- updated docs for new stellaris mass_erase command
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * Upgrading:: Deprecated/Removed Commands
55 * FAQ:: Frequently Asked Questions
56 * License:: GNU Free Documentation License
57 * Index:: Main index.
58 @end menu
59
60 @node About
61 @unnumbered About
62 @cindex about
63
64 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
65 and boundary-scan testing for embedded target devices. The targets are interfaced
66 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
67 connection types in the future.
68
69 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
70 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
71 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
72 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
73
74 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
75 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
76 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
77
78 @node Developers
79 @chapter Developers
80 @cindex developers
81
82 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
83 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
84 Others interested in improving the state of free and open debug and testing technology
85 are welcome to participate.
86
87 Other developers have contributed support for additional targets and flashes as well
88 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
89
90 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
91
92 @node Building
93 @chapter Building
94 @cindex building OpenOCD
95
96 You can download the current SVN version with SVN client of your choice from the
97 following repositories:
98
99 (@uref{svn://svn.berlios.de/openocd/trunk})
100
101 or
102
103 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
104
105 Using the SVN command line client, you can use the following command to fetch the
106 latest version (make sure there is no (non-svn) directory called "openocd" in the
107 current directory):
108
109 @smallexample
110 svn checkout svn://svn.berlios.de/openocd/trunk openocd
111 @end smallexample
112
113 Building OpenOCD requires a recent version of the GNU autotools.
114 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
115 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
116 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
117 paths, resulting in obscure dependency errors (This is an observation I've gathered
118 from the logs of one user - correct me if I'm wrong).
119
120 You further need the appropriate driver files, if you want to build support for
121 a FTDI FT2232 based interface:
122 @itemize @bullet
123 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
124 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
125 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
126 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
127 @end itemize
128
129 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
130 see contrib/libftdi for more details.
131
132 In general, the D2XX driver provides superior performance (several times as fast),
133 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
134 a kernel module, only a user space library.
135
136 To build OpenOCD (on both Linux and Cygwin), use the following commands:
137 @smallexample
138 ./bootstrap
139 @end smallexample
140 Bootstrap generates the configure script, and prepares building on your system.
141 @smallexample
142 ./configure
143 @end smallexample
144 Configure generates the Makefiles used to build OpenOCD.
145 @smallexample
146 make
147 @end smallexample
148 Make builds OpenOCD, and places the final executable in ./src/.
149
150 The configure script takes several options, specifying which JTAG interfaces
151 should be included:
152
153 @itemize @bullet
154 @item
155 @option{--enable-parport}
156 @item
157 @option{--enable-parport_ppdev}
158 @item
159 @option{--enable-parport_giveio}
160 @item
161 @option{--enable-amtjtagaccel}
162 @item
163 @option{--enable-ft2232_ftd2xx}
164 @footnote{Using the latest D2XX drivers from FTDI and following their installation
165 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
166 build properly.}
167 @item
168 @option{--enable-ft2232_libftdi}
169 @item
170 @option{--with-ftd2xx=/path/to/d2xx/}
171 @item
172 @option{--enable-gw16012}
173 @item
174 @option{--enable-usbprog}
175 @item
176 @option{--enable-presto_libftdi}
177 @item
178 @option{--enable-presto_ftd2xx}
179 @item
180 @option{--enable-jlink}
181 @end itemize
182
183 If you want to access the parallel port using the PPDEV interface you have to specify
184 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
185 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
186 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
187
188 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
189 absolute path containing no spaces.
190
191 Linux users should copy the various parts of the D2XX package to the appropriate
192 locations, i.e. /usr/include, /usr/lib.
193
194 @node Running
195 @chapter Running
196 @cindex running OpenOCD
197 @cindex --configfile
198 @cindex --debug_level
199 @cindex --logfile
200 @cindex --search
201 OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
202 Run with @option{--help} or @option{-h} to view the available command line switches.
203
204 It reads its configuration by default from the file openocd.cfg located in the current
205 working directory. This may be overwritten with the @option{-f <configfile>} command line
206 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
207 are executed in order.
208
209 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
210
211 To enable debug output (when reporting problems or working on OpenOCD itself), use
212 the @option{-d} command line switch. This sets the debug_level to "3", outputting
213 the most information, including debug messages. The default setting is "2", outputting
214 only informational messages, warnings and errors. You can also change this setting
215 from within a telnet or gdb session (@option{debug_level <n>}).
216
217 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
218
219 Search paths for config/script files can be added to OpenOCD by using
220 the @option{-s <search>} switch. The current directory and the OpenOCD target library
221 is in the search path by default.
222
223 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
224 with the target. In general, it is possible for the JTAG controller to be unresponsive until
225 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
226
227 @node Configuration
228 @chapter Configuration
229 @cindex configuration
230 OpenOCD runs as a daemon, and reads it current configuration
231 by default from the file openocd.cfg in the current directory. A different configuration
232 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
233
234 The configuration file is used to specify on which ports the daemon listens for new
235 connections, the JTAG interface used to connect to the target, the layout of the JTAG
236 chain, the targets that should be debugged, and connected flashes.
237
238 @section Daemon configuration
239
240 @itemize @bullet
241 @item @b{init} This command terminates the configuration stage and enters the normal
242 command mode. This can be useful to add commands to the startup scripts and commands
243 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
244 add "init" and "reset" at the end of the config script or at the end of the
245 OpenOCD command line using the @option{-c} command line switch.
246 @cindex init
247 @item @b{telnet_port} <@var{number}>
248 @cindex telnet_port
249 Port on which to listen for incoming telnet connections
250 @item @b{gdb_port} <@var{number}>
251 @cindex gdb_port
252 First port on which to listen for incoming GDB connections. The GDB port for the
253 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
254 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
255 @cindex gdb_detach
256 Configures what OpenOCD will do when gdb detaches from the daeman.
257 Default behaviour is <@var{resume}>
258 @item @b{gdb_memory_map} <@var{enable|disable}>
259 @cindex gdb_memory_map
260 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
261 requested. gdb will then know when to set hardware breakpoints, and program flash
262 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
263 for flash programming to work.
