Dirk Behme <dirk.behme@googlemail.com>
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 If you are interested in getting actual work done rather than building
131 OpenOCD, then check if your interface supplier provides binaries for
132 you. Chances are that that binary is from some SVN version that is more
133 stable than SVN trunk where bleeding edge development takes place.
134
135
136 You can download the current SVN version with SVN client of your choice from the
137 following repositories:
138
139 (@uref{svn://svn.berlios.de/openocd/trunk})
140
141 or
142
143 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
144
145 Using the SVN command line client, you can use the following command to fetch the
146 latest version (make sure there is no (non-svn) directory called "openocd" in the
147 current directory):
148
149 @example
150 svn checkout svn://svn.berlios.de/openocd/trunk openocd
151 @end example
152
153 Building OpenOCD requires a recent version of the GNU autotools.
154 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
155 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
156 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
157 paths, resulting in obscure dependency errors (This is an observation I've gathered
158 from the logs of one user - correct me if I'm wrong).
159
160 You further need the appropriate driver files, if you want to build support for
161 a FTDI FT2232 based interface:
162 @itemize @bullet
163 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
164 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
165 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
166 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
167 @end itemize
168
169 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
170 see contrib/libftdi for more details.
171
172 In general, the D2XX driver provides superior performance (several times as fast),
173 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
174 a kernel module, only a user space library.
175
176 To build OpenOCD (on both Linux and Cygwin), use the following commands:
177 @example
178 ./bootstrap
179 @end example
180 Bootstrap generates the configure script, and prepares building on your system.
181 @example
182 ./configure
183 @end example
184 Configure generates the Makefiles used to build OpenOCD.
185 @example
186 make
187 @end example
188 Make builds OpenOCD, and places the final executable in ./src/.
189
190 The configure script takes several options, specifying which JTAG interfaces
191 should be included:
192
193 @itemize @bullet
194 @item
195 @option{--enable-parport}
196 @item
197 @option{--enable-parport_ppdev}
198 @item
199 @option{--enable-parport_giveio}
200 @item
201 @option{--enable-amtjtagaccel}
202 @item
203 @option{--enable-ft2232_ftd2xx}
204 @footnote{Using the latest D2XX drivers from FTDI and following their installation
205 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
206 build properly.}
207 @item
208 @option{--enable-ft2232_libftdi}
209 @item
210 @option{--with-ftd2xx=/path/to/d2xx/}
211 @item
212 @option{--enable-gw16012}
213 @item
214 @option{--enable-usbprog}
215 @item
216 @option{--enable-presto_libftdi}
217 @item
218 @option{--enable-presto_ftd2xx}
219 @item
220 @option{--enable-jlink}
221 @item
222 @option{--enable-rlink}
223 @end itemize
224
225 If you want to access the parallel port using the PPDEV interface you have to specify
226 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
227 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
228 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
229
230 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
231 absolute path containing no spaces.
232
233 Linux users should copy the various parts of the D2XX package to the appropriate
234 locations, i.e. /usr/include, /usr/lib.
235
236 Miscellaneous configure options
237
238 @itemize @bullet
239 @item
240 @option{--enable-gccwarnings} - enable extra gcc warnings during build
241 @end itemize
242
243 @node JTAG Hardware Dongles
244 @chapter JTAG Hardware Dongles
245 @cindex dongles
246 @cindex ftdi
247 @cindex wiggler
248 @cindex zy1000
249 @cindex printer port
250 @cindex usb adapter
251 @cindex rtck
252
253 Defined: @b{dongle}: A small device that plugins into a computer and serves as
254 an adapter .... [snip]
255
256 In the OpenOCD case, this generally refers to @b{a small adapater} one
257 attaches to your computer via USB or the Parallel Printer Port. The
258 execption being the Zylin ZY1000 which is a small box you attach via
259 an ethernet cable.
260
261
262 @section Choosing a Dongle
263
264 There are three things you should keep in mind when choosing a dongle.
265
266 @enumerate
267 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
268 @item @b{Connection} Printer Ports - Does your computer have one?
269 @item @b{Connection} Is that long printer bit-bang cable practical?
270 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
271 @end enumerate
272
273 @section Stand alone Systems
274
275 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
276 dongle, but a standalone box.
277
278 @section USB FT2232 Based
279
280 There are many USB jtag dongles on the market, many of them are based
281 on a chip from ``Future Technology Devices International'' (FTDI)
282 known as the FTDI FT2232.
283
284 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
285
286 As of 28/Nov/2008, the following are supported:
287
288 @itemize @bullet
289 @item @b{usbjtag}
290 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
291 @item @b{jtagkey}
292 @* See: @url{http://www.amontec.com/jtagkey.shtml}
293 @item @b{oocdlink}
294 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
295 @item @b{signalyzer}
296 @* See: @url{http://www.signalyzer.com}
297 @item @b{evb_lm3s811}
298 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
299 @item @b{olimex-jtag}
300 @* See: @url{http://www.olimex.com}
301 @item @b{flyswatter}
302 @* See: @url{http://www.tincantools.com}
303 @item @b{turtelizer2}
304 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
305 @item @b{comstick}
306 @* Link: @url{http://www.hitex.com/index.php?id=383}
307 @item @b{stm32stick}
308 @* Link @url{http://www.hitex.com/stm32-stick}
309 @item @b{axm0432_jtag}
310 @* Axiom AXM-0432 Link @url{http://www.axman.com}
311 @end itemize
312
313 @section USB JLINK based
314 There are several OEM versions of the Segger @b{JLINK} adapter. It is
315 an example of a micro controller based JTAG adapter, it uses an
316 AT91SAM764 internally.
317
318 @itemize @bullet
319 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
320 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
321 @item @b{SEGGER JLINK}
322 @* Link: @url{http://www.segger.com/jlink.html}
323 @item @b{IAR J-Link}
324 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
325 @end itemize
326
327 @section USB RLINK based
328 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
329
330 @itemize @bullet
331 @item @b{Raisonance RLink}
332 @* Link: @url{http://www.raisonance.com/products/RLink.php}
333 @item @b{STM32 Primer}
334 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
335 @item @b{STM32 Primer2}
336 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
337 @end itemize
338
339 @section USB Other
340 @itemize @bullet
341 @item @b{USBprog}
342 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
343
344 @item @b{USB - Presto}
345 @* Link: @url{http://tools.asix.net/prg_presto.htm}
346 @end itemize
347
348 @section IBM PC Parallel Printer Port Based
349
350 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
351 and the MacGraigor Wiggler. There are many clones and variations of
352 these on the market.
353
354 @itemize @bullet
355
356 @item @b{Wiggler} - There are many clones of this.
357 @* Link: @url{http://www.macraigor.com/wiggler.htm}
358
359 @item @b{DLC5} - From XILINX - There are many clones of this
360 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
361 produced, PDF schematics are easily found and it is easy to make.
362
363 @item @b{Amontec - JTAG Accelerator}
364 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
365
366 @item @b{GW16402}
367 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
368
369 @item @b{Wiggler2}
370 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
371
372 @item @b{Wiggler_ntrst_inverted}
373 @* Yet another variation - See the source code, src/jtag/parport.c
374
375 @item @b{old_amt_wiggler}
376 @* Unknown - probably not on the market today
377
378 @item @b{arm-jtag}
379 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
380
381 @item @b{chameleon}
382 @* Link: @url{http://www.amontec.com/chameleon.shtml}
383
384 @item @b{Triton}
385 @* Unknown.
386
387 @item @b{Lattice}
388 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
389
390 @item @b{flashlink}
391 @* From ST Microsystems, link:
392 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
393 Title: FlashLINK JTAG programing cable for PSD and uPSD
394
395 @end itemize
396
397 @section Other...
398 @itemize @bullet
399
400 @item @b{ep93xx}
401 @* An EP93xx based linux machine using the GPIO pins directly.
402
403 @item @b{at91rm9200}
404 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
405
406 @end itemize
407
408 @node Running
409 @chapter Running
410 @cindex running OpenOCD
411 @cindex --configfile
412 @cindex --debug_level
413 @cindex --logfile
414 @cindex --search
415
416 The @option{--help} option shows:
417 @verbatim
418 bash$ openocd --help
419
420 --help | -h display this help
421 --version | -v display OpenOCD version
422 --file | -f use configuration file <name>
423 --search | -s dir to search for config files and scripts
424 --debug | -d set debug level <0-3>
425 --log_output | -l redirect log output to file <name>
426 --command | -c run <command>
427 --pipe | -p use pipes when talking to gdb
428 @end verbatim
429
430 By default OpenOCD reads the file configuration file ``openocd.cfg''
431 in the current directory. To specify a different (or multiple)
432 configuration file, you can use the ``-f'' option. For example:
433
434 @example
435 openocd -f config1.cfg -f config2.cfg -f config3.cfg
436 @end example
437
438 Once started, OpenOCD runs as a daemon, waiting for connections from
439 clients (Telnet, GDB, Other).
440
441 If you are having problems, you can enable internal debug messages via
442 the ``-d'' option.
443
444 Also it is possible to interleave commands w/config scripts using the
445 @option{-c} command line switch.
446
447 To enable debug output (when reporting problems or working on OpenOCD
448 itself), use the @option{-d} command line switch. This sets the
449 @option{debug_level} to "3", outputting the most information,
450 including debug messages. The default setting is "2", outputting only
451 informational messages, warnings and errors. You can also change this
452 setting from within a telnet or gdb session using @option{debug_level
453 <n>} @xref{debug_level}.
454
455 You can redirect all output from the daemon to a file using the
456 @option{-l <logfile>} switch.
457
458 Search paths for config/script files can be added to OpenOCD by using
459 the @option{-s <search>} switch. The current directory and the OpenOCD
460 target library is in the search path by default.
461
462 For details on the @option{-p} option. @xref{Connecting to GDB}.
463 Option @option{-p} is not currently supported under native win32.
464
465 Note! OpenOCD will launch the GDB & telnet server even if it can not
466 establish a connection with the target. In general, it is possible for
467 the JTAG controller to be unresponsive until the target is set up
468 correctly via e.g. GDB monitor commands in a GDB init script.
469
470 @node Simple Configuration Files
471 @chapter Simple Configuration Files
472 @cindex configuration
473
474 @section Outline
475 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
476
477 @enumerate
478 @item A small openocd.cfg file which ``sources'' other configuration files
479 @item A monolithic openocd.cfg file
480 @item Many -f filename options on the command line
481 @item Your Mixed Solution
482 @end enumerate
483
484 @section Small configuration file method
485
486 This is the prefered method, it is simple and is works well for many
487 people. The developers of OpenOCD would encourage you to use this
488 method. If you create a new configuration please email new
489 configurations to the development list.
490
491 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
492
493 @example
494 source [find interface/signalyzer.cfg]
495
496 # Change the default telnet port...
497 telnet_port 4444
498 # GDB connects here
499 gdb_port 3333
500 # GDB can also flash my flash!
501 gdb_memory_map enable
502 gdb_flash_program enable
503
504 source [find target/sam7x256.cfg]
505 @end example
506
507 There are many example configuration scripts you can work with. You
508 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
509 should find:
510
511 @enumerate
512 @item @b{board} - eval board level configurations
513 @item @b{interface} - specific dongle configurations
514 @item @b{target} - the target chips
515 @item @b{tcl} - helper scripts
516 @item @b{xscale} - things specific to the xscale.
517 @end enumerate
518
519 Look first in the ``boards'' area, then the ``targets'' area. Often a board
520 configuration is a good example to work from.
521
522 @section Many -f filename options
523 Some believe this is a wonderful solution, others find it painful.
524
525 You can use a series of ``-f filename'' options on the command line,
526 OpenOCD will read each filename in sequence, for example:
527
528 @example
529 openocd -f file1.cfg -f file2.cfg -f file2.cfg
530 @end example
531
532 You can also intermix various commands with the ``-c'' command line
533 option.
534
535 @section Monolithic file
536 The ``Monolithic File'' dispenses with all ``source'' statements and
537 puts everything in one self contained (monolithic) file. This is not
538 encouraged.
539
540 Please try to ``source'' various files or use the multiple -f
541 technique.
542
543 @section Advice for you
544 Often, one uses a ``mixed approach''. Where possible, please try to
545 ``source'' common things, and if needed cut/paste parts of the
546 standard distribution configuration files as needed.
547
548 @b{REMEMBER:} The ``important parts'' of your configuration file are:
549
550 @enumerate
551 @item @b{Interface} - Defines the dongle
552 @item @b{Taps} - Defines the JTAG Taps
553 @item @b{GDB Targets} - What GDB talks to
554 @item @b{Flash Programing} - Very Helpful
555 @end enumerate
556
557 Some key things you should look at and understand are:
558
559 @enumerate
560 @item The RESET configuration of your debug environment as a hole
561 @item Is there a ``work area'' that OpenOCD can use?
562 @* For ARM - work areas mean up to 10x faster downloads.
563 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
564 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
565 @end enumerate
566
567
568
569 @node Config File Guidelines
570 @chapter Config File Guidelines
571
572 This section/chapter is aimed at developers and integrators of
573 OpenOCD. These are guidelines for creating new boards and new target
574 configurations as of 28/Nov/2008.
575
576 However, you the user of OpenOCD should be some what familiar with
577 this section as it should help explain some of the internals of what
578 you might be looking at.
579
580 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
581 following directories:
582
583 @itemize @bullet
584 @item @b{interface}
585 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
586 @item @b{board}
587 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
588 contain initialization items that are specific to a board - for
589 example: The SDRAM initialization sequence for the board, or the type
590 of external flash and what address it is found at. Any initialization
591 sequence to enable that external flash or sdram should be found in the
592 board file. Boards may also contain multiple targets, ie: Two cpus, or
593 a CPU and an FPGA or CPLD.
594 @item @b{target}
595 @* Think CHIP. The ``target'' directory represents a jtag tap (or
596 chip) OpenOCD should control, not a board. Two common types of targets
597 are ARM chips and FPGA or CPLD chips.
598 @end itemize
599
600 @b{If needed...} The user in their ``openocd.cfg'' file or the board
601 file might override a specific feature in any of the above files by
602 setting a variable or two before sourcing the target file. Or adding
603 various commands specific to their situation.
