3130
3131 The result is:
3132
3133 me Duane you Oyvind mouse Micky duck Donald
3134
3135 Thus, to get the names of the associative array is easy:
3136
3137 foreach { name value } [set foo] {
3138 puts "Name: $name, Value: $value"
3139 }
3140 @end verbatim
3141
3142 Lists returned must be relatively small. Otherwise a range
3143 should be passed in to the proc in question.
3144
3145 @section Internal low-level Commands
3146
3147 By low-level, the intent is a human would not directly use these commands.
3148
3149 Low-level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3150 is the low level API upon which "flash banks" is implemented.
3151
3152 @itemize @bullet
3153 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3154
3155 Read memory and return as a Tcl array for script processing
3156 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3157
3158 Convert a Tcl array to memory locations and write the values
3159 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3160
3161 Return information about the flash banks
3162 @end itemize
3163
3164 OpenOCD commands can consist of two words, e.g. "flash banks". The
3165 startup.tcl "unknown" proc will translate this into a Tcl proc
3166 called "flash_banks".
3167
3168 @section OpenOCD specific Global Variables
3169
3170 @subsection HostOS
3171
3172 Real Tcl has ::tcl_platform(), and platform::identify, and many other
3173 variables. JimTCL, as implemented in OpenOCD creates $HostOS which
3174 holds one of the following values:
3175
3176 @itemize @bullet
3177 @item @b{winxx} Built using Microsoft Visual Studio
3178 @item @b{linux} Linux is the underlying operating sytem
3179 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3180 @item @b{cygwin} Running under Cygwin
3181 @item @b{mingw32} Running under MingW32
3182 @item @b{other} Unknown, none of the above.
3183 @end itemize
3184
3185 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3186
3187 @node Upgrading
3188 @chapter Deprecated/Removed Commands
3189 @cindex Deprecated/Removed Commands
3190 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3191
3192 @itemize @bullet
3193 @item @b{arm7_9 fast_writes}
3194 @cindex arm7_9 fast_writes
3195 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3196 @item @b{arm7_9 force_hw_bkpts}
3197 @cindex arm7_9 force_hw_bkpts
3198 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3199 for flash if the GDB memory map has been set up(default when flash is declared in
3200 target configuration). @xref{gdb_breakpoint_override}.
3201 @item @b{arm7_9 sw_bkpts}
3202 @cindex arm7_9 sw_bkpts
3203 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3204 @item @b{daemon_startup}
3205 @cindex daemon_startup
3206 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3207 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3208 and @option{target cortex_m3 little reset_halt 0}.
3209 @item @b{dump_binary}
3210 @cindex dump_binary
3211 @*use @option{dump_image} command with same args. @xref{dump_image}.
3212 @item @b{flash erase}
3213 @cindex flash erase
3214 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3215 @item @b{flash write}
3216 @cindex flash write
3217 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3218 @item @b{flash write_binary}
3219 @cindex flash write_binary
3220 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3221 @item @b{flash auto_erase}
3222 @cindex flash auto_erase
3223 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3224 @item @b{load_binary}
3225 @cindex load_binary
3226 @*use @option{load_image} command with same args. @xref{load_image}.
3227 @item @b{run_and_halt_time}
3228 @cindex run_and_halt_time
3229 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3230 following commands:
3231 @smallexample
3232 reset run
3233 sleep 100
3234 halt
3235 @end smallexample
3236 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3237 @cindex target
3238 @*use the create subcommand of @option{target}.
3239 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3240 @cindex target_script
3241 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3242 @item @b{working_area}
3243 @cindex working_area
3244 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3245 @end itemize
3246
3247 @node FAQ
3248 @chapter FAQ
3249 @cindex faq
3250 @enumerate
3251 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3252 @cindex RTCK
3253 @cindex adaptive clocking
3254 @*
3255
3256 In digital circuit design it is often refered to as ``clock
3257 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3258 operating at some speed, your target is operating at another. The two
3259 clocks are not synchronised, they are ``asynchronous''
3260
3261 In order for the two to work together they must be synchronised. Otherwise
3262 the two systems will get out of sync with each other and nothing will
3263 work. There are 2 basic options:
3264 @enumerate
3265 @item
3266 Use a special circuit.
3267 @item
3268 One clock must be some multiple slower than the other.
3269 @end enumerate
3270
3271 @b{Does this really matter?} For some chips and some situations, this
3272 is a non-issue (i.e.: A 500MHz ARM926) but for others - for example some
3273 Atmel SAM7 and SAM9 chips start operation from reset at 32kHz -
3274 program/enable the oscillators and eventually the main clock. It is in
3275 those critical times you must slow the JTAG clock to sometimes 1 to
3276 4kHz.
