added warning to use GDB 6.7 or newer
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * GDB and OpenOCD:: Using GDB and OpenOCD
55 * TCL and OpenOCD:: Using TCL and OpenOCD
56 * TCL scripting API:: Tcl scripting API
57 * Upgrading:: Deprecated/Removed Commands
58 * FAQ:: Frequently Asked Questions
59 * License:: GNU Free Documentation License
60 * Index:: Main index.
61 @end menu
62
63 @node About
64 @unnumbered About
65 @cindex about
66
67 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
68 and boundary-scan testing for embedded target devices. The targets are interfaced
69 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
70 connection types in the future.
71
72 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
73 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
74 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
75 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
76
77 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
78 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
79 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
80
81 @node Developers
82 @chapter Developers
83 @cindex developers
84
85 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
86 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
87 Others interested in improving the state of free and open debug and testing technology
88 are welcome to participate.
89
90 Other developers have contributed support for additional targets and flashes as well
91 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
92
93 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
94
95 @node Building
96 @chapter Building
97 @cindex building OpenOCD
98
99 You can download the current SVN version with SVN client of your choice from the
100 following repositories:
101
102 (@uref{svn://svn.berlios.de/openocd/trunk})
103
104 or
105
106 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
107
108 Using the SVN command line client, you can use the following command to fetch the
109 latest version (make sure there is no (non-svn) directory called "openocd" in the
110 current directory):
111
112 @smallexample
113 svn checkout svn://svn.berlios.de/openocd/trunk openocd
114 @end smallexample
115
116 Building OpenOCD requires a recent version of the GNU autotools.
117 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
118 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
119 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
120 paths, resulting in obscure dependency errors (This is an observation I've gathered
121 from the logs of one user - correct me if I'm wrong).
122
123 You further need the appropriate driver files, if you want to build support for
124 a FTDI FT2232 based interface:
125 @itemize @bullet
126 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
127 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
128 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
129 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
130 @end itemize
131
132 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
133 see contrib/libftdi for more details.
134
135 In general, the D2XX driver provides superior performance (several times as fast),
136 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
137 a kernel module, only a user space library.
138
139 To build OpenOCD (on both Linux and Cygwin), use the following commands:
140 @smallexample
141 ./bootstrap
142 @end smallexample
143 Bootstrap generates the configure script, and prepares building on your system.
144 @smallexample
145 ./configure
146 @end smallexample
147 Configure generates the Makefiles used to build OpenOCD.
148 @smallexample
149 make
150 @end smallexample
151 Make builds OpenOCD, and places the final executable in ./src/.
152
153 The configure script takes several options, specifying which JTAG interfaces
154 should be included:
155
156 @itemize @bullet
157 @item
158 @option{--enable-parport}
159 @item
160 @option{--enable-parport_ppdev}
161 @item
162 @option{--enable-parport_giveio}
163 @item
164 @option{--enable-amtjtagaccel}
165 @item
166 @option{--enable-ft2232_ftd2xx}
167 @footnote{Using the latest D2XX drivers from FTDI and following their installation
168 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
169 build properly.}
170 @item
171 @option{--enable-ft2232_libftdi}
172 @item
173 @option{--with-ftd2xx=/path/to/d2xx/}
174 @item
175 @option{--enable-gw16012}
176 @item
177 @option{--enable-usbprog}
178 @item
179 @option{--enable-presto_libftdi}
180 @item
181 @option{--enable-presto_ftd2xx}
182 @item
183 @option{--enable-jlink}
184 @end itemize
185
186 If you want to access the parallel port using the PPDEV interface you have to specify
187 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
188 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
189 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
190
191 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
192 absolute path containing no spaces.
193
194 Linux users should copy the various parts of the D2XX package to the appropriate
195 locations, i.e. /usr/include, /usr/lib.
196
197 Miscellaneous configure options
198
199 @itemize @bullet
200 @item
201 @option{--enable-gccwarnings} - enable extra gcc warnings during build
202 @end itemize
203
204 @node Running
205 @chapter Running
206 @cindex running OpenOCD
207 @cindex --configfile
208 @cindex --debug_level
209 @cindex --logfile
210 @cindex --search
211 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
212 Run with @option{--help} or @option{-h} to view the available command line switches.
213
214 It reads its configuration by default from the file openocd.cfg located in the current
215 working directory. This may be overwritten with the @option{-f <configfile>} command line
216 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
217 are executed in order.
218
219 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
220
221 To enable debug output (when reporting problems or working on OpenOCD itself), use
222 the @option{-d} command line switch. This sets the debug_level to "3", outputting
223 the most information, including debug messages. The default setting is "2", outputting
224 only informational messages, warnings and errors. You can also change this setting
225 from within a telnet or gdb session (@option{debug_level <n>}).
226
227 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
228
229 Search paths for config/script files can be added to OpenOCD by using
230 the @option{-s <search>} switch. The current directory and the OpenOCD target library
231 is in the search path by default.
232
233 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
234 with the target. In general, it is possible for the JTAG controller to be unresponsive until
235 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
236
237 @node Configuration
238 @chapter Configuration
239 @cindex configuration
240 OpenOCD runs as a daemon, and reads it current configuration
241 by default from the file openocd.cfg in the current directory. A different configuration
242 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
243
244 The configuration file is used to specify on which ports the daemon listens for new
245 connections, the JTAG interface used to connect to the target, the layout of the JTAG
246 chain, the targets that should be debugged, and connected flashes.
247
248 @section Daemon configuration
249
250 @itemize @bullet
251 @item @b{init} This command terminates the configuration stage and enters the normal
252 command mode. This can be useful to add commands to the startup scripts and commands
253 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
254 add "init" and "reset" at the end of the config script or at the end of the
255 OpenOCD command line using the @option{-c} command line switch.
256 @cindex init
257 @item @b{telnet_port} <@var{number}>
258 @cindex telnet_port
259 Port on which to listen for incoming telnet connections
260 @item @b{gdb_port} <@var{number}>
261 @cindex gdb_port
262 First port on which to listen for incoming GDB connections. The GDB port for the
263 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
264 @item @b{gdb_breakpoint_override} <@var{hard/soft/disabled}>
265 @cindex gdb_breakpoint_override
266 hard/soft/disabled - force breakpoint type for gdb 'break' commands.