604
605 @section Interface Config Files
606
607 The user should be able to source one of these files via a command like this:
608
609 @example
610 source [find interface/FOOBAR.cfg]
611 Or:
612 openocd -f interface/FOOBAR.cfg
613 @end example
614
615 A preconfigured interface file should exist for every interface in use
616 today, that said, perhaps some interfaces have only been used by the
617 sole developer who created it.
618
619 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
620 tcl_platform(platform), it should be called jim_platform (because it
621 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
622 ``cygwin'' or ``mingw''
623
624 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
625
626 @section Board Config Files
627
628 @b{Note: BOARD directory NEW as of 28/nov/2008}
629
630 The user should be able to source one of these files via a command like this:
631
632 @example
633 source [find board/FOOBAR.cfg]
634 Or:
635 openocd -f board/FOOBAR.cfg
636 @end example
637
638
639 The board file should contain one or more @t{source [find
640 target/FOO.cfg]} statements along with any board specific things.
641
642 In summery the board files should contain (if present)
643
644 @enumerate
645 @item External flash configuration (ie: the flash on CS0)
646 @item SDRAM configuration (size, speed, etc)
647 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
648 @item Multiple TARGET source statements
649 @item All things that are not ``inside a chip''
650 @item Things inside a chip go in a 'target' file
651 @end enumerate
652
653 @section Target Config Files
654
655 The user should be able to source one of these files via a command like this:
656
657 @example
658 source [find target/FOOBAR.cfg]
659 Or:
660 openocd -f target/FOOBAR.cfg
661 @end example
662
663 In summery the target files should contain
664
665 @enumerate
666 @item Set Defaults
667 @item Create Taps
668 @item Reset Configuration
669 @item Work Areas
670 @item CPU/Chip/CPU-Core Specific features
671 @item OnChip Flash
672 @end enumerate
673
674 @subsection Important variable names
675
676 By default, the end user should never need to set these
677 variables. However, if the user needs to override a setting they only
678 need to set the variable in a simple way.
679
680 @itemize @bullet
681 @item @b{CHIPNAME}
682 @* This gives a name to the overall chip, and is used as part of the
683 tap identifier dotted name.
684 @item @b{ENDIAN}
685 @* By default little - unless the chip or board is not normally used that way.
686 @item @b{CPUTAPID}
687 @* When OpenOCD examines the JTAG chain, it will attempt to identify
688 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
689 to verify the tap id number verses configuration file and may issue an
690 error or warning like this. The hope is this will help pin point
691 problem OpenOCD configurations.
692
693 @example
694 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
695 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
696 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
697 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
698 @end example
699
700 @item @b{_TARGETNAME}
701 @* By convention, this variable is created by the target configuration
702 script. The board configuration file may make use of this variable to
703 configure things like a ``reset init'' script, or other things
704 specific to that board and that target.
705
706 If the chip has 2 targets, use the names @b{_TARGETNAME0},
707 @b{_TARGETNAME1}, ... etc.
708
709 @b{Remember:} The ``board file'' may include multiple targets.
710
711 At no time should the name ``target0'' (the default target name if
712 none was specified) be used. The name ``target0'' is a hard coded name
713 - the next target on the board will be some other number.
714
715 The user (or board file) should reasonably be able to:
716
717 @example
718 source [find target/FOO.cfg]
719 $_TARGETNAME configure ... FOO specific parameters
720
721 source [find target/BAR.cfg]
722 $_TARGETNAME configure ... BAR specific parameters
723 @end example
724
725 @end itemize
726
727 @subsection TCL Variables Guide Line
728 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
729
730 Thus the rule we follow in OpenOCD is this: Variables that begin with
731 a leading underscore are temporal in nature, and can be modified and
732 used at will within a ?TARGET? configuration file
733
734 @b{EXAMPLE:} The user should be able to do this:
735
736 @example
737 # Board has 3 chips,
738 # PXA270 #1 network side, big endian
739 # PXA270 #2 video side, little endian
740 # Xilinx Glue logic
741 set CHIPNAME network
742 set ENDIAN big
743 source [find target/pxa270.cfg]
744 # variable: _TARGETNAME = network.cpu
745 # other commands can refer to the "network.cpu" tap.
746 $_TARGETNAME configure .... params for this cpu..
747
748 set ENDIAN little
749 set CHIPNAME video
750 source [find target/pxa270.cfg]
751 # variable: _TARGETNAME = video.cpu
752 # other commands can refer to the "video.cpu" tap.
753 $_TARGETNAME configure .... params for this cpu..
754
755 unset ENDIAN
756 set CHIPNAME xilinx
757 source [find target/spartan3.cfg]
758
759 # Since $_TARGETNAME is temporal..
760 # these names still work!
761 network.cpu configure ... params
762 video.cpu configure ... params
763
764 @end example
765
766 @subsection Default Value Boiler Plate Code
767
768 All target configuration files should start with this (or a modified form)
769
770 @example
771 # SIMPLE example
772 if @{ [info exists CHIPNAME] @} @{
773 set _CHIPNAME $CHIPNAME
774 @} else @{
775 set _CHIPNAME sam7x256
776 @}
777
778 if @{ [info exists ENDIAN] @} @{
779 set _ENDIAN $ENDIAN
780 @} else @{
781 set _ENDIAN little
782 @}
783
784 if @{ [info exists CPUTAPID ] @} @{
785 set _CPUTAPID $CPUTAPID
786 @} else @{
787 set _CPUTAPID 0x3f0f0f0f
788 @}
789
790 @end example
791
792 @subsection Creating Taps
793 After the ``defaults'' are choosen, [see above], the taps are created.
794
795 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
796
797 @example
798 # for an ARM7TDMI.
799 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
800 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
801 @end example
802
803 @b{COMPLEX example:}
804
805 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
806
807 @enumerate
808 @item @b{Unform tap names} - See: Tap Naming Convention
809 @item @b{_TARGETNAME} is created at the end where used.
810 @end enumerate
811
812 @example
813 if @{ [info exists FLASHTAPID ] @} @{
814 set _FLASHTAPID $FLASHTAPID
815 @} else @{
816 set _FLASHTAPID 0x25966041
817 @}
818 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
819
820 if @{ [info exists CPUTAPID ] @} @{
821 set _CPUTAPID $CPUTAPID
822 @} else @{
823 set _CPUTAPID 0x25966041
824 @}
825 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
826
827
828 if @{ [info exists BSTAPID ] @} @{
829 set _BSTAPID $BSTAPID
830 @} else @{
831 set _BSTAPID 0x1457f041
832 @}
833 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
834
835 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
836 @end example
837
838 @b{Tap Naming Convention}
839
840 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
841
842 @itemize @bullet
843 @item @b{tap}
844 @item @b{cpu}
845 @item @b{flash}
846 @item @b{bs}
847 @item @b{jrc}
848 @item @b{unknownN} - it happens :-(
849 @end itemize
850
851 @subsection Reset Configuration
852
853 Some chips have specific ways the TRST and SRST signals are
854 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
855 @b{BOARD SPECIFIC} they go in the board file.
856
857 @subsection Work Areas
858
859 Work areas are small RAM areas used by OpenOCD to speed up downloads,
860 and to download small snippits of code to program flash chips.
861
862 If the chip includes an form of ``on-chip-ram'' - and many do - define
863 a reasonable work area and use the ``backup'' option.
864
865 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
866 inaccessable if/when the application code enables or disables the MMU.
867
868 @subsection ARM Core Specific Hacks
869
870 If the chip has a DCC, enable it. If the chip is an arm9 with some
871 special high speed download - enable it.
872
873 If the chip has an ARM ``vector catch'' feature - by defeault enable
874 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
875 user is really writing a handler for those situations - they can
876 easily disable it. Experiance has shown the ``vector catch'' is
877 helpful - for common programing errors.
878
879 If present, the MMU, the MPU and the CACHE should be disabled.
880
881 @subsection Internal Flash Configuration
882
883 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
884
885 @b{Never ever} in the ``target configuration file'' define any type of
886 flash that is external to the chip. (For example the BOOT flash on
887 Chip Select 0). The BOOT flash information goes in a board file - not
888 the TARGET (chip) file.
889
890 Examples:
891 @itemize @bullet
892 @item at91sam7x256 - has 256K flash YES enable it.
893 @item str912 - has flash internal YES enable it.
894 @item imx27 - uses boot flash on CS0 - it goes in the board file.
895 @item pxa270 - again - CS0 flash - it goes in the board file.
896 @end itemize
897
898 @node About JIM-Tcl
899 @chapter About JIM-Tcl
900 @cindex JIM Tcl
901 @cindex tcl
902
903 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
904 learn more about JIM here: @url{http://jim.berlios.de}
905
906 @itemize @bullet
907 @item @b{JIM vrs TCL}
908 @* JIM-TCL is a stripped down version of the well known Tcl language,
909 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
910 fewer features. JIM-Tcl is a single .C file and a single .H file and
911 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
912 4.2MEG zip file containing 1540 files.
913
914 @item @b{Missing Features}
915 @* Our practice has been: Add/clone the Real TCL feature if/when
916 needed. We welcome JIM Tcl improvements, not bloat.
917
918 @item @b{Scripts}
919 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
920 command interpretor today (28/nov/2008) is a mixture of (newer)
921 JIM-Tcl commands, and (older) the orginal command interpretor.
922
923 @item @b{Commands}
924 @* At the OpenOCD telnet command line (or via the GDB mon command) one
925 can type a Tcl for() loop, set variables, etc.
926
927 @item @b{Historical Note}
928 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
929
930 @item @b{Need a Crash Course In TCL?}
931 @* See: @xref{TCL Crash Course}.
932 @end itemize
933
934
935 @node Daemon Configuration
936 @chapter Daemon Configuration
937 The commands here are commonly found in the openocd.cfg file and are
938 used to specify what TCP/IP ports are used, and how GDB should be
939 supported.
940 @section init
941 @cindex init
942 This command terminates the configuration stage and
943 enters the normal command mode. This can be useful to add commands to
944 the startup scripts and commands such as resetting the target,
945 programming flash, etc. To reset the CPU upon startup, add "init" and
946 "reset" at the end of the config script or at the end of the OpenOCD
947 command line using the @option{-c} command line switch.
948
949 If this command does not appear in any startup/configuration file
950 OpenOCD executes the command for you after processing all
951 configuration files and/or command line options.
952
953 @b{NOTE:} This command normally occurs at or near the end of your
954 openocd.cfg file to force OpenOCD to ``initialize'' and make the
955 targets ready. For example: If your openocd.cfg file needs to
956 read/write memory on your target - the init command must occur before
957 the memory read/write commands.
958
959 @section TCP/IP Ports
960 @itemize @bullet
961 @item @b{telnet_port} <@var{number}>
962 @cindex telnet_port
963 @*Intended for a human. Port on which to listen for incoming telnet connections.
964
965 @item @b{tcl_port} <@var{number}>
966 @cindex tcl_port
967 @*Intended as a machine interface. Port on which to listen for
968 incoming TCL syntax. This port is intended as a simplified RPC
969 connection that can be used by clients to issue commands and get the
970 output from the TCL engine.
971
972 @item @b{gdb_port} <@var{number}>
973 @cindex gdb_port
974 @*First port on which to listen for incoming GDB connections. The GDB port for the
975 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
976 @end itemize
977
978 @section GDB Items
979 @itemize @bullet
980 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
981 @cindex gdb_breakpoint_override
982 @anchor{gdb_breakpoint_override}
983 @*Force breakpoint type for gdb 'break' commands.
984 The raison d'etre for this option is to support GDB GUI's without
985 a hard/soft breakpoint concept where the default OpenOCD and
986 GDB behaviour is not sufficient. Note that GDB will use hardware
987 breakpoints if the memory map has been set up for flash regions.
988
989 This option replaces older arm7_9 target commands that addressed
990 the same issue.
991
992 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
993 @cindex gdb_detach
994 @*Configures what OpenOCD will do when gdb detaches from the daeman.
995 Default behaviour is <@var{resume}>
996
997 @item @b{gdb_memory_map} <@var{enable|disable}>
998 @cindex gdb_memory_map
999 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1000 requested. gdb will then know when to set hardware breakpoints, and program flash
1001 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1002 for flash programming to work.
1003 Default behaviour is <@var{enable}>
1004 @xref{gdb_flash_program}.
1005
1006 @item @b{gdb_flash_program} <@var{enable|disable}>
1007 @cindex gdb_flash_program
1008 @anchor{gdb_flash_program}
1009 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1010 vFlash packet is received.
1011 Default behaviour is <@var{enable}>
1012 @comment END GDB Items
1013 @end itemize
1014
1015 @node Interface - Dongle Configuration
1016 @chapter Interface - Dongle Configuration
1017 Interface commands are normally found in an interface configuration
1018 file which is sourced by your openocd.cfg file. These commands tell
1019 OpenOCD what type of JTAG dongle you have and how to talk to it.
1020 @section Simple Complete Interface Examples
1021 @b{A Turtelizer FT2232 Based JTAG Dongle}
1022 @verbatim
1023 #interface
1024 interface ft2232
1025 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1026 ft2232_layout turtelizer2
1027 ft2232_vid_pid 0x0403 0xbdc8
1028 @end verbatim
1029 @b{A SEGGER Jlink}
1030 @verbatim
1031 # jlink interface
1032 interface jlink
1033 @end verbatim
1034 @b{A Raisonance RLink}
1035 @verbatim
1036 # rlink interface
1037 interface rlink
1038 @end verbatim
1039 @b{Parallel Port}
1040 @verbatim
1041 interface parport
1042 parport_port 0xc8b8
1043 parport_cable wiggler
1044 jtag_speed 0
1045 @end verbatim
1046 @section Interface Conmmand
1047
1048 The interface command tells OpenOCD what type of jtag dongle you are
1049 using. Depending upon the type of dongle, you may need to have one or
1050 more additional commands.
1051
1052 @itemize @bullet
1053
1054 @item @b{interface} <@var{name}>
1055 @cindex interface
1056 @*Use the interface driver <@var{name}> to connect to the
1057 target. Currently supported interfaces are
1058
1059 @itemize @minus
1060
1061 @item @b{parport}
1062 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1063
1064 @item @b{amt_jtagaccel}
1065 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1066 mode parallel port
1067
1068 @item @b{ft2232}
1069 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1070 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1071 platform. The libftdi uses libusb, and should be portable to all systems that provide
1072 libusb.