3277
3278 Imagine debugging a 500MHz ARM926 hand held battery powered device
3279 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3280 painful.
3281
3282 @b{Solution #1 - A special circuit}
3283
3284 In order to make use of this, your JTAG dongle must support the RTCK
3285 feature. Not all dongles support this - keep reading!
3286
3287 The RTCK signal often found in some ARM chips is used to help with
3288 this problem. ARM has a good description of the problem described at
3289 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3290 28/nov/2008]. Link title: ``How does the JTAG synchronisation logic
3291 work? / how does adaptive clocking work?''.
3292
3293 The nice thing about adaptive clocking is that ``battery powered hand
3294 held device example'' - the adaptiveness works perfectly all the
3295 time. One can set a break point or halt the system in the deep power
3296 down code, slow step out until the system speeds up.
3297
3298 @b{Solution #2 - Always works - but may be slower}
3299
3300 Often this is a perfectly acceptable solution.
3301
3302 In most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3303 the target clock speed. But what that ``magic division'' is varies
3304 depending on the chips on your board. @b{ARM rule of thumb} Most ARM
3305 based systems require an 8:1 division. @b{Xilinx rule of thumb} is
3306 1/12 the clock speed.
3307
3308 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3309
3310 You can still debug the 'low power' situations - you just need to
3311 manually adjust the clock speed at every step. While painful and
3312 tedious, it is not always practical.
3313
3314 It is however easy to ``code your way around it'' - i.e.: Cheat a little,
3315 have a special debug mode in your application that does a ``high power
3316 sleep''. If you are careful - 98% of your problems can be debugged
3317 this way.
3318
3319 To set the JTAG frequency use the command:
3320
3321 @example
3322 # Example: 1.234MHz
3323 jtag_khz 1234
3324 @end example
3325
3326
3327 @item @b{Win32 Pathnames} Why don't backslashes work in Windows paths?
3328
3329 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3330 around Windows filenames.
3331
3332 @example
3333 > echo \a
3334
3335 > echo @{\a@}
3336 \a
3337 > echo "\a"
3338
3339 >
3340 @end example
3341
3342
3343 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3344
3345 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3346 claims to come with all the necessary DLLs. When using Cygwin, try launching
3347 OpenOCD from the Cygwin shell.
3348
3349 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3350 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3351 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3352
3353 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3354 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720T or ARM920T,
3355 software breakpoints consume one of the two available hardware breakpoints.
3356
3357 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails at random.
3358
3359 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3360 clock at the time you're programming the flash. If you've specified the crystal's
3361 frequency, make sure the PLL is disabled. If you've specified the full core speed
3362 (e.g. 60MHz), make sure the PLL is enabled.
3363
3364 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3365 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3366 out while waiting for end of scan, rtck was disabled".
3367
3368 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3369 settings in your PC BIOS (ECP, EPP, and different versions of those).
3370
3371 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3372 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3373 memory read caused data abort".
3374
3375 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3376 beyond the last valid frame. It might be possible to prevent this by setting up
3377 a proper "initial" stack frame, if you happen to know what exactly has to
3378 be done, feel free to add this here.
3379
3380 @b{Simple:} In your startup code - push 8 registers of zeros onto the
3381 stack before calling main(). What GDB is doing is ``climbing'' the run
3382 time stack by reading various values on the stack using the standard
3383 call frame for the target. GDB keeps going - until one of 2 things
3384 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3385 stackframes have been processed. By pushing zeros on the stack, GDB
3386 gracefully stops.
3387
3388 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3389 your C code, do the same - artifically push some zeros onto the stack,
3390 remember to pop them off when the ISR is done.
3391
3392 @b{Also note:} If you have a multi-threaded operating system, they
3393 often do not @b{in the intrest of saving memory} waste these few
3394 bytes. Painful...
