Charles Hardin <ckhardin@gmail.com> and Øyvind Harboe
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * TCL and OpenOCD:: Using TCL and OpenOCD
55 * TCL scripting API:: Tcl scripting API
56 * Upgrading:: Deprecated/Removed Commands
57 * FAQ:: Frequently Asked Questions
58 * License:: GNU Free Documentation License
59 * Index:: Main index.
60 @end menu
61
62 @node About
63 @unnumbered About
64 @cindex about
65
66 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
67 and boundary-scan testing for embedded target devices. The targets are interfaced
68 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
69 connection types in the future.
70
71 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
72 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
73 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
74 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
75
76 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
77 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
78 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
79
80 @node Developers
81 @chapter Developers
82 @cindex developers
83
84 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
85 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
86 Others interested in improving the state of free and open debug and testing technology
87 are welcome to participate.
88
89 Other developers have contributed support for additional targets and flashes as well
90 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
91
92 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
93
94 @node Building
95 @chapter Building
96 @cindex building OpenOCD
97
98 You can download the current SVN version with SVN client of your choice from the
99 following repositories:
100
101 (@uref{svn://svn.berlios.de/openocd/trunk})
102
103 or
104
105 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
106
107 Using the SVN command line client, you can use the following command to fetch the
108 latest version (make sure there is no (non-svn) directory called "openocd" in the
109 current directory):
110
111 @smallexample
112 svn checkout svn://svn.berlios.de/openocd/trunk openocd
113 @end smallexample
114
115 Building OpenOCD requires a recent version of the GNU autotools.
116 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
117 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
118 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
119 paths, resulting in obscure dependency errors (This is an observation I've gathered
120 from the logs of one user - correct me if I'm wrong).
121
122 You further need the appropriate driver files, if you want to build support for
123 a FTDI FT2232 based interface:
124 @itemize @bullet
125 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
126 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
127 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
128 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
129 @end itemize
130
131 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
132 see contrib/libftdi for more details.
133
134 In general, the D2XX driver provides superior performance (several times as fast),
135 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
136 a kernel module, only a user space library.
137
138 To build OpenOCD (on both Linux and Cygwin), use the following commands:
139 @smallexample
140 ./bootstrap
141 @end smallexample
142 Bootstrap generates the configure script, and prepares building on your system.
143 @smallexample
144 ./configure
145 @end smallexample
146 Configure generates the Makefiles used to build OpenOCD.
147 @smallexample
148 make
149 @end smallexample
150 Make builds OpenOCD, and places the final executable in ./src/.
151
152 The configure script takes several options, specifying which JTAG interfaces
153 should be included:
154
155 @itemize @bullet
156 @item
157 @option{--enable-parport}
158 @item
159 @option{--enable-parport_ppdev}
160 @item
161 @option{--enable-parport_giveio}
162 @item
163 @option{--enable-amtjtagaccel}
164 @item
165 @option{--enable-ft2232_ftd2xx}
166 @footnote{Using the latest D2XX drivers from FTDI and following their installation
167 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
168 build properly.}
169 @item
170 @option{--enable-ft2232_libftdi}
171 @item
172 @option{--with-ftd2xx=/path/to/d2xx/}
173 @item
174 @option{--enable-gw16012}
175 @item
176 @option{--enable-usbprog}
177 @item
178 @option{--enable-presto_libftdi}
179 @item
180 @option{--enable-presto_ftd2xx}
181 @item
182 @option{--enable-jlink}
183 @end itemize
184
185 If you want to access the parallel port using the PPDEV interface you have to specify
186 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
187 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
188 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
189
190 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
191 absolute path containing no spaces.
192
193 Linux users should copy the various parts of the D2XX package to the appropriate
194 locations, i.e. /usr/include, /usr/lib.
195
196 @node Running
197 @chapter Running
198 @cindex running OpenOCD
199 @cindex --configfile
200 @cindex --debug_level
201 @cindex --logfile
202 @cindex --search
203 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
204 Run with @option{--help} or @option{-h} to view the available command line switches.
205
206 It reads its configuration by default from the file openocd.cfg located in the current
207 working directory. This may be overwritten with the @option{-f <configfile>} command line
208 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
209 are executed in order.
210
211 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
212
213 To enable debug output (when reporting problems or working on OpenOCD itself), use
214 the @option{-d} command line switch. This sets the debug_level to "3", outputting
215 the most information, including debug messages. The default setting is "2", outputting
216 only informational messages, warnings and errors. You can also change this setting
217 from within a telnet or gdb session (@option{debug_level <n>}).
218
219 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
220
221 Search paths for config/script files can be added to OpenOCD by using
222 the @option{-s <search>} switch. The current directory and the OpenOCD target library
223 is in the search path by default.
224
225 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
226 with the target. In general, it is possible for the JTAG controller to be unresponsive until
227 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
228
229 @node Configuration
230 @chapter Configuration
231 @cindex configuration
232 OpenOCD runs as a daemon, and reads it current configuration
233 by default from the file openocd.cfg in the current directory. A different configuration
234 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
235
236 The configuration file is used to specify on which ports the daemon listens for new
237 connections, the JTAG interface used to connect to the target, the layout of the JTAG
238 chain, the targets that should be debugged, and connected flashes.
239
240 @section Daemon configuration
241
242 @itemize @bullet
243 @item @b{init} This command terminates the configuration stage and enters the normal
244 command mode. This can be useful to add commands to the startup scripts and commands
245 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
246 add "init" and "reset" at the end of the config script or at the end of the
247 OpenOCD command line using the @option{-c} command line switch.
248 @cindex init
249 @item @b{telnet_port} <@var{number}>
250 @cindex telnet_port
251 Port on which to listen for incoming telnet connections
252 @item @b{gdb_port} <@var{number}>
253 @cindex gdb_port
254 First port on which to listen for incoming GDB connections. The GDB port for the
255 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
256 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
257 @cindex gdb_detach
258 Configures what OpenOCD will do when gdb detaches from the daeman.
259 Default behaviour is <@var{resume}>
260 @item @b{gdb_memory_map} <@var{enable|disable}>
261 @cindex gdb_memory_map
262 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
263 requested. gdb will then know when to set hardware breakpoints, and program flash
264 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
265 for flash programming to work.
