- fix small typo in texi (section HostOS)
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spencer Oliver @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware Dongles}.
100
101 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
102 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
103 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
104 debugged via the GDB Protocol.
105
106 @b{Flash Programing:} Flash writing is supported for external CFI
107 compatible flashes (Intel and AMD/Spansion command set) and several
108 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
109 STM32x). Preliminary support for using the LPC3180's NAND flash
110 controller is included.
111
112 @node Developers
113 @chapter Developers
114 @cindex developers
115
116 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
117 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
118 Others interested in improving the state of free and open debug and testing technology
119 are welcome to participate.
120
121 Other developers have contributed support for additional targets and flashes as well
122 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
123
124 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
125
126 @node Building
127 @chapter Building
128 @cindex building OpenOCD
129
130 @section Pre-Built Tools
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136 @section Packagers Please Read!
137
138 If you are a @b{PACKAGER} of OpenOCD if you
139
140 @enumerate
141 @item @b{Sell dongles} and include pre-built binaries
142 @item @b{Supply tools} ie: A complete development solution
143 @item @b{Supply IDEs} like Eclipse, or RHIDE, etc.
144 @item @b{Build packages} ie: RPM files, or DEB files for a Linux Distro
145 @end enumerate
146
147 As a @b{PACKAGER} - you are at the top of the food chain. You solve
148 problems for downstream users. What you fix or solve - solves hundreds
149 if not thousands of user questions. If something does not work for you
150 please let us know. That said, would also like you to follow a few
151 suggestions:
152
153 @enumerate
154 @item @b{Always build with Printer Ports Enabled}
155 @item @b{Try where possible to use LIBFTDI + LIBUSB} You cover more bases
156 @end enumerate
157
158 It is your decision..
159
160 @itemize @bullet
161 @item @b{Why YES to LIBFTDI + LIBUSB}
162 @itemize @bullet
163 @item @b{LESS} work - libusb perhaps already there
164 @item @b{LESS} work - identical code multiple platforms
165 @item @b{MORE} dongles are supported
166 @item @b{MORE} platforms are supported
167 @item @b{MORE} complete solution
168 @end itemize
169 @item @b{Why not LIBFTDI + LIBUSB} (ie: ftd2xx instead)
170 @itemize @bullet
171 @item @b{LESS} Some say it is slower.
172 @item @b{LESS} complex to distribute (external dependencies)
173 @end itemize
174 @end itemize
175
176 @section Building From Source
177
178 You can download the current SVN version with SVN client of your choice from the
179 following repositories:
180
181 (@uref{svn://svn.berlios.de/openocd/trunk})
182
183 or
184
185 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
186
187 Using the SVN command line client, you can use the following command to fetch the
188 latest version (make sure there is no (non-svn) directory called "openocd" in the
189 current directory):
190
191 @example
192 svn checkout svn://svn.berlios.de/openocd/trunk openocd
193 @end example
194
195 Building OpenOCD requires a recent version of the GNU autotools.
196 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
197 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
198 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
199 paths, resulting in obscure dependency errors (This is an observation I've gathered
200 from the logs of one user - correct me if I'm wrong).
201
202 You further need the appropriate driver files, if you want to build support for
203 a FTDI FT2232 based interface:
204 @itemize @bullet
205 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
206 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
207 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
208 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
209 @end itemize
210
211 libftdi is supported under windows. Do not use versions earlier then 0.14.
212
213 In general, the D2XX driver provides superior performance (several times as fast),
214 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
215 a kernel module, only a user space library.
216
217 To build OpenOCD (on both Linux and Cygwin), use the following commands:
218 @example
219 ./bootstrap
220 @end example
221 Bootstrap generates the configure script, and prepares building on your system.
222 @example
223 ./configure [options, see below]
224 @end example
225 Configure generates the Makefiles used to build OpenOCD.
226 @example
227 make
228 make install
229 @end example
230 Make builds OpenOCD, and places the final executable in ./src/, the last step, ``make install'' is optional.
231
232 The configure script takes several options, specifying which JTAG interfaces
233 should be included:
234
235 @itemize @bullet
236 @item
237 @option{--enable-parport} - Bit bang pc printer ports.
238 @item
239 @option{--enable-parport_ppdev} - Parallel Port [see below]
240 @item
241 @option{--enable-parport_giveio} - Parallel Port [see below]
242 @item
243 @option{--enable-amtjtagaccel} - Parallel Port [Amontec, see below]
244 @item
245 @option{--enable-ft2232_ftd2xx} - Numerous USB Type ARM JTAG dongles use the FT2232C chip from this FTDICHIP.COM chip (closed source).
246 @item
247 @option{--enable-ft2232_libftdi} - An open source (free) alternate to FTDICHIP.COM ftd2xx solution (Linux, MacOS, Cygwin)
248 @item
249 @option{--with-ftd2xx-win32-zipdir=PATH} - If using FTDICHIP.COM ft2232c, point at the directory where the Win32 FTDICHIP.COM 'CDM' driver zip file was unpacked.
250 @item
251 @option{--with-ftd2xx-linux-tardir=PATH} - Linux only equal of @option{--with-ftd2xx-win32-zipdir}, where you unpacked the TAR.GZ file.
252 @item
253 @option{--with-ftd2xx-lib=shared|static} - Linux only. Default: static, specifies how the FTDICHIP.COM libftd2xx driver should be linked. Note 'static' only works in conjunction with @option{--with-ftd2xx-linux-tardir}. Shared is supported (12/26/2008), however you must manually install the required header files and shared libraries in an appropriate place. This uses ``libusb'' internally.
254 @item
255 @option{--enable-gw16012}
256 @item
257 @option{--enable-usbprog}
258 @item
259 @option{--enable-presto_libftdi}
260 @item
261 @option{--enable-presto_ftd2xx}
262 @item
263 @option{--enable-jlink} - From SEGGER
264 @item
265 @option{--enable-vsllink}
266 @item
267 @option{--enable-rlink} - Raisonance.com dongle.
268 @item
269 @option{--enable-arm-jtag-ew} - Olimex ARM-JTAG-EW dongle.
270 @end itemize
271
272 @section Parallel Port Dongles
273
274 If you want to access the parallel port using the PPDEV interface you have to specify
275 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
276 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
277 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
278
279 @section FT2232C Based USB Dongles
280
281 There are 2 methods of using the FTD2232, either (1) using the
282 FTDICHIP.COM closed source driver, or (2) the open (and free) driver
283 libftdi. Some claim the (closed) FTDICHIP.COM solution is faster.
284
285 The FTDICHIP drivers come as either a (win32) ZIP file, or a (linux)
286 TAR.GZ file. You must unpack them ``some where'' convient. As of this
287 writing (12/26/2008) FTDICHIP does not supply means to install these
288 files ``in an appropriate place'' As a result, there are two
289 ``./configure'' options that help.
290
291 Below is an example build process:
292
293 1) Check out the latest version of ``openocd'' from SVN.
294
295 2) Download & Unpack either the Windows or Linux FTD2xx Drivers
296 (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
297
298 @example
299 /home/duane/ftd2xx.win32 => the Cygwin/Win32 ZIP file contents.
300 /home/duane/libftd2xx0.4.16 => the Linux TAR file contents.
301 @end example
302
303 3) Configure with these options:
304
305 @example
306 Cygwin FTCICHIP solution
307 ./configure --prefix=/home/duane/mytools \
308 --enable-ft2232_ftd2xx \
309 --with-ftd2xx-win32-zipdir=/home/duane/ftd2xx.win32
310
311 Linux FTDICHIP solution
312 ./configure --prefix=/home/duane/mytools \
313 --enable-ft2232_ftd2xx \
314 --with-ft2xx-linux-tardir=/home/duane/libftd2xx0.4.16
315
316 Cygwin/Linux LIBFTDI solution
317 Assumes:
318 1a) For Windows: The windows port of LIBUSB is in place.
319 1b) For Linux: libusb has been built and is inplace.
320
321 2) And libftdi has been built and installed
322 Note: libftdi - relies upon libusb.
323
324 ./configure --prefix=/home/duane/mytools \
325 --enable-ft2232_libftdi
326
327 @end example
328
329 4) Then just type ``make'', and perhaps ``make install''.
330
331
332 @section Miscellaneous configure options
333
334 @itemize @bullet
335 @item
336 @option{--enable-gccwarnings} - enable extra gcc warnings during build.
337 Default is enabled.
338 @item
339 @option{--enable-release} - enable building of a openocd release, generally
340 this is for developers. It simply omits the svn version string when the
341 openocd @option{-v} is executed.
342 @end itemize
343
344 @node JTAG Hardware Dongles
345 @chapter JTAG Hardware Dongles
346 @cindex dongles
347 @cindex ftdi
348 @cindex wiggler
349 @cindex zy1000
350 @cindex printer port
351 @cindex usb adapter
352 @cindex rtck
353
354 Defined: @b{dongle}: A small device that plugins into a computer and serves as
355 an adapter .... [snip]
356
357 In the OpenOCD case, this generally refers to @b{a small adapater} one
358 attaches to your computer via USB or the Parallel Printer Port. The
359 execption being the Zylin ZY1000 which is a small box you attach via
360 an ethernet cable.
361
362
363 @section Choosing a Dongle
364
365 There are three things you should keep in mind when choosing a dongle.
366
367 @enumerate
368 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
369 @item @b{Connection} Printer Ports - Does your computer have one?
370 @item @b{Connection} Is that long printer bit-bang cable practical?
371 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
372 @end enumerate
373
374 @section Stand alone Systems
375
376 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
377 dongle, but a standalone box.
378
379 @section USB FT2232 Based
380
381 There are many USB jtag dongles on the market, many of them are based
382 on a chip from ``Future Technology Devices International'' (FTDI)
383 known as the FTDI FT2232.