267 The raison d'etre for this option is to support GDB GUI's without
268 a hard/soft breakpoint concept where the default OpenOCD and
269 GDB behaviour is not sufficient. Note that GDB will use hardware
270 breakpoints if the memory map has been set up for flash regions.
271
272 This option replaces older arm7_9 target commands that addressed
273 the same issue.
274 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
275 @cindex gdb_detach
276 Configures what OpenOCD will do when gdb detaches from the daeman.
277 Default behaviour is <@var{resume}>
278 @item @b{gdb_memory_map} <@var{enable|disable}>
279 @cindex gdb_memory_map
280 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
281 requested. gdb will then know when to set hardware breakpoints, and program flash
282 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
283 for flash programming to work.
284 Default behaviour is <@var{enable}>
285 @item @b{gdb_flash_program} <@var{enable|disable}>
286 @cindex gdb_flash_program
287 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
288 vFlash packet is received.
289 Default behaviour is <@var{enable}>
290 at item @b{tcl_port} <@var{number}>
291 at cindex tcl_port
292 Port on which to listen for incoming TCL syntax. This port is intended as
293 a simplified RPC connection that can be used by clients to issue commands
294 and get the output from the TCL engine.
295 @end itemize
296
297 @section JTAG interface configuration
298
299 @itemize @bullet
300 @item @b{interface} <@var{name}>
301 @cindex interface
302 Use the interface driver <@var{name}> to connect to the target. Currently supported
303 interfaces are
304 @itemize @minus
305 @item @b{parport}
306 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
307 @end itemize
308 @itemize @minus
309 @item @b{amt_jtagaccel}
310 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
311 mode parallel port
312 @end itemize
313 @itemize @minus
314 @item @b{ft2232}
315 FTDI FT2232 based devices using either the open-source libftdi or the binary only
316 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
317 platform. The libftdi uses libusb, and should be portable to all systems that provide
318 libusb.
319 @end itemize
320 @itemize @minus
321 @item @b{ep93xx}
322 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
323 @end itemize
324 @itemize @minus
325 @item @b{presto}
326 ASIX PRESTO USB JTAG programmer.
327 @end itemize
328 @itemize @minus
329 @item @b{usbprog}
330 usbprog is a freely programmable USB adapter.
331 @end itemize
332 @itemize @minus
333 @item @b{gw16012}
334 Gateworks GW16012 JTAG programmer.
335 @end itemize
336 @itemize @minus
337 @item @b{jlink}
338 Segger jlink usb adapter
339 @end itemize
340 @end itemize
341
342 @itemize @bullet
343 @item @b{jtag_speed} <@var{reset speed}>
344 @cindex jtag_speed
345 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
346 speed. The actual effect of this option depends on the JTAG interface used.
347
348 The speed used during reset can be adjusted using setting jtag_speed during
349 pre_reset and post_reset events.
350 @itemize @minus
351
352 @item wiggler: maximum speed / @var{number}
353 @item ft2232: 6MHz / (@var{number}+1)
354 @item amt jtagaccel: 8 / 2**@var{number}
355 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
356 @end itemize
357
358 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
359 especially true for synthesized cores (-S).
360
361 @item @b{jtag_khz} <@var{reset speed kHz}>
362 @cindex jtag_khz
363 Same as jtag_speed, except that the speed is specified in maximum kHz. If
364 the device can not support the rate asked for, or can not translate from
365 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
366 is not supported, then an error is reported.
367
368 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
369 @cindex reset_config
370 The configuration of the reset signals available on the JTAG interface AND the target.
371 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
372 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
373 @option{srst_only} or @option{trst_and_srst}.
374
375 [@var{combination}] is an optional value specifying broken reset signal implementations.
376 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
377 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
378 that the system is reset together with the test logic (only hypothetical, I haven't
379 seen hardware with such a bug, and can be worked around).
380 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
381 The default behaviour if no option given is @option{separate}.
382
383 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
384 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
385 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
386 (default) and @option{srst_push_pull} for the system reset. These values only affect
387 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
388
389 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
390 @cindex jtag_device
391 Describes the devices that form the JTAG daisy chain, with the first device being
392 the one closest to TDO. The parameters are the length of the instruction register
393 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
394 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
395 The IDCODE instruction will in future be used to query devices for their JTAG
396 identification code. This line is the same for all ARM7 and ARM9 devices.
397 Other devices, like CPLDs, require different parameters. An example configuration
398 line for a Xilinx XC9500 CPLD would look like this:
399 @smallexample
400 jtag_device 8 0x01 0x0e3 0xfe
401 @end smallexample
402 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
403 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
404 The IDCODE instruction is 0xfe.
405
406 @item @b{jtag_nsrst_delay} <@var{ms}>
407 @cindex jtag_nsrst_delay
408 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
409 starting new JTAG operations.
410 @item @b{jtag_ntrst_delay} <@var{ms}>
411 @cindex jtag_ntrst_delay
412 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
413 starting new JTAG operations.
414
415 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
416 or on-chip features) keep a reset line asserted for some time after the external reset
417 got deasserted.
418 @end itemize
419
420 @section parport options
421
422 @itemize @bullet
423 @item @b{parport_port} <@var{number}>
424 @cindex parport_port
425 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
426 the @file{/dev/parport} device
427
428 When using PPDEV to access the parallel port, use the number of the parallel port:
429 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
430 you may encounter a problem.
431 @item @b{parport_cable} <@var{name}>
432 @cindex parport_cable
433 The layout of the parallel port cable used to connect to the target.
434 Currently supported cables are
435 @itemize @minus
436 @item @b{wiggler}
437 @cindex wiggler
438 The original Wiggler layout, also supported by several clones, such
439 as the Olimex ARM-JTAG
440 @item @b{wiggler2}
441 @cindex wiggler2
442 Same as original wiggler except an led is fitted on D5.
443 @item @b{wiggler_ntrst_inverted}
444 @cindex wiggler_ntrst_inverted
445 Same as original wiggler except TRST is inverted.
446 @item @b{old_amt_wiggler}
447 @cindex old_amt_wiggler
448 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
449 version available from the website uses the original Wiggler layout ('@var{wiggler}')
450 @item @b{chameleon}
451 @cindex chameleon
452 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
453 program the Chameleon itself, not a connected target.