266 Default behaviour is <@var{enable}>
267 @item @b{gdb_flash_program} <@var{enable|disable}>
268 @cindex gdb_flash_program
269 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
270 vFlash packet is received.
271 Default behaviour is <@var{enable}>
272 at item @b{tcl_port} <@var{number}>
273 at cindex tcl_port
274 Port on which to listen for incoming TCL syntax. This port is intended as
275 a simplified RPC connection that can be used by clients to issue commands
276 and get the output from the TCL engine.
277 @item @b{daemon_startup} <@var{mode}>
278 @cindex daemon_startup
279 @option{mode} can either @option{attach} or @option{reset}
280 This is equivalent to adding "init" and "reset" to the end of the config script.
281
282 It is available as a command mainly for backwards compatibility.
283 @end itemize
284
285 @section JTAG interface configuration
286
287 @itemize @bullet
288 @item @b{interface} <@var{name}>
289 @cindex interface
290 Use the interface driver <@var{name}> to connect to the target. Currently supported
291 interfaces are
292 @itemize @minus
293 @item @b{parport}
294 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
295 @end itemize
296 @itemize @minus
297 @item @b{amt_jtagaccel}
298 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
299 mode parallel port
300 @end itemize
301 @itemize @minus
302 @item @b{ft2232}
303 FTDI FT2232 based devices using either the open-source libftdi or the binary only
304 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
305 platform. The libftdi uses libusb, and should be portable to all systems that provide
306 libusb.
307 @end itemize
308 @itemize @minus
309 @item @b{ep93xx}
310 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
311 @end itemize
312 @itemize @minus
313 @item @b{presto}
314 ASIX PRESTO USB JTAG programmer.
315 @end itemize
316 @itemize @minus
317 @item @b{usbprog}
318 usbprog is a freely programmable USB adapter.
319 @end itemize
320 @itemize @minus
321 @item @b{gw16012}
322 Gateworks GW16012 JTAG programmer.
323 @end itemize
324 @itemize @minus
325 @item @b{jlink}
326 Segger jlink usb adapter
327 @end itemize
328 @end itemize
329
330 @itemize @bullet
331 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
332 @cindex jtag_speed
333 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
334 speed. The actual effect of this option depends on the JTAG interface used. Reset
335 speed is used during reset and post reset speed after reset. post reset speed
336 is optional, in which case the reset speed is used.
337 @itemize @minus
338
339 @item wiggler: maximum speed / @var{number}
340 @item ft2232: 6MHz / (@var{number}+1)
341 @item amt jtagaccel: 8 / 2**@var{number}
342 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
343 @end itemize
344
345 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
346 especially true for synthesized cores (-S).
347
348 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
349 @cindex jtag_khz
350 Same as jtag_speed, except that the speed is specified in maximum kHz. If
351 the device can not support the rate asked for, or can not translate from
352 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
353 is not supported, then an error is reported.
354
355 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
356 @cindex reset_config
357 The configuration of the reset signals available on the JTAG interface AND the target.
358 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
359 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
360 @option{srst_only} or @option{trst_and_srst}.
361
362 [@var{combination}] is an optional value specifying broken reset signal implementations.
363 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
364 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
365 that the system is reset together with the test logic (only hypothetical, I haven't
366 seen hardware with such a bug, and can be worked around).
367 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
368 The default behaviour if no option given is @option{separate}.
369
370 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
371 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
372 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
373 (default) and @option{srst_push_pull} for the system reset. These values only affect
374 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
375
376 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
377 @cindex jtag_device
378 Describes the devices that form the JTAG daisy chain, with the first device being
379 the one closest to TDO. The parameters are the length of the instruction register
380 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
381 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
382 The IDCODE instruction will in future be used to query devices for their JTAG
383 identification code. This line is the same for all ARM7 and ARM9 devices.
384 Other devices, like CPLDs, require different parameters. An example configuration
385 line for a Xilinx XC9500 CPLD would look like this:
386 @smallexample
387 jtag_device 8 0x01 0x0e3 0xfe
388 @end smallexample
389 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
390 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
391 The IDCODE instruction is 0xfe.
392
393 @item @b{jtag_nsrst_delay} <@var{ms}>
394 @cindex jtag_nsrst_delay
395 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
396 starting new JTAG operations.
397 @item @b{jtag_ntrst_delay} <@var{ms}>
398 @cindex jtag_ntrst_delay
399 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
400 starting new JTAG operations.
401
402 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
403 or on-chip features) keep a reset line asserted for some time after the external reset
404 got deasserted.
405 @end itemize
406
407 @section parport options
408
409 @itemize @bullet
410 @item @b{parport_port} <@var{number}>
411 @cindex parport_port
412 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
413 the @file{/dev/parport} device
414
415 When using PPDEV to access the parallel port, use the number of the parallel port:
416 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
417 you may encounter a problem.
418 @item @b{parport_cable} <@var{name}>
419 @cindex parport_cable
420 The layout of the parallel port cable used to connect to the target.
421 Currently supported cables are
422 @itemize @minus
423 @item @b{wiggler}
424 @cindex wiggler
425 The original Wiggler layout, also supported by several clones, such
426 as the Olimex ARM-JTAG
427 @item @b{old_amt_wiggler}
428 @cindex old_amt_wiggler
429 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
430 version available from the website uses the original Wiggler layout ('@var{wiggler}')
431 @item @b{chameleon}
432 @cindex chameleon
433 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
434 @item @b{dlc5}
435 @cindex dlc5
436 The Xilinx Parallel cable III.
437 @item @b{triton}
438 @cindex triton
439 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
440 This is also the layout used by the HollyGates design
441 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
442 @item @b{flashlink}
443 @cindex flashlink
444 The ST Parallel cable.
445 @end itemize
446 @item @b{parport_write_on_exit} <@var{on|off}>
447 @cindex parport_write_on_exit
448 This will configure the parallel driver to write a known value to the parallel
449 interface on exiting OpenOCD
450 @end itemize
451
452 @section amt_jtagaccel options
453 @itemize @bullet
454 @item @b{parport_port} <@var{number}>
455 @cindex parport_port
456 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
457 @file{/dev/parport} device
458 @end itemize
459 @section ft2232 options
460
461 @itemize @bullet
462 @item @b{ft2232_device_desc} <@var{description}>
463 @cindex ft2232_device_desc
464 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
465 default value is used. This setting is only valid if compiled with FTD2XX support.