1073
1074 @item @b{ep93xx}
1075 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1076
1077 @item @b{presto}
1078 @* ASIX PRESTO USB JTAG programmer.
1079
1080 @item @b{usbprog}
1081 @* usbprog is a freely programmable USB adapter.
1082
1083 @item @b{gw16012}
1084 @* Gateworks GW16012 JTAG programmer.
1085
1086 @item @b{jlink}
1087 @* Segger jlink usb adapter
1088
1089 @item @b{rlink}
1090 @* Raisonance RLink usb adapter
1091 @comment - End parameters
1092 @end itemize
1093 @comment - End Interface
1094 @end itemize
1095 @subsection parport options
1096
1097 @itemize @bullet
1098 @item @b{parport_port} <@var{number}>
1099 @cindex parport_port
1100 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1101 the @file{/dev/parport} device
1102
1103 When using PPDEV to access the parallel port, use the number of the parallel port:
1104 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1105 you may encounter a problem.
1106 @item @b{parport_cable} <@var{name}>
1107 @cindex parport_cable
1108 @*The layout of the parallel port cable used to connect to the target.
1109 Currently supported cables are
1110 @itemize @minus
1111 @item @b{wiggler}
1112 @cindex wiggler
1113 The original Wiggler layout, also supported by several clones, such
1114 as the Olimex ARM-JTAG
1115 @item @b{wiggler2}
1116 @cindex wiggler2
1117 Same as original wiggler except an led is fitted on D5.
1118 @item @b{wiggler_ntrst_inverted}
1119 @cindex wiggler_ntrst_inverted
1120 Same as original wiggler except TRST is inverted.
1121 @item @b{old_amt_wiggler}
1122 @cindex old_amt_wiggler
1123 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1124 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1125 @item @b{chameleon}
1126 @cindex chameleon
1127 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1128 program the Chameleon itself, not a connected target.
1129 @item @b{dlc5}
1130 @cindex dlc5
1131 The Xilinx Parallel cable III.
1132 @item @b{triton}
1133 @cindex triton
1134 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1135 This is also the layout used by the HollyGates design
1136 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1137 @item @b{flashlink}
1138 @cindex flashlink
1139 The ST Parallel cable.
1140 @item @b{arm-jtag}
1141 @cindex arm-jtag
1142 Same as original wiggler except SRST and TRST connections reversed and
1143 TRST is also inverted.
1144 @item @b{altium}
1145 @cindex altium
1146 Altium Universal JTAG cable.
1147 @end itemize
1148 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1149 @cindex parport_write_on_exit
1150 @*This will configure the parallel driver to write a known value to the parallel
1151 interface on exiting OpenOCD
1152 @end itemize
1153
1154 @subsection amt_jtagaccel options
1155 @itemize @bullet
1156 @item @b{parport_port} <@var{number}>
1157 @cindex parport_port
1158 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1159 @file{/dev/parport} device
1160 @end itemize
1161 @subsection ft2232 options
1162
1163 @itemize @bullet
1164 @item @b{ft2232_device_desc} <@var{description}>
1165 @cindex ft2232_device_desc
1166 @*The USB device description of the FTDI FT2232 device. If not
1167 specified, the FTDI default value is used. This setting is only valid
1168 if compiled with FTD2XX support.
1169
1170 @b{TODO:} Confirm the following: On windows the name needs to end with
1171 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1172 this be added and when must it not be added? Why can't the code in the
1173 interface or in OpenOCD automatically add this if needed? -- Duane.
1174
1175 @item @b{ft2232_serial} <@var{serial-number}>
1176 @cindex ft2232_serial
1177 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1178 values are used.
1179 @item @b{ft2232_layout} <@var{name}>
1180 @cindex ft2232_layout
1181 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1182 signals. Valid layouts are
1183 @itemize @minus
1184 @item @b{usbjtag}
1185 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1186 @item @b{jtagkey}
1187 Amontec JTAGkey and JTAGkey-tiny
1188 @item @b{signalyzer}
1189 Signalyzer
1190 @item @b{olimex-jtag}
1191 Olimex ARM-USB-OCD
1192 @item @b{m5960}
1193 American Microsystems M5960
1194 @item @b{evb_lm3s811}
1195 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1196 SRST signals on external connector
1197 @item @b{comstick}
1198 Hitex STR9 comstick
1199 @item @b{stm32stick}
1200 Hitex STM32 Performance Stick
1201 @item @b{flyswatter}
1202 Tin Can Tools Flyswatter
1203 @item @b{turtelizer2}
1204 egnite Software turtelizer2
1205 @item @b{oocdlink}
1206 OOCDLink
1207 @item @b{axm0432_jtag}
1208 Axiom AXM-0432
1209 @end itemize
1210
1211 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1212 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1213 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1214 @example
1215 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1216 @end example
1217 @item @b{ft2232_latency} <@var{ms}>
1218 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1219 ft2232_read() fails to return the expected number of bytes. This can be caused by
1220 USB communication delays and has proved hard to reproduce and debug. Setting the
1221 FT2232 latency timer to a larger value increases delays for short USB packages but it
1222 also reduces the risk of timeouts before receiving the expected number of bytes.
1223 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1224 @end itemize
1225
1226 @subsection ep93xx options
1227 @cindex ep93xx options
1228 Currently, there are no options available for the ep93xx interface.
1229
1230 @section JTAG Speed
1231 @itemize @bullet
1232 @item @b{jtag_khz} <@var{reset speed kHz}>
1233 @cindex jtag_khz
1234
1235 It is debatable if this command belongs here - or in a board
1236 configuration file. In fact, in some situations the jtag speed is
1237 changed during the target initialization process (ie: (1) slow at
1238 reset, (2) program the cpu clocks, (3) run fast)
1239
1240 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1241
1242 Not all interfaces support ``rtck''. If the interface device can not
1243 support the rate asked for, or can not translate from kHz to
1244 jtag_speed, then an error is returned.
1245
1246 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1247 especially true for synthesized cores (-S). Also see RTCK.
1248
1249 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1250 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1251 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1252 the specified frequency.
1253
1254 @example
1255 # Fall back to 3mhz if RCLK is not supported
1256 jtag_rclk 3000
1257 @end example
1258
1259 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1260 @cindex jtag_speed
1261 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1262 speed. The actual effect of this option depends on the JTAG interface used.
1263
1264 The speed used during reset can be adjusted using setting jtag_speed during
1265 pre_reset and post_reset events.
1266 @itemize @minus
1267
1268 @item wiggler: maximum speed / @var{number}
1269 @item ft2232: 6MHz / (@var{number}+1)
1270 @item amt jtagaccel: 8 / 2**@var{number}
1271 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1272 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1273 @comment end speed list.
1274 @end itemize
1275
1276 @comment END command list
1277 @end itemize
1278
1279 @node Reset Configuration
1280 @chapter Reset Configuration
1281 @cindex reset configuration
1282
1283 Every system configuration may require a different reset
1284 configuration. This can also be quite confusing. Please see the
1285 various board files for example.
1286
1287 @section jtag_nsrst_delay <@var{ms}>
1288 @cindex jtag_nsrst_delay
1289 @*How long (in milliseconds) OpenOCD should wait after deasserting
1290 nSRST before starting new JTAG operations.
1291
1292 @section jtag_ntrst_delay <@var{ms}>
1293 @cindex jtag_ntrst_delay
1294 @*Same @b{jtag_nsrst_delay}, but for nTRST
1295
1296 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1297 big resistor/capacitor, reset supervisor, or on-chip features). This
1298 keeps the signal asserted for some time after the external reset got
1299 deasserted.
1300
1301 @section reset_config
1302
1303 @b{Note:} To maintainer types and integrators. Where exactly the
1304 ``reset configuration'' goes is a good question. It touches several
1305 things at once. In the end, if you have a board file - the board file
1306 should define it and assume 100% that the DONGLE supports
1307 anything. However, that does not mean the target should not also make
1308 not of something the silicon vendor has done inside the
1309 chip. @i{Grr.... nothing is every pretty.}
1310
1311 @* @b{Problems:}
1312 @enumerate
1313 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1314 @item Every board is also slightly different; some boards tie TRST and SRST together.
1315 @item Every chip is slightly different; some chips internally tie the two signals together.
1316 @item Some may not impliment all of the signals the same way.
1317 @item Some signals might be push-pull, others open-drain/collector.
1318 @end enumerate
1319 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1320 reset the TAP via TRST and send commands through the JTAG tap to halt
1321 the CPU at the reset vector before the 1st instruction is executed,
1322 and finally release the SRST signal.
1323 @*Depending upon your board vendor, your chip vendor, etc, these
1324 signals may have slightly different names.
1325
1326 OpenOCD defines these signals in these terms:
1327 @itemize @bullet
1328 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1329 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1330 @end itemize
1331
1332 The Command:
1333
1334 @itemize @bullet
1335 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1336 @cindex reset_config
1337 @* The @t{reset_config} command tells OpenOCD the reset configuration
1338 of your combination of Dongle, Board, and Chips.
1339 If the JTAG interface provides SRST, but the target doesn't connect
1340 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1341 be @option{none}, @option{trst_only}, @option{srst_only} or
1342 @option{trst_and_srst}.
1343
1344 [@var{combination}] is an optional value specifying broken reset
1345 signal implementations. @option{srst_pulls_trst} states that the
1346 testlogic is reset together with the reset of the system (e.g. Philips
1347 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1348 the system is reset together with the test logic (only hypothetical, I
1349 haven't seen hardware with such a bug, and can be worked around).
1350 @option{combined} imples both @option{srst_pulls_trst} and
1351 @option{trst_pulls_srst}. The default behaviour if no option given is
1352 @option{separate}.
1353
1354 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1355 driver type of the reset lines to be specified. Possible values are
1356 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1357 test reset signal, and @option{srst_open_drain} (default) and
1358 @option{srst_push_pull} for the system reset. These values only affect
1359 JTAG interfaces with support for different drivers, like the Amontec
1360 JTAGkey and JTAGAccelerator.
1361
1362 @comment - end command
1363 @end itemize
1364
1365
1366
1367 @node Tap Creation
1368 @chapter Tap Creation
1369 @cindex tap creation
1370 @cindex tap configuration
1371
1372 In order for OpenOCD to control a target, a JTAG tap must be
1373 defined/created.
1374
1375 Commands to create taps are normally found in a configuration file and
1376 are not normally typed by a human.
1377
1378 When a tap is created a @b{dotted.name} is created for the tap. Other
1379 commands use that dotted.name to manipulate or refer to the tap.
1380
1381 Tap Uses:
1382 @itemize @bullet
1383 @item @b{Debug Target} A tap can be used by a GDB debug target
1384 @item @b{Flash Programing} Some chips program the flash via JTAG
1385 @item @b{Boundry Scan} Some chips support boundry scan.
1386 @end itemize
1387
1388
1389 @section jtag newtap
1390 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1391 @cindex jtag_device
1392 @cindex jtag newtap
1393 @cindex tap
1394 @cindex tap order
1395 @cindex tap geometry
1396
1397 @comment START options
1398 @itemize @bullet
1399 @item @b{CHIPNAME}
1400 @* is a symbolic name of the chip.
1401 @item @b{TAPNAME}
1402 @* is a symbol name of a tap present on the chip.
1403 @item @b{Required configparams}
1404 @* Every tap has 3 required configparams, and several ``optional
1405 parameters'', the required parameters are:
1406 @comment START REQUIRED
1407 @itemize @bullet
1408 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1409 @item @b{-ircapture NUMBER} - the ID code capture command.
1410 @item @b{-irmask NUMBER} - the corrisponding mask for the ir register.
1411 @comment END REQUIRED
1412 @end itemize
1413 An example of a FOOBAR Tap
1414 @example
1415 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1416 @end example
1417 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1418 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1419 [6,4,2,0] are checked.
1420
1421 FIXME: The IDCODE - this was not used in the old code, it should be?
1422 Right? -Duane.
1423 @item @b{Optional configparams}
1424 @comment START Optional
1425 @itemize @bullet
1426 @item @b{-expected-id NUMBER}
1427 @* By default it is zero. If non-zero represents the
1428 expected tap ID used when the Jtag Chain is examined. See below.
1429 @item @b{-disable}
1430 @item @b{-enable}
1431 @* By default not specified the tap is enabled. Some chips have a
1432 jtag route controller (JRC) that is used to enable and/or disable
1433 specific jtag taps. You can later enable or disable any JTAG tap via
1434 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1435 DOTTED.NAME}
1436 @comment END Optional
1437 @end itemize
1438
1439 @comment END OPTIONS
1440 @end itemize
1441 @b{Notes:}
1442 @comment START NOTES
1443 @itemize @bullet
1444 @item @b{Technically}
1445 @* newtap is a sub command of the ``jtag'' command
1446 @item @b{Big Picture Background}
1447 @*GDB Talks to OpenOCD using the GDB protocol via
1448 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1449 control the JTAG chain on your board. Your board has one or more chips
1450 in a @i{daisy chain configuration}. Each chip may have one or more
1451 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1452 @item @b{NAME Rules}
1453 @*Names follow ``C'' symbol name rules (start with alpha ...)
1454 @item @b{TAPNAME - Conventions}
1455 @itemize @bullet
1456 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1457 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1458 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1459 @item @b{bs} - for boundary scan if this is a seperate tap.
1460 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1461 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1462 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1463 @item @b{When in doubt} - use the chip makers name in their data sheet.
1464 @end itemize
1465 @item @b{DOTTED.NAME}
1466 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1467 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1468 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1469 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1470 numerous other places to refer to various taps.
1471 @item @b{ORDER}
1472 @* The order this command appears via the config files is
1473 important.
1474 @item @b{Multi Tap Example}
1475 @* This example is based on the ST Microsystems STR912. See the ST
1476 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1477 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1478
1479 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1480 @*@b{checked: 28/nov/2008}
1481
1482 The diagram shows the TDO pin connects to the flash tap, flash TDI
1483 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1484 tap which then connects to the TDI pin.
1485
1486 @example
1487 # The order is...
1488 # create tap: 'str912.flash'
1489 jtag newtap str912 flash ... params ...