454 @item @b{dlc5}
455 @cindex dlc5
456 The Xilinx Parallel cable III.
457 @item @b{triton}
458 @cindex triton
459 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
460 This is also the layout used by the HollyGates design
461 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
462 @item @b{flashlink}
463 @cindex flashlink
464 The ST Parallel cable.
465 @item @b{arm-jtag}
466 @cindex arm-jtag
467 Same as original wiggler except SRST and TRST connections reversed and
468 TRST is also inverted.
469 @item @b{altium}
470 @cindex altium
471 Altium Universal JTAG cable.
472 @end itemize
473 @item @b{parport_write_on_exit} <@var{on|off}>
474 @cindex parport_write_on_exit
475 This will configure the parallel driver to write a known value to the parallel
476 interface on exiting OpenOCD
477 @end itemize
478
479 @section amt_jtagaccel options
480 @itemize @bullet
481 @item @b{parport_port} <@var{number}>
482 @cindex parport_port
483 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
484 @file{/dev/parport} device
485 @end itemize
486 @section ft2232 options
487
488 @itemize @bullet
489 @item @b{ft2232_device_desc} <@var{description}>
490 @cindex ft2232_device_desc
491 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
492 default value is used. This setting is only valid if compiled with FTD2XX support.
493 @item @b{ft2232_layout} <@var{name}>
494 @cindex ft2232_layout
495 The layout of the FT2232 GPIO signals used to control output-enables and reset
496 signals. Valid layouts are
497 @itemize @minus
498 @item @b{usbjtag}
499 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
500 @item @b{jtagkey}
501 Amontec JTAGkey and JTAGkey-tiny
502 @item @b{signalyzer}
503 Signalyzer
504 @item @b{olimex-jtag}
505 Olimex ARM-USB-OCD
506 @item @b{m5960}
507 American Microsystems M5960
508 @item @b{evb_lm3s811}
509 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
510 SRST signals on external connector
511 @item @b{comstick}
512 Hitex STR9 comstick
513 @item @b{stm32stick}
514 Hitex STM32 Performance Stick
515 @item @b{flyswatter}
516 Tin Can Tools Flyswatter
517 @item @b{turtelizer2}
518 egnite Software turtelizer2
519 @item @b{oocdlink}
520 OOCDLink
521 @end itemize
522
523 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
524 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
525 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
526 @smallexample
527 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
528 @end smallexample
529 @item @b{ft2232_latency} <@var{ms}>
530 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
531 ft2232_read() fails to return the expected number of bytes. This can be caused by
532 USB communication delays and has proved hard to reproduce and debug. Setting the
533 FT2232 latency timer to a larger value increases delays for short USB packages but it
534 also reduces the risk of timeouts before receiving the expected number of bytes.
535 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
536 @end itemize
537
538 @section ep93xx options
539 @cindex ep93xx options
540 Currently, there are no options available for the ep93xx interface.
541
542 @page
543 @section Target configuration
544
545 @itemize @bullet
546 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
547 <@var{variant}>
548 @cindex target
549 Defines a target that should be debugged. Currently supported types are:
550 @itemize @minus
551 @item @b{arm7tdmi}
552 @item @b{arm720t}
553 @item @b{arm9tdmi}
554 @item @b{arm920t}
555 @item @b{arm922t}
556 @item @b{arm926ejs}
557 @item @b{arm966e}
558 @item @b{cortex_m3}
559 @item @b{feroceon}
560 @item @b{xscale}
561 @end itemize
562
563 If you want to use a target board that is not on this list, see Adding a new
564 target board
565
566 Endianess may be @option{little} or @option{big}.
567
568 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
569 @cindex target_script
570 Event is one of the following:
571 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
572 @option{pre_resume} or @option{gdb_program_config}.
573 @option{post_reset} and @option{reset} will produce the same results.
574
575 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
576 <@var{backup}|@var{nobackup}>
577 @cindex working_area
578 Specifies a working area for the debugger to use. This may be used to speed-up
579 downloads to target memory and flash operations, or to perform otherwise unavailable
580 operations (some coprocessor operations on ARM7/9 systems, for example). The last
581 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
582 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
583 @end itemize
584
585 @subsection arm7tdmi options
586 @cindex arm7tdmi options
587 target arm7tdmi <@var{endianess}> <@var{jtag#}>
588 The arm7tdmi target definition requires at least one additional argument, specifying
589 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
590 The optional [@var{variant}] parameter has been removed in recent versions.
591 The correct feature set is determined at runtime.
592
593 @subsection arm720t options
594 @cindex arm720t options
595 ARM720t options are similar to ARM7TDMI options.
596
597 @subsection arm9tdmi options
598 @cindex arm9tdmi options
599 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
600 @option{arm920t}, @option{arm922t} and @option{arm940t}.
601 This enables the hardware single-stepping support found on these cores.
602
603 @subsection arm920t options
604 @cindex arm920t options
605 ARM920t options are similar to ARM9TDMI options.
606
607 @subsection arm966e options
608 @cindex arm966e options
609 ARM966e options are similar to ARM9TDMI options.
610
611 @subsection cortex_m3 options
612 @cindex cortex_m3 options
613 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
614 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
615 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
616 be detected and the normal reset behaviour used.
617
618 @subsection xscale options
619 @cindex xscale options
620 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
621 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
622
623 @section Flash configuration
624 @cindex Flash configuration
625
626 @itemize @bullet
627 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
628 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
629 @cindex flash bank
630 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
631 and <@var{bus_width}> bytes using the selected flash <driver>.
632 @end itemize
633
634 @subsection lpc2000 options
635 @cindex lpc2000 options
636
637 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
638 <@var{clock}> [@var{calc_checksum}]
639 LPC flashes don't require the chip and bus width to be specified. Additional
640 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
641 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
642 of the target this flash belongs to (first is 0), the frequency at which the core
643 is currently running (in kHz - must be an integral number), and the optional keyword
644 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
645 vector table.