466 @item @b{ft2232_layout} <@var{name}>
467 @cindex ft2232_layout
468 The layout of the FT2232 GPIO signals used to control output-enables and reset
469 signals. Valid layouts are
470 @itemize @minus
471 @item @b{usbjtag}
472 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
473 @item @b{jtagkey}
474 Amontec JTAGkey and JTAGkey-tiny
475 @item @b{signalyzer}
476 Signalyzer
477 @item @b{olimex-jtag}
478 Olimex ARM-USB-OCD
479 @item @b{m5960}
480 American Microsystems M5960
481 @item @b{evb_lm3s811}
482 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
483 SRST signals on external connector
484 @item @b{comstick}
485 Hitex STR9 comstick
486 @item @b{stm32stick}
487 Hitex STM32 Performance Stick
488 @item @b{flyswatter}
489 Tin Can Tools Flyswatter
490 @item @b{turtelizer2}
491 egnite Software turtelizer2
492 @item @b{oocdlink}
493 OOCDLink
494 @end itemize
495
496 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
497 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
498 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
499 @smallexample
500 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
501 @end smallexample
502 @item @b{ft2232_latency} <@var{ms}>
503 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
504 ft2232_read() fails to return the expected number of bytes. This can be caused by
505 USB communication delays and has proved hard to reproduce and debug. Setting the
506 FT2232 latency timer to a larger value increases delays for short USB packages but it
507 also reduces the risk of timeouts before receiving the expected number of bytes.
508 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
509 @end itemize
510
511 @section ep93xx options
512 @cindex ep93xx options
513 Currently, there are no options available for the ep93xx interface.
514
515 @page
516 @section Target configuration
517
518 @itemize @bullet
519 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
520 <@var{variant}>
521 @cindex target
522 Defines a target that should be debugged. Currently supported types are:
523 @itemize @minus
524 @item @b{arm7tdmi}
525 @item @b{arm720t}
526 @item @b{arm9tdmi}
527 @item @b{arm920t}
528 @item @b{arm922t}
529 @item @b{arm926ejs}
530 @item @b{arm966e}
531 @item @b{cortex_m3}
532 @item @b{feroceon}
533 @item @b{xscale}
534 @end itemize
535
536 If you want to use a target board that is not on this list, see Adding a new
537 target board
538
539 Endianess may be @option{little} or @option{big}.
540
541 The reset_mode specifies what should happen to the target when a reset occurs:
542 @itemize @minus
543 @item @b{reset_halt}
544 @cindex reset_halt
545 Immediately request a target halt after reset. This allows targets to be debugged
546 from the very first instruction. This is only possible with targets and JTAG
547 interfaces that correctly implement the reset signals.
548 @item @b{reset_init}
549 @cindex reset_init
550 Similar to @option{reset_halt}, but executes the script file defined to handle the
551 'reset' event for the target. Like @option{reset_halt} this only works with
552 correct reset implementations.
553 @item @b{reset_run}
554 @cindex reset_run
555 Simply let the target run after a reset.
556 @item @b{run_and_halt}
557 @cindex run_and_halt
558 Let the target run for some time (default: 1s), and then request halt.
559 @item @b{run_and_init}
560 @cindex run_and_init
561 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
562 to run for some time, then halted, and the @option{reset} event script is executed.
563 @end itemize
564
565 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
566 completely independent (like the LPC2000 series), or where the JTAG interface is
567 unavailable for some time during startup (like the STR7 series), you can't use
568 @option{reset_halt} or @option{reset_init}.
569
570 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
571 @cindex target_script
572 Event is one of the following:
573 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
574 @option{pre_resume} or @option{gdb_program_config}.
575 @option{post_reset} and @option{reset} will produce the same results.
576
577 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
578 @cindex run_and_halt_time
579 The amount of time the debugger should wait after releasing reset before it asserts
580 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
581 reset modes.
582 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
583 <@var{backup}|@var{nobackup}>
584 @cindex working_area
585 Specifies a working area for the debugger to use. This may be used to speed-up
586 downloads to target memory and flash operations, or to perform otherwise unavailable
587 operations (some coprocessor operations on ARM7/9 systems, for example). The last
588 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
589 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
590 @end itemize
591
592 @subsection arm7tdmi options
593 @cindex arm7tdmi options
594 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
595 The arm7tdmi target definition requires at least one additional argument, specifying
596 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
597 The optional [@var{variant}] parameter has been removed in recent versions.
598 The correct feature set is determined at runtime.
599
600 @subsection arm720t options
601 @cindex arm720t options
602 ARM720t options are similar to ARM7TDMI options.
603
604 @subsection arm9tdmi options
605 @cindex arm9tdmi options
606 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
607 @option{arm920t}, @option{arm922t} and @option{arm940t}.
608 This enables the hardware single-stepping support found on these cores.
609
610 @subsection arm920t options
611 @cindex arm920t options
612 ARM920t options are similar to ARM9TDMI options.
613
614 @subsection arm966e options
615 @cindex arm966e options
616 ARM966e options are similar to ARM9TDMI options.
617
618 @subsection cortex_m3 options
619 @cindex cortex_m3 options
620 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
621 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
622 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
623 be detected and the normal reset behaviour used.
624
625 @subsection xscale options
626 @cindex xscale options
627 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
628 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
629
630 @section Flash configuration
631 @cindex Flash configuration
632
633 @itemize @bullet
634 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
635 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
636 @cindex flash bank
637 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
638 and <@var{bus_width}> bytes using the selected flash <driver>.
639 @end itemize
640
641 @subsection lpc2000 options
642 @cindex lpc2000 options
643
644 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
645 <@var{clock}> [@var{calc_checksum}]
646 LPC flashes don't require the chip and bus width to be specified. Additional
647 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
648 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
649 of the target this flash belongs to (first is 0), the frequency at which the core
650 is currently running (in kHz - must be an integral number), and the optional keyword
651 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
652 vector table.