384
385 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
386
387 As of 28/Nov/2008, the following are supported:
388
389 @itemize @bullet
390 @item @b{usbjtag}
391 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
392 @item @b{jtagkey}
393 @* See: @url{http://www.amontec.com/jtagkey.shtml}
394 @item @b{oocdlink}
395 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
396 @item @b{signalyzer}
397 @* See: @url{http://www.signalyzer.com}
398 @item @b{evb_lm3s811}
399 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
400 @item @b{olimex-jtag}
401 @* See: @url{http://www.olimex.com}
402 @item @b{flyswatter}
403 @* See: @url{http://www.tincantools.com}
404 @item @b{turtelizer2}
405 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
406 @item @b{comstick}
407 @* Link: @url{http://www.hitex.com/index.php?id=383}
408 @item @b{stm32stick}
409 @* Link @url{http://www.hitex.com/stm32-stick}
410 @item @b{axm0432_jtag}
411 @* Axiom AXM-0432 Link @url{http://www.axman.com}
412 @end itemize
413
414 @section USB JLINK based
415 There are several OEM versions of the Segger @b{JLINK} adapter. It is
416 an example of a micro controller based JTAG adapter, it uses an
417 AT91SAM764 internally.
418
419 @itemize @bullet
420 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
421 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
422 @item @b{SEGGER JLINK}
423 @* Link: @url{http://www.segger.com/jlink.html}
424 @item @b{IAR J-Link}
425 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
426 @end itemize
427
428 @section USB RLINK based
429 Raisonance has an adapter called @b{RLink}. It exists in a stripped-down form on the STM32 Primer, permanently attached to the JTAG lines. It also exists on the STM32 Primer2, but that is wired for SWD and not JTAG, thus not supported.
430
431 @itemize @bullet
432 @item @b{Raisonance RLink}
433 @* Link: @url{http://www.raisonance.com/products/RLink.php}
434 @item @b{STM32 Primer}
435 @* Link: @url{http://www.stm32circle.com/resources/stm32primer.php}
436 @item @b{STM32 Primer2}
437 @* Link: @url{http://www.stm32circle.com/resources/stm32primer2.php}
438 @end itemize
439
440 @section USB Other
441 @itemize @bullet
442 @item @b{USBprog}
443 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
444
445 @item @b{USB - Presto}
446 @* Link: @url{http://tools.asix.net/prg_presto.htm}
447
448 @item @b{Versaloon-Link}
449 @* Link: @url{http://www.simonqian.com/en/Versaloon}
450
451 @item @b{ARM-JTAG-EW}
452 @* Link: @url{http://www.olimex.com/dev/arm-jtag-ew.html}
453 @end itemize
454
455 @section IBM PC Parallel Printer Port Based
456
457 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
458 and the MacGraigor Wiggler. There are many clones and variations of
459 these on the market.
460
461 @itemize @bullet
462
463 @item @b{Wiggler} - There are many clones of this.
464 @* Link: @url{http://www.macraigor.com/wiggler.htm}
465
466 @item @b{DLC5} - From XILINX - There are many clones of this
467 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
468 produced, PDF schematics are easily found and it is easy to make.
469
470 @item @b{Amontec - JTAG Accelerator}
471 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
472
473 @item @b{GW16402}
474 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
475
476 @item @b{Wiggler2}
477 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
478
479 @item @b{Wiggler_ntrst_inverted}
480 @* Yet another variation - See the source code, src/jtag/parport.c
481
482 @item @b{old_amt_wiggler}
483 @* Unknown - probably not on the market today
484
485 @item @b{arm-jtag}
486 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
487
488 @item @b{chameleon}
489 @* Link: @url{http://www.amontec.com/chameleon.shtml}
490
491 @item @b{Triton}
492 @* Unknown.
493
494 @item @b{Lattice}
495 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
496
497 @item @b{flashlink}
498 @* From ST Microsystems, link:
499 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
500 Title: FlashLINK JTAG programing cable for PSD and uPSD
501
502 @end itemize
503
504 @section Other...
505 @itemize @bullet
506
507 @item @b{ep93xx}
508 @* An EP93xx based linux machine using the GPIO pins directly.
509
510 @item @b{at91rm9200}
511 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
512
513 @end itemize
514
515 @node Running
516 @chapter Running
517 @cindex running OpenOCD
518 @cindex --configfile
519 @cindex --debug_level
520 @cindex --logfile
521 @cindex --search
522
523 The @option{--help} option shows:
524 @verbatim
525 bash$ openocd --help
526
527 --help | -h display this help
528 --version | -v display OpenOCD version
529 --file | -f use configuration file <name>
530 --search | -s dir to search for config files and scripts
531 --debug | -d set debug level <0-3>
532 --log_output | -l redirect log output to file <name>
533 --command | -c run <command>
534 --pipe | -p use pipes when talking to gdb
535 @end verbatim
536
537 By default OpenOCD reads the file configuration file ``openocd.cfg''
538 in the current directory. To specify a different (or multiple)
539 configuration file, you can use the ``-f'' option. For example:
540
541 @example
542 openocd -f config1.cfg -f config2.cfg -f config3.cfg
543 @end example
544
545 Once started, OpenOCD runs as a daemon, waiting for connections from
546 clients (Telnet, GDB, Other).
547
548 If you are having problems, you can enable internal debug messages via
549 the ``-d'' option.
550
551 Also it is possible to interleave commands w/config scripts using the
552 @option{-c} command line switch.
553
554 To enable debug output (when reporting problems or working on OpenOCD
555 itself), use the @option{-d} command line switch. This sets the
556 @option{debug_level} to "3", outputting the most information,
557 including debug messages. The default setting is "2", outputting only
558 informational messages, warnings and errors. You can also change this
559 setting from within a telnet or gdb session using @option{debug_level
560 <n>} @xref{debug_level}.
561
562 You can redirect all output from the daemon to a file using the
563 @option{-l <logfile>} switch.
564
565 Search paths for config/script files can be added to OpenOCD by using
566 the @option{-s <search>} switch. The current directory and the OpenOCD
567 target library is in the search path by default.
568
569 For details on the @option{-p} option. @xref{Connecting to GDB}.
570
571 Note! OpenOCD will launch the GDB & telnet server even if it can not
572 establish a connection with the target. In general, it is possible for
573 the JTAG controller to be unresponsive until the target is set up
574 correctly via e.g. GDB monitor commands in a GDB init script.
575
576 @node Simple Configuration Files
577 @chapter Simple Configuration Files
578 @cindex configuration
579
580 @section Outline
581 There are 4 basic ways of ``configurating'' OpenOCD to run, they are:
582
583 @enumerate
584 @item A small openocd.cfg file which ``sources'' other configuration files
585 @item A monolithic openocd.cfg file
586 @item Many -f filename options on the command line
587 @item Your Mixed Solution
588 @end enumerate
589
590 @section Small configuration file method
591
592 This is the prefered method, it is simple and is works well for many
593 people. The developers of OpenOCD would encourage you to use this
594 method. If you create a new configuration please email new
595 configurations to the development list.
596
597 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
598
599 @example
600 source [find interface/signalyzer.cfg]
601
602 # Change the default telnet port...
603 telnet_port 4444
604 # GDB connects here
605 gdb_port 3333
606 # GDB can also flash my flash!
607 gdb_memory_map enable
608 gdb_flash_program enable
609
610 source [find target/sam7x256.cfg]
611 @end example
612
613 There are many example configuration scripts you can work with. You
614 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
615 should find:
616
617 @enumerate
618 @item @b{board} - eval board level configurations
619 @item @b{interface} - specific dongle configurations
620 @item @b{target} - the target chips
621 @item @b{tcl} - helper scripts
622 @item @b{xscale} - things specific to the xscale.
623 @end enumerate
624
625 Look first in the ``boards'' area, then the ``targets'' area. Often a board
626 configuration is a good example to work from.
627
628 @section Many -f filename options
629 Some believe this is a wonderful solution, others find it painful.
630
631 You can use a series of ``-f filename'' options on the command line,
632 OpenOCD will read each filename in sequence, for example:
633
634 @example
635 openocd -f file1.cfg -f file2.cfg -f file2.cfg
636 @end example
637
638 You can also intermix various commands with the ``-c'' command line
639 option.
640
641 @section Monolithic file
642 The ``Monolithic File'' dispenses with all ``source'' statements and
643 puts everything in one self contained (monolithic) file. This is not
644 encouraged.
645
646 Please try to ``source'' various files or use the multiple -f
647 technique.
648
649 @section Advice for you
650 Often, one uses a ``mixed approach''. Where possible, please try to
651 ``source'' common things, and if needed cut/paste parts of the
652 standard distribution configuration files as needed.
653
654 @b{REMEMBER:} The ``important parts'' of your configuration file are:
655
656 @enumerate
657 @item @b{Interface} - Defines the dongle
658 @item @b{Taps} - Defines the JTAG Taps
659 @item @b{GDB Targets} - What GDB talks to
660 @item @b{Flash Programing} - Very Helpful
661 @end enumerate
662
663 Some key things you should look at and understand are:
664
665 @enumerate
666 @item The RESET configuration of your debug environment as a hole
667 @item Is there a ``work area'' that OpenOCD can use?
668 @* For ARM - work areas mean up to 10x faster downloads.
669 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
670 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
671 @end enumerate
672
673
674
675 @node Config File Guidelines
676 @chapter Config File Guidelines
677
678 This section/chapter is aimed at developers and integrators of
679 OpenOCD. These are guidelines for creating new boards and new target
680 configurations as of 28/Nov/2008.
681
682 However, you the user of OpenOCD should be some what familiar with
683 this section as it should help explain some of the internals of what
684 you might be looking at.
685
686 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
687 following directories:
688
689 @itemize @bullet
690 @item @b{interface}
691 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
692 @item @b{board}
693 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
694 contain initialization items that are specific to a board - for
695 example: The SDRAM initialization sequence for the board, or the type
696 of external flash and what address it is found at. Any initialization
697 sequence to enable that external flash or sdram should be found in the
698 board file. Boards may also contain multiple targets, ie: Two cpus, or
699 a CPU and an FPGA or CPLD.