264 Default behaviour is <@var{enable}>
265 @item @b{gdb_flash_program} <@var{enable|disable}>
266 @cindex gdb_flash_program
267 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
268 vFlash packet is received.
269 Default behaviour is <@var{enable}>
270 @item @b{daemon_startup} <@var{mode}>
271 @cindex daemon_startup
272 @option{mode} can either @option{attach} or @option{reset}
273 This is equivalent to adding "init" and "reset" to the end of the config script.
274
275 It is available as a command mainly for backwards compatibility.
276 @end itemize
277
278 @section JTAG interface configuration
279
280 @itemize @bullet
281 @item @b{interface} <@var{name}>
282 @cindex interface
283 Use the interface driver <@var{name}> to connect to the target. Currently supported
284 interfaces are
285 @itemize @minus
286 @item @b{parport}
287 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
288 @end itemize
289 @itemize @minus
290 @item @b{amt_jtagaccel}
291 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
292 mode parallel port
293 @end itemize
294 @itemize @minus
295 @item @b{ft2232}
296 FTDI FT2232 based devices using either the open-source libftdi or the binary only
297 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
298 platform. The libftdi uses libusb, and should be portable to all systems that provide
299 libusb.
300 @end itemize
301 @itemize @minus
302 @item @b{ep93xx}
303 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
304 @end itemize
305 @itemize @minus
306 @item @b{presto}
307 ASIX PRESTO USB JTAG programmer.
308 @end itemize
309 @itemize @minus
310 @item @b{usbprog}
311 usbprog is a freely programmable USB adapter.
312 @end itemize
313 @itemize @minus
314 @item @b{gw16012}
315 Gateworks GW16012 JTAG programmer.
316 @end itemize
317 @itemize @minus
318 @item @b{jlink}
319 Segger jlink usb adapter
320 @end itemize
321 @end itemize
322
323 @itemize @bullet
324 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
325 @cindex jtag_speed
326 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
327 speed. The actual effect of this option depends on the JTAG interface used. Reset
328 speed is used during reset and post reset speed after reset. post reset speed
329 is optional, in which case the reset speed is used.
330 @itemize @minus
331
332 @item wiggler: maximum speed / @var{number}
333 @item ft2232: 6MHz / (@var{number}+1)
334 @item amt jtagaccel: 8 / 2**@var{number}
335 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
336 @end itemize
337
338 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
339 especially true for synthesized cores (-S).
340
341 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
342 @cindex jtag_khz
343 Same as jtag_speed, except that the speed is specified in maximum kHz. If
344 the device can not support the rate asked for, or can not translate from
345 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
346 is not supported, then an error is reported.
347
348 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
349 @cindex reset_config
350 The configuration of the reset signals available on the JTAG interface AND the target.
351 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
352 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
353 @option{srst_only} or @option{trst_and_srst}.
354
355 [@var{combination}] is an optional value specifying broken reset signal implementations.
356 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
357 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
358 that the system is reset together with the test logic (only hypothetical, I haven't
359 seen hardware with such a bug, and can be worked around).
360 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
361 The default behaviour if no option given is @option{separate}.
362
363 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
364 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
365 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
366 (default) and @option{srst_push_pull} for the system reset. These values only affect
367 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
368
369 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
370 @cindex jtag_device
371 Describes the devices that form the JTAG daisy chain, with the first device being
372 the one closest to TDO. The parameters are the length of the instruction register
373 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
374 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
375 The IDCODE instruction will in future be used to query devices for their JTAG
376 identification code. This line is the same for all ARM7 and ARM9 devices.
377 Other devices, like CPLDs, require different parameters. An example configuration
378 line for a Xilinx XC9500 CPLD would look like this:
379 @smallexample
380 jtag_device 8 0x01 0x0e3 0xfe
381 @end smallexample
382 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
383 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
384 The IDCODE instruction is 0xfe.
385
386 @item @b{jtag_nsrst_delay} <@var{ms}>
387 @cindex jtag_nsrst_delay
388 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
389 starting new JTAG operations.
390 @item @b{jtag_ntrst_delay} <@var{ms}>
391 @cindex jtag_ntrst_delay
392 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
393 starting new JTAG operations.
394
395 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
396 or on-chip features) keep a reset line asserted for some time after the external reset
397 got deasserted.
398 @end itemize
399
400 @section parport options
401
402 @itemize @bullet
403 @item @b{parport_port} <@var{number}>
404 @cindex parport_port
405 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
406 the @file{/dev/parport} device
407
408 When using PPDEV to access the parallel port, use the number of the parallel port:
409 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
410 you may encounter a problem.