653
654 @subsection cfi options
655 @cindex cfi options
656
657 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
658 <@var{target#}>
659 CFI flashes require the number of the target they're connected to as an additional
660 argument. The CFI driver makes use of a working area (specified for the target)
661 to significantly speed up operation.
662
663 @var{chip_width} and @var{bus_width} are specified in bytes.
664
665 @subsection at91sam7 options
666 @cindex at91sam7 options
667
668 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
669 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
670 reading the chip-id and type.
671
672 @subsection str7 options
673 @cindex str7 options
674
675 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
676 variant can be either STR71x, STR73x or STR75x.
677
678 @subsection str9 options
679 @cindex str9 options
680
681 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
682 The str9 needs the flash controller to be configured prior to Flash programming, eg.
683 @smallexample
684 str9x flash_config 0 4 2 0 0x80000
685 @end smallexample
686 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
687
688 @subsection str9 options (str9xpec driver)
689
690 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
691 Before using the flash commands the turbo mode will need enabling using str9xpec
692 @option{enable_turbo} <@var{num>.}
693
694 Only use this driver for locking/unlocking the device or configuring the option bytes.
695 Use the standard str9 driver for programming.
696
697 @subsection stellaris (LM3Sxxx) options
698 @cindex stellaris (LM3Sxxx) options
699
700 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
701 stellaris flash plugin only require the @var{target#}.
702
703 @subsection stm32x options
704 @cindex stm32x options
705
706 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
707 stm32x flash plugin only require the @var{target#}.
708
709 @node Target library
710 @chapter Target library
711 @cindex Target library
712
713 OpenOCD comes with a target configuration script library. These scripts can be
714 used as-is or serve as a starting point.
715
716 The target library is published together with the openocd executable and
717 the path to the target library is in the OpenOCD script search path.
718 Similarly there are example scripts for configuring the JTAG interface.
719
720 The command line below uses the example parport configuration scripts
721 that ship with OpenOCD, then configures the str710.cfg target and
722 finally issues the init and reset command. The communication speed
723 is set to 10kHz for reset and 8MHz for post reset.
724
725
726 @smallexample
727 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
728 @end smallexample
729
730
731 To list the target scripts available:
732
733 @smallexample
734 $ ls /usr/local/lib/openocd/target
735
736 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
737 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
738 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
739 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
740 @end smallexample
741
742
743 @node Commands
744 @chapter Commands
745 @cindex commands
746
747 OpenOCD allows user interaction through a GDB server (default: port 3333),
748 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
749 is available from both the telnet interface and a GDB session. To issue commands to the
750 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
751 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
752 GDB session.
753
754 The TCL interface is used as a simplified RPC mechanism that feeds all the
755 input into the TCL interpreter and returns the output from the evaluation of
756 the commands.
757
758 @section Daemon
759
760 @itemize @bullet
761 @item @b{sleep} <@var{msec}>
762 @cindex sleep
763 Wait for n milliseconds before resuming. Useful in connection with script files
764 (@var{script} command and @var{target_script} configuration).
765
766 @item @b{shutdown}
767 @cindex shutdown
768 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
769
770 @item @b{debug_level} [@var{n}]
771 @cindex debug_level
772 Display or adjust debug level to n<0-3>
773
774 @item @b{fast} [@var{enable/disable}]
775 @cindex fast
776 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
777 downloads and fast memory access will work if the JTAG interface isn't too fast and
778 the core doesn't run at a too low frequency. Note that this option only changes the default
779 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
780 individually.
781
782 The target specific "dangerous" optimisation tweaking options may come and go
783 as more robust and user friendly ways are found to ensure maximum throughput
784 and robustness with a minimum of configuration.
785
786 Typically the "fast enable" is specified first on the command line:
787
788 @smallexample
789 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
790 @end smallexample
791
792 @item @b{log_output} <@var{file}>
793 @cindex log_output
794 Redirect logging to <file> (default: stderr)
795
796 @item @b{script} <@var{file}>
797 @cindex script
798 Execute commands from <file>
799
800 @end itemize
801
802 @subsection Target state handling
803 @itemize @bullet
804 @item @b{poll} [@option{on}|@option{off}]
805 @cindex poll
806 Poll the target for its current state. If the target is in debug mode, architecture
807 specific information about the current state is printed. An optional parameter
808 allows continuous polling to be enabled and disabled.
809
810 @item @b{halt} [@option{ms}]
811 @cindex halt
812 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
813 Default [@option{ms}] is 5 seconds if no arg given.
814 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
815 will stop OpenOCD from waiting.
816
817 @item @b{wait_halt} [@option{ms}]
818 @cindex wait_halt
819 Wait for the target to enter debug mode. Optional [@option{ms}] is
820 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
821 arg given.
822
823 @item @b{resume} [@var{address}]
824 @cindex resume
825 Resume the target at its current code position, or at an optional address.
826 OpenOCD will wait 5 seconds for the target to resume.
827
828 @item @b{step} [@var{address}]
829 @cindex step
830 Single-step the target at its current code position, or at an optional address.
831
832 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
833 |@option{run_and_init}]
834 @cindex reset
835 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
836 This optional parameter overrides the setting specified in the configuration file,
837 making the new behaviour the default for the @option{reset} command.
838 @itemize @minus
839 @item @b{run}
840 @cindex reset run
841 Let the target run.
842 @item @b{halt}
843 @cindex reset halt
844 Immediately halt the target (works only with certain configurations).
845 @item @b{init}
846 @cindex reset init
847 Immediately halt the target, and execute the reset script (works only with certain
848 configurations)
849 @item @b{run_and_halt}
850 @cindex reset run_and_halt
851 Let the target run for a certain amount of time, then request a halt.
852 @item @b{run_and_init}
853 @cindex reset run_and_init
854 Let the target run for a certain amount of time, then request a halt. Execute the
855 reset script once the target enters debug mode.