700 @item @b{target}
701 @* Think CHIP. The ``target'' directory represents a jtag tap (or
702 chip) OpenOCD should control, not a board. Two common types of targets
703 are ARM chips and FPGA or CPLD chips.
704 @end itemize
705
706 @b{If needed...} The user in their ``openocd.cfg'' file or the board
707 file might override a specific feature in any of the above files by
708 setting a variable or two before sourcing the target file. Or adding
709 various commands specific to their situation.
710
711 @section Interface Config Files
712
713 The user should be able to source one of these files via a command like this:
714
715 @example
716 source [find interface/FOOBAR.cfg]
717 Or:
718 openocd -f interface/FOOBAR.cfg
719 @end example
720
721 A preconfigured interface file should exist for every interface in use
722 today, that said, perhaps some interfaces have only been used by the
723 sole developer who created it.
724
725 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
726 tcl_platform(platform), it should be called jim_platform (because it
727 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
728 ``cygwin'' or ``mingw''
729
730 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
731
732 @section Board Config Files
733
734 @b{Note: BOARD directory NEW as of 28/nov/2008}
735
736 The user should be able to source one of these files via a command like this:
737
738 @example
739 source [find board/FOOBAR.cfg]
740 Or:
741 openocd -f board/FOOBAR.cfg
742 @end example
743
744
745 The board file should contain one or more @t{source [find
746 target/FOO.cfg]} statements along with any board specific things.
747
748 In summery the board files should contain (if present)
749
750 @enumerate
751 @item External flash configuration (ie: the flash on CS0)
752 @item SDRAM configuration (size, speed, etc)
753 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
754 @item Multiple TARGET source statements
755 @item All things that are not ``inside a chip''
756 @item Things inside a chip go in a 'target' file
757 @end enumerate
758
759 @section Target Config Files
760
761 The user should be able to source one of these files via a command like this:
762
763 @example
764 source [find target/FOOBAR.cfg]
765 Or:
766 openocd -f target/FOOBAR.cfg
767 @end example
768
769 In summery the target files should contain
770
771 @enumerate
772 @item Set Defaults
773 @item Create Taps
774 @item Reset Configuration
775 @item Work Areas
776 @item CPU/Chip/CPU-Core Specific features
777 @item OnChip Flash
778 @end enumerate
779
780 @subsection Important variable names
781
782 By default, the end user should never need to set these
783 variables. However, if the user needs to override a setting they only
784 need to set the variable in a simple way.
785
786 @itemize @bullet
787 @item @b{CHIPNAME}
788 @* This gives a name to the overall chip, and is used as part of the
789 tap identifier dotted name.
790 @item @b{ENDIAN}
791 @* By default little - unless the chip or board is not normally used that way.
792 @item @b{CPUTAPID}
793 @* When OpenOCD examines the JTAG chain, it will attempt to identify
794 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
795 to verify the tap id number verses configuration file and may issue an
796 error or warning like this. The hope is this will help pin point
797 problem OpenOCD configurations.
798
799 @example
800 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
801 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
802 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
803 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
804 @end example
805
806 @item @b{_TARGETNAME}
807 @* By convention, this variable is created by the target configuration
808 script. The board configuration file may make use of this variable to
809 configure things like a ``reset init'' script, or other things
810 specific to that board and that target.
811
812 If the chip has 2 targets, use the names @b{_TARGETNAME0},
813 @b{_TARGETNAME1}, ... etc.
814
815 @b{Remember:} The ``board file'' may include multiple targets.
816
817 At no time should the name ``target0'' (the default target name if
818 none was specified) be used. The name ``target0'' is a hard coded name
819 - the next target on the board will be some other number.
820
821 The user (or board file) should reasonably be able to:
822
823 @example
824 source [find target/FOO.cfg]
825 $_TARGETNAME configure ... FOO specific parameters
826
827 source [find target/BAR.cfg]
828 $_TARGETNAME configure ... BAR specific parameters
829 @end example
830
831 @end itemize
832
833 @subsection TCL Variables Guide Line
834 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
835
836 Thus the rule we follow in OpenOCD is this: Variables that begin with
837 a leading underscore are temporal in nature, and can be modified and
838 used at will within a ?TARGET? configuration file
839
840 @b{EXAMPLE:} The user should be able to do this:
841
842 @example
843 # Board has 3 chips,
844 # PXA270 #1 network side, big endian
845 # PXA270 #2 video side, little endian
846 # Xilinx Glue logic
847 set CHIPNAME network
848 set ENDIAN big
849 source [find target/pxa270.cfg]
850 # variable: _TARGETNAME = network.cpu
851 # other commands can refer to the "network.cpu" tap.
852 $_TARGETNAME configure .... params for this cpu..
853
854 set ENDIAN little
855 set CHIPNAME video
856 source [find target/pxa270.cfg]
857 # variable: _TARGETNAME = video.cpu
858 # other commands can refer to the "video.cpu" tap.
859 $_TARGETNAME configure .... params for this cpu..
860
861 unset ENDIAN
862 set CHIPNAME xilinx
863 source [find target/spartan3.cfg]
864
865 # Since $_TARGETNAME is temporal..
866 # these names still work!
867 network.cpu configure ... params
868 video.cpu configure ... params
869
870 @end example
871
872 @subsection Default Value Boiler Plate Code
873
874 All target configuration files should start with this (or a modified form)
875
876 @example
877 # SIMPLE example
878 if @{ [info exists CHIPNAME] @} @{
879 set _CHIPNAME $CHIPNAME
880 @} else @{
881 set _CHIPNAME sam7x256
882 @}
883
884 if @{ [info exists ENDIAN] @} @{
885 set _ENDIAN $ENDIAN
886 @} else @{
887 set _ENDIAN little
888 @}
889
890 if @{ [info exists CPUTAPID ] @} @{
891 set _CPUTAPID $CPUTAPID
892 @} else @{
893 set _CPUTAPID 0x3f0f0f0f
894 @}
895
896 @end example
897
898 @subsection Creating Taps
899 After the ``defaults'' are choosen, [see above], the taps are created.
900
901 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
902
903 @example
904 # for an ARM7TDMI.
905 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
906 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
907 @end example
908
909 @b{COMPLEX example:}
910
911 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
912
913 @enumerate
914 @item @b{Unform tap names} - See: Tap Naming Convention
915 @item @b{_TARGETNAME} is created at the end where used.
916 @end enumerate
917
918 @example
919 if @{ [info exists FLASHTAPID ] @} @{
920 set _FLASHTAPID $FLASHTAPID
921 @} else @{
922 set _FLASHTAPID 0x25966041
923 @}
924 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
925
926 if @{ [info exists CPUTAPID ] @} @{
927 set _CPUTAPID $CPUTAPID
928 @} else @{
929 set _CPUTAPID 0x25966041
930 @}
931 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
932
933
934 if @{ [info exists BSTAPID ] @} @{
935 set _BSTAPID $BSTAPID
936 @} else @{
937 set _BSTAPID 0x1457f041
938 @}
939 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
940
941 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
942 @end example
943
944 @b{Tap Naming Convention}
945
946 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
947
948 @itemize @bullet
949 @item @b{tap}
950 @item @b{cpu}
951 @item @b{flash}
952 @item @b{bs}
953 @item @b{jrc}
954 @item @b{unknownN} - it happens :-(
955 @end itemize
956
957 @subsection Reset Configuration
958
959 Some chips have specific ways the TRST and SRST signals are
960 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
961 @b{BOARD SPECIFIC} they go in the board file.
962
963 @subsection Work Areas
964
965 Work areas are small RAM areas used by OpenOCD to speed up downloads,
966 and to download small snippits of code to program flash chips.
967
968 If the chip includes an form of ``on-chip-ram'' - and many do - define
969 a reasonable work area and use the ``backup'' option.
970
971 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
972 inaccessable if/when the application code enables or disables the MMU.
973
974 @subsection ARM Core Specific Hacks
975
976 If the chip has a DCC, enable it. If the chip is an arm9 with some
977 special high speed download - enable it.
978
979 If the chip has an ARM ``vector catch'' feature - by defeault enable
980 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
981 user is really writing a handler for those situations - they can
982 easily disable it. Experiance has shown the ``vector catch'' is
983 helpful - for common programing errors.
984
985 If present, the MMU, the MPU and the CACHE should be disabled.
986
987 @subsection Internal Flash Configuration
988
989 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
990
991 @b{Never ever} in the ``target configuration file'' define any type of
992 flash that is external to the chip. (For example the BOOT flash on
993 Chip Select 0). The BOOT flash information goes in a board file - not
994 the TARGET (chip) file.
995
996 Examples:
997 @itemize @bullet
998 @item at91sam7x256 - has 256K flash YES enable it.
999 @item str912 - has flash internal YES enable it.
1000 @item imx27 - uses boot flash on CS0 - it goes in the board file.
1001 @item pxa270 - again - CS0 flash - it goes in the board file.
1002 @end itemize
1003
1004 @node About JIM-Tcl
1005 @chapter About JIM-Tcl
1006 @cindex JIM Tcl
1007 @cindex tcl
1008
1009 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
1010 learn more about JIM here: @url{http://jim.berlios.de}
1011
1012 @itemize @bullet
1013 @item @b{JIM vrs TCL}
1014 @* JIM-TCL is a stripped down version of the well known Tcl language,
1015 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
1016 fewer features. JIM-Tcl is a single .C file and a single .H file and
1017 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
1018 4.2MEG zip file containing 1540 files.
1019
1020 @item @b{Missing Features}
1021 @* Our practice has been: Add/clone the Real TCL feature if/when
1022 needed. We welcome JIM Tcl improvements, not bloat.