646
647 @subsection cfi options
648 @cindex cfi options
649
650 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
651 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
652 CFI flashes require the number of the target they're connected to as an additional
653 argument. The CFI driver makes use of a working area (specified for the target)
654 to significantly speed up operation.
655
656 @var{chip_width} and @var{bus_width} are specified in bytes.
657
658 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
659
660 @var{x16_as_x8} ???
661
662 @subsection at91sam7 options
663 @cindex at91sam7 options
664
665 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
666 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
667 reading the chip-id and type.
668
669 @subsection str7 options
670 @cindex str7 options
671
672 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
673 variant can be either STR71x, STR73x or STR75x.
674
675 @subsection str9 options
676 @cindex str9 options
677
678 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
679 The str9 needs the flash controller to be configured prior to Flash programming, eg.
680 @smallexample
681 str9x flash_config 0 4 2 0 0x80000
682 @end smallexample
683 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
684
685 @subsection str9 options (str9xpec driver)
686
687 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
688 Before using the flash commands the turbo mode will need enabling using str9xpec
689 @option{enable_turbo} <@var{num>.}
690
691 Only use this driver for locking/unlocking the device or configuring the option bytes.
692 Use the standard str9 driver for programming.
693
694 @subsection stellaris (LM3Sxxx) options
695 @cindex stellaris (LM3Sxxx) options
696
697 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
698 stellaris flash plugin only require the @var{target#}.
699
700 @subsection stm32x options
701 @cindex stm32x options
702
703 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
704 stm32x flash plugin only require the @var{target#}.
705
706 @subsection aduc702x options
707 @cindex aduc702x options
708
709 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
710 aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
711
712 @node Target library
713 @chapter Target library
714 @cindex Target library
715
716 OpenOCD comes with a target configuration script library. These scripts can be
717 used as-is or serve as a starting point.
718
719 The target library is published together with the openocd executable and
720 the path to the target library is in the OpenOCD script search path.
721 Similarly there are example scripts for configuring the JTAG interface.
722
723 The command line below uses the example parport configuration scripts
724 that ship with OpenOCD, then configures the str710.cfg target and
725 finally issues the init and reset command. The communication speed
726 is set to 10kHz for reset and 8MHz for post reset.
727
728
729 @smallexample
730 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
731 @end smallexample
732
733
734 To list the target scripts available:
735
736 @smallexample
737 $ ls /usr/local/lib/openocd/target
738
739 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
740 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
741 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
742 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
743 @end smallexample
744
745
746 @node Commands
747 @chapter Commands
748 @cindex commands
749
750 OpenOCD allows user interaction through a GDB server (default: port 3333),
751 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
752 is available from both the telnet interface and a GDB session. To issue commands to the
753 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
754 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
755 GDB session.
756
757 The TCL interface is used as a simplified RPC mechanism that feeds all the
758 input into the TCL interpreter and returns the output from the evaluation of
759 the commands.
760
761 @section Daemon
762
763 @itemize @bullet
764 @item @b{sleep} <@var{msec}>
765 @cindex sleep
766 Wait for n milliseconds before resuming. Useful in connection with script files
767 (@var{script} command and @var{target_script} configuration).
768
769 @item @b{shutdown}
770 @cindex shutdown
771 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
772
773 @item @b{debug_level} [@var{n}]
774 @cindex debug_level
775 Display or adjust debug level to n<0-3>
776
777 @item @b{fast} [@var{enable/disable}]
778 @cindex fast
779 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
780 downloads and fast memory access will work if the JTAG interface isn't too fast and
781 the core doesn't run at a too low frequency. Note that this option only changes the default
782 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
783 individually.
784
785 The target specific "dangerous" optimisation tweaking options may come and go
786 as more robust and user friendly ways are found to ensure maximum throughput
787 and robustness with a minimum of configuration.
788
789 Typically the "fast enable" is specified first on the command line:
790
791 @smallexample
792 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
793 @end smallexample
794
795 @item @b{log_output} <@var{file}>
796 @cindex log_output
797 Redirect logging to <file> (default: stderr)
798
799 @item @b{script} <@var{file}>
800 @cindex script
801 Execute commands from <file>
802
803 @end itemize
804
805 @subsection Target state handling
806 @itemize @bullet
807 @item @b{poll} [@option{on}|@option{off}]
808 @cindex poll
809 Poll the target for its current state. If the target is in debug mode, architecture
810 specific information about the current state is printed. An optional parameter
811 allows continuous polling to be enabled and disabled.
812
813 @item @b{halt} [@option{ms}]
814 @cindex halt
815 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
816 Default [@option{ms}] is 5 seconds if no arg given.
817 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
818 will stop OpenOCD from waiting.
819
820 @item @b{wait_halt} [@option{ms}]
821 @cindex wait_halt
822 Wait for the target to enter debug mode. Optional [@option{ms}] is
823 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
824 arg given.
825
826 @item @b{resume} [@var{address}]
827 @cindex resume
828 Resume the target at its current code position, or at an optional address.
829 OpenOCD will wait 5 seconds for the target to resume.
830
831 @item @b{step} [@var{address}]
832 @cindex step
833 Single-step the target at its current code position, or at an optional address.
834
835 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
836 @cindex reset
837 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
838
839 With no arguments a "reset run" is executed
840 @itemize @minus
841 @item @b{run}
842 @cindex reset run
843 Let the target run.
844 @item @b{halt}
845 @cindex reset halt
846 Immediately halt the target (works only with certain configurations).
847 @item @b{init}
848 @cindex reset init
849 Immediately halt the target, and execute the reset script (works only with certain
850 configurations)
851 @end itemize
852 @end itemize
853
854 @subsection Memory access commands
855 These commands allow accesses of a specific size to the memory system:
856 @itemize @bullet
857 @item @b{mdw} <@var{addr}> [@var{count}]
858 @cindex mdw
859 display memory words
860 @item @b{mdh} <@var{addr}> [@var{count}]
861 @cindex mdh
862 display memory half-words
863 @item @b{mdb} <@var{addr}> [@var{count}]
864 @cindex mdb
865 display memory bytes
866 @item @b{mww} <@var{addr}> <@var{value}>
867 @cindex mww
868 write memory word
869 @item @b{mwh} <@var{addr}> <@var{value}>
870 @cindex mwh
871 write memory half-word
872 @item @b{mwb} <@var{addr}> <@var{value}>
873 @cindex mwb
874 write memory byte
875
876 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
877 @cindex load_image
878 Load image <@var{file}> to target memory at <@var{address}>
879 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
880 @cindex dump_image
881 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
882 (binary) <@var{file}>.