856 @end itemize
857 @end itemize
858
859 @subsection Memory access commands
860 These commands allow accesses of a specific size to the memory system:
861 @itemize @bullet
862 @item @b{mdw} <@var{addr}> [@var{count}]
863 @cindex mdw
864 display memory words
865 @item @b{mdh} <@var{addr}> [@var{count}]
866 @cindex mdh
867 display memory half-words
868 @item @b{mdb} <@var{addr}> [@var{count}]
869 @cindex mdb
870 display memory bytes
871 @item @b{mww} <@var{addr}> <@var{value}>
872 @cindex mww
873 write memory word
874 @item @b{mwh} <@var{addr}> <@var{value}>
875 @cindex mwh
876 write memory half-word
877 @item @b{mwb} <@var{addr}> <@var{value}>
878 @cindex mwb
879 write memory byte
880
881 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
882 @cindex load_image
883 Load image <@var{file}> to target memory at <@var{address}>
884 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
885 @cindex dump_image
886 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
887 (binary) <@var{file}>.
888 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
889 @cindex verify_image
890 Verify <@var{file}> against target memory starting at <@var{address}>.
891 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
892 @end itemize
893
894 @subsection Flash commands
895 @cindex Flash commands
896 @itemize @bullet
897 @item @b{flash banks}
898 @cindex flash banks
899 List configured flash banks
900 @item @b{flash info} <@var{num}>
901 @cindex flash info
902 Print info about flash bank <@option{num}>
903 @item @b{flash probe} <@var{num}>
904 @cindex flash probe
905 Identify the flash, or validate the parameters of the configured flash. Operation
906 depends on the flash type.
907 @item @b{flash erase_check} <@var{num}>
908 @cindex flash erase_check
909 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
910 updates the erase state information displayed by @option{flash info}. That means you have
911 to issue an @option{erase_check} command after erasing or programming the device to get
912 updated information.
913 @item @b{flash protect_check} <@var{num}>
914 @cindex flash protect_check
915 Check protection state of sectors in flash bank <num>.
916 @option{flash erase_sector} using the same syntax.
917 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
918 @cindex flash erase_sector
919 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
920 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
921 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
922 the CFI driver).
923 @item @b{flash erase_address} <@var{address}> <@var{length}>
924 @cindex flash erase_address
925 Erase sectors starting at <@var{address}> for <@var{length}> bytes
926 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
927 @cindex flash write_bank
928 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
929 <@option{offset}> bytes from the beginning of the bank.
930 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
931 @cindex flash write_image
932 Write the image <@var{file}> to the current target's flash bank(s). A relocation
933 [@var{offset}] can be specified and the file [@var{type}] can be specified
934 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
935 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
936 if the @option{erase} parameter is given.
937 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
938 @cindex flash protect
939 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
940 <@var{last}> of @option{flash bank} <@var{num}>.
941 @end itemize
942
943 @page
944 @section Target Specific Commands
945 @cindex Target Specific Commands
946
947 @subsection AT91SAM7 specific commands
948 @cindex AT91SAM7 specific commands
949 The flash configuration is deduced from the chip identification register. The flash
950 controller handles erases automatically on a page (128/265 byte) basis so erase is
951 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
952 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
953 that can be erased separatly. Only an EraseAll command is supported by the controller
954 for each flash plane and this is called with
955 @itemize @bullet
956 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
957 bulk erase flash planes first_plane to last_plane.
958 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
959 @cindex at91sam7 gpnvm
960 set or clear a gpnvm bit for the processor
961 @end itemize
962
963 @subsection STR9 specific commands
964 @cindex STR9 specific commands
965 These are flash specific commands when using the str9xpec driver.
966 @itemize @bullet
967 @item @b{str9xpec enable_turbo} <@var{num}>
968 @cindex str9xpec enable_turbo
969 enable turbo mode, simply this will remove the str9 from the chain and talk
970 directly to the embedded flash controller.
971 @item @b{str9xpec disable_turbo} <@var{num}>
972 @cindex str9xpec disable_turbo
973 restore the str9 into jtag chain.
974 @item @b{str9xpec lock} <@var{num}>
975 @cindex str9xpec lock
976 lock str9 device. The str9 will only respond to an unlock command that will
977 erase the device.
978 @item @b{str9xpec unlock} <@var{num}>
979 @cindex str9xpec unlock
980 unlock str9 device.
981 @item @b{str9xpec options_read} <@var{num}>
982 @cindex str9xpec options_read
983 read str9 option bytes.
984 @item @b{str9xpec options_write} <@var{num}>
985 @cindex str9xpec options_write
986 write str9 option bytes.
987 @end itemize
988
989 @subsection STR9 configuration
990 @cindex STR9 configuration
991 @itemize @bullet
992 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
993 <@var{BBADR}> <@var{NBBADR}>
994 @cindex str9x flash_config
995 Configure str9 flash controller.
996 @smallexample
997 eg. str9x flash_config 0 4 2 0 0x80000
998 This will setup
999 BBSR - Boot Bank Size register
1000 NBBSR - Non Boot Bank Size register
1001 BBADR - Boot Bank Start Address register
1002 NBBADR - Boot Bank Start Address register
1003 @end smallexample
1004 @end itemize
1005
1006 @subsection STR9 option byte configuration
1007 @cindex STR9 option byte configuration
1008 @itemize @bullet
1009 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
1010 @cindex str9xpec options_cmap
1011 configure str9 boot bank.
1012 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1013 @cindex str9xpec options_lvdthd
1014 configure str9 lvd threshold.
1015 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1016 @cindex str9xpec options_lvdsel
1017 configure str9 lvd source.
1018 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1019 @cindex str9xpec options_lvdwarn
1020 configure str9 lvd reset warning source.
1021 @end itemize
1022
1023 @subsection STM32x specific commands
1024 @cindex STM32x specific commands
1025
1026 These are flash specific commands when using the stm32x driver.
1027 @itemize @bullet
1028 @item @b{stm32x lock} <@var{num}>
1029 @cindex stm32x lock
1030 lock stm32 device.
1031 @item @b{stm32x unlock} <@var{num}>
1032 @cindex stm32x unlock
1033 unlock stm32 device.