1023
1024 @item @b{Scripts}
1025 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
1026 command interpretor today (28/nov/2008) is a mixture of (newer)
1027 JIM-Tcl commands, and (older) the orginal command interpretor.
1028
1029 @item @b{Commands}
1030 @* At the OpenOCD telnet command line (or via the GDB mon command) one
1031 can type a Tcl for() loop, set variables, etc.
1032
1033 @item @b{Historical Note}
1034 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
1035
1036 @item @b{Need a Crash Course In TCL?}
1037 @* See: @xref{TCL Crash Course}.
1038 @end itemize
1039
1040
1041 @node Daemon Configuration
1042 @chapter Daemon Configuration
1043 The commands here are commonly found in the openocd.cfg file and are
1044 used to specify what TCP/IP ports are used, and how GDB should be
1045 supported.
1046 @section init
1047 @cindex init
1048 This command terminates the configuration stage and
1049 enters the normal command mode. This can be useful to add commands to
1050 the startup scripts and commands such as resetting the target,
1051 programming flash, etc. To reset the CPU upon startup, add "init" and
1052 "reset" at the end of the config script or at the end of the OpenOCD
1053 command line using the @option{-c} command line switch.
1054
1055 If this command does not appear in any startup/configuration file
1056 OpenOCD executes the command for you after processing all
1057 configuration files and/or command line options.
1058
1059 @b{NOTE:} This command normally occurs at or near the end of your
1060 openocd.cfg file to force OpenOCD to ``initialize'' and make the
1061 targets ready. For example: If your openocd.cfg file needs to
1062 read/write memory on your target - the init command must occur before
1063 the memory read/write commands.
1064
1065 @section TCP/IP Ports
1066 @itemize @bullet
1067 @item @b{telnet_port} <@var{number}>
1068 @cindex telnet_port
1069 @*Intended for a human. Port on which to listen for incoming telnet connections.
1070
1071 @item @b{tcl_port} <@var{number}>
1072 @cindex tcl_port
1073 @*Intended as a machine interface. Port on which to listen for
1074 incoming TCL syntax. This port is intended as a simplified RPC
1075 connection that can be used by clients to issue commands and get the
1076 output from the TCL engine.
1077
1078 @item @b{gdb_port} <@var{number}>
1079 @cindex gdb_port
1080 @*First port on which to listen for incoming GDB connections. The GDB port for the
1081 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
1082 @end itemize
1083
1084 @section GDB Items
1085 @itemize @bullet
1086 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
1087 @cindex gdb_breakpoint_override
1088 @anchor{gdb_breakpoint_override}
1089 @*Force breakpoint type for gdb 'break' commands.
1090 The raison d'etre for this option is to support GDB GUI's without
1091 a hard/soft breakpoint concept where the default OpenOCD and
1092 GDB behaviour is not sufficient. Note that GDB will use hardware
1093 breakpoints if the memory map has been set up for flash regions.
1094
1095 This option replaces older arm7_9 target commands that addressed
1096 the same issue.
1097
1098 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
1099 @cindex gdb_detach
1100 @*Configures what OpenOCD will do when gdb detaches from the daeman.
1101 Default behaviour is <@var{resume}>
1102
1103 @item @b{gdb_memory_map} <@var{enable|disable}>
1104 @cindex gdb_memory_map
1105 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
1106 requested. gdb will then know when to set hardware breakpoints, and program flash
1107 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
1108 for flash programming to work.
1109 Default behaviour is <@var{enable}>
1110 @xref{gdb_flash_program}.
1111
1112 @item @b{gdb_flash_program} <@var{enable|disable}>
1113 @cindex gdb_flash_program
1114 @anchor{gdb_flash_program}
1115 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
1116 vFlash packet is received.
1117 Default behaviour is <@var{enable}>
1118 @comment END GDB Items
1119 @end itemize
1120
1121 @node Interface - Dongle Configuration
1122 @chapter Interface - Dongle Configuration
1123 Interface commands are normally found in an interface configuration
1124 file which is sourced by your openocd.cfg file. These commands tell
1125 OpenOCD what type of JTAG dongle you have and how to talk to it.
1126 @section Simple Complete Interface Examples
1127 @b{A Turtelizer FT2232 Based JTAG Dongle}
1128 @verbatim
1129 #interface
1130 interface ft2232
1131 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1132 ft2232_layout turtelizer2
1133 ft2232_vid_pid 0x0403 0xbdc8
1134 @end verbatim
1135 @b{A SEGGER Jlink}
1136 @verbatim
1137 # jlink interface
1138 interface jlink
1139 @end verbatim
1140 @b{A Raisonance RLink}
1141 @verbatim
1142 # rlink interface
1143 interface rlink
1144 @end verbatim
1145 @b{Parallel Port}
1146 @verbatim
1147 interface parport
1148 parport_port 0xc8b8
1149 parport_cable wiggler
1150 jtag_speed 0
1151 @end verbatim
1152 @b{ARM-JTAG-EW}
1153 @verbatim
1154 interface arm-jtag-ew
1155 @end verbatim
1156 @section Interface Conmmand
1157
1158 The interface command tells OpenOCD what type of jtag dongle you are
1159 using. Depending upon the type of dongle, you may need to have one or
1160 more additional commands.
1161
1162 @itemize @bullet
1163
1164 @item @b{interface} <@var{name}>
1165 @cindex interface
1166 @*Use the interface driver <@var{name}> to connect to the
1167 target. Currently supported interfaces are
1168
1169 @itemize @minus
1170
1171 @item @b{parport}
1172 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1173
1174 @item @b{amt_jtagaccel}
1175 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1176 mode parallel port
1177
1178 @item @b{ft2232}
1179 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1180 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1181 platform. The libftdi uses libusb, and should be portable to all systems that provide
1182 libusb.
1183
1184 @item @b{ep93xx}
1185 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1186
1187 @item @b{presto}
1188 @* ASIX PRESTO USB JTAG programmer.
1189
1190 @item @b{usbprog}
1191 @* usbprog is a freely programmable USB adapter.
1192
1193 @item @b{gw16012}
1194 @* Gateworks GW16012 JTAG programmer.
1195
1196 @item @b{jlink}
1197 @* Segger jlink usb adapter
1198
1199 @item @b{rlink}
1200 @* Raisonance RLink usb adapter
1201
1202 @item @b{vsllink}
1203 @* vsllink is part of Versaloon which is a versatile USB programmer.
1204
1205 @item @b{arm-jtag-ew}
1206 @* Olimex ARM-JTAG-EW usb adapter
1207 @comment - End parameters
1208 @end itemize
1209 @comment - End Interface
1210 @end itemize
1211 @subsection parport options
1212
1213 @itemize @bullet
1214 @item @b{parport_port} <@var{number}>
1215 @cindex parport_port
1216 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1217 the @file{/dev/parport} device
1218
1219 When using PPDEV to access the parallel port, use the number of the parallel port:
1220 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1221 you may encounter a problem.
1222 @item @b{parport_cable} <@var{name}>
1223 @cindex parport_cable
1224 @*The layout of the parallel port cable used to connect to the target.
1225 Currently supported cables are
1226 @itemize @minus
1227 @item @b{wiggler}
1228 @cindex wiggler
1229 The original Wiggler layout, also supported by several clones, such
1230 as the Olimex ARM-JTAG
1231 @item @b{wiggler2}
1232 @cindex wiggler2
1233 Same as original wiggler except an led is fitted on D5.
1234 @item @b{wiggler_ntrst_inverted}
1235 @cindex wiggler_ntrst_inverted
1236 Same as original wiggler except TRST is inverted.
1237 @item @b{old_amt_wiggler}
1238 @cindex old_amt_wiggler
1239 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1240 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1241 @item @b{chameleon}
1242 @cindex chameleon
1243 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1244 program the Chameleon itself, not a connected target.
1245 @item @b{dlc5}
1246 @cindex dlc5
1247 The Xilinx Parallel cable III.
1248 @item @b{triton}
1249 @cindex triton
1250 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1251 This is also the layout used by the HollyGates design
1252 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1253 @item @b{flashlink}
1254 @cindex flashlink
1255 The ST Parallel cable.
1256 @item @b{arm-jtag}
1257 @cindex arm-jtag
1258 Same as original wiggler except SRST and TRST connections reversed and
1259 TRST is also inverted.
1260 @item @b{altium}
1261 @cindex altium
1262 Altium Universal JTAG cable.
1263 @end itemize
1264 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1265 @cindex parport_write_on_exit
1266 @*This will configure the parallel driver to write a known value to the parallel
1267 interface on exiting OpenOCD
1268 @end itemize
1269
1270 @subsection amt_jtagaccel options
1271 @itemize @bullet
1272 @item @b{parport_port} <@var{number}>
1273 @cindex parport_port
1274 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1275 @file{/dev/parport} device
1276 @end itemize
1277 @subsection ft2232 options
1278
1279 @itemize @bullet
1280 @item @b{ft2232_device_desc} <@var{description}>
1281 @cindex ft2232_device_desc
1282 @*The USB device description of the FTDI FT2232 device. If not
1283 specified, the FTDI default value is used. This setting is only valid
1284 if compiled with FTD2XX support.
1285
1286 @b{TODO:} Confirm the following: On windows the name needs to end with
1287 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1288 this be added and when must it not be added? Why can't the code in the
1289 interface or in OpenOCD automatically add this if needed? -- Duane.
1290
1291 @item @b{ft2232_serial} <@var{serial-number}>
1292 @cindex ft2232_serial
1293 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1294 values are used.