3395
3396
3397 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3398 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3399
3400 This warning doesn't indicate any serious problem, as long as you don't want to
3401 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3402 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3403 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3404 independently. With this setup, it's not possible to halt the core right out of
3405 reset, everything else should work fine.
3406
3407 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3408 toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3409 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3410 quit with an error message. Is there a stability issue with OpenOCD?
3411
3412 No, this is not a stability issue concerning OpenOCD. Most users have solved
3413 this issue by simply using a self-powered USB hub, which they connect their
3414 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3415 supply stable enough for the Amontec JTAGkey to be operated.
3416
3417 @b{Laptops running on battery have this problem too...}
3418
3419 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3420 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3421 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3422 What does that mean and what might be the reason for this?
3423
3424 First of all, the reason might be the USB power supply. Try using a self-powered
3425 hub instead of a direct connection to your computer. Secondly, the error code 4
3426 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3427 chip ran into some sort of error - this points us to a USB problem.
3428
3429 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3430 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3431 What does that mean and what might be the reason for this?
3432
3433 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3434 has closed the connection to OpenOCD. This might be a GDB issue.
3435
3436 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3437 are described, there is a parameter for specifying the clock frequency
3438 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3439 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3440 specified in kilohertz. However, I do have a quartz crystal of a
3441 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3442 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3443 clock frequency?
3444
3445 No. The clock frequency specified here must be given as an integral number.
3446 However, this clock frequency is used by the In-Application-Programming (IAP)
3447 routines of the LPC2000 family only, which seems to be very tolerant concerning
3448 the given clock frequency, so a slight difference between the specified clock
3449 frequency and the actual clock frequency will not cause any trouble.
3450
3451 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3452
3453 Well, yes and no. Commands can be given in arbitrary order, yet the
3454 devices listed for the JTAG scan chain must be given in the right
3455 order (jtag newdevice), with the device closest to the TDO-Pin being
3456 listed first. In general, whenever objects of the same type exist
3457 which require an index number, then these objects must be given in the
3458 right order (jtag newtap, targets and flash banks - a target
3459 references a jtag newtap and a flash bank references a target).
3460
3461 You can use the ``scan_chain'' command to verify and display the tap order.
3462
3463 @item @b{JTAG Tap Order} JTAG tap order - command order
3464
3465 Many newer devices have multiple JTAG taps. For example: ST
3466 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3467 ``Cortex-M3'' tap. Example: The STM32 reference manual, Document ID:
3468 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3469 connected to the boundary scan tap, which then connects to the
3470 Cortex-M3 tap, which then connects to the TDO pin.
3471
3472 Thus, the proper order for the STM32 chip is: (1) The Cortex-M3, then
3473 (2) The boundary scan tap. If your board includes an additional JTAG
3474 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3475 place it before or after the STM32 chip in the chain. For example:
3476
3477 @itemize @bullet
3478 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3479 @item STM32 BS TDO (output) -> STM32 Cortex-M3 TDI (input)
3480 @item STM32 Cortex-M3 TDO (output) -> SM32 TDO Pin
3481 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3482 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3483 @end itemize
3484
3485 The ``jtag device'' commands would thus be in the order shown below. Note:
3486
3487 @itemize @bullet
3488 @item jtag newtap Xilinx tap -irlen ...
3489 @item jtag newtap stm32 cpu -irlen ...
3490 @item jtag newtap stm32 bs -irlen ...
3491 @item # Create the debug target and say where it is
3492 @item target create stm32.cpu -chain-position stm32.cpu ...
3493 @end itemize
3494
3495
3496 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3497 log file, I can see these error messages: Error: arm7_9_common.c:561
3498 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3499
3500 TODO.
3501
3502 @end enumerate
3503
3504 @node Tcl Crash Course
3505 @chapter Tcl Crash Course
3506 @cindex Tcl
3507
3508 Not everyone knows Tcl - this is not intended to be a replacement for
3509 learning Tcl, the intent of this chapter is to give you some idea of
3510 how the Tcl scripts work.