1034 @item @b{stm32x options_read} <@var{num}>
1035 @cindex stm32x options_read
1036 read stm32 option bytes.
1037 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1038 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1039 @cindex stm32x options_write
1040 write stm32 option bytes.
1041 @item @b{stm32x mass_erase} <@var{num}>
1042 @cindex stm32x mass_erase
1043 mass erase flash memory.
1044 @end itemize
1045
1046 @subsection Stellaris specific commands
1047 @cindex Stellaris specific commands
1048
1049 These are flash specific commands when using the Stellaris driver.
1050 @itemize @bullet
1051 @item @b{stellaris mass_erase} <@var{num}>
1052 @cindex stellaris mass_erase
1053 mass erase flash memory.
1054 @end itemize
1055
1056 @page
1057 @section Architecture Specific Commands
1058 @cindex Architecture Specific Commands
1059
1060 @subsection ARMV4/5 specific commands
1061 @cindex ARMV4/5 specific commands
1062
1063 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1064 or Intel XScale (XScale isn't supported yet).
1065 @itemize @bullet
1066 @item @b{armv4_5 reg}
1067 @cindex armv4_5 reg
1068 Display a list of all banked core registers, fetching the current value from every
1069 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1070 register value.
1071 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1072 @cindex armv4_5 core_mode
1073 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1074 The target is resumed in the currently set @option{core_mode}.
1075 @end itemize
1076
1077 @subsection ARM7/9 specific commands
1078 @cindex ARM7/9 specific commands
1079
1080 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1081 ARM920t or ARM926EJ-S.
1082 @itemize @bullet
1083 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1084 @cindex arm7_9 sw_bkpts
1085 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1086 one of the watchpoint registers to implement software breakpoints. Disabling
1087 SW Bkpts frees that register again.
1088 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1089 @cindex arm7_9 force_hw_bkpts
1090 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1091 breakpoints are turned into hardware breakpoints.
1092 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1093 @cindex arm7_9 dbgrq
1094 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1095 safe for all but ARM7TDMI--S cores (like Philips LPC).
1096 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1097 @cindex arm7_9 fast_memory_access
1098 Allow OpenOCD to read and write memory without checking completion of
1099 the operation. This provides a huge speed increase, especially with USB JTAG
1100 cables (FT2232), but might be unsafe if used with targets running at a very low
1101 speed, like the 32kHz startup clock of an AT91RM9200.
1102 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1103 @cindex arm7_9 dcc_downloads
1104 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1105 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1106 unsafe, especially with targets running at a very low speed. This command was introduced
1107 with OpenOCD rev. 60.
1108 @end itemize
1109
1110 @subsection ARM720T specific commands
1111 @cindex ARM720T specific commands
1112
1113 @itemize @bullet
1114 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1115 @cindex arm720t cp15
1116 display/modify cp15 register <@option{num}> [@option{value}].
1117 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1118 @cindex arm720t md<bhw>_phys
1119 Display memory at physical address addr.
1120 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1121 @cindex arm720t mw<bhw>_phys
1122 Write memory at physical address addr.
1123 @item @b{arm720t virt2phys} <@var{va}>
1124 @cindex arm720t virt2phys
1125 Translate a virtual address to a physical address.
1126 @end itemize
1127
1128 @subsection ARM9TDMI specific commands
1129 @cindex ARM9TDMI specific commands
1130
1131 @itemize @bullet
1132 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1133 @cindex arm9tdmi vector_catch
1134 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1135 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1136 @option{irq} @option{fiq}.
1137
1138 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1139 @end itemize
1140
1141 @subsection ARM966E specific commands
1142 @cindex ARM966E specific commands
1143
1144 @itemize @bullet
1145 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1146 @cindex arm966e cp15
1147 display/modify cp15 register <@option{num}> [@option{value}].
1148 @end itemize
1149
1150 @subsection ARM920T specific commands
1151 @cindex ARM920T specific commands
1152
1153 @itemize @bullet
1154 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1155 @cindex arm920t cp15
1156 display/modify cp15 register <@option{num}> [@option{value}].
1157 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1158 @cindex arm920t cp15i
1159 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1160 @item @b{arm920t cache_info}
1161 @cindex arm920t cache_info
1162 Print information about the caches found. This allows you to see if your target
1163 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1164 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1165 @cindex arm920t md<bhw>_phys
1166 Display memory at physical address addr.
1167 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1168 @cindex arm920t mw<bhw>_phys
1169 Write memory at physical address addr.
1170 @item @b{arm920t read_cache} <@var{filename}>
1171 @cindex arm920t read_cache
1172 Dump the content of ICache and DCache to a file.
1173 @item @b{arm920t read_mmu} <@var{filename}>
1174 @cindex arm920t read_mmu
1175 Dump the content of the ITLB and DTLB to a file.
1176 @item @b{arm920t virt2phys} <@var{va}>
1177 @cindex arm920t virt2phys
1178 Translate a virtual address to a physical address.
1179 @end itemize
1180
1181 @subsection ARM926EJS specific commands
1182 @cindex ARM926EJS specific commands
1183
1184 @itemize @bullet
1185 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1186 @cindex arm926ejs cp15
1187 display/modify cp15 register <@option{num}> [@option{value}].
1188 @item @b{arm926ejs cache_info}
1189 @cindex arm926ejs cache_info
1190 Print information about the caches found.
1191 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1192 @cindex arm926ejs md<bhw>_phys
1193 Display memory at physical address addr.
1194 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1195 @cindex arm926ejs mw<bhw>_phys
1196 Write memory at physical address addr.
1197 @item @b{arm926ejs virt2phys} <@var{va}>
1198 @cindex arm926ejs virt2phys
1199 Translate a virtual address to a physical address.
1200 @end itemize
1201
1202 @page
1203 @section Debug commands
1204 @cindex Debug commands
1205 The following commands give direct access to the core, and are most likely
1206 only useful while debugging OpenOCD.
1207 @itemize @bullet
1208 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1209 @cindex arm7_9 write_xpsr
1210 Immediately write either the current program status register (CPSR) or the saved
1211 program status register (SPSR), without changing the register cache (as displayed
1212 by the @option{reg} and @option{armv4_5 reg} commands).