1490 # create tap: 'str912.cpu'
1491 jtag newtap str912 cpu ... params ...
1492 # create tap: 'str912.bs'
1493 jtag newtap str912 bs ... params ...
1494 @end example
1495
1496 @item @b{Note: Deprecated} - Index Numbers
1497 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1498 feature is still present, however its use is highly discouraged and
1499 should not be counted upon.
1500 @item @b{Multiple chips}
1501 @* If your board has multiple chips, you should be
1502 able to @b{source} two configuration files, in the proper order, and
1503 have the taps created in the proper order.
1504 @comment END NOTES
1505 @end itemize
1506 @comment at command level
1507 @comment DOCUMENT old command
1508 @section jtag_device - REMOVED
1509 @example
1510 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1511 @end example
1512 @cindex jtag_device
1513
1514 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1515 by the ``jtag newtap'' command. The documentation remains here so that
1516 one can easily convert the old syntax to the new syntax. About the old
1517 syntax: The old syntax is positional, ie: The 4th parameter is the
1518 ``irmask''. The new syntax requires named prefixes, and supports
1519 additional options, for example ``-irmask 4''. Please refer to the
1520 @b{jtag newtap} command for details.
1521 @example
1522 OLD: jtag_device 8 0x01 0x0e3 0xfe
1523 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
1524 @end example
1525
1526 @section Enable/Disable Taps
1527 @b{Note:} These commands are intended to be used as a machine/script
1528 interface. Humans might find the ``scan_chain'' command more helpful
1529 when querying the state of the JTAG taps.
1530
1531 @b{By default, all taps are enabled}
1532
1533 @itemize @bullet
1534 @item @b{jtag tapenable} @var{DOTTED.NAME}
1535 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1536 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1537 @end itemize
1538 @cindex tap enable
1539 @cindex tap disable
1540 @cindex JRC
1541 @cindex route controller
1542
1543 These commands are used when your target has a JTAG Route controller
1544 that effectively adds or removes a tap from the jtag chain in a
1545 non-standard way.
1546
1547 The ``standard way'' to remove a tap would be to place the tap in
1548 bypass mode. But with the advent of modern chips, this is not always a
1549 good solution. Some taps operate slowly, others operate fast, and
1550 there are other JTAG clock syncronization problems one must face. To
1551 solve that problem, the JTAG Route controller was introduced. Rather
1552 then ``bypass'' the tap, the tap is completely removed from the
1553 circuit and skipped.
1554
1555
1556 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1557
1558 @itemize @bullet
1559 @item @b{Enabled - Not In ByPass} and has a variable bit length
1560 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1561 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1562 @end itemize
1563
1564 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1565 @b{Historical note:} this feature was added 28/nov/2008
1566
1567 @b{jtag tapisenabled DOTTED.NAME}
1568
1569 This command returns 1 if the named tap is currently enabled, 0 if not.
1570 This command exists so that scripts that manipulate a JRC (like the
1571 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1572 enabled, or disabled.
1573
1574 @page
1575 @node Target Configuration
1576 @chapter Target Configuration
1577
1578 This chapter discusses how to create a GDB Debug Target. Before
1579 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1580
1581 @section targets [NAME]
1582 @b{Note:} This command name is PLURAL - not singular.
1583
1584 With NO parameter, this plural @b{targets} command lists all known
1585 targets in a human friendly form.
1586
1587 With a parameter, this pural @b{targets} command sets the current
1588 target to the given name. (ie: If there are multiple debug targets)
1589
1590 Example:
1591 @verbatim
1592 (gdb) mon targets
1593 CmdName Type Endian ChainPos State
1594 -- ---------- ---------- ---------- -------- ----------
1595 0: target0 arm7tdmi little 0 halted
1596 @end verbatim
1597
1598 @section target COMMANDS
1599 @b{Note:} This command name is SINGULAR - not plural. It is used to
1600 manipulate specific targets, to create targets and other things.
1601
1602 Once a target is created, a TARGETNAME (object) command is created;
1603 see below for details.
1604
1605 The TARGET command accepts these sub-commands:
1606 @itemize @bullet
1607 @item @b{create} .. parameters ..
1608 @* creates a new target, See below for details.
1609 @item @b{types}
1610 @* Lists all supported target types (perhaps some are not yet in this document).
1611 @item @b{names}
1612 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1613 @verbatim
1614 foreach t [target names] {
1615 puts [format "Target: %s\n" $t]
1616 }
1617 @end verbatim
1618 @item @b{current}
1619 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1620 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1621 @item @b{number} @b{NUMBER}
1622 @* Internally OpenOCD maintains a list of targets - in numerical index
1623 (0..N-1) this command returns the name of the target at index N.
1624 Example usage:
1625 @verbatim
1626 set thename [target number $x]
1627 puts [format "Target %d is: %s\n" $x $thename]
1628 @end verbatim
1629 @item @b{count}
1630 @* Returns the number of targets known to OpenOCD (see number above)
1631 Example:
1632 @verbatim
1633 set c [target count]
1634 for { set x 0 } { $x < $c } { incr x } {
1635 # Assuming you have created this function
1636 print_target_details $x
1637 }
1638 @end verbatim
1639
1640 @end itemize
1641
1642 @section TARGETNAME (object) commands
1643 @b{Use:} Once a target is created, an ``object name'' that represents the
1644 target is created. By convention, the target name is identical to the
1645 tap name. In a multiple target system, one can preceed many common
1646 commands with a specific target name and effect only that target.
1647 @example
1648 str912.cpu mww 0x1234 0x42
1649 omap3530.cpu mww 0x5555 123
1650 @end example
1651
1652 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1653 good example is a on screen button, once a button is created a button
1654 has a name (a path in TK terms) and that name is useable as a 1st
1655 class command. For example in TK, one can create a button and later
1656 configure it like this:
1657
1658 @example
1659 # Create
1660 button .foobar -background red -command @{ foo @}
1661 # Modify
1662 .foobar configure -foreground blue
1663 # Query
1664 set x [.foobar cget -background]
1665 # Report
1666 puts [format "The button is %s" $x]
1667 @end example
1668
1669 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1670 button. Commands avaialble as a ``target object'' are:
1671
1672 @comment START targetobj commands.
1673 @itemize @bullet
1674 @item @b{configure} - configure the target; see Target Config/Cget Options below
1675 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1676 @item @b{curstate} - current target state (running, halt, etc)
1677 @item @b{eventlist}
1678 @* Intended for a human to see/read the currently configure target events.
1679 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1680 @comment start memory
1681 @itemize @bullet
1682 @item @b{mww} ...
1683 @item @b{mwh} ...
1684 @item @b{mwb} ...
1685 @item @b{mdw} ...
1686 @item @b{mdh} ...
1687 @item @b{mdb} ...
1688 @comment end memory
1689 @end itemize
1690 @item @b{Memory To Array, Array To Memory}
1691 @* These are aimed at a machine interface to memory
1692 @itemize @bullet
1693 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1694 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1695 @* Where:
1696 @* @b{ARRAYNAME} is the name of an array variable
1697 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1698 @* @b{ADDRESS} is the target memory address
1699 @* @b{COUNT} is the number of elements to process
1700 @end itemize
1701 @item @b{Used during ``reset''}
1702 @* These commands are used internally by the OpenOCD scripts to deal
1703 with odd reset situations and are not documented here.
1704 @itemize @bullet
1705 @item @b{arp_examine}
1706 @item @b{arp_poll}
1707 @item @b{arp_reset}
1708 @item @b{arp_halt}
1709 @item @b{arp_waitstate}
1710 @end itemize
1711 @item @b{invoke-event} @b{EVENT-NAME}
1712 @* Invokes the specific event manually for the target
1713 @end itemize
1714
1715 @section Target Events
1716 At various times, certain things can happen, or you want them to happen.
1717
1718 Examples:
1719 @itemize @bullet
1720 @item What should happen when GDB connects? Should your target reset?
1721 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1722 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1723 @end itemize
1724
1725 All of the above items are handled by target events.
1726
1727 To specify an event action, either during target creation, or later
1728 via ``$_TARGETNAME configure'' see this example.
1729
1730 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1731 target event name, and BODY is a tcl procedure or string of commands
1732 to execute.
1733
1734 The programmers model is the ``-command'' option used in Tcl/Tk
1735 buttons and events. Below are two identical examples, the first
1736 creates and invokes small procedure. The second inlines the procedure.
1737
1738 @example
1739 proc my_attach_proc @{ @} @{
1740 puts "RESET...."
1741 reset halt
1742 @}
1743 mychip.cpu configure -event gdb-attach my_attach_proc
1744 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1745 @end example
1746
1747 @section Current Events
1748 The following events are available:
1749 @itemize @bullet
1750 @item @b{debug-halted}
1751 @* The target has halted for debug reasons (ie: breakpoint)
1752 @item @b{debug-resumed}
1753 @* The target has resumed (ie: gdb said run)
1754 @item @b{early-halted}
1755 @* Occurs early in the halt process
1756 @item @b{examine-end}
1757 @* Currently not used (goal: when JTAG examine completes)
1758 @item @b{examine-start}
1759 @* Currently not used (goal: when JTAG examine starts)
1760 @item @b{gdb-attach}
1761 @* When GDB connects
1762 @item @b{gdb-detach}
1763 @* When GDB disconnects
1764 @item @b{gdb-end}
1765 @* When the taret has halted and GDB is not doing anything (see early halt)
1766 @item @b{gdb-flash-erase-start}
1767 @* Before the GDB flash process tries to erase the flash
1768 @item @b{gdb-flash-erase-end}
1769 @* After the GDB flash process has finished erasing the flash
1770 @item @b{gdb-flash-write-start}
1771 @* Before GDB writes to the flash
1772 @item @b{gdb-flash-write-end}
1773 @* After GDB writes to the flash
1774 @item @b{gdb-start}
1775 @* Before the taret steps, gdb is trying to start/resume the tarfget
1776 @item @b{halted}
1777 @* The target has halted
1778 @item @b{old-gdb_program_config}
1779 @* DO NOT USE THIS: Used internally
1780 @item @b{old-pre_resume}
1781 @* DO NOT USE THIS: Used internally
1782 @item @b{reset-assert-pre}
1783 @* Before reset is asserted on the tap.
1784 @item @b{reset-assert-post}
1785 @* Reset is now asserted on the tap.
1786 @item @b{reset-deassert-pre}
1787 @* Reset is about to be released on the tap
1788 @item @b{reset-deassert-post}
1789 @* Reset has been released on the tap
1790 @item @b{reset-end}
1791 @* Currently not used.
1792 @item @b{reset-halt-post}
1793 @* Currently not usd
1794 @item @b{reset-halt-pre}
1795 @* Currently not used
1796 @item @b{reset-init}
1797 @* Currently not used
1798 @item @b{reset-start}
1799 @* Currently not used
1800 @item @b{reset-wait-pos}
1801 @* Currently not used
1802 @item @b{reset-wait-pre}
1803 @* Currently not used
1804 @item @b{resume-start}
1805 @* Before any target is resumed
1806 @item @b{resume-end}
1807 @* After all targets have resumed
1808 @item @b{resume-ok}
1809 @* Success
1810 @item @b{resumed}
1811 @* Target has resumed
1812 @item @b{tap-enable}
1813 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1814 @example
1815 jtag configure DOTTED.NAME -event tap-enable @{
1816 puts "Enabling CPU"
1817 ...
1818 @}
1819 @end example
1820 @item @b{tap-disable}
1821 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1822 @example
1823 jtag configure DOTTED.NAME -event tap-disable @{
1824 puts "Disabling CPU"
1825 ...
1826 @}
1827 @end example
1828 @end itemize
1829
1830
1831 @section target create
1832 @cindex target
1833 @cindex target creation
1834
1835 @example
1836 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1837 @end example
1838 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1839 @comment START params
1840 @itemize @bullet
1841 @item @b{NAME}
1842 @* Is the name of the debug target. By convention it should be the tap
1843 DOTTED.NAME, this name is also used to create the target object
1844 command.
1845 @item @b{TYPE}
1846 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1847 @comment START types
1848 @itemize @minus
1849 @item @b{arm7tdmi}
1850 @item @b{arm720t}
1851 @item @b{arm9tdmi}
1852 @item @b{arm920t}
1853 @item @b{arm922t}
1854 @item @b{arm926ejs}
1855 @item @b{arm966e}
1856 @item @b{cortex_m3}
1857 @item @b{feroceon}
1858 @item @b{xscale}
1859 @item @b{arm11}
1860 @item @b{mips_m4k}
1861 @comment end TYPES
1862 @end itemize
1863 @item @b{PARAMS}
1864 @*PARAMs are various target configure parameters, the following are mandatory
1865 at configuration:
1866 @comment START mandatory
1867 @itemize @bullet
1868 @item @b{-endian big|little}
1869 @item @b{-chain-position DOTTED.NAME}
1870 @comment end MANDATORY
1871 @end itemize
1872 @comment END params
1873 @end itemize
1874
1875 @section Target Config/Cget Options
1876 These options can be specified when the target is created, or later
1877 via the configure option or to query the target via cget.
1878 @itemize @bullet
1879 @item @b{-type} - returns the target type
1880 @item @b{-event NAME BODY} see Target events
1881 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1882 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1883 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1884 @item @b{-work-area-backup [0|1]} does the work area get backed up
1885 @item @b{-endian [big|little]}
1886 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
1887 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1888 @end itemize
1889 Example:
1890 @example
1891 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1892 set name [target number $x]
1893 set y [$name cget -endian]
1894 set z [$name cget -type]
1895 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1896 @}
1897 @end example
1898
1899 @section Target Varients
1900 @itemize @bullet
1901 @item @b{arm7tdmi}
1902 @* Unknown (please write me)
1903 @item @b{arm720t}
1904 @* Unknown (please write me) (simular to arm7tdmi)
1905 @item @b{arm9tdmi}
1906 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
1907 This enables the hardware single-stepping support found on these
1908 cores.
1909 @item @b{arm920t}
1910 @* None.
1911 @item @b{arm966e}
1912 @* None (this is also used as the ARM946)
1913 @item @b{cortex_m3}
1914 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
1915 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
1916 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
1917 be detected and the normal reset behaviour used.