411 @item @b{parport_cable} <@var{name}>
412 @cindex parport_cable
413 The layout of the parallel port cable used to connect to the target.
414 Currently supported cables are
415 @itemize @minus
416 @item @b{wiggler}
417 @cindex wiggler
418 The original Wiggler layout, also supported by several clones, such
419 as the Olimex ARM-JTAG
420 @item @b{old_amt_wiggler}
421 @cindex old_amt_wiggler
422 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
423 version available from the website uses the original Wiggler layout ('@var{wiggler}')
424 @item @b{chameleon}
425 @cindex chameleon
426 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
427 @item @b{dlc5}
428 @cindex dlc5
429 The Xilinx Parallel cable III.
430 @item @b{triton}
431 @cindex triton
432 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
433 This is also the layout used by the HollyGates design
434 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
435 @item @b{flashlink}
436 @cindex flashlink
437 The ST Parallel cable.
438 @end itemize
439 @item @b{parport_write_on_exit} <@var{on|off}>
440 @cindex parport_write_on_exit
441 This will configure the parallel driver to write a known value to the parallel
442 interface on exiting OpenOCD
443 @end itemize
444
445 @section amt_jtagaccel options
446 @itemize @bullet
447 @item @b{parport_port} <@var{number}>
448 @cindex parport_port
449 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
450 @file{/dev/parport} device
451 @end itemize
452 @section ft2232 options
453
454 @itemize @bullet
455 @item @b{ft2232_device_desc} <@var{description}>
456 @cindex ft2232_device_desc
457 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
458 default value is used. This setting is only valid if compiled with FTD2XX support.
459 @item @b{ft2232_layout} <@var{name}>
460 @cindex ft2232_layout
461 The layout of the FT2232 GPIO signals used to control output-enables and reset
462 signals. Valid layouts are
463 @itemize @minus
464 @item @b{usbjtag}
465 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
466 @item @b{jtagkey}
467 Amontec JTAGkey and JTAGkey-tiny
468 @item @b{signalyzer}
469 Signalyzer
470 @item @b{olimex-jtag}
471 Olimex ARM-USB-OCD
472 @item @b{m5960}
473 American Microsystems M5960
474 @item @b{evb_lm3s811}
475 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
476 SRST signals on external connector
477 @item @b{comstick}
478 Hitex STR9 comstick
479 @item @b{stm32stick}
480 Hitex STM32 Performance Stick
481 @item @b{flyswatter}
482 Tin Can Tools Flyswatter
483 @item @b{turtelizer2}
484 egnite Software turtelizer2
485 @item @b{oocdlink}
486 OOCDLink
487 @end itemize
488
489 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
490 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
491 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
492 @smallexample
493 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
494 @end smallexample
495 @item @b{ft2232_latency} <@var{ms}>
496 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
497 ft2232_read() fails to return the expected number of bytes. This can be caused by
498 USB communication delays and has proved hard to reproduce and debug. Setting the
499 FT2232 latency timer to a larger value increases delays for short USB packages but it
500 also reduces the risk of timeouts before receiving the expected number of bytes.
501 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
502 @end itemize
503
504 @section ep93xx options
505 @cindex ep93xx options
506 Currently, there are no options available for the ep93xx interface.
507
508 @page
509 @section Target configuration
510
511 @itemize @bullet
512 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
513 <@var{variant}>
514 @cindex target
515 Defines a target that should be debugged. Currently supported types are:
516 @itemize @minus
517 @item @b{arm7tdmi}
518 @item @b{arm720t}
519 @item @b{arm9tdmi}
520 @item @b{arm920t}
521 @item @b{arm922t}
522 @item @b{arm926ejs}
523 @item @b{arm966e}
524 @item @b{cortex_m3}
525 @item @b{feroceon}
526 @item @b{xscale}
527 @end itemize
528
529 If you want to use a target board that is not on this list, see Adding a new
530 target board
531
532 Endianess may be @option{little} or @option{big}.
533
534 The reset_mode specifies what should happen to the target when a reset occurs:
535 @itemize @minus
536 @item @b{reset_halt}
537 @cindex reset_halt
538 Immediately request a target halt after reset. This allows targets to be debugged
539 from the very first instruction. This is only possible with targets and JTAG
540 interfaces that correctly implement the reset signals.
541 @item @b{reset_init}
542 @cindex reset_init
543 Similar to @option{reset_halt}, but executes the script file defined to handle the
544 'reset' event for the target. Like @option{reset_halt} this only works with
545 correct reset implementations.
546 @item @b{reset_run}
547 @cindex reset_run
548 Simply let the target run after a reset.
549 @item @b{run_and_halt}
550 @cindex run_and_halt
551 Let the target run for some time (default: 1s), and then request halt.
552 @item @b{run_and_init}
553 @cindex run_and_init
554 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
555 to run for some time, then halted, and the @option{reset} event script is executed.
556 @end itemize
557
558 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
559 completely independent (like the LPC2000 series), or where the JTAG interface is
560 unavailable for some time during startup (like the STR7 series), you can't use
561 @option{reset_halt} or @option{reset_init}.
562
563 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
564 @cindex target_script
565 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
566
567 TODO: describe exact semantic of events
568 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
569 @cindex run_and_halt_time
570 The amount of time the debugger should wait after releasing reset before it asserts
571 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
572 reset modes.
573 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
574 <@var{backup}|@var{nobackup}>
575 @cindex working_area
576 Specifies a working area for the debugger to use. This may be used to speed-up
577 downloads to target memory and flash operations, or to perform otherwise unavailable
578 operations (some coprocessor operations on ARM7/9 systems, for example). The last
579 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
580 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
581 @end itemize
582
583 @subsection arm7tdmi options
584 @cindex arm7tdmi options
585 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
586 The arm7tdmi target definition requires at least one additional argument, specifying
587 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
588 The optional [@var{variant}] parameter has been removed in recent versions.
589 The correct feature set is determined at runtime.
590
591 @subsection arm720t options
592 @cindex arm720t options
593 ARM720t options are similar to ARM7TDMI options.
594
595 @subsection arm9tdmi options
596 @cindex arm9tdmi options
597 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
598 @option{arm920t}, @option{arm922t} and @option{arm940t}.
599 This enables the hardware single-stepping support found on these cores.
600
601 @subsection arm920t options
602 @cindex arm920t options
603 ARM920t options are similar to ARM9TDMI options.
604
605 @subsection arm966e options
606 @cindex arm966e options
607 ARM966e options are similar to ARM9TDMI options.
608
609 @subsection cortex_m3 options
610 @cindex cortex_m3 options
611 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
612 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
613 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
614 be detected and the normal reset behaviour used.