1295 @item @b{ft2232_layout} <@var{name}>
1296 @cindex ft2232_layout
1297 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1298 signals. Valid layouts are
1299 @itemize @minus
1300 @item @b{usbjtag}
1301 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1302 @item @b{jtagkey}
1303 Amontec JTAGkey and JTAGkey-tiny
1304 @item @b{signalyzer}
1305 Signalyzer
1306 @item @b{olimex-jtag}
1307 Olimex ARM-USB-OCD
1308 @item @b{m5960}
1309 American Microsystems M5960
1310 @item @b{evb_lm3s811}
1311 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1312 SRST signals on external connector
1313 @item @b{comstick}
1314 Hitex STR9 comstick
1315 @item @b{stm32stick}
1316 Hitex STM32 Performance Stick
1317 @item @b{flyswatter}
1318 Tin Can Tools Flyswatter
1319 @item @b{turtelizer2}
1320 egnite Software turtelizer2
1321 @item @b{oocdlink}
1322 OOCDLink
1323 @item @b{axm0432_jtag}
1324 Axiom AXM-0432
1325 @end itemize
1326
1327 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1328 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1329 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1330 @example
1331 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1332 @end example
1333 @item @b{ft2232_latency} <@var{ms}>
1334 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1335 ft2232_read() fails to return the expected number of bytes. This can be caused by
1336 USB communication delays and has proved hard to reproduce and debug. Setting the
1337 FT2232 latency timer to a larger value increases delays for short USB packages but it
1338 also reduces the risk of timeouts before receiving the expected number of bytes.
1339 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1340 @end itemize
1341
1342 @subsection ep93xx options
1343 @cindex ep93xx options
1344 Currently, there are no options available for the ep93xx interface.
1345
1346 @section JTAG Speed
1347 @itemize @bullet
1348 @item @b{jtag_khz} <@var{reset speed kHz}>
1349 @cindex jtag_khz
1350
1351 It is debatable if this command belongs here - or in a board
1352 configuration file. In fact, in some situations the jtag speed is
1353 changed during the target initialization process (ie: (1) slow at
1354 reset, (2) program the cpu clocks, (3) run fast)
1355
1356 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1357
1358 Not all interfaces support ``rtck''. If the interface device can not
1359 support the rate asked for, or can not translate from kHz to
1360 jtag_speed, then an error is returned.
1361
1362 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1363 especially true for synthesized cores (-S). Also see RTCK.
1364
1365 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1366 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1367 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1368 the specified frequency.
1369
1370 @example
1371 # Fall back to 3mhz if RCLK is not supported
1372 jtag_rclk 3000
1373 @end example
1374
1375 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1376 @cindex jtag_speed
1377 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1378 speed. The actual effect of this option depends on the JTAG interface used.
1379
1380 The speed used during reset can be adjusted using setting jtag_speed during
1381 pre_reset and post_reset events.
1382 @itemize @minus
1383
1384 @item wiggler: maximum speed / @var{number}
1385 @item ft2232: 6MHz / (@var{number}+1)
1386 @item amt jtagaccel: 8 / 2**@var{number}
1387 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1388 @item rlink: 24MHz / @var{number}, but only for certain values of @var{number}
1389 @comment end speed list.
1390 @end itemize
1391
1392 @comment END command list
1393 @end itemize
1394
1395 @node Reset Configuration
1396 @chapter Reset Configuration
1397 @cindex reset configuration
1398
1399 Every system configuration may require a different reset
1400 configuration. This can also be quite confusing. Please see the
1401 various board files for example.
1402
1403 @section jtag_nsrst_delay <@var{ms}>
1404 @cindex jtag_nsrst_delay
1405 @*How long (in milliseconds) OpenOCD should wait after deasserting
1406 nSRST before starting new JTAG operations.
1407
1408 @section jtag_ntrst_delay <@var{ms}>
1409 @cindex jtag_ntrst_delay
1410 @*Same @b{jtag_nsrst_delay}, but for nTRST
1411
1412 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1413 big resistor/capacitor, reset supervisor, or on-chip features). This
1414 keeps the signal asserted for some time after the external reset got
1415 deasserted.
1416
1417 @section reset_config
1418
1419 @b{Note:} To maintainer types and integrators. Where exactly the
1420 ``reset configuration'' goes is a good question. It touches several
1421 things at once. In the end, if you have a board file - the board file
1422 should define it and assume 100% that the DONGLE supports
1423 anything. However, that does not mean the target should not also make
1424 not of something the silicon vendor has done inside the
1425 chip. @i{Grr.... nothing is every pretty.}
1426
1427 @* @b{Problems:}
1428 @enumerate
1429 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1430 @item Every board is also slightly different; some boards tie TRST and SRST together.
1431 @item Every chip is slightly different; some chips internally tie the two signals together.
1432 @item Some may not impliment all of the signals the same way.
1433 @item Some signals might be push-pull, others open-drain/collector.
1434 @end enumerate
1435 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1436 reset the TAP via TRST and send commands through the JTAG tap to halt
1437 the CPU at the reset vector before the 1st instruction is executed,
1438 and finally release the SRST signal.
1439 @*Depending upon your board vendor, your chip vendor, etc, these
1440 signals may have slightly different names.
1441
1442 OpenOCD defines these signals in these terms:
1443 @itemize @bullet
1444 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1445 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1446 @end itemize
1447
1448 The Command:
1449
1450 @itemize @bullet
1451 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1452 @cindex reset_config
1453 @* The @t{reset_config} command tells OpenOCD the reset configuration
1454 of your combination of Dongle, Board, and Chips.
1455 If the JTAG interface provides SRST, but the target doesn't connect
1456 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1457 be @option{none}, @option{trst_only}, @option{srst_only} or
1458 @option{trst_and_srst}.
1459
1460 [@var{combination}] is an optional value specifying broken reset
1461 signal implementations. @option{srst_pulls_trst} states that the
1462 testlogic is reset together with the reset of the system (e.g. Philips
1463 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1464 the system is reset together with the test logic (only hypothetical, I
1465 haven't seen hardware with such a bug, and can be worked around).
1466 @option{combined} imples both @option{srst_pulls_trst} and
1467 @option{trst_pulls_srst}. The default behaviour if no option given is
1468 @option{separate}.
1469
1470 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1471 driver type of the reset lines to be specified. Possible values are
1472 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1473 test reset signal, and @option{srst_open_drain} (default) and
1474 @option{srst_push_pull} for the system reset. These values only affect
1475 JTAG interfaces with support for different drivers, like the Amontec
1476 JTAGkey and JTAGAccelerator.
1477
1478 @comment - end command
1479 @end itemize
1480
1481
1482
1483 @node Tap Creation
1484 @chapter Tap Creation
1485 @cindex tap creation
1486 @cindex tap configuration
1487
1488 In order for OpenOCD to control a target, a JTAG tap must be
1489 defined/created.
1490
1491 Commands to create taps are normally found in a configuration file and
1492 are not normally typed by a human.
1493
1494 When a tap is created a @b{dotted.name} is created for the tap. Other
1495 commands use that dotted.name to manipulate or refer to the tap.
1496
1497 Tap Uses:
1498 @itemize @bullet
1499 @item @b{Debug Target} A tap can be used by a GDB debug target
1500 @item @b{Flash Programing} Some chips program the flash via JTAG
1501 @item @b{Boundry Scan} Some chips support boundry scan.
1502 @end itemize
1503
1504
1505 @section jtag newtap
1506 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1507 @cindex jtag_device
1508 @cindex jtag newtap
1509 @cindex tap
1510 @cindex tap order
1511 @cindex tap geometry
1512
1513 @comment START options
1514 @itemize @bullet
1515 @item @b{CHIPNAME}
1516 @* is a symbolic name of the chip.
1517 @item @b{TAPNAME}
1518 @* is a symbol name of a tap present on the chip.
1519 @item @b{Required configparams}
1520 @* Every tap has 3 required configparams, and several ``optional
1521 parameters'', the required parameters are:
1522 @comment START REQUIRED
1523 @itemize @bullet
1524 @item @b{-irlen NUMBER} - the length in bits of the instruction register, mostly 4 or 5 bits.
1525 @item @b{-ircapture NUMBER} - the IDCODE capture command, usually 0x01.
1526 @item @b{-irmask NUMBER} - the corresponding mask for the IR register. For
1527 some devices, there are bits in the IR that aren't used. This lets you mask
1528 them off when doing comparisons. In general, this should just be all ones for
1529 the size of the IR.
1530 @comment END REQUIRED
1531 @end itemize
1532 An example of a FOOBAR Tap
1533 @example
1534 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1535 @end example
1536 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1537 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1538 [6,4,2,0] are checked.
1539
1540 @item @b{Optional configparams}
1541 @comment START Optional
1542 @itemize @bullet
1543 @item @b{-expected-id NUMBER}
1544 @* By default it is zero. If non-zero represents the
1545 expected tap ID used when the Jtag Chain is examined. See below.
1546 @item @b{-disable}
1547 @item @b{-enable}
1548 @* By default not specified the tap is enabled. Some chips have a
1549 jtag route controller (JRC) that is used to enable and/or disable
1550 specific jtag taps. You can later enable or disable any JTAG tap via
1551 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1552 DOTTED.NAME}
1553 @comment END Optional
1554 @end itemize
1555
1556 @comment END OPTIONS
1557 @end itemize
1558 @b{Notes:}
1559 @comment START NOTES
1560 @itemize @bullet
1561 @item @b{Technically}
1562 @* newtap is a sub command of the ``jtag'' command
1563 @item @b{Big Picture Background}
1564 @*GDB Talks to OpenOCD using the GDB protocol via
1565 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1566 control the JTAG chain on your board. Your board has one or more chips
1567 in a @i{daisy chain configuration}. Each chip may have one or more
1568 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1569 @item @b{NAME Rules}
1570 @*Names follow ``C'' symbol name rules (start with alpha ...)
1571 @item @b{TAPNAME - Conventions}
1572 @itemize @bullet
1573 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1574 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1575 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1576 @item @b{bs} - for boundary scan if this is a seperate tap.
1577 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1578 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1579 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1580 @item @b{When in doubt} - use the chip makers name in their data sheet.