1918 @item @b{xscale}
1919 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
1920 @item @b{arm11}
1921 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
1922 @item @b{mips_m4k}
1923 @* Use variant @option{ejtag_srst} when debugging targets that do not
1924 provide a functional SRST line on the EJTAG connector. This causes
1925 OpenOCD to instead use an EJTAG software reset command to reset the
1926 processor. You still need to enable @option{srst} on the reset
1927 configuration command to enable OpenOCD hardware reset functionality.
1928 @comment END varients
1929 @end itemize
1930 @section working_area - Command Removed
1931 @cindex working_area
1932 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
1933 @* This documentation remains because there are existing scripts that
1934 still use this that need to be converted.
1935 @example
1936 working_area target# address size backup| [virtualaddress]
1937 @end example
1938 @* The target# is a the 0 based target numerical index.
1939
1940 This command specifies a working area for the debugger to use. This
1941 may be used to speed-up downloads to target memory and flash
1942 operations, or to perform otherwise unavailable operations (some
1943 coprocessor operations on ARM7/9 systems, for example). The last
1944 parameter decides whether the memory should be preserved
1945 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
1946 possible, use a working_area that doesn't need to be backed up, as
1947 performing a backup slows down operation.
1948
1949 @node Flash Configuration
1950 @chapter Flash Programing
1951 @cindex Flash Configuration
1952
1953 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
1954 flash that a micro may boot from. Perhaps you the reader would like to
1955 contribute support for this.
1956
1957 Flash Steps:
1958 @enumerate
1959 @item Configure via the command @b{flash bank}
1960 @* Normally this is done in a configuration file.
1961 @item Operate on the flash via @b{flash SOMECOMMAND}
1962 @* Often commands to manipulate the flash are typed by a human, or run
1963 via a script in some automated way. For example: To program the boot
1964 flash on your board.
1965 @item GDB Flashing
1966 @* Flashing via GDB requires the flash be configured via ``flash
1967 bank'', and the GDB flash features be enabled. See the Daemon
1968 configuration section for more details.
1969 @end enumerate
1970
1971 @section Flash commands
1972 @cindex Flash commands
1973 @subsection flash banks
1974 @b{flash banks}
1975 @cindex flash banks
1976 @*List configured flash banks
1977 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
1978 @subsection flash info
1979 @b{flash info} <@var{num}>
1980 @cindex flash info
1981 @*Print info about flash bank <@option{num}>
1982 @subsection flash probe
1983 @b{flash probe} <@var{num}>
1984 @cindex flash probe
1985 @*Identify the flash, or validate the parameters of the configured flash. Operation
1986 depends on the flash type.
1987 @subsection flash erase_check
1988 @b{flash erase_check} <@var{num}>
1989 @cindex flash erase_check
1990 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
1991 updates the erase state information displayed by @option{flash info}. That means you have
1992 to issue an @option{erase_check} command after erasing or programming the device to get
1993 updated information.
1994 @subsection flash protect_check
1995 @b{flash protect_check} <@var{num}>
1996 @cindex flash protect_check
1997 @*Check protection state of sectors in flash bank <num>.
1998 @option{flash erase_sector} using the same syntax.
1999 @subsection flash erase_sector
2000 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2001 @cindex flash erase_sector
2002 @anchor{flash erase_sector}
2003 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2004 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2005 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2006 the CFI driver).
2007 @subsection flash erase_address
2008 @b{flash erase_address} <@var{address}> <@var{length}>
2009 @cindex flash erase_address
2010 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2011 @subsection flash write_bank
2012 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2013 @cindex flash write_bank
2014 @anchor{flash write_bank}
2015 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2016 <@option{offset}> bytes from the beginning of the bank.
2017 @subsection flash write_image
2018 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2019 @cindex flash write_image
2020 @anchor{flash write_image}
2021 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2022 [@var{offset}] can be specified and the file [@var{type}] can be specified
2023 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2024 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2025 if the @option{erase} parameter is given.
2026 @subsection flash protect
2027 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2028 @cindex flash protect
2029 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2030 <@var{last}> of @option{flash bank} <@var{num}>.
2031
2032 @subsection mFlash commands
2033 @cindex mFlash commands
2034 @itemize @bullet
2035 @item @b{mflash probe}
2036 @cindex mflash probe
2037 Probe mflash.
2038 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2039 @cindex mflash write
2040 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2041 <@var{offset}> bytes from the beginning of the bank.
2042 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2043 @cindex mflash dump
2044 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2045 to a <@var{file}>.
2046 @end itemize
2047
2048 @section flash bank command
2049 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2050
2051 @example
2052 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2053 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2054 @end example
2055 @cindex flash bank
2056 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2057 and <@var{bus_width}> bytes using the selected flash <driver>.
2058
2059 @subsection External Flash - cfi options
2060 @cindex cfi options
2061 CFI flash are external flash chips - often they are connected to a
2062 specific chip select on the micro. By default at hard reset most
2063 micros have the ablity to ``boot'' from some flash chip - typically
2064 attached to the chips CS0 pin.
2065
2066 For other chip selects: OpenOCD does not know how to configure, or
2067 access a specific chip select. Instead you the human might need to via
2068 other commands (like: mww) configure additional chip selects, or
2069 perhaps configure a GPIO pin that controls the ``write protect'' pin
2070 on the FLASH chip.
2071
2072 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2073 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2074 @*CFI flashes require the number of the target they're connected to as an additional
2075 argument. The CFI driver makes use of a working area (specified for the target)
2076 to significantly speed up operation.
2077
2078 @var{chip_width} and @var{bus_width} are specified in bytes.
2079
2080 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2081
2082 @var{x16_as_x8} ???
2083
2084 @subsection Internal Flash (Micro Controllers)
2085 @subsubsection lpc2000 options
2086 @cindex lpc2000 options
2087
2088 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2089 <@var{clock}> [@var{calc_checksum}]
2090 @*LPC flashes don't require the chip and bus width to be specified. Additional
2091 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2092 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2093 of the target this flash belongs to (first is 0), the frequency at which the core
2094 is currently running (in kHz - must be an integral number), and the optional keyword
2095 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2096 vector table.
2097
2098
2099 @subsubsection at91sam7 options
2100 @cindex at91sam7 options
2101
2102 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2103 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2104 reading the chip-id and type.
2105
2106 @subsubsection str7 options
2107 @cindex str7 options
2108
2109 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2110 @*variant can be either STR71x, STR73x or STR75x.
2111
2112 @subsubsection str9 options
2113 @cindex str9 options
2114
2115 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2116 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2117 @example
2118 str9x flash_config 0 4 2 0 0x80000
2119 @end example
2120 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2121
2122 @subsubsection str9 options (str9xpec driver)
2123
2124 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2125 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2126 @option{enable_turbo} <@var{num>.}
2127
2128 Only use this driver for locking/unlocking the device or configuring the option bytes.
2129 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2130
2131 @subsubsection stellaris (LM3Sxxx) options
2132 @cindex stellaris (LM3Sxxx) options
2133
2134 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2135 @*stellaris flash plugin only require the @var{target#}.
2136
2137 @subsubsection stm32x options
2138 @cindex stm32x options
2139
2140 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2141 @*stm32x flash plugin only require the @var{target#}.
2142
2143 @subsubsection aduc702x options
2144 @cindex aduc702x options
2145
2146 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2147 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
2148
2149 @subsection mFlash configuration
2150 @cindex mFlash configuration
2151 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2152 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2153 @cindex mflash bank
2154 @*Configures a mflash for <@var{soc}> host bank at
2155 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2156 order. Pin number format is dependent on host GPIO calling convention.
2157 If WP or DPD pin was not used, write -1. Currently, mflash bank
2158 support s3c2440 and pxa270.
2159
2160 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2161 @example
2162 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2163 @end example
2164 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2165 @example
2166 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2167 @end example
2168
2169 @section Micro Controller Specific Flash Commands
2170
2171 @subsection AT91SAM7 specific commands
2172 @cindex AT91SAM7 specific commands
2173 The flash configuration is deduced from the chip identification register. The flash
2174 controller handles erases automatically on a page (128/265 byte) basis so erase is
2175 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2176 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2177 that can be erased separatly. Only an EraseAll command is supported by the controller
2178 for each flash plane and this is called with
2179 @itemize @bullet
2180 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2181 @*bulk erase flash planes first_plane to last_plane.
2182 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2183 @cindex at91sam7 gpnvm
2184 @*set or clear a gpnvm bit for the processor
2185 @end itemize
2186
2187 @subsection STR9 specific commands
2188 @cindex STR9 specific commands
2189 @anchor{STR9 specific commands}
2190 These are flash specific commands when using the str9xpec driver.
2191 @itemize @bullet
2192 @item @b{str9xpec enable_turbo} <@var{num}>
2193 @cindex str9xpec enable_turbo
2194 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2195 directly to the embedded flash controller.
2196 @item @b{str9xpec disable_turbo} <@var{num}>
2197 @cindex str9xpec disable_turbo
2198 @*restore the str9 into jtag chain.
2199 @item @b{str9xpec lock} <@var{num}>
2200 @cindex str9xpec lock
2201 @*lock str9 device. The str9 will only respond to an unlock command that will
2202 erase the device.
2203 @item @b{str9xpec unlock} <@var{num}>
2204 @cindex str9xpec unlock
2205 @*unlock str9 device.
2206 @item @b{str9xpec options_read} <@var{num}>
2207 @cindex str9xpec options_read
2208 @*read str9 option bytes.
2209 @item @b{str9xpec options_write} <@var{num}>
2210 @cindex str9xpec options_write
2211 @*write str9 option bytes.
2212 @end itemize
2213
2214 Note: Before using the str9xpec driver here is some background info to help
2215 you better understand how the drivers works. OpenOCD has two flash drivers for
2216 the str9.
2217 @enumerate
2218 @item
2219 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2220 flash programming as it is faster than the @option{str9xpec} driver.
2221 @item
2222 Direct programming @option{str9xpec} using the flash controller, this is
2223 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2224 core does not need to be running to program using this flash driver. Typical use
2225 for this driver is locking/unlocking the target and programming the option bytes.
2226 @end enumerate
2227
2228 Before we run any cmds using the @option{str9xpec} driver we must first disable
2229 the str9 core. This example assumes the @option{str9xpec} driver has been
2230 configured for flash bank 0.
2231 @example
2232 # assert srst, we do not want core running
2233 # while accessing str9xpec flash driver
2234 jtag_reset 0 1
2235 # turn off target polling
2236 poll off
2237 # disable str9 core
2238 str9xpec enable_turbo 0
2239 # read option bytes
2240 str9xpec options_read 0
2241 # re-enable str9 core
2242 str9xpec disable_turbo 0
2243 poll on
2244 reset halt
2245 @end example
2246 The above example will read the str9 option bytes.
2247 When performing a unlock remember that you will not be able to halt the str9 - it
2248 has been locked. Halting the core is not required for the @option{str9xpec} driver
2249 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2250
2251 @subsection STR9 configuration
2252 @cindex STR9 configuration
2253 @itemize @bullet
2254 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2255 <@var{BBADR}> <@var{NBBADR}>
2256 @cindex str9x flash_config
2257 @*Configure str9 flash controller.
2258 @example
2259 eg. str9x flash_config 0 4 2 0 0x80000
2260 This will setup
2261 BBSR - Boot Bank Size register
2262 NBBSR - Non Boot Bank Size register
2263 BBADR - Boot Bank Start Address register
2264 NBBADR - Boot Bank Start Address register
2265 @end example
2266 @end itemize
2267
2268 @subsection STR9 option byte configuration
2269 @cindex STR9 option byte configuration
2270 @itemize @bullet
2271 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2272 @cindex str9xpec options_cmap
2273 @*configure str9 boot bank.
2274 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2275 @cindex str9xpec options_lvdthd
2276 @*configure str9 lvd threshold.
2277 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2278 @cindex str9xpec options_lvdsel
2279 @*configure str9 lvd source.
2280 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2281 @cindex str9xpec options_lvdwarn
2282 @*configure str9 lvd reset warning source.
2283 @end itemize
2284
2285 @subsection STM32x specific commands
2286 @cindex STM32x specific commands
2287
2288 These are flash specific commands when using the stm32x driver.
2289 @itemize @bullet
2290 @item @b{stm32x lock} <@var{num}>
2291 @cindex stm32x lock
2292 @*lock stm32 device.
2293 @item @b{stm32x unlock} <@var{num}>
2294 @cindex stm32x unlock
2295 @*unlock stm32 device.
2296 @item @b{stm32x options_read} <@var{num}>
2297 @cindex stm32x options_read
2298 @*read stm32 option bytes.
2299 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2300 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2301 @cindex stm32x options_write
2302 @*write stm32 option bytes.
2303 @item @b{stm32x mass_erase} <@var{num}>
2304 @cindex stm32x mass_erase
2305 @*mass erase flash memory.
2306 @end itemize
2307
2308 @subsection Stellaris specific commands
2309 @cindex Stellaris specific commands
2310
2311 These are flash specific commands when using the Stellaris driver.
2312 @itemize @bullet
2313 @item @b{stellaris mass_erase} <@var{num}>
2314 @cindex stellaris mass_erase
2315 @*mass erase flash memory.
2316 @end itemize
2317
2318
2319 @node General Commands
2320 @chapter General Commands
2321 @cindex commands
2322
2323 The commands documented in this chapter here are common commands that
2324 you a human may want to type and see the output of. Configuration type
2325 commands are documented elsewhere.
2326
2327 Intent:
2328 @itemize @bullet
2329 @item @b{Source Of Commands}
2330 @* OpenOCD commands can occur in a configuration script (discussed
2331 elsewhere) or typed manually by a human or supplied programatically,
2332 or via one of several Tcp/Ip Ports.
2333
2334 @item @b{From the human}
2335 @* A human should interact with the Telnet interface (default port: 4444,
2336 or via GDB, default port 3333)
2337
2338 To issue commands from within a GDB session, use the @option{monitor}
2339 command, e.g. use @option{monitor poll} to issue the @option{poll}
2340 command. All output is relayed through the GDB session.
2341
2342 @item @b{Machine Interface}
2343 The TCL interface intent is to be a machine interface. The default TCL
2344 port is 5555.