615
616 @subsection xscale options
617 @cindex xscale options
618 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
619 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
620
621 @section Flash configuration
622 @cindex Flash configuration
623
624 @itemize @bullet
625 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
626 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
627 @cindex flash bank
628 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
629 and <@var{bus_width}> bytes using the selected flash <driver>.
630 @end itemize
631
632 @subsection lpc2000 options
633 @cindex lpc2000 options
634
635 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
636 <@var{clock}> [@var{calc_checksum}]
637 LPC flashes don't require the chip and bus width to be specified. Additional
638 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
639 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
640 of the target this flash belongs to (first is 0), the frequency at which the core
641 is currently running (in kHz - must be an integral number), and the optional keyword
642 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
643 vector table.
644
645 @subsection cfi options
646 @cindex cfi options
647
648 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
649 <@var{target#}>
650 CFI flashes require the number of the target they're connected to as an additional
651 argument. The CFI driver makes use of a working area (specified for the target)
652 to significantly speed up operation.
653
654 @var{chip_width} and @var{bus_width} are specified in bytes.
655
656 @subsection at91sam7 options
657 @cindex at91sam7 options
658
659 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
660 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
661 reading the chip-id and type.
662
663 @subsection str7 options
664 @cindex str7 options
665
666 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
667 variant can be either STR71x, STR73x or STR75x.
668
669 @subsection str9 options
670 @cindex str9 options
671
672 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
673 The str9 needs the flash controller to be configured prior to Flash programming, eg.
674 @smallexample
675 str9x flash_config 0 4 2 0 0x80000
676 @end smallexample
677 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
678
679 @subsection str9 options (str9xpec driver)
680
681 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
682 Before using the flash commands the turbo mode will need enabling using str9xpec
683 @option{enable_turbo} <@var{num>.}
684
685 Only use this driver for locking/unlocking the device or configuring the option bytes.
686 Use the standard str9 driver for programming.
687
688 @subsection stellaris (LM3Sxxx) options
689 @cindex stellaris (LM3Sxxx) options
690
691 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
692 stellaris flash plugin only require the @var{target#}.
693
694 @subsection stm32x options
695 @cindex stm32x options
696
697 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
698 stm32x flash plugin only require the @var{target#}.
699
700 @node Target library
701 @chapter Target library
702 @cindex Target library
703
704 OpenOCD comes with a target configuration script library. These scripts can be
705 used as-is or serve as a starting point.
706
707 The target library is published together with the openocd executable and
708 the path to the target library is in the OpenOCD script search path.
709 Similarly there are example scripts for configuring the JTAG interface.
710
711 The command line below uses the example parport configuration scripts
712 that ship with OpenOCD, then configures the str710.cfg target and
713 finally issues the init and reset command. The communication speed
714 is set to 10kHz for reset and 8MHz for post reset.
715
716
717 @smallexample
718 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
719 @end smallexample
720
721
722 To list the target scripts available:
723
724 @smallexample
725 $ ls /usr/local/lib/openocd/target
726
727 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
728 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
729 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
730 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
731 @end smallexample
732
733
734 @node Commands
735 @chapter Commands
736 @cindex commands
737
738 OpenOCD allows user interaction through a telnet interface
739 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
740 is available from both the telnet interface and a GDB session. To issue commands to the
741 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
742 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
743 GDB session.
744
745 @section Daemon
746
747 @itemize @bullet
748 @item @b{sleep} <@var{msec}>
749 @cindex sleep
750 Wait for n milliseconds before resuming. Useful in connection with script files
751 (@var{script} command and @var{target_script} configuration).
752
753 @item @b{shutdown}
754 @cindex shutdown
755 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
756
757 @item @b{debug_level} [@var{n}]
758 @cindex debug_level
759 Display or adjust debug level to n<0-3>
760
761 @item @b{fast} [@var{enable/disable}]
762 @cindex fast
763 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
764 downloads and fast memory access will work if the JTAG interface isn't too fast and
765 the core doesn't run at a too low frequency. Note that this option only changes the default
766 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
767 individually.
768
769 The target specific "dangerous" optimisation tweaking options may come and go
770 as more robust and user friendly ways are found to ensure maximum throughput
771 and robustness with a minimum of configuration.
772
773 Typically the "fast enable" is specified first on the command line:
774
775 @smallexample
776 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
777 @end smallexample
778
779 @item @b{log_output} <@var{file}>
780 @cindex log_output
781 Redirect logging to <file> (default: stderr)
782
783 @item @b{script} <@var{file}>
784 @cindex script
785 Execute commands from <file>
786
787 @end itemize
788
789 @subsection Target state handling
790 @itemize @bullet
791 @item @b{poll} [@option{on}|@option{off}]
792 @cindex poll
793 Poll the target for its current state. If the target is in debug mode, architecture
794 specific information about the current state is printed. An optional parameter
795 allows continuous polling to be enabled and disabled.
796
797 @item @b{halt} [@option{ms}]
798 @cindex halt
799 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
800 Default [@option{ms}] is 5 seconds if no arg given.
801 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
802 will stop OpenOCD from waiting.
803
804 @item @b{wait_halt} [@option{ms}]
805 @cindex wait_halt
806 Wait for the target to enter debug mode. Optional [@option{ms}] is
807 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
808 arg given.
809
810 @item @b{resume} [@var{address}]
811 @cindex resume
812 Resume the target at its current code position, or at an optional address.
813 OpenOCD will wait 5 seconds for the target to resume.
814
815 @item @b{step} [@var{address}]
816 @cindex step
817 Single-step the target at its current code position, or at an optional address.
818
819 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
820 |@option{run_and_init}]
821 @cindex reset
822 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
823 This optional parameter overrides the setting specified in the configuration file,
824 making the new behaviour the default for the @option{reset} command.