1581 @end itemize
1582 @item @b{DOTTED.NAME}
1583 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1584 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1585 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1586 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1587 numerous other places to refer to various taps.
1588 @item @b{ORDER}
1589 @* The order this command appears via the config files is
1590 important.
1591 @item @b{Multi Tap Example}
1592 @* This example is based on the ST Microsystems STR912. See the ST
1593 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1594 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1595
1596 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1597 @*@b{checked: 28/nov/2008}
1598
1599 The diagram shows the TDO pin connects to the flash tap, flash TDI
1600 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1601 tap which then connects to the TDI pin.
1602
1603 @example
1604 # The order is...
1605 # create tap: 'str912.flash'
1606 jtag newtap str912 flash ... params ...
1607 # create tap: 'str912.cpu'
1608 jtag newtap str912 cpu ... params ...
1609 # create tap: 'str912.bs'
1610 jtag newtap str912 bs ... params ...
1611 @end example
1612
1613 @item @b{Note: Deprecated} - Index Numbers
1614 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1615 feature is still present, however its use is highly discouraged and
1616 should not be counted upon.
1617 @item @b{Multiple chips}
1618 @* If your board has multiple chips, you should be
1619 able to @b{source} two configuration files, in the proper order, and
1620 have the taps created in the proper order.
1621 @comment END NOTES
1622 @end itemize
1623 @comment at command level
1624 @comment DOCUMENT old command
1625 @section jtag_device - REMOVED
1626 @example
1627 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1628 @end example
1629 @cindex jtag_device
1630
1631 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1632 by the ``jtag newtap'' command. The documentation remains here so that
1633 one can easily convert the old syntax to the new syntax. About the old
1634 syntax: The old syntax is positional, ie: The 3rd parameter is the
1635 ``irmask''. The new syntax requires named prefixes, and supports
1636 additional options, for example ``-expected-id 0x3f0f0f0f''. Please refer to the
1637 @b{jtag newtap} command for details.
1638 @example
1639 OLD: jtag_device 8 0x01 0xe3 0xfe
1640 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0x01 -irmask 0xe3
1641 @end example
1642
1643 @section Enable/Disable Taps
1644 @b{Note:} These commands are intended to be used as a machine/script
1645 interface. Humans might find the ``scan_chain'' command more helpful
1646 when querying the state of the JTAG taps.
1647
1648 @b{By default, all taps are enabled}
1649
1650 @itemize @bullet
1651 @item @b{jtag tapenable} @var{DOTTED.NAME}
1652 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1653 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1654 @end itemize
1655 @cindex tap enable
1656 @cindex tap disable
1657 @cindex JRC
1658 @cindex route controller
1659
1660 These commands are used when your target has a JTAG Route controller
1661 that effectively adds or removes a tap from the jtag chain in a
1662 non-standard way.
1663
1664 The ``standard way'' to remove a tap would be to place the tap in
1665 bypass mode. But with the advent of modern chips, this is not always a
1666 good solution. Some taps operate slowly, others operate fast, and
1667 there are other JTAG clock syncronization problems one must face. To
1668 solve that problem, the JTAG Route controller was introduced. Rather
1669 then ``bypass'' the tap, the tap is completely removed from the
1670 circuit and skipped.
1671
1672
1673 From OpenOCD's view point, a JTAG TAP is in one of 3 states:
1674
1675 @itemize @bullet
1676 @item @b{Enabled - Not In ByPass} and has a variable bit length
1677 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1678 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1679 @end itemize
1680
1681 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1682 @b{Historical note:} this feature was added 28/nov/2008
1683
1684 @b{jtag tapisenabled DOTTED.NAME}
1685
1686 This command returns 1 if the named tap is currently enabled, 0 if not.
1687 This command exists so that scripts that manipulate a JRC (like the
1688 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1689 enabled, or disabled.
1690
1691 @page
1692 @node Target Configuration
1693 @chapter Target Configuration
1694
1695 This chapter discusses how to create a GDB Debug Target. Before
1696 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1697
1698 @section targets [NAME]
1699 @b{Note:} This command name is PLURAL - not singular.
1700
1701 With NO parameter, this plural @b{targets} command lists all known
1702 targets in a human friendly form.
1703
1704 With a parameter, this pural @b{targets} command sets the current
1705 target to the given name. (ie: If there are multiple debug targets)
1706
1707 Example:
1708 @verbatim
1709 (gdb) mon targets
1710 CmdName Type Endian ChainPos State
1711 -- ---------- ---------- ---------- -------- ----------
1712 0: target0 arm7tdmi little 0 halted
1713 @end verbatim
1714
1715 @section target COMMANDS
1716 @b{Note:} This command name is SINGULAR - not plural. It is used to
1717 manipulate specific targets, to create targets and other things.
1718
1719 Once a target is created, a TARGETNAME (object) command is created;
1720 see below for details.
1721
1722 The TARGET command accepts these sub-commands:
1723 @itemize @bullet
1724 @item @b{create} .. parameters ..
1725 @* creates a new target, See below for details.
1726 @item @b{types}
1727 @* Lists all supported target types (perhaps some are not yet in this document).
1728 @item @b{names}
1729 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1730 @verbatim
1731 foreach t [target names] {
1732 puts [format "Target: %s\n" $t]
1733 }
1734 @end verbatim
1735 @item @b{current}
1736 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1737 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1738 @item @b{number} @b{NUMBER}
1739 @* Internally OpenOCD maintains a list of targets - in numerical index
1740 (0..N-1) this command returns the name of the target at index N.
1741 Example usage:
1742 @verbatim
1743 set thename [target number $x]
1744 puts [format "Target %d is: %s\n" $x $thename]
1745 @end verbatim
1746 @item @b{count}
1747 @* Returns the number of targets known to OpenOCD (see number above)
1748 Example:
1749 @verbatim
1750 set c [target count]
1751 for { set x 0 } { $x < $c } { incr x } {
1752 # Assuming you have created this function
1753 print_target_details $x
1754 }
1755 @end verbatim
1756
1757 @end itemize
1758
1759 @section TARGETNAME (object) commands
1760 @b{Use:} Once a target is created, an ``object name'' that represents the
1761 target is created. By convention, the target name is identical to the
1762 tap name. In a multiple target system, one can preceed many common
1763 commands with a specific target name and effect only that target.
1764 @example
1765 str912.cpu mww 0x1234 0x42
1766 omap3530.cpu mww 0x5555 123
1767 @end example
1768
1769 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1770 good example is a on screen button, once a button is created a button
1771 has a name (a path in TK terms) and that name is useable as a 1st
1772 class command. For example in TK, one can create a button and later
1773 configure it like this:
1774
1775 @example
1776 # Create
1777 button .foobar -background red -command @{ foo @}
1778 # Modify
1779 .foobar configure -foreground blue
1780 # Query
1781 set x [.foobar cget -background]
1782 # Report
1783 puts [format "The button is %s" $x]
1784 @end example
1785
1786 In OpenOCD's terms, the ``target'' is an object just like a Tcl/Tk
1787 button. Commands avaialble as a ``target object'' are:
1788
1789 @comment START targetobj commands.
1790 @itemize @bullet
1791 @item @b{configure} - configure the target; see Target Config/Cget Options below
1792 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1793 @item @b{curstate} - current target state (running, halt, etc)
1794 @item @b{eventlist}
1795 @* Intended for a human to see/read the currently configure target events.
1796 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1797 @comment start memory
1798 @itemize @bullet
1799 @item @b{mww} ...
1800 @item @b{mwh} ...
1801 @item @b{mwb} ...
1802 @item @b{mdw} ...
1803 @item @b{mdh} ...
1804 @item @b{mdb} ...
1805 @comment end memory
1806 @end itemize
1807 @item @b{Memory To Array, Array To Memory}
1808 @* These are aimed at a machine interface to memory
1809 @itemize @bullet
1810 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1811 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1812 @* Where:
1813 @* @b{ARRAYNAME} is the name of an array variable
1814 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1815 @* @b{ADDRESS} is the target memory address
1816 @* @b{COUNT} is the number of elements to process
1817 @end itemize
1818 @item @b{Used during ``reset''}
1819 @* These commands are used internally by the OpenOCD scripts to deal
1820 with odd reset situations and are not documented here.
1821 @itemize @bullet
1822 @item @b{arp_examine}
1823 @item @b{arp_poll}
1824 @item @b{arp_reset}
1825 @item @b{arp_halt}
1826 @item @b{arp_waitstate}
1827 @end itemize
1828 @item @b{invoke-event} @b{EVENT-NAME}
1829 @* Invokes the specific event manually for the target
1830 @end itemize
1831
1832 @section Target Events
1833 At various times, certain things can happen, or you want them to happen.
1834
1835 Examples:
1836 @itemize @bullet
1837 @item What should happen when GDB connects? Should your target reset?
1838 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1839 @item During reset, do you need to write to certain memory location to reconfigure the SDRAM?
1840 @end itemize
1841
1842 All of the above items are handled by target events.
1843
1844 To specify an event action, either during target creation, or later
1845 via ``$_TARGETNAME configure'' see this example.
1846
1847 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1848 target event name, and BODY is a tcl procedure or string of commands
1849 to execute.
1850
1851 The programmers model is the ``-command'' option used in Tcl/Tk
1852 buttons and events. Below are two identical examples, the first
1853 creates and invokes small procedure. The second inlines the procedure.
1854
1855 @example
1856 proc my_attach_proc @{ @} @{
1857 puts "RESET...."