2345 @end itemize
2346
2347
2348 @section Daemon Commands
2349
2350 @subsection sleep
2351 @b{sleep} <@var{msec}>
2352 @cindex sleep
2353 @*Wait for n milliseconds before resuming. Useful in connection with script files
2354 (@var{script} command and @var{target_script} configuration).
2355
2356 @subsection sleep
2357 @b{shutdown}
2358 @cindex shutdown
2359 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2360
2361 @subsection debug_level [@var{n}]
2362 @cindex debug_level
2363 @anchor{debug_level}
2364 @*Display or adjust debug level to n<0-3>
2365
2366 @subsection fast [@var{enable|disable}]
2367 @cindex fast
2368 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2369 downloads and fast memory access will work if the JTAG interface isn't too fast and
2370 the core doesn't run at a too low frequency. Note that this option only changes the default
2371 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2372 individually.
2373
2374 The target specific "dangerous" optimisation tweaking options may come and go
2375 as more robust and user friendly ways are found to ensure maximum throughput
2376 and robustness with a minimum of configuration.
2377
2378 Typically the "fast enable" is specified first on the command line:
2379
2380 @example
2381 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2382 @end example
2383
2384 @subsection log_output <@var{file}>
2385 @cindex log_output
2386 @*Redirect logging to <file> (default: stderr)
2387
2388 @subsection script <@var{file}>
2389 @cindex script
2390 @*Execute commands from <file>
2391 Also see: ``source [find FILENAME]''
2392
2393 @section Target state handling
2394 @subsection power <@var{on}|@var{off}>
2395 @cindex reg
2396 @*Turn power switch to target on/off.
2397 No arguments: print status.
2398 Not all interfaces support this.
2399
2400 @subsection reg [@option{#}|@option{name}] [value]
2401 @cindex reg
2402 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2403 No arguments: list all available registers for the current target.
2404 Number or name argument: display a register
2405 Number or name and value arguments: set register value
2406
2407 @subsection poll [@option{on}|@option{off}]
2408 @cindex poll
2409 @*Poll the target for its current state. If the target is in debug mode, architecture
2410 specific information about the current state is printed. An optional parameter
2411 allows continuous polling to be enabled and disabled.
2412
2413 @subsection halt [@option{ms}]
2414 @cindex halt
2415 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2416 Default [@option{ms}] is 5 seconds if no arg given.
2417 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2418 will stop OpenOCD from waiting.
2419
2420 @subsection wait_halt [@option{ms}]
2421 @cindex wait_halt
2422 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2423 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2424 arg given.
2425
2426 @subsection resume [@var{address}]
2427 @cindex resume
2428 @*Resume the target at its current code position, or at an optional address.
2429 OpenOCD will wait 5 seconds for the target to resume.
2430
2431 @subsection step [@var{address}]
2432 @cindex step
2433 @*Single-step the target at its current code position, or at an optional address.
2434
2435 @subsection reset [@option{run}|@option{halt}|@option{init}]
2436 @cindex reset
2437 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2438
2439 With no arguments a "reset run" is executed
2440 @itemize @minus
2441 @item @b{run}
2442 @cindex reset run
2443 @*Let the target run.
2444 @item @b{halt}
2445 @cindex reset halt
2446 @*Immediately halt the target (works only with certain configurations).
2447 @item @b{init}
2448 @cindex reset init
2449 @*Immediately halt the target, and execute the reset script (works only with certain
2450 configurations)
2451 @end itemize
2452
2453 @subsection soft_reset_halt
2454 @cindex reset
2455 @*Requesting target halt and executing a soft reset. This often used
2456 when a target cannot be reset and halted. The target, after reset is
2457 released begins to execute code. OpenOCD attempts to stop the CPU and
2458 then sets the Program counter back at the reset vector. Unfortunatlly
2459 that code that was executed may have left hardware in an unknown
2460 state.
2461
2462
2463 @section Memory access commands
2464 @subsection meminfo
2465 display available ram memory.
2466 @subsection Memory Peek/Poke type commands
2467 These commands allow accesses of a specific size to the memory
2468 system. Often these are used to configure the current target in some
2469 special way. For example - one may need to write certian values to the
2470 SDRAM controller to enable SDRAM.
2471
2472 @enumerate
2473 @item To change the current target see the ``targets'' (plural) command
2474 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2475 @end enumerate
2476
2477 @itemize @bullet
2478 @item @b{mdw} <@var{addr}> [@var{count}]
2479 @cindex mdw
2480 @*display memory words (32bit)
2481 @item @b{mdh} <@var{addr}> [@var{count}]
2482 @cindex mdh
2483 @*display memory half-words (16bit)
2484 @item @b{mdb} <@var{addr}> [@var{count}]
2485 @cindex mdb
2486 @*display memory bytes (8bit)
2487 @item @b{mww} <@var{addr}> <@var{value}>
2488 @cindex mww
2489 @*write memory word (32bit)
2490 @item @b{mwh} <@var{addr}> <@var{value}>
2491 @cindex mwh
2492 @*write memory half-word (16bit)
2493 @item @b{mwb} <@var{addr}> <@var{value}>
2494 @cindex mwb
2495 @*write memory byte (8bit)
2496 @end itemize
2497
2498 @section Image Loading Commands
2499 @subsection load_image
2500 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2501 @cindex load_image
2502 @anchor{load_image}
2503 @*Load image <@var{file}> to target memory at <@var{address}>
2504 @subsection fast_load_image
2505 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2506 @cindex fast_load_image
2507 @anchor{fast_load_image}
2508 @*Normally you should be using @b{load_image} or GDB load. However, for
2509 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2510 host), then storing the image in memory and uploading the image to the target
2511 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2512 Arguments as @b{load_image}, but image is stored in OpenOCD host
2513 memory, i.e. does not affect target. This approach is also useful when profiling
2514 target programming performance as IO and target programming can easily be profiled
2515 seperately.
2516 @subsection fast_load
2517 @b{fast_load}
2518 @cindex fast_image
2519 @anchor{fast_image}
2520 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2521 @subsection dump_image
2522 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2523 @cindex dump_image
2524 @anchor{dump_image}
2525 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2526 (binary) <@var{file}>.
2527 @subsection verify_image
2528 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2529 @cindex verify_image
2530 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2531 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2532
2533
2534 @section Breakpoint commands
2535 @cindex Breakpoint commands
2536 @itemize @bullet
2537 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2538 @cindex bp
2539 @*set breakpoint <address> <length> [hw]
2540 @item @b{rbp} <@var{addr}>
2541 @cindex rbp
2542 @*remove breakpoint <adress>
2543 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2544 @cindex wp
2545 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2546 @item @b{rwp} <@var{addr}>
2547 @cindex rwp
2548 @*remove watchpoint <adress>
2549 @end itemize
2550
2551 @section Misc Commands
2552 @cindex Other Target Commands
2553 @itemize
2554 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2555
2556 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2557 @end itemize
2558
2559 @section Target Specific Commands
2560 @cindex Target Specific Commands
2561
2562
2563 @page
2564 @section Architecture Specific Commands
2565 @cindex Architecture Specific Commands
2566
2567 @subsection ARMV4/5 specific commands
2568 @cindex ARMV4/5 specific commands
2569
2570 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2571 or Intel XScale (XScale isn't supported yet).
2572 @itemize @bullet
2573 @item @b{armv4_5 reg}
2574 @cindex armv4_5 reg
2575 @*Display a list of all banked core registers, fetching the current value from every
2576 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2577 register value.
2578 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2579 @cindex armv4_5 core_mode
2580 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2581 The target is resumed in the currently set @option{core_mode}.
2582 @end itemize
2583
2584 @subsection ARM7/9 specific commands
2585 @cindex ARM7/9 specific commands
2586
2587 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2588 ARM920t or ARM926EJ-S.
2589 @itemize @bullet
2590 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2591 @cindex arm7_9 dbgrq
2592 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2593 safe for all but ARM7TDMI--S cores (like Philips LPC).
2594 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2595 @cindex arm7_9 fast_memory_access
2596 @anchor{arm7_9 fast_memory_access}
2597 @*Allow OpenOCD to read and write memory without checking completion of
2598 the operation. This provides a huge speed increase, especially with USB JTAG
2599 cables (FT2232), but might be unsafe if used with targets running at a very low
2600 speed, like the 32kHz startup clock of an AT91RM9200.
2601 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2602 @cindex arm7_9 dcc_downloads
2603 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2604 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2605 unsafe, especially with targets running at a very low speed. This command was introduced
2606 with OpenOCD rev. 60.
2607 @end itemize
2608
2609 @subsection ARM720T specific commands
2610 @cindex ARM720T specific commands
2611
2612 @itemize @bullet
2613 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2614 @cindex arm720t cp15
2615 @*display/modify cp15 register <@option{num}> [@option{value}].
2616 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2617 @cindex arm720t md<bhw>_phys
2618 @*Display memory at physical address addr.
2619 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2620 @cindex arm720t mw<bhw>_phys
2621 @*Write memory at physical address addr.
2622 @item @b{arm720t virt2phys} <@var{va}>
2623 @cindex arm720t virt2phys
2624 @*Translate a virtual address to a physical address.
2625 @end itemize
2626
2627 @subsection ARM9TDMI specific commands
2628 @cindex ARM9TDMI specific commands
2629
2630 @itemize @bullet
2631 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2632 @cindex arm9tdmi vector_catch
2633 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2634 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2635 @option{irq} @option{fiq}.
2636
2637 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2638 @end itemize
2639
2640 @subsection ARM966E specific commands
2641 @cindex ARM966E specific commands
2642
2643 @itemize @bullet
2644 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2645 @cindex arm966e cp15
2646 @*display/modify cp15 register <@option{num}> [@option{value}].
2647 @end itemize
2648
2649 @subsection ARM920T specific commands
2650 @cindex ARM920T specific commands
2651
2652 @itemize @bullet
2653 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2654 @cindex arm920t cp15
2655 @*display/modify cp15 register <@option{num}> [@option{value}].
2656 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2657 @cindex arm920t cp15i
2658 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2659 @item @b{arm920t cache_info}
2660 @cindex arm920t cache_info
2661 @*Print information about the caches found. This allows you to see if your target
2662 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2663 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2664 @cindex arm920t md<bhw>_phys
2665 @*Display memory at physical address addr.
2666 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2667 @cindex arm920t mw<bhw>_phys
2668 @*Write memory at physical address addr.
2669 @item @b{arm920t read_cache} <@var{filename}>
2670 @cindex arm920t read_cache
2671 @*Dump the content of ICache and DCache to a file.
2672 @item @b{arm920t read_mmu} <@var{filename}>
2673 @cindex arm920t read_mmu
2674 @*Dump the content of the ITLB and DTLB to a file.
2675 @item @b{arm920t virt2phys} <@var{va}>
2676 @cindex arm920t virt2phys
2677 @*Translate a virtual address to a physical address.
2678 @end itemize
2679
2680 @subsection ARM926EJS specific commands
2681 @cindex ARM926EJS specific commands
2682
2683 @itemize @bullet
2684 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2685 @cindex arm926ejs cp15
2686 @*display/modify cp15 register <@option{num}> [@option{value}].
2687 @item @b{arm926ejs cache_info}
2688 @cindex arm926ejs cache_info
2689 @*Print information about the caches found.
2690 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2691 @cindex arm926ejs md<bhw>_phys
2692 @*Display memory at physical address addr.
2693 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2694 @cindex arm926ejs mw<bhw>_phys
2695 @*Write memory at physical address addr.
2696 @item @b{arm926ejs virt2phys} <@var{va}>
2697 @cindex arm926ejs virt2phys
2698 @*Translate a virtual address to a physical address.
2699 @end itemize
2700
2701 @subsection CORTEX_M3 specific commands
2702 @cindex CORTEX_M3 specific commands
2703
2704 @itemize @bullet
2705 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2706 @cindex cortex_m3 maskisr
2707 @*Enable masking (disabling) interrupts during target step/resume.
2708 @end itemize
2709
2710 @page
2711 @section Debug commands
2712 @cindex Debug commands
2713 The following commands give direct access to the core, and are most likely
2714 only useful while debugging OpenOCD.
2715 @itemize @bullet
2716 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2717 @cindex arm7_9 write_xpsr
2718 @*Immediately write either the current program status register (CPSR) or the saved
2719 program status register (SPSR), without changing the register cache (as displayed
2720 by the @option{reg} and @option{armv4_5 reg} commands).
2721 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2722 <@var{0=cpsr},@var{1=spsr}>
2723 @cindex arm7_9 write_xpsr_im8
2724 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2725 operation (similar to @option{write_xpsr}).
2726 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2727 @cindex arm7_9 write_core_reg
2728 @*Write a core register, without changing the register cache (as displayed by the
2729 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2730 encoding of the [M4:M0] bits of the PSR.
2731 @end itemize
2732
2733 @section Target Requests
2734 @cindex Target Requests
2735 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2736 See libdcc in the contrib dir for more details.
2737 @itemize @bullet
2738 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2739 @cindex target_request debugmsgs
2740 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2741 @end itemize
2742
2743 @node JTAG Commands
2744 @chapter JTAG Commands
2745 @cindex JTAG commands
2746 Generally most people will not use the bulk of these commands. They
2747 are mostly used by the OpenOCD developers or those who need to
2748 directly manipulate the JTAG taps.
2749
2750 In general these commands control JTAG taps at a very low level. For
2751 example if you need to control a JTAG Route Controller (ie: the
2752 OMAP3530 on the Beagle Board has one) you might use these commands in
2753 a script or an event procedure.
2754
2755 @itemize @bullet
2756 @item @b{scan_chain}
2757 @cindex scan_chain
2758 @*Print current scan chain configuration.
2759 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2760 @cindex jtag_reset
2761 @*Toggle reset lines.
2762 @item @b{endstate} <@var{tap_state}>
2763 @cindex endstate
2764 @*Finish JTAG operations in <@var{tap_state}>.
2765 @item @b{runtest} <@var{num_cycles}>
2766 @cindex runtest
2767 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2768 @item @b{statemove} [@var{tap_state}]
2769 @cindex statemove
2770 @*Move to current endstate or [@var{tap_state}]
2771 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2772 @cindex irscan
2773 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2774 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2775 @cindex drscan
2776 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2777 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2778 @cindex verify_ircapture
2779 @*Verify value captured during Capture-IR. Default is enabled.