883 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
884 @cindex verify_image
885 Verify <@var{file}> against target memory starting at <@var{address}>.
886 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
887 @end itemize
888
889 @subsection Flash commands
890 @cindex Flash commands
891 @itemize @bullet
892 @item @b{flash banks}
893 @cindex flash banks
894 List configured flash banks
895 @item @b{flash info} <@var{num}>
896 @cindex flash info
897 Print info about flash bank <@option{num}>
898 @item @b{flash probe} <@var{num}>
899 @cindex flash probe
900 Identify the flash, or validate the parameters of the configured flash. Operation
901 depends on the flash type.
902 @item @b{flash erase_check} <@var{num}>
903 @cindex flash erase_check
904 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
905 updates the erase state information displayed by @option{flash info}. That means you have
906 to issue an @option{erase_check} command after erasing or programming the device to get
907 updated information.
908 @item @b{flash protect_check} <@var{num}>
909 @cindex flash protect_check
910 Check protection state of sectors in flash bank <num>.
911 @option{flash erase_sector} using the same syntax.
912 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
913 @cindex flash erase_sector
914 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
915 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
916 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
917 the CFI driver).
918 @item @b{flash erase_address} <@var{address}> <@var{length}>
919 @cindex flash erase_address
920 Erase sectors starting at <@var{address}> for <@var{length}> bytes
921 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
922 @cindex flash write_bank
923 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
924 <@option{offset}> bytes from the beginning of the bank.
925 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
926 @cindex flash write_image
927 Write the image <@var{file}> to the current target's flash bank(s). A relocation
928 [@var{offset}] can be specified and the file [@var{type}] can be specified
929 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
930 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
931 if the @option{erase} parameter is given.
932 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
933 @cindex flash protect
934 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
935 <@var{last}> of @option{flash bank} <@var{num}>.
936 @end itemize
937
938 @page
939 @section Target Specific Commands
940 @cindex Target Specific Commands
941
942 @subsection AT91SAM7 specific commands
943 @cindex AT91SAM7 specific commands
944 The flash configuration is deduced from the chip identification register. The flash
945 controller handles erases automatically on a page (128/265 byte) basis so erase is
946 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
947 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
948 that can be erased separatly. Only an EraseAll command is supported by the controller
949 for each flash plane and this is called with
950 @itemize @bullet
951 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
952 bulk erase flash planes first_plane to last_plane.
953 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
954 @cindex at91sam7 gpnvm
955 set or clear a gpnvm bit for the processor
956 @end itemize
957
958 @subsection STR9 specific commands
959 @cindex STR9 specific commands
960 These are flash specific commands when using the str9xpec driver.
961 @itemize @bullet
962 @item @b{str9xpec enable_turbo} <@var{num}>
963 @cindex str9xpec enable_turbo
964 enable turbo mode, simply this will remove the str9 from the chain and talk
965 directly to the embedded flash controller.
966 @item @b{str9xpec disable_turbo} <@var{num}>
967 @cindex str9xpec disable_turbo
968 restore the str9 into jtag chain.
969 @item @b{str9xpec lock} <@var{num}>
970 @cindex str9xpec lock
971 lock str9 device. The str9 will only respond to an unlock command that will
972 erase the device.
973 @item @b{str9xpec unlock} <@var{num}>
974 @cindex str9xpec unlock
975 unlock str9 device.
976 @item @b{str9xpec options_read} <@var{num}>
977 @cindex str9xpec options_read
978 read str9 option bytes.
979 @item @b{str9xpec options_write} <@var{num}>
980 @cindex str9xpec options_write
981 write str9 option bytes.
982 @end itemize
983
984 @subsection STR9 configuration
985 @cindex STR9 configuration
986 @itemize @bullet
987 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
988 <@var{BBADR}> <@var{NBBADR}>
989 @cindex str9x flash_config
990 Configure str9 flash controller.
991 @smallexample
992 eg. str9x flash_config 0 4 2 0 0x80000
993 This will setup
994 BBSR - Boot Bank Size register
995 NBBSR - Non Boot Bank Size register
996 BBADR - Boot Bank Start Address register
997 NBBADR - Boot Bank Start Address register
998 @end smallexample
999 @end itemize
1000
1001 @subsection STR9 option byte configuration
1002 @cindex STR9 option byte configuration
1003 @itemize @bullet
1004 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
1005 @cindex str9xpec options_cmap
1006 configure str9 boot bank.
1007 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1008 @cindex str9xpec options_lvdthd
1009 configure str9 lvd threshold.
1010 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1011 @cindex str9xpec options_lvdsel
1012 configure str9 lvd source.
1013 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1014 @cindex str9xpec options_lvdwarn
1015 configure str9 lvd reset warning source.
1016 @end itemize
1017
1018 @subsection STM32x specific commands
1019 @cindex STM32x specific commands
1020
1021 These are flash specific commands when using the stm32x driver.
1022 @itemize @bullet
1023 @item @b{stm32x lock} <@var{num}>
1024 @cindex stm32x lock
1025 lock stm32 device.
1026 @item @b{stm32x unlock} <@var{num}>
1027 @cindex stm32x unlock
1028 unlock stm32 device.
1029 @item @b{stm32x options_read} <@var{num}>
1030 @cindex stm32x options_read
1031 read stm32 option bytes.
1032 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1033 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1034 @cindex stm32x options_write
1035 write stm32 option bytes.
1036 @item @b{stm32x mass_erase} <@var{num}>
1037 @cindex stm32x mass_erase
1038 mass erase flash memory.
1039 @end itemize
1040
1041 @subsection Stellaris specific commands
1042 @cindex Stellaris specific commands
1043
1044 These are flash specific commands when using the Stellaris driver.
1045 @itemize @bullet
1046 @item @b{stellaris mass_erase} <@var{num}>
1047 @cindex stellaris mass_erase
1048 mass erase flash memory.