825 @itemize @minus
826 @item @b{run}
827 @cindex reset run
828 Let the target run.
829 @item @b{halt}
830 @cindex reset halt
831 Immediately halt the target (works only with certain configurations).
832 @item @b{init}
833 @cindex reset init
834 Immediately halt the target, and execute the reset script (works only with certain
835 configurations)
836 @item @b{run_and_halt}
837 @cindex reset run_and_halt
838 Let the target run for a certain amount of time, then request a halt.
839 @item @b{run_and_init}
840 @cindex reset run_and_init
841 Let the target run for a certain amount of time, then request a halt. Execute the
842 reset script once the target enters debug mode.
843 @end itemize
844 @end itemize
845
846 @subsection Memory access commands
847 These commands allow accesses of a specific size to the memory system:
848 @itemize @bullet
849 @item @b{mdw} <@var{addr}> [@var{count}]
850 @cindex mdw
851 display memory words
852 @item @b{mdh} <@var{addr}> [@var{count}]
853 @cindex mdh
854 display memory half-words
855 @item @b{mdb} <@var{addr}> [@var{count}]
856 @cindex mdb
857 display memory bytes
858 @item @b{mww} <@var{addr}> <@var{value}>
859 @cindex mww
860 write memory word
861 @item @b{mwh} <@var{addr}> <@var{value}>
862 @cindex mwh
863 write memory half-word
864 @item @b{mwb} <@var{addr}> <@var{value}>
865 @cindex mwb
866 write memory byte
867
868 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
869 @cindex load_image
870 Load image <@var{file}> to target memory at <@var{address}>
871 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
872 @cindex dump_image
873 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
874 (binary) <@var{file}>.
875 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
876 @cindex verify_image
877 Verify <@var{file}> against target memory starting at <@var{address}>.
878 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
879 @end itemize
880
881 @subsection Flash commands
882 @cindex Flash commands
883 @itemize @bullet
884 @item @b{flash banks}
885 @cindex flash banks
886 List configured flash banks
887 @item @b{flash info} <@var{num}>
888 @cindex flash info
889 Print info about flash bank <@option{num}>
890 @item @b{flash probe} <@var{num}>
891 @cindex flash probe
892 Identify the flash, or validate the parameters of the configured flash. Operation
893 depends on the flash type.
894 @item @b{flash erase_check} <@var{num}>
895 @cindex flash erase_check
896 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
897 updates the erase state information displayed by @option{flash info}. That means you have
898 to issue an @option{erase_check} command after erasing or programming the device to get
899 updated information.
900 @item @b{flash protect_check} <@var{num}>
901 @cindex flash protect_check
902 Check protection state of sectors in flash bank <num>.
903 @option{flash erase_sector} using the same syntax.
904 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
905 @cindex flash erase_sector
906 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
907 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
908 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
909 the CFI driver).
910 @item @b{flash erase_address} <@var{address}> <@var{length}>
911 @cindex flash erase_address
912 Erase sectors starting at <@var{address}> for <@var{length}> bytes
913 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
914 @cindex flash write_bank
915 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
916 <@option{offset}> bytes from the beginning of the bank.
917 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
918 @cindex flash write_image
919 Write the image <@var{file}> to the current target's flash bank(s). A relocation
920 [@var{offset}] can be specified and the file [@var{type}] can be specified
921 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
922 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
923 if the @option{erase} parameter is given.
924 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
925 @cindex flash protect
926 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
927 <@var{last}> of @option{flash bank} <@var{num}>.
928 @end itemize
929
930 @page
931 @section Target Specific Commands
932 @cindex Target Specific Commands
933
934 @subsection AT91SAM7 specific commands
935 @cindex AT91SAM7 specific commands
936 The flash configuration is deduced from the chip identification register. The flash
937 controller handles erases automatically on a page (128/265 byte) basis so erase is
938 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
939 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
940 that can be erased separatly. Only an EraseAll command is supported by the controller
941 for each flash plane and this is called with
942 @itemize @bullet
943 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
944 bulk erase flash planes first_plane to last_plane.
945 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
946 @cindex at91sam7 gpnvm
947 set or clear a gpnvm bit for the processor
948 @end itemize
949
950 @subsection STR9 specific commands
951 @cindex STR9 specific commands
952 These are flash specific commands when using the str9xpec driver.
953 @itemize @bullet
954 @item @b{str9xpec enable_turbo} <@var{num}>
955 @cindex str9xpec enable_turbo
956 enable turbo mode, simply this will remove the str9 from the chain and talk
957 directly to the embedded flash controller.
958 @item @b{str9xpec disable_turbo} <@var{num}>
959 @cindex str9xpec disable_turbo
960 restore the str9 into jtag chain.
961 @item @b{str9xpec lock} <@var{num}>
962 @cindex str9xpec lock
963 lock str9 device. The str9 will only respond to an unlock command that will
964 erase the device.
965 @item @b{str9xpec unlock} <@var{num}>
966 @cindex str9xpec unlock
967 unlock str9 device.
968 @item @b{str9xpec options_read} <@var{num}>
969 @cindex str9xpec options_read
970 read str9 option bytes.
971 @item @b{str9xpec options_write} <@var{num}>
972 @cindex str9xpec options_write
973 write str9 option bytes.