1213 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1214 <@var{0=cpsr},@var{1=spsr}>
1215 @cindex arm7_9 write_xpsr_im8
1216 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1217 operation (similar to @option{write_xpsr}).
1218 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1219 @cindex arm7_9 write_core_reg
1220 Write a core register, without changing the register cache (as displayed by the
1221 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1222 encoding of the [M4:M0] bits of the PSR.
1223 @end itemize
1224
1225 @page
1226 @section JTAG commands
1227 @cindex JTAG commands
1228 @itemize @bullet
1229 @item @b{scan_chain}
1230 @cindex scan_chain
1231 Print current scan chain configuration.
1232 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1233 @cindex jtag_reset
1234 Toggle reset lines.
1235 @item @b{endstate} <@var{tap_state}>
1236 @cindex endstate
1237 Finish JTAG operations in <@var{tap_state}>.
1238 @item @b{runtest} <@var{num_cycles}>
1239 @cindex runtest
1240 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1241 @item @b{statemove} [@var{tap_state}]
1242 @cindex statemove
1243 Move to current endstate or [@var{tap_state}]
1244 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1245 @cindex irscan
1246 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1247 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1248 @cindex drscan
1249 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1250 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1251 @cindex verify_ircapture
1252 Verify value captured during Capture-IR. Default is enabled.
1253 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1254 @cindex var
1255 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1256 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1257 @cindex field
1258 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1259 @end itemize
1260
1261 @page
1262 @section Target Requests
1263 @cindex Target Requests
1264 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1265 See libdcc in the contrib dir for more details.
1266 @itemize @bullet
1267 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1268 @cindex target_request debugmsgs
1269 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1270 @end itemize
1271
1272 @node Sample Scripts
1273 @chapter Sample Scripts
1274 @cindex scripts
1275
1276 This page shows how to use the target library.
1277
1278 The configuration script can be divided in the following section:
1279 @itemize @bullet
1280 @item daemon configuration
1281 @item interface
1282 @item jtag scan chain
1283 @item target configuration
1284 @item flash configuration
1285 @end itemize
1286
1287 Detailed information about each section can be found at OpenOCD configuration.
1288
1289 @section AT91R40008 example
1290 @cindex AT91R40008 example
1291 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1292 the CPU upon startup of the OpenOCD daemon.
1293 @smallexample
1294 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1295 @end smallexample
1296
1297
1298 @node GDB and OpenOCD
1299 @chapter GDB and OpenOCD
1300 @cindex GDB and OpenOCD
1301 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1302 to debug remote targets.
1303
1304 @section Connecting to gdb
1305 @cindex Connecting to gdb
1306 A connection is typically started as follows:
1307 @smallexample
1308 target remote localhost:3333
1309 @end smallexample
1310 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1311
1312 To see a list of available OpenOCD commands type @option{monitor help} on the
1313 gdb commandline.
1314
1315 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1316 to be sent by the gdb server (openocd) to gdb. Typical information includes
1317 packet size and device memory map.
1318
1319 Previous versions of OpenOCD required the following gdb options to increase
1320 the packet size and speed up gdb communication.
1321 @smallexample
1322 set remote memory-write-packet-size 1024
1323 set remote memory-write-packet-size fixed
1324 set remote memory-read-packet-size 1024
1325 set remote memory-read-packet-size fixed
1326 @end smallexample
1327 This is now handled in the @option{qSupported} PacketSize.
1328
1329 @section Programming using gdb
1330 @cindex Programming using gdb
1331
1332 By default the target memory map is sent to gdb, this can be disabled by
1333 the following OpenOCD config option:
1334 @smallexample
1335 gdb_memory_map disable
1336 @end smallexample
1337 For this to function correctly a valid flash config must also be configured
1338 in OpenOCD. For faster performance you should also configure a valid
1339 working area.
1340
1341 Informing gdb of the memory map of the target will enable gdb to protect any
1342 flash area of the target and use hardware breakpoints by default. This means
1343 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1344 using a memory map.
1345
1346 To view the configured memory map in gdb, use the gdb command @option{info mem}
1347 All other unasigned addresses within gdb are treated as RAM.
1348
1349 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1350 this can be changed to the old behaviour by using the following gdb command.
1351 @smallexample
1352 set mem inaccessible-by-default off
1353 @end smallexample
1354
1355 If @option{gdb_flash_program enable} is also used, gdb will be able to
1356 program any flash memory using the vFlash interface.
1357
1358 gdb will look at the target memory map when a load command is given, if any
1359 areas to be programmed lie within the target flash area the vFlash packets
1360 will be used.
1361
1362 If the target needs configuring before gdb programming, a script can be executed.
1363 @smallexample
1364 target_script 0 gdb_program_config config.script
1365 @end smallexample
1366
1367 To verify any flash programming the gdb command @option{compare-sections}
1368 can be used.
1369
1370 @node TCL and OpenOCD
1371 @chapter TCL and OpenOCD
1372 @cindex TCL and OpenOCD
1373 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1374 support.
1375
1376 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1377
1378 The command and file interfaces are fairly straightforward, while the network
1379 port is geared toward intergration with external clients. A small example
1380 of an external TCL script that can connect to openocd is shown below.
1381
1382 @verbatim
1383 # Simple tcl client to connect to openocd
1384 puts "Use empty line to exit"
1385 set fo [socket 127.0.0.1 6666]
1386 puts -nonewline stdout "> "
1387 flush stdout
1388 while {[gets stdin line] >= 0} {
1389 if {$line eq {}} break
1390 puts $fo $line
1391 flush $fo
1392 gets $fo line
1393 puts $line
1394 puts -nonewline stdout "> "
1395 flush stdout
1396 }
1397 close $fo
1398 @end verbatim
1399
1400 This script can easily be modified to front various GUIs or be a sub
1401 component of a larger framework for control and interaction.
1402
1403
1404 @node TCL scripting API
1405 @chapter TCL scripting API
1406 @cindex TCL scripting API
1407 API rules
1408
1409 The commands are stateless. E.g. the telnet command line has a concept
1410 of currently active target, the Tcl API proc's take this sort of state
1411 information as an argument to each proc.