1049 @end itemize
1050
1051 @page
1052 @section Architecture Specific Commands
1053 @cindex Architecture Specific Commands
1054
1055 @subsection ARMV4/5 specific commands
1056 @cindex ARMV4/5 specific commands
1057
1058 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1059 or Intel XScale (XScale isn't supported yet).
1060 @itemize @bullet
1061 @item @b{armv4_5 reg}
1062 @cindex armv4_5 reg
1063 Display a list of all banked core registers, fetching the current value from every
1064 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1065 register value.
1066 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1067 @cindex armv4_5 core_mode
1068 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1069 The target is resumed in the currently set @option{core_mode}.
1070 @end itemize
1071
1072 @subsection ARM7/9 specific commands
1073 @cindex ARM7/9 specific commands
1074
1075 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1076 ARM920t or ARM926EJ-S.
1077 @itemize @bullet
1078 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1079 @cindex arm7_9 dbgrq
1080 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1081 safe for all but ARM7TDMI--S cores (like Philips LPC).
1082 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1083 @cindex arm7_9 fast_memory_access
1084 Allow OpenOCD to read and write memory without checking completion of
1085 the operation. This provides a huge speed increase, especially with USB JTAG
1086 cables (FT2232), but might be unsafe if used with targets running at a very low
1087 speed, like the 32kHz startup clock of an AT91RM9200.
1088 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1089 @cindex arm7_9 dcc_downloads
1090 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1091 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1092 unsafe, especially with targets running at a very low speed. This command was introduced
1093 with OpenOCD rev. 60.
1094 @end itemize
1095
1096 @subsection ARM720T specific commands
1097 @cindex ARM720T specific commands
1098
1099 @itemize @bullet
1100 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1101 @cindex arm720t cp15
1102 display/modify cp15 register <@option{num}> [@option{value}].
1103 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1104 @cindex arm720t md<bhw>_phys
1105 Display memory at physical address addr.
1106 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1107 @cindex arm720t mw<bhw>_phys
1108 Write memory at physical address addr.
1109 @item @b{arm720t virt2phys} <@var{va}>
1110 @cindex arm720t virt2phys
1111 Translate a virtual address to a physical address.
1112 @end itemize
1113
1114 @subsection ARM9TDMI specific commands
1115 @cindex ARM9TDMI specific commands
1116
1117 @itemize @bullet
1118 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1119 @cindex arm9tdmi vector_catch
1120 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1121 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1122 @option{irq} @option{fiq}.
1123
1124 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1125 @end itemize
1126
1127 @subsection ARM966E specific commands
1128 @cindex ARM966E specific commands
1129
1130 @itemize @bullet
1131 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1132 @cindex arm966e cp15
1133 display/modify cp15 register <@option{num}> [@option{value}].
1134 @end itemize
1135
1136 @subsection ARM920T specific commands
1137 @cindex ARM920T specific commands
1138
1139 @itemize @bullet
1140 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1141 @cindex arm920t cp15
1142 display/modify cp15 register <@option{num}> [@option{value}].
1143 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1144 @cindex arm920t cp15i
1145 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1146 @item @b{arm920t cache_info}
1147 @cindex arm920t cache_info
1148 Print information about the caches found. This allows you to see if your target
1149 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1150 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1151 @cindex arm920t md<bhw>_phys
1152 Display memory at physical address addr.
1153 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1154 @cindex arm920t mw<bhw>_phys
1155 Write memory at physical address addr.
1156 @item @b{arm920t read_cache} <@var{filename}>
1157 @cindex arm920t read_cache
1158 Dump the content of ICache and DCache to a file.
1159 @item @b{arm920t read_mmu} <@var{filename}>
1160 @cindex arm920t read_mmu
1161 Dump the content of the ITLB and DTLB to a file.
1162 @item @b{arm920t virt2phys} <@var{va}>
1163 @cindex arm920t virt2phys
1164 Translate a virtual address to a physical address.
1165 @end itemize
1166
1167 @subsection ARM926EJS specific commands
1168 @cindex ARM926EJS specific commands
1169
1170 @itemize @bullet
1171 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1172 @cindex arm926ejs cp15
1173 display/modify cp15 register <@option{num}> [@option{value}].
1174 @item @b{arm926ejs cache_info}
1175 @cindex arm926ejs cache_info
1176 Print information about the caches found.
1177 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1178 @cindex arm926ejs md<bhw>_phys
1179 Display memory at physical address addr.
1180 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1181 @cindex arm926ejs mw<bhw>_phys
1182 Write memory at physical address addr.
1183 @item @b{arm926ejs virt2phys} <@var{va}>
1184 @cindex arm926ejs virt2phys
1185 Translate a virtual address to a physical address.
1186 @end itemize
1187
1188 @page
1189 @section Debug commands
1190 @cindex Debug commands
1191 The following commands give direct access to the core, and are most likely
1192 only useful while debugging OpenOCD.
1193 @itemize @bullet
1194 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1195 @cindex arm7_9 write_xpsr
1196 Immediately write either the current program status register (CPSR) or the saved
1197 program status register (SPSR), without changing the register cache (as displayed
1198 by the @option{reg} and @option{armv4_5 reg} commands).
1199 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1200 <@var{0=cpsr},@var{1=spsr}>
1201 @cindex arm7_9 write_xpsr_im8
1202 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1203 operation (similar to @option{write_xpsr}).
1204 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1205 @cindex arm7_9 write_core_reg
1206 Write a core register, without changing the register cache (as displayed by the
1207 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1208 encoding of the [M4:M0] bits of the PSR.