974 @end itemize
975
976 @subsection STR9 configuration
977 @cindex STR9 configuration
978 @itemize @bullet
979 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
980 <@var{BBADR}> <@var{NBBADR}>
981 @cindex str9x flash_config
982 Configure str9 flash controller.
983 @smallexample
984 eg. str9x flash_config 0 4 2 0 0x80000
985 This will setup
986 BBSR - Boot Bank Size register
987 NBBSR - Non Boot Bank Size register
988 BBADR - Boot Bank Start Address register
989 NBBADR - Boot Bank Start Address register
990 @end smallexample
991 @end itemize
992
993 @subsection STR9 option byte configuration
994 @cindex STR9 option byte configuration
995 @itemize @bullet
996 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
997 @cindex str9xpec options_cmap
998 configure str9 boot bank.
999 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1000 @cindex str9xpec options_lvdthd
1001 configure str9 lvd threshold.
1002 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1003 @cindex str9xpec options_lvdsel
1004 configure str9 lvd source.
1005 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1006 @cindex str9xpec options_lvdwarn
1007 configure str9 lvd reset warning source.
1008 @end itemize
1009
1010 @subsection STM32x specific commands
1011 @cindex STM32x specific commands
1012
1013 These are flash specific commands when using the stm32x driver.
1014 @itemize @bullet
1015 @item @b{stm32x lock} <@var{num}>
1016 @cindex stm32x lock
1017 lock stm32 device.
1018 @item @b{stm32x unlock} <@var{num}>
1019 @cindex stm32x unlock
1020 unlock stm32 device.
1021 @item @b{stm32x options_read} <@var{num}>
1022 @cindex stm32x options_read
1023 read stm32 option bytes.
1024 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1025 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1026 @cindex stm32x options_write
1027 write stm32 option bytes.
1028 @item @b{stm32x mass_erase} <@var{num}>
1029 @cindex stm32x mass_erase
1030 mass erase flash memory.
1031 @end itemize
1032
1033 @subsection Stellaris specific commands
1034 @cindex Stellaris specific commands
1035
1036 These are flash specific commands when using the Stellaris driver.
1037 @itemize @bullet
1038 @item @b{stellaris mass_erase} <@var{num}>
1039 @cindex stellaris mass_erase
1040 mass erase flash memory.
1041 @end itemize
1042
1043 @page
1044 @section Architecture Specific Commands
1045 @cindex Architecture Specific Commands
1046
1047 @subsection ARMV4/5 specific commands
1048 @cindex ARMV4/5 specific commands
1049
1050 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1051 or Intel XScale (XScale isn't supported yet).
1052 @itemize @bullet
1053 @item @b{armv4_5 reg}
1054 @cindex armv4_5 reg
1055 Display a list of all banked core registers, fetching the current value from every
1056 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1057 register value.
1058 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1059 @cindex armv4_5 core_mode
1060 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1061 The target is resumed in the currently set @option{core_mode}.
1062 @end itemize
1063
1064 @subsection ARM7/9 specific commands
1065 @cindex ARM7/9 specific commands
1066
1067 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1068 ARM920t or ARM926EJ-S.
1069 @itemize @bullet
1070 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1071 @cindex arm7_9 sw_bkpts
1072 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1073 one of the watchpoint registers to implement software breakpoints. Disabling
1074 SW Bkpts frees that register again.
1075 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1076 @cindex arm7_9 force_hw_bkpts
1077 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1078 breakpoints are turned into hardware breakpoints.
1079 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1080 @cindex arm7_9 dbgrq
1081 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1082 safe for all but ARM7TDMI--S cores (like Philips LPC).
1083 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1084 @cindex arm7_9 fast_memory_access
1085 Allow OpenOCD to read and write memory without checking completion of
1086 the operation. This provides a huge speed increase, especially with USB JTAG
1087 cables (FT2232), but might be unsafe if used with targets running at a very low
1088 speed, like the 32kHz startup clock of an AT91RM9200.
1089 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1090 @cindex arm7_9 dcc_downloads
1091 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1092 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1093 unsafe, especially with targets running at a very low speed. This command was introduced
1094 with OpenOCD rev. 60.
1095 @end itemize
1096
1097 @subsection ARM720T specific commands
1098 @cindex ARM720T specific commands
1099
1100 @itemize @bullet
1101 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1102 @cindex arm720t cp15
1103 display/modify cp15 register <@option{num}> [@option{value}].
1104 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1105 @cindex arm720t md<bhw>_phys
1106 Display memory at physical address addr.
1107 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1108 @cindex arm720t mw<bhw>_phys
1109 Write memory at physical address addr.
1110 @item @b{arm720t virt2phys} <@var{va}>
1111 @cindex arm720t virt2phys
1112 Translate a virtual address to a physical address.
1113 @end itemize
1114
1115 @subsection ARM9TDMI specific commands
1116 @cindex ARM9TDMI specific commands
1117
1118 @itemize @bullet
1119 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1120 @cindex arm9tdmi vector_catch
1121 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1122 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1123 @option{irq} @option{fiq}.
1124
1125 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1126 @end itemize
1127
1128 @subsection ARM966E specific commands
1129 @cindex ARM966E specific commands
1130
1131 @itemize @bullet
1132 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1133 @cindex arm966e cp15
1134 display/modify cp15 register <@option{num}> [@option{value}].
1135 @end itemize
1136
1137 @subsection ARM920T specific commands
1138 @cindex ARM920T specific commands
1139
1140 @itemize @bullet
1141 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1142 @cindex arm920t cp15
1143 display/modify cp15 register <@option{num}> [@option{value}].