2780 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2781 @cindex var
2782 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2783 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2784 @cindex field
2785 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2786 @end itemize
2787
2788
2789 @node TFTP
2790 @chapter TFTP
2791 @cindex TFTP
2792 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2793 be used to access files on PCs(either developer PC or some other PC).
2794
2795 The way this works on the ZY1000 is to prefix a filename by
2796 "/tftp/ip/" and append the tftp path on the tftp
2797 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2798 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2799 if the file was hosted on the embedded host.
2800
2801 In order to achieve decent performance, you must choose a tftp server
2802 that supports a packet size bigger than the default packet size(512 bytes). There
2803 are numerous tftp servers out there(free and commercial) and you will have to do
2804 a bit of googling to find something that fits your requirements.
2805
2806 @node Sample Scripts
2807 @chapter Sample Scripts
2808 @cindex scripts
2809
2810 This page shows how to use the target library.
2811
2812 The configuration script can be divided in the following section:
2813 @itemize @bullet
2814 @item daemon configuration
2815 @item interface
2816 @item jtag scan chain
2817 @item target configuration
2818 @item flash configuration
2819 @end itemize
2820
2821 Detailed information about each section can be found at OpenOCD configuration.
2822
2823 @section AT91R40008 example
2824 @cindex AT91R40008 example
2825 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2826 the CPU upon startup of the OpenOCD daemon.
2827 @example
2828 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2829 @end example
2830
2831
2832 @node GDB and OpenOCD
2833 @chapter GDB and OpenOCD
2834 @cindex GDB and OpenOCD
2835 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2836 to debug remote targets.
2837
2838 @section Connecting to GDB
2839 @cindex Connecting to GDB
2840 @anchor{Connecting to GDB}
2841 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2842 instance 6.3 has a known bug where it produces bogus memory access
2843 errors, which has since been fixed: look up 1836 in
2844 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2845
2846 @*OpenOCD can communicate with GDB in two ways:
2847 @enumerate
2848 @item
2849 A socket (tcp) connection is typically started as follows:
2850 @example
2851 target remote localhost:3333
2852 @end example
2853 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
2854 @item
2855 A pipe connection is typically started as follows:
2856 @example
2857 target remote openocd --pipe
2858 @end example
2859 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
2860 Using this method has the advantage of GDB starting/stopping OpenOCD for debug session.
2861 @end enumerate
2862
2863 @*To see a list of available OpenOCD commands type @option{monitor help} on the
2864 GDB commandline.
2865
2866 OpenOCD supports the gdb @option{qSupported} packet, this enables information
2867 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
2868 packet size and device memory map.
2869
2870 Previous versions of OpenOCD required the following GDB options to increase
2871 the packet size and speed up GDB communication.
2872 @example
2873 set remote memory-write-packet-size 1024
2874 set remote memory-write-packet-size fixed
2875 set remote memory-read-packet-size 1024
2876 set remote memory-read-packet-size fixed
2877 @end example
2878 This is now handled in the @option{qSupported} PacketSize and should not be required.
2879
2880 @section Programming using GDB
2881 @cindex Programming using GDB
2882
2883 By default the target memory map is sent to GDB, this can be disabled by
2884 the following OpenOCD config option:
2885 @example
2886 gdb_memory_map disable
2887 @end example
2888 For this to function correctly a valid flash config must also be configured
2889 in OpenOCD. For faster performance you should also configure a valid
2890 working area.
2891
2892 Informing GDB of the memory map of the target will enable GDB to protect any
2893 flash area of the target and use hardware breakpoints by default. This means
2894 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
2895 using a memory map. @xref{gdb_breakpoint_override}.
2896
2897 To view the configured memory map in GDB, use the gdb command @option{info mem}
2898 All other unasigned addresses within GDB are treated as RAM.
2899
2900 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
2901 this can be changed to the old behaviour by using the following GDB command.
2902 @example
2903 set mem inaccessible-by-default off
2904 @end example
2905
2906 If @option{gdb_flash_program enable} is also used, GDB will be able to
2907 program any flash memory using the vFlash interface.
2908
2909 GDB will look at the target memory map when a load command is given, if any
2910 areas to be programmed lie within the target flash area the vFlash packets
2911 will be used.
2912
2913 If the target needs configuring before GDB programming, an event
2914 script can be executed.
2915 @example
2916 $_TARGETNAME configure -event EVENTNAME BODY
2917 @end example
2918
2919 To verify any flash programming the GDB command @option{compare-sections}
2920 can be used.
2921
2922 @node TCL scripting API
2923 @chapter TCL scripting API
2924 @cindex TCL scripting API
2925 API rules
2926
2927 The commands are stateless. E.g. the telnet command line has a concept
2928 of currently active target, the Tcl API proc's take this sort of state
2929 information as an argument to each proc.
2930
2931 There are three main types of return values: single value, name value
2932 pair list and lists.
2933
2934 Name value pair. The proc 'foo' below returns a name/value pair
2935 list.
2936
2937 @verbatim
2938
2939 > set foo(me) Duane
2940 > set foo(you) Oyvind
2941 > set foo(mouse) Micky
2942 > set foo(duck) Donald
2943
2944 If one does this:
2945
2946 > set foo
2947
2948 The result is:
2949
2950 me Duane you Oyvind mouse Micky duck Donald
2951
2952 Thus, to get the names of the associative array is easy:
2953
2954 foreach { name value } [set foo] {
2955 puts "Name: $name, Value: $value"
2956 }
2957 @end verbatim
2958
2959 Lists returned must be relatively small. Otherwise a range
2960 should be passed in to the proc in question.
2961
2962 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
2963 is the low level API upon which "flash banks" is implemented.
2964
2965 @itemize @bullet
2966 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2967
2968 Read memory and return as a TCL array for script processing
2969 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2970
2971 Convert a TCL array to memory locations and write the values
2972 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
2973
2974 Return information about the flash banks
2975 @end itemize
2976
2977 OpenOCD commands can consist of two words, e.g. "flash banks". The
2978 startup.tcl "unknown" proc will translate this into a tcl proc
2979 called "flash_banks".
2980
2981
2982 @node Upgrading
2983 @chapter Deprecated/Removed Commands
2984 @cindex Deprecated/Removed Commands
2985 Certain OpenOCD commands have been deprecated/removed during the various revisions.
2986
2987 @itemize @bullet
2988 @item @b{arm7_9 fast_writes}
2989 @cindex arm7_9 fast_writes
2990 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
2991 @item @b{arm7_9 force_hw_bkpts}
2992 @cindex arm7_9 force_hw_bkpts
2993 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
2994 for flash if the gdb memory map has been set up(default when flash is declared in
2995 target configuration). @xref{gdb_breakpoint_override}.
2996 @item @b{arm7_9 sw_bkpts}
2997 @cindex arm7_9 sw_bkpts
2998 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
2999 @item @b{daemon_startup}
3000 @cindex daemon_startup
3001 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3002 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3003 and @option{target cortex_m3 little reset_halt 0}.
3004 @item @b{dump_binary}
3005 @cindex dump_binary
3006 @*use @option{dump_image} command with same args. @xref{dump_image}.
3007 @item @b{flash erase}
3008 @cindex flash erase
3009 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3010 @item @b{flash write}
3011 @cindex flash write
3012 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3013 @item @b{flash write_binary}
3014 @cindex flash write_binary
3015 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3016 @item @b{flash auto_erase}
3017 @cindex flash auto_erase
3018 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3019 @item @b{load_binary}
3020 @cindex load_binary
3021 @*use @option{load_image} command with same args. @xref{load_image}.
3022 @item @b{run_and_halt_time}
3023 @cindex run_and_halt_time
3024 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3025 following commands:
3026 @smallexample
3027 reset run
3028 sleep 100
3029 halt
3030 @end smallexample
3031 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3032 @cindex target
3033 @*use the create subcommand of @option{target}.
3034 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3035 @cindex target_script
3036 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3037 @item @b{working_area}
3038 @cindex working_area
3039 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3040 @end itemize
3041
3042 @node FAQ
3043 @chapter FAQ
3044 @cindex faq
3045 @enumerate
3046 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3047 @cindex RTCK
3048 @cindex adaptive clocking
3049 @*
3050
3051 In digital circuit design it is often refered to as ``clock
3052 syncronization'' the JTAG interface uses one clock (TCK or TCLK)
3053 operating at some speed, your target is operating at another. The two
3054 clocks are not syncronized, they are ``asynchronous''
3055
3056 In order for the two to work together they must syncronize. Otherwise
3057 the two systems will get out of sync with each other and nothing will
3058 work. There are 2 basic options. @b{1.} use a special circuit or
3059 @b{2.} one clock must be some multile slower the the other.
3060
3061 @b{Does this really matter?} For some chips and some situations, this
3062 is a non-issue (ie: A 500mhz ARM926) but for others - for example some
3063 ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
3064 program/enable the oscillators and eventually the main clock. It is in
3065 those critical times you must slow the jtag clock to sometimes 1 to
3066 4khz.
3067
3068 Imagine debugging that 500mhz arm926 hand held battery powered device
3069 that ``deep sleeps'' at 32khz between every keystroke. It can be
3070 painful.
3071
3072 @b{Solution #1 - A special circuit}
3073
3074 In order to make use of this your jtag dongle must support the RTCK
3075 feature. Not all dongles support this - keep reading!
3076
3077 The RTCK signal often found in some ARM chips is used to help with
3078 this problem. ARM has a good description of the problem described at
3079 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3080 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3081 work? / how does adaptive clocking working?''.
3082
3083 The nice thing about adaptive clocking is that ``battery powered hand
3084 held device example'' - the adaptiveness works perfectly all the
3085 time. One can set a break point or halt the system in the deep power
3086 down code, slow step out until the system speeds up.
3087
3088 @b{Solution #2 - Always works - but is slower}
3089
3090 Often this is a perfectly acceptable solution.
3091
3092 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3093 the target clock speed. But what is that ``magic division'' it varies
3094 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3095 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3096 1/12 the clock speed.
3097
3098 Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
3099
3100 You can still debug the 'lower power' situations - you just need to
3101 manually adjust the clock speed at every step. While painful and
3102 teadious, it is not always practical.
3103
3104 It is however easy to ``code your way around it'' - ie: Cheat a little
3105 have a special debug mode in your application that does a ``high power
3106 sleep''. If you are careful - 98% of your problems can be debugged
3107 this way.
3108
3109 To set the JTAG frequency use the command:
3110
3111 @example
3112 # Example: 1.234mhz
3113 jtag_khz 1234
3114 @end example
3115
3116
3117 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3118
3119 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3120 around Windows filenames.
3121
3122 @example
3123 > echo \a
3124
3125 > echo @{\a@}
3126 \a
3127 > echo "\a"
3128
3129 >
3130 @end example
3131
3132
3133 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3134
3135 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3136 claims to come with all the necessary dlls. When using Cygwin, try launching
3137 OpenOCD from the Cygwin shell.
3138
3139 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3140 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3141 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3142
3143 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3144 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3145 software breakpoints consume one of the two available hardware breakpoints.
3146
3147 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3148 and works sometimes fine.
3149
3150 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3151 clock at the time you're programming the flash. If you've specified the crystal's
3152 frequency, make sure the PLL is disabled, if you've specified the full core speed
3153 (e.g. 60MHz), make sure the PLL is enabled.
3154
3155 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3156 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3157 out while waiting for end of scan, rtck was disabled".
3158
3159 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3160 settings in your PC BIOS (ECP, EPP, and different versions of those).
3161
3162 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3163 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3164 memory read caused data abort".
3165
3166 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3167 beyond the last valid frame. It might be possible to prevent this by setting up
3168 a proper "initial" stack frame, if you happen to know what exactly has to
3169 be done, feel free to add this here.
3170
3171 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3172 stack before calling main(). What GDB is doing is ``climbing'' the run
3173 time stack by reading various values on the stack using the standard
3174 call frame for the target. GDB keeps going - until one of 2 things
3175 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3176 stackframes have been processed. By pushing ZEROs on the stack, GDB
3177 gracefully stops.
3178
3179 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3180 your C code, do the same, artifically push some zeros on to the stack,
3181 remember to pop them off when the ISR is done.
3182
3183 @b{Also note:} If you have a multi-threaded operating system, they
3184 often do not @b{in the intrest of saving memory} waste these few
3185 bytes. Painful...
3186
3187
3188 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3189 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3190
3191 This warning doesn't indicate any serious problem, as long as you don't want to
3192 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3193 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3194 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3195 independently. With this setup, it's not possible to halt the core right out of
3196 reset, everything else should work fine.
3197
3198 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3199 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3200 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3201 quit with an error message. Is there a stability issue with OpenOCD?
3202
3203 No, this is not a stability issue concerning OpenOCD. Most users have solved
3204 this issue by simply using a self-powered USB hub, which they connect their
3205 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3206 supply stable enough for the Amontec JTAGkey to be operated.
3207
3208 @b{Laptops running on battery have this problem too...}
3209
3210 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3211 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3212 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3213 What does that mean and what might be the reason for this?
3214
3215 First of all, the reason might be the USB power supply. Try using a self-powered
3216 hub instead of a direct connection to your computer. Secondly, the error code 4
3217 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3218 chip ran into some sort of error - this points us to a USB problem.
3219
3220 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3221 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3222 What does that mean and what might be the reason for this?
3223
3224 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3225 has closed the connection to OpenOCD. This might be a GDB issue.
3226
3227 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3228 are described, there is a parameter for specifying the clock frequency
3229 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3230 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3231 specified in kilohertz. However, I do have a quartz crystal of a
3232 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3233 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3234 clock frequency?
3235
3236 No. The clock frequency specified here must be given as an integral number.
3237 However, this clock frequency is used by the In-Application-Programming (IAP)
3238 routines of the LPC2000 family only, which seems to be very tolerant concerning
3239 the given clock frequency, so a slight difference between the specified clock
3240 frequency and the actual clock frequency will not cause any trouble.
3241
3242 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3243
3244 Well, yes and no. Commands can be given in arbitrary order, yet the
3245 devices listed for the JTAG scan chain must be given in the right
3246 order (jtag newdevice), with the device closest to the TDO-Pin being
3247 listed first. In general, whenever objects of the same type exist
3248 which require an index number, then these objects must be given in the
3249 right order (jtag newtap, targets and flash banks - a target
3250 references a jtag newtap and a flash bank references a target).