1858 reset halt
1859 @}
1860 mychip.cpu configure -event gdb-attach my_attach_proc
1861 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1862 @end example
1863
1864 @section Current Events
1865 The following events are available:
1866 @itemize @bullet
1867 @item @b{debug-halted}
1868 @* The target has halted for debug reasons (ie: breakpoint)
1869 @item @b{debug-resumed}
1870 @* The target has resumed (ie: gdb said run)
1871 @item @b{early-halted}
1872 @* Occurs early in the halt process
1873 @item @b{examine-end}
1874 @* Currently not used (goal: when JTAG examine completes)
1875 @item @b{examine-start}
1876 @* Currently not used (goal: when JTAG examine starts)
1877 @item @b{gdb-attach}
1878 @* When GDB connects
1879 @item @b{gdb-detach}
1880 @* When GDB disconnects
1881 @item @b{gdb-end}
1882 @* When the taret has halted and GDB is not doing anything (see early halt)
1883 @item @b{gdb-flash-erase-start}
1884 @* Before the GDB flash process tries to erase the flash
1885 @item @b{gdb-flash-erase-end}
1886 @* After the GDB flash process has finished erasing the flash
1887 @item @b{gdb-flash-write-start}
1888 @* Before GDB writes to the flash
1889 @item @b{gdb-flash-write-end}
1890 @* After GDB writes to the flash
1891 @item @b{gdb-start}
1892 @* Before the taret steps, gdb is trying to start/resume the tarfget
1893 @item @b{halted}
1894 @* The target has halted
1895 @item @b{old-gdb_program_config}
1896 @* DO NOT USE THIS: Used internally
1897 @item @b{old-pre_resume}
1898 @* DO NOT USE THIS: Used internally
1899 @item @b{reset-assert-pre}
1900 @* Before reset is asserted on the tap.
1901 @item @b{reset-assert-post}
1902 @* Reset is now asserted on the tap.
1903 @item @b{reset-deassert-pre}
1904 @* Reset is about to be released on the tap
1905 @item @b{reset-deassert-post}
1906 @* Reset has been released on the tap
1907 @item @b{reset-end}
1908 @* Currently not used.
1909 @item @b{reset-halt-post}
1910 @* Currently not usd
1911 @item @b{reset-halt-pre}
1912 @* Currently not used
1913 @item @b{reset-init}
1914 @* Currently not used
1915 @item @b{reset-start}
1916 @* Currently not used
1917 @item @b{reset-wait-pos}
1918 @* Currently not used
1919 @item @b{reset-wait-pre}
1920 @* Currently not used
1921 @item @b{resume-start}
1922 @* Before any target is resumed
1923 @item @b{resume-end}
1924 @* After all targets have resumed
1925 @item @b{resume-ok}
1926 @* Success
1927 @item @b{resumed}
1928 @* Target has resumed
1929 @item @b{tap-enable}
1930 @* Executed by @b{jtag tapenable DOTTED.NAME} command. Example:
1931 @example
1932 jtag configure DOTTED.NAME -event tap-enable @{
1933 puts "Enabling CPU"
1934 ...
1935 @}
1936 @end example
1937 @item @b{tap-disable}
1938 @*Executed by @b{jtag tapdisable DOTTED.NAME} command. Example:
1939 @example
1940 jtag configure DOTTED.NAME -event tap-disable @{
1941 puts "Disabling CPU"
1942 ...
1943 @}
1944 @end example
1945 @end itemize
1946
1947
1948 @section target create
1949 @cindex target
1950 @cindex target creation
1951
1952 @example
1953 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1954 @end example
1955 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1956 @comment START params
1957 @itemize @bullet
1958 @item @b{NAME}
1959 @* Is the name of the debug target. By convention it should be the tap
1960 DOTTED.NAME, this name is also used to create the target object
1961 command.
1962 @item @b{TYPE}
1963 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1964 @comment START types
1965 @itemize @minus
1966 @item @b{arm7tdmi}
1967 @item @b{arm720t}
1968 @item @b{arm9tdmi}
1969 @item @b{arm920t}
1970 @item @b{arm922t}
1971 @item @b{arm926ejs}
1972 @item @b{arm966e}
1973 @item @b{cortex_m3}
1974 @item @b{feroceon}
1975 @item @b{xscale}
1976 @item @b{arm11}
1977 @item @b{mips_m4k}
1978 @comment end TYPES
1979 @end itemize
1980 @item @b{PARAMS}
1981 @*PARAMs are various target configure parameters, the following are mandatory
1982 at configuration:
1983 @comment START mandatory
1984 @itemize @bullet
1985 @item @b{-endian big|little}
1986 @item @b{-chain-position DOTTED.NAME}
1987 @comment end MANDATORY
1988 @end itemize
1989 @comment END params
1990 @end itemize
1991
1992 @section Target Config/Cget Options
1993 These options can be specified when the target is created, or later
1994 via the configure option or to query the target via cget.
1995 @itemize @bullet
1996 @item @b{-type} - returns the target type
1997 @item @b{-event NAME BODY} see Target events
1998 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1999 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
2000 @item @b{-work-area-size [ADDRESS]} specify/set the work area
2001 @item @b{-work-area-backup [0|1]} does the work area get backed up
2002 @item @b{-endian [big|little]}
2003 @item @b{-variant [NAME]} some chips have varients OpenOCD needs to know about
2004 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
2005 @end itemize
2006 Example:
2007 @example
2008 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
2009 set name [target number $x]
2010 set y [$name cget -endian]
2011 set z [$name cget -type]
2012 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
2013 @}
2014 @end example
2015
2016 @section Target Varients
2017 @itemize @bullet
2018 @item @b{arm7tdmi}
2019 @* Unknown (please write me)
2020 @item @b{arm720t}
2021 @* Unknown (please write me) (simular to arm7tdmi)
2022 @item @b{arm9tdmi}
2023 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
2024 This enables the hardware single-stepping support found on these
2025 cores.
2026 @item @b{arm920t}
2027 @* None.
2028 @item @b{arm966e}
2029 @* None (this is also used as the ARM946)
2030 @item @b{cortex_m3}
2031 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
2032 OpenOCD to use a software reset rather than asserting SRST to avoid a issue with clearing
2033 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
2034 be detected and the normal reset behaviour used.
2035 @item @b{xscale}
2036 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
2037 @item @b{arm11}
2038 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
2039 @item @b{mips_m4k}
2040 @* Use variant @option{ejtag_srst} when debugging targets that do not
2041 provide a functional SRST line on the EJTAG connector. This causes
2042 OpenOCD to instead use an EJTAG software reset command to reset the
2043 processor. You still need to enable @option{srst} on the reset
2044 configuration command to enable OpenOCD hardware reset functionality.
2045 @comment END varients
2046 @end itemize
2047 @section working_area - Command Removed
2048 @cindex working_area
2049 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
2050 @* This documentation remains because there are existing scripts that
2051 still use this that need to be converted.
2052 @example
2053 working_area target# address size backup| [virtualaddress]
2054 @end example
2055 @* The target# is a the 0 based target numerical index.
2056
2057 This command specifies a working area for the debugger to use. This
2058 may be used to speed-up downloads to target memory and flash
2059 operations, or to perform otherwise unavailable operations (some
2060 coprocessor operations on ARM7/9 systems, for example). The last
2061 parameter decides whether the memory should be preserved
2062 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
2063 possible, use a working_area that doesn't need to be backed up, as
2064 performing a backup slows down operation.
2065
2066 @node Flash Configuration
2067 @chapter Flash Programing
2068 @cindex Flash Configuration
2069
2070 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
2071 flash that a micro may boot from. Perhaps you the reader would like to
2072 contribute support for this.
2073
2074 Flash Steps:
2075 @enumerate
2076 @item Configure via the command @b{flash bank}
2077 @* Normally this is done in a configuration file.
2078 @item Operate on the flash via @b{flash SOMECOMMAND}
2079 @* Often commands to manipulate the flash are typed by a human, or run
2080 via a script in some automated way. For example: To program the boot
2081 flash on your board.
2082 @item GDB Flashing
2083 @* Flashing via GDB requires the flash be configured via ``flash
2084 bank'', and the GDB flash features be enabled. See the Daemon
2085 configuration section for more details.
2086 @end enumerate
2087
2088 @section Flash commands
2089 @cindex Flash commands
2090 @subsection flash banks
2091 @b{flash banks}
2092 @cindex flash banks
2093 @*List configured flash banks
2094 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
2095 @subsection flash info
2096 @b{flash info} <@var{num}>
2097 @cindex flash info
2098 @*Print info about flash bank <@option{num}>
2099 @subsection flash probe
2100 @b{flash probe} <@var{num}>
2101 @cindex flash probe
2102 @*Identify the flash, or validate the parameters of the configured flash. Operation
2103 depends on the flash type.
2104 @subsection flash erase_check
2105 @b{flash erase_check} <@var{num}>
2106 @cindex flash erase_check
2107 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
2108 updates the erase state information displayed by @option{flash info}. That means you have
2109 to issue an @option{erase_check} command after erasing or programming the device to get
2110 updated information.
2111 @subsection flash protect_check
2112 @b{flash protect_check} <@var{num}>
2113 @cindex flash protect_check
2114 @*Check protection state of sectors in flash bank <num>.
2115 @option{flash erase_sector} using the same syntax.
2116 @subsection flash erase_sector
2117 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
2118 @cindex flash erase_sector
2119 @anchor{flash erase_sector}
2120 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
2121 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
2122 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
2123 the CFI driver).
2124 @subsection flash erase_address
2125 @b{flash erase_address} <@var{address}> <@var{length}>
2126 @cindex flash erase_address
2127 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
2128 @subsection flash write_bank
2129 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
2130 @cindex flash write_bank
2131 @anchor{flash write_bank}
2132 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
2133 <@option{offset}> bytes from the beginning of the bank.
2134 @subsection flash write_image
2135 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
2136 @cindex flash write_image
2137 @anchor{flash write_image}
2138 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
2139 [@var{offset}] can be specified and the file [@var{type}] can be specified
2140 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
2141 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
2142 if the @option{erase} parameter is given.
2143 @subsection flash protect
2144 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
2145 @cindex flash protect
2146 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
2147 <@var{last}> of @option{flash bank} <@var{num}>.