1144 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1145 @cindex arm920t cp15i
1146 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1147 @item @b{arm920t cache_info}
1148 @cindex arm920t cache_info
1149 Print information about the caches found. This allows you to see if your target
1150 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1151 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1152 @cindex arm920t md<bhw>_phys
1153 Display memory at physical address addr.
1154 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1155 @cindex arm920t mw<bhw>_phys
1156 Write memory at physical address addr.
1157 @item @b{arm920t read_cache} <@var{filename}>
1158 @cindex arm920t read_cache
1159 Dump the content of ICache and DCache to a file.
1160 @item @b{arm920t read_mmu} <@var{filename}>
1161 @cindex arm920t read_mmu
1162 Dump the content of the ITLB and DTLB to a file.
1163 @item @b{arm920t virt2phys} <@var{va}>
1164 @cindex arm920t virt2phys
1165 Translate a virtual address to a physical address.
1166 @end itemize
1167
1168 @subsection ARM926EJS specific commands
1169 @cindex ARM926EJS specific commands
1170
1171 @itemize @bullet
1172 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1173 @cindex arm926ejs cp15
1174 display/modify cp15 register <@option{num}> [@option{value}].
1175 @item @b{arm926ejs cache_info}
1176 @cindex arm926ejs cache_info
1177 Print information about the caches found.
1178 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1179 @cindex arm926ejs md<bhw>_phys
1180 Display memory at physical address addr.
1181 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1182 @cindex arm926ejs mw<bhw>_phys
1183 Write memory at physical address addr.
1184 @item @b{arm926ejs virt2phys} <@var{va}>
1185 @cindex arm926ejs virt2phys
1186 Translate a virtual address to a physical address.
1187 @end itemize
1188
1189 @page
1190 @section Debug commands
1191 @cindex Debug commands
1192 The following commands give direct access to the core, and are most likely
1193 only useful while debugging OpenOCD.
1194 @itemize @bullet
1195 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1196 @cindex arm7_9 write_xpsr
1197 Immediately write either the current program status register (CPSR) or the saved
1198 program status register (SPSR), without changing the register cache (as displayed
1199 by the @option{reg} and @option{armv4_5 reg} commands).
1200 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1201 <@var{0=cpsr},@var{1=spsr}>
1202 @cindex arm7_9 write_xpsr_im8
1203 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1204 operation (similar to @option{write_xpsr}).
1205 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1206 @cindex arm7_9 write_core_reg
1207 Write a core register, without changing the register cache (as displayed by the
1208 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1209 encoding of the [M4:M0] bits of the PSR.
1210 @end itemize
1211
1212 @page
1213 @section JTAG commands
1214 @cindex JTAG commands
1215 @itemize @bullet
1216 @item @b{scan_chain}
1217 @cindex scan_chain
1218 Print current scan chain configuration.
1219 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1220 @cindex jtag_reset
1221 Toggle reset lines.
1222 @item @b{endstate} <@var{tap_state}>
1223 @cindex endstate
1224 Finish JTAG operations in <@var{tap_state}>.
1225 @item @b{runtest} <@var{num_cycles}>
1226 @cindex runtest
1227 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1228 @item @b{statemove} [@var{tap_state}]
1229 @cindex statemove
1230 Move to current endstate or [@var{tap_state}]
1231 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1232 @cindex irscan
1233 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1234 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1235 @cindex drscan
1236 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1237 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1238 @cindex verify_ircapture
1239 Verify value captured during Capture-IR. Default is enabled.
1240 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1241 @cindex var
1242 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1243 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1244 @cindex field
1245 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1246 @end itemize
1247
1248 @page
1249 @section Target Requests
1250 @cindex Target Requests
1251 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1252 See libdcc in the contrib dir for more details.
1253 @itemize @bullet
1254 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1255 @cindex target_request debugmsgs
1256 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1257 @end itemize
1258
1259 @node Sample Scripts
1260 @chapter Sample Scripts
1261 @cindex scripts
1262
1263 This page shows how to use the target library.
1264
1265 The configuration script can be divided in the following section:
1266 @itemize @bullet
1267 @item daemon configuration
1268 @item interface
1269 @item jtag scan chain
1270 @item target configuration
1271 @item flash configuration
1272 @end itemize
1273
1274 Detailed information about each section can be found at OpenOCD configuration.
1275
1276 @section AT91R40008 example
1277 @cindex AT91R40008 example
1278 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1279 the CPU upon startup of the OpenOCD daemon.
1280 @smallexample
1281 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1282 @end smallexample
1283
1284
1285 @node GDB and OpenOCD
1286 @chapter GDB and OpenOCD
1287 @cindex GDB and OpenOCD
1288 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1289 to debug remote targets.
1290
1291 @section Connecting to gdb
1292 @cindex Connecting to gdb
1293 A connection is typically started as follows:
1294 @smallexample
1295 target remote localhost:3333
1296 @end smallexample
1297 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1298
1299 To see a list of available OpenOCD commands type @option{monitor help} on the
1300 gdb commandline.
1301
1302 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1303 to be sent by the gdb server (openocd) to gdb. Typical information includes
1304 packet size and device memory map.
1305
1306 Previous versions of OpenOCD required the following gdb options to increase
1307 the packet size and speed up gdb communication.
1308 @smallexample
1309 set remote memory-write-packet-size 1024
1310 set remote memory-write-packet-size fixed
1311 set remote memory-read-packet-size 1024
1312 set remote memory-read-packet-size fixed
1313 @end smallexample
1314 This is now handled in the @option{qSupported} PacketSize.
1315
1316 @section Programming using gdb
1317 @cindex Programming using gdb
1318
1319 By default the target memory map is sent to gdb, this can be disabled by
1320 the following OpenOCD config option:
1321 @smallexample
1322 gdb_memory_map disable
1323 @end smallexample
1324 For this to function correctly a valid flash config must also be configured
1325 in OpenOCD. For faster performance you should also configure a valid
1326 working area.
1327
1328 Informing gdb of the memory map of the target will enable gdb to protect any
1329 flash area of the target and use hardware breakpoints by default. This means
1330 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1331 using a memory map.