3511
3512 This chapter is written with two audiences in mind. (1) OpenOCD users
3513 who need to understand a bit more of how JIM-Tcl works so they can do
3514 something useful, and (2) those that want to add a new command to
3515 OpenOCD.
3516
3517 @section Tcl Rule #1
3518 There is a famous joke, it goes like this:
3519 @enumerate
3520 @item Rule #1: The wife is always correct
3521 @item Rule #2: If you think otherwise, See Rule #1
3522 @end enumerate
3523
3524 The Tcl equal is this:
3525
3526 @enumerate
3527 @item Rule #1: Everything is a string
3528 @item Rule #2: If you think otherwise, See Rule #1
3529 @end enumerate
3530
3531 As in the famous joke, the consequences of Rule #1 are profound. Once
3532 you understand Rule #1, you will understand Tcl.
3533
3534 @section Tcl Rule #1b
3535 There is a second pair of rules.
3536 @enumerate
3537 @item Rule #1: Control flow does not exist. Only commands
3538 @* For example: the classic FOR loop or IF statement is not a control
3539 flow item, they are commands, there is no such thing as control flow
3540 in Tcl.
3541 @item Rule #2: If you think otherwise, See Rule #1
3542 @* Actually what happens is this: There are commands that by
3543 convention, act like control flow key words in other languages. One of
3544 those commands is the word ``for'', another command is ``if''.
3545 @end enumerate
3546
3547 @section Per Rule #1 - All Results are strings
3548 Every Tcl command results in a string. The word ``result'' is used
3549 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3550 Everything is a string}
3551
3552 @section Tcl Quoting Operators
3553 In life of a Tcl script, there are two important periods of time, the
3554 difference is subtle.
3555 @enumerate
3556 @item Parse Time
3557 @item Evaluation Time
3558 @end enumerate
3559
3560 The two key items here are how ``quoted things'' work in Tcl. Tcl has
3561 three primary quoting constructs, the [square-brackets] the
3562 @{curly-braces@} and ``double-quotes''
3563
3564 By now you should know $VARIABLES always start with a $DOLLAR
3565 sign. BTW: To set a variable, you actually use the command ``set'', as
3566 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3567 = 1'' statement, but without the equal sign.
3568
3569 @itemize @bullet
3570 @item @b{[square-brackets]}
3571 @* @b{[square-brackets]} are command substitutions. It operates much
3572 like Unix Shell `back-ticks`. The result of a [square-bracket]
3573 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3574 string}. These two statements are roughly identical:
3575 @example
3576 # bash example
3577 X=`date`
3578 echo "The Date is: $X"
3579 # Tcl example
3580 set X [date]
3581 puts "The Date is: $X"
3582 @end example
3583 @item @b{``double-quoted-things''}
3584 @* @b{``double-quoted-things''} are just simply quoted
3585 text. $VARIABLES and [square-brackets] are expanded in place - the
3586 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3587 is a string}
3588 @example
3589 set x "Dinner"
3590 puts "It is now \"[date]\", $x is in 1 hour"
3591 @end example
3592 @item @b{@{Curly-Braces@}}
3593 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3594 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3595 'single-quote' operators in BASH shell scripts, with the added
3596 feature: @{curly-braces@} can be nested, single quotes can not. @{@{@{this is
3597 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3598 28/nov/2008, Jim/OpenOCD does not have a date command.
3599 @end itemize
3600
3601 @section Consequences of Rule 1/2/3/4
3602
3603 The consequences of Rule 1 are profound.
3604
3605 @subsection Tokenisation & Execution.
3606
3607 Of course, whitespace, blank lines and #comment lines are handled in
3608 the normal way.
3609
3610 As a script is parsed, each (multi) line in the script file is
3611 tokenised and according to the quoting rules. After tokenisation, that
3612 line is immedatly executed.
3613
3614 Multi line statements end with one or more ``still-open''
3615 @{curly-braces@} which - eventually - closes a few lines later.
3616
3617 @subsection Command Execution
3618
3619 Remember earlier: There are no ``control flow''
3620 statements in Tcl. Instead there are COMMANDS that simply act like
3621 control flow operators.
3622
3623 Commands are executed like this:
3624
3625 @enumerate
3626 @item Parse the next line into (argc) and (argv[]).
3627 @item Look up (argv[0]) in a table and call its function.
3628 @item Repeat until End Of File.