1209 @end itemize
1210
1211 @page
1212 @section JTAG commands
1213 @cindex JTAG commands
1214 @itemize @bullet
1215 @item @b{scan_chain}
1216 @cindex scan_chain
1217 Print current scan chain configuration.
1218 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1219 @cindex jtag_reset
1220 Toggle reset lines.
1221 @item @b{endstate} <@var{tap_state}>
1222 @cindex endstate
1223 Finish JTAG operations in <@var{tap_state}>.
1224 @item @b{runtest} <@var{num_cycles}>
1225 @cindex runtest
1226 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1227 @item @b{statemove} [@var{tap_state}]
1228 @cindex statemove
1229 Move to current endstate or [@var{tap_state}]
1230 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1231 @cindex irscan
1232 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1233 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1234 @cindex drscan
1235 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1236 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1237 @cindex verify_ircapture
1238 Verify value captured during Capture-IR. Default is enabled.
1239 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1240 @cindex var
1241 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1242 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1243 @cindex field
1244 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1245 @end itemize
1246
1247 @page
1248 @section Target Requests
1249 @cindex Target Requests
1250 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1251 See libdcc in the contrib dir for more details.
1252 @itemize @bullet
1253 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1254 @cindex target_request debugmsgs
1255 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1256 @end itemize
1257
1258 @node Sample Scripts
1259 @chapter Sample Scripts
1260 @cindex scripts
1261
1262 This page shows how to use the target library.
1263
1264 The configuration script can be divided in the following section:
1265 @itemize @bullet
1266 @item daemon configuration
1267 @item interface
1268 @item jtag scan chain
1269 @item target configuration
1270 @item flash configuration
1271 @end itemize
1272
1273 Detailed information about each section can be found at OpenOCD configuration.
1274
1275 @section AT91R40008 example
1276 @cindex AT91R40008 example
1277 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1278 the CPU upon startup of the OpenOCD daemon.
1279 @smallexample
1280 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1281 @end smallexample
1282
1283
1284 @node GDB and OpenOCD
1285 @chapter GDB and OpenOCD
1286 @cindex GDB and OpenOCD
1287 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1288 to debug remote targets.
1289
1290 @section Connecting to gdb
1291 @cindex Connecting to gdb
1292 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance 6.3 has a
1293 known bug where it produces bogus memory access errors, which has since
1294 been fixed: look up 1836 in http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb
1295
1296
1297 A connection is typically started as follows:
1298 @smallexample
1299 target remote localhost:3333
1300 @end smallexample
1301 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1302
1303 To see a list of available OpenOCD commands type @option{monitor help} on the
1304 gdb commandline.
1305
1306 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1307 to be sent by the gdb server (openocd) to gdb. Typical information includes
1308 packet size and device memory map.
1309
1310 Previous versions of OpenOCD required the following gdb options to increase
1311 the packet size and speed up gdb communication.
1312 @smallexample
1313 set remote memory-write-packet-size 1024
1314 set remote memory-write-packet-size fixed
1315 set remote memory-read-packet-size 1024
1316 set remote memory-read-packet-size fixed
1317 @end smallexample
1318 This is now handled in the @option{qSupported} PacketSize.
1319
1320 @section Programming using gdb
1321 @cindex Programming using gdb
1322
1323 By default the target memory map is sent to gdb, this can be disabled by
1324 the following OpenOCD config option:
1325 @smallexample
1326 gdb_memory_map disable
1327 @end smallexample
1328 For this to function correctly a valid flash config must also be configured
1329 in OpenOCD. For faster performance you should also configure a valid
1330 working area.
1331
1332 Informing gdb of the memory map of the target will enable gdb to protect any
1333 flash area of the target and use hardware breakpoints by default. This means
1334 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1335 using a memory map.
1336
1337 To view the configured memory map in gdb, use the gdb command @option{info mem}
1338 All other unasigned addresses within gdb are treated as RAM.
1339
1340 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1341 this can be changed to the old behaviour by using the following gdb command.
1342 @smallexample
1343 set mem inaccessible-by-default off
1344 @end smallexample
1345
1346 If @option{gdb_flash_program enable} is also used, gdb will be able to
1347 program any flash memory using the vFlash interface.
1348
1349 gdb will look at the target memory map when a load command is given, if any
1350 areas to be programmed lie within the target flash area the vFlash packets
1351 will be used.
1352
1353 If the target needs configuring before gdb programming, a script can be executed.
1354 @smallexample
1355 target_script 0 gdb_program_config config.script
1356 @end smallexample
1357
1358 To verify any flash programming the gdb command @option{compare-sections}
1359 can be used.
1360
1361 @node TCL and OpenOCD
1362 @chapter TCL and OpenOCD
1363 @cindex TCL and OpenOCD
1364 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1365 support.
1366
1367 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1368
1369 The command and file interfaces are fairly straightforward, while the network
1370 port is geared toward intergration with external clients. A small example
1371 of an external TCL script that can connect to openocd is shown below.
1372
1373 @verbatim
1374 # Simple tcl client to connect to openocd
1375 puts "Use empty line to exit"
1376 set fo [socket 127.0.0.1 6666]
1377 puts -nonewline stdout "> "
1378 flush stdout
1379 while {[gets stdin line] >= 0} {
1380 if {$line eq {}} break
1381 puts $fo $line
1382 flush $fo
1383 gets $fo line
1384 puts $line
1385 puts -nonewline stdout "> "
1386 flush stdout
1387 }
1388 close $fo
1389 @end verbatim
1390
1391 This script can easily be modified to front various GUIs or be a sub
1392 component of a larger framework for control and interaction.
1393
1394
1395 @node TCL scripting API
1396 @chapter TCL scripting API
1397 @cindex TCL scripting API
1398 API rules
1399
1400 The commands are stateless. E.g. the telnet command line has a concept
1401 of currently active target, the Tcl API proc's take this sort of state
1402 information as an argument to each proc.
1403
1404 There are three main types of return values: single value, name value
1405 pair list and lists.
1406
1407 Name value pair. The proc 'foo' below returns a name/value pair
1408 list.
1409
1410 @verbatim
1411
1412 > set foo(me) Duane
1413 > set foo(you) Oyvind
1414 > set foo(mouse) Micky
1415 > set foo(duck) Donald
1416
1417 If one does this:
1418
1419 > set foo
1420
1421 The result is:
1422
1423 me Duane you Oyvind mouse Micky duck Donald
1424
1425 Thus, to get the names of the associative array is easy:
1426
1427 foreach { name value } [set foo] {
1428 puts "Name: $name, Value: $value"
1429 }
1430 @end verbatim
1431
1432 Lists returned must be relatively small. Otherwise a range
1433 should be passed in to the proc in question.