1332
1333 To view the configured memory map in gdb, use the gdb command @option{info mem}
1334 All other unasigned addresses within gdb are treated as RAM.
1335
1336 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1337 this can be changed to the old behaviour by using the following gdb command.
1338 @smallexample
1339 set mem inaccessible-by-default off
1340 @end smallexample
1341
1342 If @option{gdb_flash_program enable} is also used, gdb will be able to
1343 program any flash memory using the vFlash interface.
1344
1345 gdb will look at the target memory map when a load command is given, if any
1346 areas to be programmed lie within the target flash area the vFlash packets
1347 will be used.
1348
1349 If the target needs configuring before gdb programming, a script can be executed.
1350 @smallexample
1351 target_script 0 gdb_program_config config.script
1352 @end smallexample
1353
1354 To verify any flash programming the gdb command @option{compare-sections}
1355 can be used.
1356
1357 @node Upgrading
1358 @chapter Deprecated/Removed Commands
1359 @cindex Deprecated/Removed Commands
1360 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1361
1362 @itemize @bullet
1363 @item @b{load_binary}
1364 @cindex load_binary
1365 use @option{load_image} command with same args
1366 @item @b{dump_binary}
1367 @cindex dump_binary
1368 use @option{dump_image} command with same args
1369 @item @b{flash erase}
1370 @cindex flash erase
1371 use @option{flash erase_sector} command with same args
1372 @item @b{flash write}
1373 @cindex flash write
1374 use @option{flash write_bank} command with same args
1375 @item @b{flash write_binary}
1376 @cindex flash write_binary
1377 use @option{flash write_bank} command with same args
1378 @item @b{arm7_9 fast_writes}
1379 @cindex arm7_9 fast_writes
1380 use @option{arm7_9 fast_memory_access} command with same args
1381 @item @b{flash auto_erase}
1382 @cindex flash auto_erase
1383 use @option{flash write_image} command passing @option{erase} as the first parameter.
1384 @end itemize
1385
1386 @node FAQ
1387 @chapter FAQ
1388 @cindex faq
1389 @enumerate
1390 @item OpenOCD complains about a missing cygwin1.dll.
1391
1392 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1393 claims to come with all the necessary dlls. When using Cygwin, try launching
1394 OpenOCD from the Cygwin shell.
1395
1396 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1397 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1398 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1399
1400 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1401 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1402 software breakpoints consume one of the two available hardware breakpoints,
1403 and are therefore disabled by default. If your code is running from RAM, you
1404 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1405 your code resides in Flash, you can't use software breakpoints, but you can force
1406 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1407
1408 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1409 and works sometimes fine.
1410
1411 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1412 clock at the time you're programming the flash. If you've specified the crystal's
1413 frequency, make sure the PLL is disabled, if you've specified the full core speed
1414 (e.g. 60MHz), make sure the PLL is enabled.
1415
1416 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1417 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1418 out while waiting for end of scan, rtck was disabled".
1419
1420 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1421 settings in your PC BIOS (ECP, EPP, and different versions of those).
1422
1423 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1424 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1425 memory read caused data abort".
1426
1427 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1428 beyond the last valid frame. It might be possible to prevent this by setting up
1429 a proper "initial" stack frame, if you happen to know what exactly has to
1430 be done, feel free to add this here.
1431
1432 @item I get the following message in the OpenOCD console (or log file):
1433 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1434
1435 This warning doesn't indicate any serious problem, as long as you don't want to
1436 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1437 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1438 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1439 independently. With this setup, it's not possible to halt the core right out of
1440 reset, everything else should work fine.
1441
1442 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1443 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1444 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1445 quit with an error message. Is there a stability issue with OpenOCD?
1446
1447 No, this is not a stability issue concerning OpenOCD. Most users have solved
1448 this issue by simply using a self-powered USB hub, which they connect their
1449 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1450 supply stable enough for the Amontec JTAGkey to be operated.
1451
1452 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1453 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1454 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1455 What does that mean and what might be the reason for this?
1456
1457 First of all, the reason might be the USB power supply. Try using a self-powered
1458 hub instead of a direct connection to your computer. Secondly, the error code 4
1459 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1460 chip ran into some sort of error - this points us to a USB problem.
1461
1462 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1463 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1464 What does that mean and what might be the reason for this?
1465
1466 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1467 has closed the connection to OpenOCD. This might be a GDB issue.
1468
1469 @item In the configuration file in the section where flash device configurations
1470 are described, there is a parameter for specifying the clock frequency for
1471 LPC2000 internal flash devices (e.g.
1472 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1473 which must be specified in kilohertz. However, I do have a quartz crystal of a
1474 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1475 Is it possible to specify real numbers for the clock frequency?
1476
1477 No. The clock frequency specified here must be given as an integral number.
1478 However, this clock frequency is used by the In-Application-Programming (IAP)
1479 routines of the LPC2000 family only, which seems to be very tolerant concerning
1480 the given clock frequency, so a slight difference between the specified clock
1481 frequency and the actual clock frequency will not cause any trouble.
1482
1483 @item Do I have to keep a specific order for the commands in the configuration file?
1484
1485 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1486 listed for the JTAG scan chain must be given in the right order (jtag_device),
1487 with the device closest to the TDO-Pin being listed first. In general,
1488 whenever objects of the same type exist which require an index number, then
1489 these objects must be given in the right order (jtag_devices, targets and flash
1490 banks - a target references a jtag_device and a flash bank references a target).
1491
1492 @item Sometimes my debugging session terminates with an error. When I look into the
1493 log file, I can see these error messages: Error: arm7_9_common.c:561
1494 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1495
1496 TODO.
1497
1498 @end enumerate
1499
1500 @include fdl.texi
1501
1502 @node Index
1503 @unnumbered Index
1504
1505 @printindex cp
1506
1507 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)