3629 @end enumerate
3630
3631 It sort of works like this:
3632 @example
3633 for(;;)@{
3634 ReadAndParse( &argc, &argv );
3635
3636 cmdPtr = LookupCommand( argv[0] );
3637
3638 (*cmdPtr->Execute)( argc, argv );
3639 @}
3640 @end example
3641
3642 When the command ``proc'' is parsed (which creates a procedure
3643 function) it gets 3 parameters on the command line. @b{1} the name of
3644 the proc (function), @b{2} the list of parameters, and @b{3} the body
3645 of the function. Not the choice of words: LIST and BODY. The PROC
3646 command stores these items in a table somewhere so it can be found by
3647 ``LookupCommand()''
3648
3649 @subsection The FOR command
3650
3651 The most interesting command to look at is the FOR command. In Tcl,
3652 the FOR command is normally implemented in C. Remember, FOR is a
3653 command just like any other command.
3654
3655 When the ascii text containing the FOR command is parsed, the parser
3656 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3657 are:
3658
3659 @enumerate 0
3660 @item The ascii text 'for'
3661 @item The start text
3662 @item The test expression
3663 @item The next text
3664 @item The body text
3665 @end enumerate
3666
3667 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3668 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3669 Often many of those parameters are in @{curly-braces@} - thus the
3670 variables inside are not expanded or replaced until later.
3671
3672 Remember that every Tcl command looks like the classic ``main( argc,
3673 argv )'' function in C. In JimTCL - they actually look like this:
3674
3675 @example
3676 int
3677 MyCommand( Jim_Interp *interp,
3678 int *argc,
3679 Jim_Obj * const *argvs );
3680 @end example
3681
3682 Real Tcl is nearly identical. Although the newer versions have
3683 introduced a byte-code parser and intepreter, but at the core, it
3684 still operates in the same basic way.
3685
3686 @subsection FOR command implementation
3687
3688 To understand Tcl it is perhaps most helpful to see the FOR
3689 command. Remember, it is a COMMAND not a control flow structure.
3690
3691 In Tcl there are two underlying C helper functions.
3692
3693 Remember Rule #1 - You are a string.
3694
3695 The @b{first} helper parses and executes commands found in an ascii
3696 string. Commands can be seperated by semicolons, or newlines. While
3697 parsing, variables are expanded via the quoting rules.
3698
3699 The @b{second} helper evaluates an ascii string as a numerical
3700 expression and returns a value.
3701
3702 Here is an example of how the @b{FOR} command could be
3703 implemented. The pseudo code below does not show error handling.
3704 @example
3705 void Execute_AsciiString( void *interp, const char *string );
3706
3707 int Evaluate_AsciiExpression( void *interp, const char *string );
3708
3709 int
3710 MyForCommand( void *interp,
3711 int argc,
3712 char **argv )
3713 @{
3714 if( argc != 5 )@{
3715 SetResult( interp, "WRONG number of parameters");
3716 return ERROR;
3717 @}
3718
3719 // argv[0] = the ascii string just like C
3720
3721 // Execute the start statement.
3722 Execute_AsciiString( interp, argv[1] );
3723
3724 // Top of loop test
3725 for(;;)@{
3726 i = Evaluate_AsciiExpression(interp, argv[2]);
3727 if( i == 0 )
3728 break;
3729
3730 // Execute the body
3731 Execute_AsciiString( interp, argv[3] );
3732
3733 // Execute the LOOP part
3734 Execute_AsciiString( interp, argv[4] );
3735 @}
3736
3737 // Return no error
3738 SetResult( interp, "" );
3739 return SUCCESS;
3740 @}
3741 @end example
3742
3743 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3744 in the same basic way.
3745
3746 @section OpenOCD Tcl Usage
3747
3748 @subsection source and find commands
3749 @b{Where:} In many configuration files
3750 @* Example: @b{ source [find FILENAME] }
3751 @*Remember the parsing rules
3752 @enumerate
3753 @item The FIND command is in square brackets.
3754 @* The FIND command is executed with the parameter FILENAME. It should
3755 find the full path to the named file. The RESULT is a string, which is
3756 substituted on the orginal command line.
3757 @item The command source is executed with the resulting filename.
3758 @* SOURCE reads a file and executes as a script.
3759 @end enumerate
3760 @subsection format command
3761 @b{Where:} Generally occurs in numerous places.
3762 @* Tcl has no command like @b{printf()}, instead it has @b{format}, which is really more like
3763 @b{sprintf()}.