1412
1413 There are three main types of return values: single value, name value
1414 pair list and lists.
1415
1416 Name value pair. The proc 'foo' below returns a name/value pair
1417 list.
1418
1419 @verbatim
1420
1421 > set foo(me) Duane
1422 > set foo(you) Oyvind
1423 > set foo(mouse) Micky
1424 > set foo(duck) Donald
1425
1426 If one does this:
1427
1428 > set foo
1429
1430 The result is:
1431
1432 me Duane you Oyvind mouse Micky duck Donald
1433
1434 Thus, to get the names of the associative array is easy:
1435
1436 foreach { name value } [set foo] {
1437 puts "Name: $name, Value: $value"
1438 }
1439 @end verbatim
1440
1441 Lists returned must be relatively small. Otherwise a range
1442 should be passed in to the proc in question.
1443
1444 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1445 is the low level API upon which "flash banks" is implemented.
1446
1447 OpenOCD commands can consist of two words, e.g. "flash banks". The
1448 startup.tcl "unknown" proc will translate this into a tcl proc
1449 called "flash_banks".
1450
1451
1452 @node Upgrading
1453 @chapter Deprecated/Removed Commands
1454 @cindex Deprecated/Removed Commands
1455 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1456
1457 @itemize @bullet
1458 @item @b{load_binary}
1459 @cindex load_binary
1460 use @option{load_image} command with same args
1461 @item @b{dump_binary}
1462 @cindex dump_binary
1463 use @option{dump_image} command with same args
1464 @item @b{flash erase}
1465 @cindex flash erase
1466 use @option{flash erase_sector} command with same args
1467 @item @b{flash write}
1468 @cindex flash write
1469 use @option{flash write_bank} command with same args
1470 @item @b{flash write_binary}
1471 @cindex flash write_binary
1472 use @option{flash write_bank} command with same args
1473 @item @b{arm7_9 fast_writes}
1474 @cindex arm7_9 fast_writes
1475 use @option{arm7_9 fast_memory_access} command with same args
1476 @item @b{flash auto_erase}
1477 @cindex flash auto_erase
1478 use @option{flash write_image} command passing @option{erase} as the first parameter.
1479 @end itemize
1480
1481 @node FAQ
1482 @chapter FAQ
1483 @cindex faq
1484 @enumerate
1485 @item OpenOCD complains about a missing cygwin1.dll.
1486
1487 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1488 claims to come with all the necessary dlls. When using Cygwin, try launching
1489 OpenOCD from the Cygwin shell.
1490
1491 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1492 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1493 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1494
1495 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1496 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1497 software breakpoints consume one of the two available hardware breakpoints,
1498 and are therefore disabled by default. If your code is running from RAM, you
1499 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1500 your code resides in Flash, you can't use software breakpoints, but you can force
1501 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1502
1503 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1504 and works sometimes fine.
1505
1506 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1507 clock at the time you're programming the flash. If you've specified the crystal's
1508 frequency, make sure the PLL is disabled, if you've specified the full core speed
1509 (e.g. 60MHz), make sure the PLL is enabled.
1510
1511 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1512 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1513 out while waiting for end of scan, rtck was disabled".
1514
1515 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1516 settings in your PC BIOS (ECP, EPP, and different versions of those).
1517
1518 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1519 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1520 memory read caused data abort".
1521
1522 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1523 beyond the last valid frame. It might be possible to prevent this by setting up
1524 a proper "initial" stack frame, if you happen to know what exactly has to
1525 be done, feel free to add this here.
1526
1527 @item I get the following message in the OpenOCD console (or log file):
1528 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1529
1530 This warning doesn't indicate any serious problem, as long as you don't want to
1531 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1532 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1533 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1534 independently. With this setup, it's not possible to halt the core right out of
1535 reset, everything else should work fine.
1536
1537 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1538 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1539 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1540 quit with an error message. Is there a stability issue with OpenOCD?
1541
1542 No, this is not a stability issue concerning OpenOCD. Most users have solved
1543 this issue by simply using a self-powered USB hub, which they connect their
1544 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1545 supply stable enough for the Amontec JTAGkey to be operated.
1546
1547 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1548 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1549 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1550 What does that mean and what might be the reason for this?
1551
1552 First of all, the reason might be the USB power supply. Try using a self-powered
1553 hub instead of a direct connection to your computer. Secondly, the error code 4
1554 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1555 chip ran into some sort of error - this points us to a USB problem.
1556
1557 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1558 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1559 What does that mean and what might be the reason for this?
1560
1561 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1562 has closed the connection to OpenOCD. This might be a GDB issue.
1563
1564 @item In the configuration file in the section where flash device configurations
1565 are described, there is a parameter for specifying the clock frequency for
1566 LPC2000 internal flash devices (e.g.
1567 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1568 which must be specified in kilohertz. However, I do have a quartz crystal of a
1569 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1570 Is it possible to specify real numbers for the clock frequency?
1571
1572 No. The clock frequency specified here must be given as an integral number.
1573 However, this clock frequency is used by the In-Application-Programming (IAP)
1574 routines of the LPC2000 family only, which seems to be very tolerant concerning
1575 the given clock frequency, so a slight difference between the specified clock
1576 frequency and the actual clock frequency will not cause any trouble.
1577
1578 @item Do I have to keep a specific order for the commands in the configuration file?
1579
1580 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1581 listed for the JTAG scan chain must be given in the right order (jtag_device),
1582 with the device closest to the TDO-Pin being listed first. In general,
1583 whenever objects of the same type exist which require an index number, then
1584 these objects must be given in the right order (jtag_devices, targets and flash
1585 banks - a target references a jtag_device and a flash bank references a target).
1586
1587 @item Sometimes my debugging session terminates with an error. When I look into the
1588 log file, I can see these error messages: Error: arm7_9_common.c:561
1589 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1590
1591 TODO.
1592
1593 @end enumerate
1594
1595 @include fdl.texi
1596
1597 @node Index
1598 @unnumbered Index
1599
1600 @printindex cp
1601
1602 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)