1434
1435 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1436 is the low level API upon which "flash banks" is implemented.
1437
1438 OpenOCD commands can consist of two words, e.g. "flash banks". The
1439 startup.tcl "unknown" proc will translate this into a tcl proc
1440 called "flash_banks".
1441
1442
1443 @node Upgrading
1444 @chapter Deprecated/Removed Commands
1445 @cindex Deprecated/Removed Commands
1446 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1447
1448 @itemize @bullet
1449 @item @b{load_binary}
1450 @cindex load_binary
1451 use @option{load_image} command with same args
1452 @item @b{target}
1453 @cindex target
1454 @option{target} no longer take the reset_init, reset_run, run_and_halt, run_and_init. The @option{reset} command
1455 always does a @option{reset run} when passed no arguments.
1456 @item @b{dump_binary}
1457 @cindex dump_binary
1458 use @option{dump_image} command with same args
1459 @item @b{flash erase}
1460 @cindex flash erase
1461 use @option{flash erase_sector} command with same args
1462 @item @b{flash write}
1463 @cindex flash write
1464 use @option{flash write_bank} command with same args
1465 @item @b{flash write_binary}
1466 @cindex flash write_binary
1467 use @option{flash write_bank} command with same args
1468 @item @b{arm7_9 fast_writes}
1469 @cindex arm7_9 fast_writes
1470 use @option{arm7_9 fast_memory_access} command with same args
1471 @item @b{flash auto_erase}
1472 @cindex flash auto_erase
1473 use @option{flash write_image} command passing @option{erase} as the first parameter.
1474 @item @b{daemon_startup}
1475 @cindex daemon_startup
1476 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1477 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1478 and @option{target cortex_m3 little reset_halt 0}.
1479 @item @b{arm7_9 sw_bkpts}
1480 @cindex arm7_9 sw_bkpts
1481 On by default. See also @option{gdb_breakpoint_override}.
1482 @item @b{arm7_9 force_hw_bkpts}
1483 @cindex arm7_9 force_hw_bkpts
1484 Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
1485 for flash if the gdb memory map has been set up(default when flash is declared in
1486 target configuration).
1487 @item @b{run_and_halt_time}
1488 @cindex run_and_halt_time
1489 This command has been removed for simpler reset behaviour, it can be simulated with the
1490 following commands:
1491 @smallexample
1492 reset run
1493 sleep 100
1494 halt
1495 @end smallexample
1496 @end itemize
1497
1498 @node FAQ
1499 @chapter FAQ
1500 @cindex faq
1501 @enumerate
1502 @item OpenOCD complains about a missing cygwin1.dll.
1503
1504 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1505 claims to come with all the necessary dlls. When using Cygwin, try launching
1506 OpenOCD from the Cygwin shell.
1507
1508 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1509 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1510 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1511
1512 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1513 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1514 software breakpoints consume one of the two available hardware breakpoints.
1515
1516 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1517 and works sometimes fine.
1518
1519 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1520 clock at the time you're programming the flash. If you've specified the crystal's
1521 frequency, make sure the PLL is disabled, if you've specified the full core speed
1522 (e.g. 60MHz), make sure the PLL is enabled.
1523
1524 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1525 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1526 out while waiting for end of scan, rtck was disabled".
1527
1528 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1529 settings in your PC BIOS (ECP, EPP, and different versions of those).
1530
1531 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1532 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1533 memory read caused data abort".
1534
1535 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1536 beyond the last valid frame. It might be possible to prevent this by setting up
1537 a proper "initial" stack frame, if you happen to know what exactly has to
1538 be done, feel free to add this here.
1539
1540 @item I get the following message in the OpenOCD console (or log file):
1541 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1542
1543 This warning doesn't indicate any serious problem, as long as you don't want to
1544 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1545 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1546 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1547 independently. With this setup, it's not possible to halt the core right out of
1548 reset, everything else should work fine.
1549
1550 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1551 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1552 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1553 quit with an error message. Is there a stability issue with OpenOCD?
1554
1555 No, this is not a stability issue concerning OpenOCD. Most users have solved
1556 this issue by simply using a self-powered USB hub, which they connect their
1557 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1558 supply stable enough for the Amontec JTAGkey to be operated.
1559
1560 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1561 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1562 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1563 What does that mean and what might be the reason for this?
1564
1565 First of all, the reason might be the USB power supply. Try using a self-powered
1566 hub instead of a direct connection to your computer. Secondly, the error code 4
1567 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1568 chip ran into some sort of error - this points us to a USB problem.
1569
1570 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1571 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1572 What does that mean and what might be the reason for this?
1573
1574 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1575 has closed the connection to OpenOCD. This might be a GDB issue.
1576
1577 @item In the configuration file in the section where flash device configurations
1578 are described, there is a parameter for specifying the clock frequency for
1579 LPC2000 internal flash devices (e.g.
1580 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1581 which must be specified in kilohertz. However, I do have a quartz crystal of a
1582 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1583 Is it possible to specify real numbers for the clock frequency?
1584
1585 No. The clock frequency specified here must be given as an integral number.
1586 However, this clock frequency is used by the In-Application-Programming (IAP)
1587 routines of the LPC2000 family only, which seems to be very tolerant concerning
1588 the given clock frequency, so a slight difference between the specified clock
1589 frequency and the actual clock frequency will not cause any trouble.
1590
1591 @item Do I have to keep a specific order for the commands in the configuration file?
1592
1593 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1594 listed for the JTAG scan chain must be given in the right order (jtag_device),
1595 with the device closest to the TDO-Pin being listed first. In general,
1596 whenever objects of the same type exist which require an index number, then
1597 these objects must be given in the right order (jtag_devices, targets and flash
1598 banks - a target references a jtag_device and a flash bank references a target).
1599
1600 @item Sometimes my debugging session terminates with an error. When I look into the
1601 log file, I can see these error messages: Error: arm7_9_common.c:561
1602 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1603
1604 TODO.
1605
1606 @end enumerate
1607
1608 @include fdl.texi
1609
1610 @node Index
1611 @unnumbered Index
1612
1613 @printindex cp
1614
1615 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)