3764 @b{Example}
3765 @example
3766 set x 6
3767 set y 7
3768 puts [format "The answer: %d" [expr $x * $y]]
3769 @end example
3770 @enumerate
3771 @item The SET command creates 2 variables, X and Y.
3772 @item The double [nested] EXPR command performs math
3773 @* The EXPR command produces numerical result as a string.
3774 @* Refer to Rule #1
3775 @item The format command is executed, producing a single string
3776 @* Refer to Rule #1.
3777 @item The PUTS command outputs the text.
3778 @end enumerate
3779 @subsection Body or Inlined Text
3780 @b{Where:} Various TARGET scripts.
3781 @example
3782 #1 Good
3783 proc someproc @{@} @{
3784 ... multiple lines of stuff ...
3785 @}
3786 $_TARGETNAME configure -event FOO someproc
3787 #2 Good - no variables
3788 $_TARGETNAME confgure -event foo "this ; that;"
3789 #3 Good Curly Braces
3790 $_TARGETNAME configure -event FOO @{
3791 puts "Time: [date]"
3792 @}
3793 #4 DANGER DANGER DANGER
3794 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3795 @end example
3796 @enumerate
3797 @item The $_TARGETNAME is an OpenOCD variable convention.
3798 @*@b{$_TARGETNAME} represents the last target created, the value changes
3799 each time a new target is created. Remember the parsing rules. When
3800 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3801 the name of the target which happens to be a TARGET (object)
3802 command.
3803 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3804 @*There are 4 examples:
3805 @enumerate
3806 @item The TCLBODY is a simple string that happens to be a proc name
3807 @item The TCLBODY is several simple commands seperated by semicolons
3808 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3809 @item The TCLBODY is a string with variables that get expanded.
3810 @end enumerate
3811
3812 In the end, when the target event FOO occurs the TCLBODY is
3813 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3814 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3815
3816 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3817 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3818 and the text is evaluated. In case #4, they are replaced before the
3819 ``Target Object Command'' is executed. This occurs at the same time
3820 $_TARGETNAME is replaced. In case #4 the date will never
3821 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3822 Jim/OpenOCD does not have a date command@}
3823 @end enumerate
3824 @subsection Global Variables
3825 @b{Where:} You might discover this when writing your own procs @* In
3826 simple terms: Inside a PROC, if you need to access a global variable
3827 you must say so. See also ``upvar''. Example:
3828 @example
3829 proc myproc @{ @} @{
3830 set y 0 #Local variable Y
3831 global x #Global variable X
3832 puts [format "X=%d, Y=%d" $x $y]
3833 @}
3834 @end example
3835 @section Other Tcl Hacks
3836 @b{Dynamic variable creation}
3837 @example
3838 # Dynamically create a bunch of variables.
3839 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3840 # Create var name
3841 set vn [format "BIT%d" $x]
3842 # Make it a global
3843 global $vn
3844 # Set it.
3845 set $vn [expr (1 << $x)]
3846 @}
3847 @end example
3848 @b{Dynamic proc/command creation}
3849 @example
3850 # One "X" function - 5 uart functions.
3851 foreach who @{A B C D E@}
3852 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3853 @}
3854 @end example
3855
3856 @node Target Library
3857 @chapter Target Library
3858 @cindex Target Library
3859
3860 OpenOCD comes with a target configuration script library. These scripts can be
3861 used as-is or serve as a starting point.
3862
3863 The target library is published together with the OpenOCD executable and
3864 the path to the target library is in the OpenOCD script search path.
3865 Similarly there are example scripts for configuring the JTAG interface.
3866
3867 The command line below uses the example parport configuration script
3868 that ship with OpenOCD, then configures the str710.cfg target and
3869 finally issues the init and reset commands. The communication speed
3870 is set to 10kHz for reset and 8MHz for post reset.
3871
3872 @example
3873 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3874 @end example
3875
3876 To list the target scripts available:
3877
3878 @example
3879 $ ls /usr/local/lib/openocd/target
3880
3881 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3882 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3883 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3884 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3885 @end example
3886
3887 @include fdl.texi
3888
3889 @node OpenOCD Index
3890 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3891 @comment case issue with ``Index.html'' and ``index.html''
3892 @comment Occurs when creating ``--html --no-split'' output
3893 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3894 @unnumbered OpenOCD Index
3895
3896 @printindex cp
3897
3898 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)