3251
3252 You can use the ``scan_chain'' command to verify and display the tap order.
3253
3254 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3255
3256 Many newer devices have multiple JTAG taps. For example: ST
3257 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3258 ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
3259 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3260 connected to the Boundary Scan Tap, which then connects to the
3261 CortexM3 Tap, which then connects to the TDO pin.
3262
3263 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3264 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3265 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3266 place it before or after the stm32 chip in the chain. For example:
3267
3268 @itemize @bullet
3269 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3270 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3271 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3272 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3273 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3274 @end itemize
3275
3276 The ``jtag device'' commands would thus be in the order shown below. Note
3277
3278 @itemize @bullet
3279 @item jtag newtap Xilinx tap -irlen ...
3280 @item jtag newtap stm32 cpu -irlen ...
3281 @item jtag newtap stm32 bs -irlen ...
3282 @item # Create the debug target and say where it is
3283 @item target create stm32.cpu -chain-position stm32.cpu ...
3284 @end itemize
3285
3286
3287 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3288 log file, I can see these error messages: Error: arm7_9_common.c:561
3289 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3290
3291 TODO.
3292
3293 @end enumerate
3294
3295 @node TCL Crash Course
3296 @chapter TCL Crash Course
3297 @cindex TCL
3298
3299 Not everyone knows TCL - this is not intended to be a replacement for
3300 learning TCL, the intent of this chapter is to give you some idea of
3301 how the TCL Scripts work.
3302
3303 This chapter is written with two audiences in mind. (1) OpenOCD users
3304 who need to understand a bit more of how JIM-Tcl works so they can do
3305 something useful, and (2) those that want to add a new command to
3306 OpenOCD.
3307
3308 @section TCL Rule #1
3309 There is a famous joke, it goes like this:
3310 @enumerate
3311 @item Rule #1: The wife is always correct
3312 @item Rule #2: If you think otherwise, See Rule #1
3313 @end enumerate
3314
3315 The TCL equal is this:
3316
3317 @enumerate
3318 @item Rule #1: Everything is a string
3319 @item Rule #2: If you think otherwise, See Rule #1
3320 @end enumerate
3321
3322 As in the famous joke, the consequences of Rule #1 are profound. Once
3323 you understand Rule #1, you will understand TCL.
3324
3325 @section TCL Rule #1b
3326 There is a second pair of rules.
3327 @enumerate
3328 @item Rule #1: Control flow does not exist. Only commands
3329 @* For example: the classic FOR loop or IF statement is not a control
3330 flow item, they are commands, there is no such thing as control flow
3331 in TCL.
3332 @item Rule #2: If you think otherwise, See Rule #1
3333 @* Actually what happens is this: There are commands that by
3334 convention, act like control flow key words in other languages. One of
3335 those commands is the word ``for'', another command is ``if''.
3336 @end enumerate
3337
3338 @section Per Rule #1 - All Results are strings
3339 Every TCL command results in a string. The word ``result'' is used
3340 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3341 Everything is a string}
3342
3343 @section TCL Quoting Operators
3344 In life of a TCL script, there are two important periods of time, the
3345 difference is subtle.
3346 @enumerate
3347 @item Parse Time
3348 @item Evaluation Time
3349 @end enumerate
3350
3351 The two key items here are how ``quoted things'' work in TCL. TCL has
3352 three primary quoting constructs, the [square-brackets] the
3353 @{curly-braces@} and ``double-quotes''
3354
3355 By now you should know $VARIABLES always start with a $DOLLAR
3356 sign. BTW, to set a variable, you actually use the command ``set'', as
3357 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3358 = 1'' statement, but without the equal sign.
3359
3360 @itemize @bullet
3361 @item @b{[square-brackets]}
3362 @* @b{[square-brackets]} are command subsitution. It operates much
3363 like Unix Shell `back-ticks`. The result of a [square-bracket]
3364 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3365 string}. These two statments are roughly identical.
3366 @example
3367 # bash example
3368 X=`date`
3369 echo "The Date is: $X"
3370 # TCL example
3371 set X [date]
3372 puts "The Date is: $X"
3373 @end example
3374 @item @b{``double-quoted-things''}
3375 @* @b{``double-quoted-things''} are just simply quoted
3376 text. $VARIABLES and [square-brackets] are expanded in place - the
3377 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3378 is a string}
3379 @example
3380 set x "Dinner"
3381 puts "It is now \"[date]\", $x is in 1 hour"
3382 @end example
3383 @item @b{@{Curly-Braces@}}
3384 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3385 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3386 'single-quote' operators in BASH shell scripts, with the added
3387 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3388 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3389 28/nov/2008, Jim/OpenOCD does not have a date command.
3390 @end itemize
3391
3392 @section Consequences of Rule 1/2/3/4
3393
3394 The consequences of Rule 1 is profound.
3395
3396 @subsection Tokenizing & Execution.
3397
3398 Of course, whitespace, blank lines and #comment lines are handled in
3399 the normal way.
3400
3401 As a script is parsed, each (multi) line in the script file is
3402 tokenized and according to the quoting rules. After tokenizing, that
3403 line is immedatly executed.
3404
3405 Multi line statements end with one or more ``still-open''
3406 @{curly-braces@} which - eventually - a few lines later closes.
3407
3408 @subsection Command Execution
3409
3410 Remember earlier: There is no such thing as ``control flow''
3411 statements in TCL. Instead there are COMMANDS that simpily act like
3412 control flow operators.
3413
3414 Commands are executed like this:
3415
3416 @enumerate
3417 @item Parse the next line into (argc) and (argv[]).
3418 @item Look up (argv[0]) in a table and call its function.
3419 @item Repeat until End Of File.
3420 @end enumerate
3421
3422 It sort of works like this:
3423 @example
3424 for(;;)@{
3425 ReadAndParse( &argc, &argv );
3426
3427 cmdPtr = LookupCommand( argv[0] );
3428
3429 (*cmdPtr->Execute)( argc, argv );
3430 @}
3431 @end example
3432
3433 When the command ``proc'' is parsed (which creates a procedure
3434 function) it gets 3 parameters on the command line. @b{1} the name of
3435 the proc (function), @b{2} the list of parameters, and @b{3} the body
3436 of the function. Not the choice of words: LIST and BODY. The PROC
3437 command stores these items in a table somewhere so it can be found by
3438 ``LookupCommand()''
3439
3440 @subsection The FOR Command
3441
3442 The most interesting command to look at is the FOR command. In TCL,
3443 the FOR command is normally implimented in C. Remember, FOR is a
3444 command just like any other command.
3445
3446 When the ascii text containing the FOR command is parsed, the parser
3447 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3448 are:
3449
3450 @enumerate 0
3451 @item The ascii text 'for'
3452 @item The start text
3453 @item The test expression
3454 @item The next text
3455 @item The body text
3456 @end enumerate
3457
3458 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3459 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3460 Often many of those parameters are in @{curly-braces@} - thus the
3461 variables inside are not expanded or replaced until later.
3462
3463 Remember that every TCL command looks like the classic ``main( argc,
3464 argv )'' function in C. In JimTCL - they actually look like this:
3465
3466 @example
3467 int
3468 MyCommand( Jim_Interp *interp,
3469 int *argc,
3470 Jim_Obj * const *argvs );
3471 @end example
3472
3473 Real TCL is nearly identical. Although the newer versions have
3474 introduced a byte-code parser and intepreter, but at the core, it
3475 still operates in the same basic way.
3476
3477 @subsection FOR Command Implimentation
3478
3479 To understand TCL it is perhaps most helpful to see the FOR
3480 command. Remember, it is a COMMAND not a control flow structure.
3481
3482 In TCL there are two underying C helper functions.
3483
3484 Remember Rule #1 - You are a string.
3485
3486 The @b{first} helper parses and executes commands found in an ascii
3487 string. Commands can be seperated by semi-colons, or newlines. While
3488 parsing, variables are expanded per the quoting rules
3489
3490 The @b{second} helper evaluates an ascii string as a numerical
3491 expression and returns a value.
3492
3493 Here is an example of how the @b{FOR} command could be
3494 implimented. The pseudo code below does not show error handling.
3495 @example
3496 void Execute_AsciiString( void *interp, const char *string );
3497
3498 int Evaluate_AsciiExpression( void *interp, const char *string );
3499
3500 int
3501 MyForCommand( void *interp,
3502 int argc,
3503 char **argv )
3504 @{
3505 if( argc != 5 )@{
3506 SetResult( interp, "WRONG number of parameters");
3507 return ERROR;
3508 @}
3509
3510 // argv[0] = the ascii string just like C
3511
3512 // Execute the start statement.
3513 Execute_AsciiString( interp, argv[1] );
3514
3515 // Top of loop test
3516 for(;;)@{
3517 i = Evaluate_AsciiExpression(interp, argv[2]);
3518 if( i == 0 )
3519 break;
3520
3521 // Execute the body
3522 Execute_AsciiString( interp, argv[3] );
3523
3524 // Execute the LOOP part
3525 Execute_AsciiString( interp, argv[4] );
3526 @}
3527
3528 // Return no error
3529 SetResult( interp, "" );
3530 return SUCCESS;
3531 @}
3532 @end example
3533
3534 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3535 in the same basic way.
3536
3537 @section OpenOCD TCL Usage
3538
3539 @subsection source and find commands
3540 @b{Where:} In many configuration files
3541 @* Example: @b{ source [find FILENAME] }
3542 @*Remember the parsing rules
3543 @enumerate
3544 @item The FIND command is in square brackets.
3545 @* The FIND command is executed with the parameter FILENAME. It should
3546 find the full path to the named file. The RESULT is a string, which is
3547 subsituted on the orginal command line.
3548 @item The command source is executed with the resulting filename.
3549 @* SOURCE reads a file and executes as a script.
3550 @end enumerate
3551 @subsection format command
3552 @b{Where:} Generally occurs in numerous places.
3553 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3554 @b{sprintf()}.
3555 @b{Example}
3556 @example
3557 set x 6
3558 set y 7
3559 puts [format "The answer: %d" [expr $x * $y]]
3560 @end example
3561 @enumerate
3562 @item The SET command creates 2 variables, X and Y.
3563 @item The double [nested] EXPR command performs math
3564 @* The EXPR command produces numerical result as a string.
3565 @* Refer to Rule #1
3566 @item The format command is executed, producing a single string
3567 @* Refer to Rule #1.
3568 @item The PUTS command outputs the text.
3569 @end enumerate
3570 @subsection Body Or Inlined Text
3571 @b{Where:} Various TARGET scripts.
3572 @example
3573 #1 Good
3574 proc someproc @{@} @{
3575 ... multiple lines of stuff ...
3576 @}
3577 $_TARGETNAME configure -event FOO someproc
3578 #2 Good - no variables
3579 $_TARGETNAME confgure -event foo "this ; that;"
3580 #3 Good Curly Braces
3581 $_TARGETNAME configure -event FOO @{
3582 puts "Time: [date]"
3583 @}
3584 #4 DANGER DANGER DANGER
3585 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3586 @end example
3587 @enumerate
3588 @item The $_TARGETNAME is an OpenOCD variable convention.
3589 @*@b{$_TARGETNAME} represents the last target created, the value changes
3590 each time a new target is created. Remember the parsing rules. When
3591 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3592 the name of the target which happens to be a TARGET (object)
3593 command.
3594 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3595 @*There are 4 examples:
3596 @enumerate
3597 @item The TCLBODY is a simple string that happens to be a proc name
3598 @item The TCLBODY is several simple commands semi-colon seperated
3599 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3600 @item The TCLBODY is a string with variables that get expanded.
3601 @end enumerate
3602
3603 In the end, when the target event FOO occurs the TCLBODY is
3604 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3605 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3606
3607 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3608 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3609 and the text is evaluated. In case #4, they are replaced before the
3610 ``Target Object Command'' is executed. This occurs at the same time
3611 $_TARGETNAME is replaced. In case #4 the date will never
3612 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3613 Jim/OpenOCD does not have a date command@}
3614 @end enumerate
3615 @subsection Global Variables
3616 @b{Where:} You might discover this when writing your own procs @* In
3617 simple terms: Inside a PROC, if you need to access a global variable
3618 you must say so. Also see ``upvar''. Example:
3619 @example
3620 proc myproc @{ @} @{
3621 set y 0 #Local variable Y
3622 global x #Global variable X
3623 puts [format "X=%d, Y=%d" $x $y]
3624 @}
3625 @end example
3626 @section Other Tcl Hacks
3627 @b{Dynamic Variable Creation}
3628 @example
3629 # Dynamically create a bunch of variables.
3630 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3631 # Create var name
3632 set vn [format "BIT%d" $x]
3633 # Make it a global
3634 global $vn
3635 # Set it.
3636 set $vn [expr (1 << $x)]
3637 @}
3638 @end example
3639 @b{Dynamic Proc/Command Creation}
3640 @example
3641 # One "X" function - 5 uart functions.
3642 foreach who @{A B C D E@}
3643 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3644 @}
3645 @end example
3646
3647 @node Target library
3648 @chapter Target library
3649 @cindex Target library
3650
3651 OpenOCD comes with a target configuration script library. These scripts can be
3652 used as-is or serve as a starting point.
3653
3654 The target library is published together with the OpenOCD executable and
3655 the path to the target library is in the OpenOCD script search path.
3656 Similarly there are example scripts for configuring the JTAG interface.
3657
3658 The command line below uses the example parport configuration scripts
3659 that ship with OpenOCD, then configures the str710.cfg target and
3660 finally issues the init and reset command. The communication speed
3661 is set to 10kHz for reset and 8MHz for post reset.
3662
3663
3664 @example
3665 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3666 @end example
3667
3668
3669 To list the target scripts available:
3670
3671 @example
3672 $ ls /usr/local/lib/openocd/target
3673
3674 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3675 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3676 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3677 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3678 @end example
3679
3680
3681
3682 @include fdl.texi
3683
3684 @node OpenOCD Index
3685 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3686 @comment case issue with ``Index.html'' and ``index.html''
3687 @comment Occurs when creating ``--html --no-split'' output
3688 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3689 @unnumbered OpenOCD Index
3690
3691 @printindex cp
3692
3693 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)