2148
2149 @subsection mFlash commands
2150 @cindex mFlash commands
2151 @itemize @bullet
2152 @item @b{mflash probe}
2153 @cindex mflash probe
2154 Probe mflash.
2155 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
2156 @cindex mflash write
2157 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
2158 <@var{offset}> bytes from the beginning of the bank.
2159 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2160 @cindex mflash dump
2161 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2162 to a <@var{file}>.
2163 @end itemize
2164
2165 @section flash bank command
2166 The @b{flash bank} command is used to configure one or more flash chips (or banks in OpenOCD terms)
2167
2168 @example
2169 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2170 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2171 @end example
2172 @cindex flash bank
2173 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2174 and <@var{bus_width}> bytes using the selected flash <driver>.
2175
2176 @subsection External Flash - cfi options
2177 @cindex cfi options
2178 CFI flash are external flash chips - often they are connected to a
2179 specific chip select on the micro. By default at hard reset most
2180 micros have the ablity to ``boot'' from some flash chip - typically
2181 attached to the chips CS0 pin.
2182
2183 For other chip selects: OpenOCD does not know how to configure, or
2184 access a specific chip select. Instead you the human might need to via
2185 other commands (like: mww) configure additional chip selects, or
2186 perhaps configure a GPIO pin that controls the ``write protect'' pin
2187 on the FLASH chip.
2188
2189 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2190 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2191 @*CFI flashes require the number of the target they're connected to as an additional
2192 argument. The CFI driver makes use of a working area (specified for the target)
2193 to significantly speed up operation.
2194
2195 @var{chip_width} and @var{bus_width} are specified in bytes.
2196
2197 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2198
2199 @var{x16_as_x8} ???
2200
2201 @subsection Internal Flash (Micro Controllers)
2202 @subsubsection lpc2000 options
2203 @cindex lpc2000 options
2204
2205 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2206 <@var{clock}> [@var{calc_checksum}]
2207 @*LPC flashes don't require the chip and bus width to be specified. Additional
2208 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2209 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2210 of the target this flash belongs to (first is 0), the frequency at which the core
2211 is currently running (in kHz - must be an integral number), and the optional keyword
2212 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2213 vector table.
2214
2215
2216 @subsubsection at91sam7 options
2217 @cindex at91sam7 options
2218
2219 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2220 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2221 reading the chip-id and type.
2222
2223 @subsubsection str7 options
2224 @cindex str7 options
2225
2226 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2227 @*variant can be either STR71x, STR73x or STR75x.
2228
2229 @subsubsection str9 options
2230 @cindex str9 options
2231
2232 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2233 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2234 @example
2235 str9x flash_config 0 4 2 0 0x80000
2236 @end example
2237 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2238
2239 @subsubsection str9 options (str9xpec driver)
2240
2241 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2242 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2243 @option{enable_turbo} <@var{num>.}
2244
2245 Only use this driver for locking/unlocking the device or configuring the option bytes.
2246 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2247
2248 @subsubsection stellaris (LM3Sxxx) options
2249 @cindex stellaris (LM3Sxxx) options
2250
2251 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2252 @*stellaris flash plugin only require the @var{target#}.
2253
2254 @subsubsection stm32x options
2255 @cindex stm32x options
2256
2257 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2258 @*stm32x flash plugin only require the @var{target#}.
2259
2260 @subsubsection aduc702x options
2261 @cindex aduc702x options
2262
2263 @b{flash bank aduc702x} 0 0 0 0 <@var{target#}>
2264 @*The aduc702x flash plugin works with Analog Devices model numbers ADUC7019 through ADUC7028. The setup command only requires the @var{target#} argument (all devices in this family have the same memory layout).
2265
2266 @subsection mFlash configuration
2267 @cindex mFlash configuration
2268 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2269 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2270 @cindex mflash bank
2271 @*Configures a mflash for <@var{soc}> host bank at
2272 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2273 order. Pin number format is dependent on host GPIO calling convention.
2274 If WP or DPD pin was not used, write -1. Currently, mflash bank
2275 support s3c2440 and pxa270.
2276
2277 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2278 @example
2279 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2280 @end example
2281 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2282 @example
2283 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2284 @end example
2285
2286 @section Micro Controller Specific Flash Commands
2287
2288 @subsection AT91SAM7 specific commands
2289 @cindex AT91SAM7 specific commands
2290 The flash configuration is deduced from the chip identification register. The flash
2291 controller handles erases automatically on a page (128/265 byte) basis so erase is
2292 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2293 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2294 that can be erased separatly. Only an EraseAll command is supported by the controller
2295 for each flash plane and this is called with
2296 @itemize @bullet
2297 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2298 @*bulk erase flash planes first_plane to last_plane.
2299 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2300 @cindex at91sam7 gpnvm
2301 @*set or clear a gpnvm bit for the processor
2302 @end itemize
2303
2304 @subsection STR9 specific commands
2305 @cindex STR9 specific commands
2306 @anchor{STR9 specific commands}
2307 These are flash specific commands when using the str9xpec driver.
2308 @itemize @bullet
2309 @item @b{str9xpec enable_turbo} <@var{num}>
2310 @cindex str9xpec enable_turbo
2311 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2312 directly to the embedded flash controller.
2313 @item @b{str9xpec disable_turbo} <@var{num}>
2314 @cindex str9xpec disable_turbo
2315 @*restore the str9 into jtag chain.
2316 @item @b{str9xpec lock} <@var{num}>
2317 @cindex str9xpec lock
2318 @*lock str9 device. The str9 will only respond to an unlock command that will
2319 erase the device.
2320 @item @b{str9xpec unlock} <@var{num}>
2321 @cindex str9xpec unlock
2322 @*unlock str9 device.
2323 @item @b{str9xpec options_read} <@var{num}>
2324 @cindex str9xpec options_read
2325 @*read str9 option bytes.
2326 @item @b{str9xpec options_write} <@var{num}>
2327 @cindex str9xpec options_write
2328 @*write str9 option bytes.
2329 @end itemize
2330
2331 Note: Before using the str9xpec driver here is some background info to help
2332 you better understand how the drivers works. OpenOCD has two flash drivers for
2333 the str9.
2334 @enumerate
2335 @item
2336 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2337 flash programming as it is faster than the @option{str9xpec} driver.
2338 @item
2339 Direct programming @option{str9xpec} using the flash controller, this is
2340 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2341 core does not need to be running to program using this flash driver. Typical use
2342 for this driver is locking/unlocking the target and programming the option bytes.
2343 @end enumerate
2344
2345 Before we run any cmds using the @option{str9xpec} driver we must first disable
2346 the str9 core. This example assumes the @option{str9xpec} driver has been
2347 configured for flash bank 0.
2348 @example
2349 # assert srst, we do not want core running
2350 # while accessing str9xpec flash driver
2351 jtag_reset 0 1
2352 # turn off target polling
2353 poll off
2354 # disable str9 core
2355 str9xpec enable_turbo 0
2356 # read option bytes
2357 str9xpec options_read 0
2358 # re-enable str9 core
2359 str9xpec disable_turbo 0
2360 poll on
2361 reset halt
2362 @end example
2363 The above example will read the str9 option bytes.
2364 When performing a unlock remember that you will not be able to halt the str9 - it
2365 has been locked. Halting the core is not required for the @option{str9xpec} driver
2366 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2367
2368 @subsection STR9 configuration
2369 @cindex STR9 configuration
2370 @itemize @bullet
2371 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2372 <@var{BBADR}> <@var{NBBADR}>
2373 @cindex str9x flash_config
2374 @*Configure str9 flash controller.
2375 @example
2376 eg. str9x flash_config 0 4 2 0 0x80000
2377 This will setup
2378 BBSR - Boot Bank Size register
2379 NBBSR - Non Boot Bank Size register
2380 BBADR - Boot Bank Start Address register
2381 NBBADR - Boot Bank Start Address register
2382 @end example
2383 @end itemize
2384
2385 @subsection STR9 option byte configuration
2386 @cindex STR9 option byte configuration
2387 @itemize @bullet
2388 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2389 @cindex str9xpec options_cmap
2390 @*configure str9 boot bank.
2391 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2392 @cindex str9xpec options_lvdthd
2393 @*configure str9 lvd threshold.
2394 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2395 @cindex str9xpec options_lvdsel
2396 @*configure str9 lvd source.
2397 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2398 @cindex str9xpec options_lvdwarn
2399 @*configure str9 lvd reset warning source.
2400 @end itemize
2401
2402 @subsection STM32x specific commands
2403 @cindex STM32x specific commands
2404
2405 These are flash specific commands when using the stm32x driver.
2406 @itemize @bullet
2407 @item @b{stm32x lock} <@var{num}>
2408 @cindex stm32x lock
2409 @*lock stm32 device.
2410 @item @b{stm32x unlock} <@var{num}>
2411 @cindex stm32x unlock
2412 @*unlock stm32 device.
2413 @item @b{stm32x options_read} <@var{num}>
2414 @cindex stm32x options_read
2415 @*read stm32 option bytes.
2416 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2417 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2418 @cindex stm32x options_write
2419 @*write stm32 option bytes.
2420 @item @b{stm32x mass_erase} <@var{num}>
2421 @cindex stm32x mass_erase
2422 @*mass erase flash memory.
2423 @end itemize
2424
2425 @subsection Stellaris specific commands
2426 @cindex Stellaris specific commands
2427
2428 These are flash specific commands when using the Stellaris driver.
2429 @itemize @bullet
2430 @item @b{stellaris mass_erase} <@var{num}>
2431 @cindex stellaris mass_erase
2432 @*mass erase flash memory.
2433 @end itemize
2434
2435
2436 @node General Commands
2437 @chapter General Commands
2438 @cindex commands
2439
2440 The commands documented in this chapter here are common commands that
2441 you a human may want to type and see the output of. Configuration type
2442 commands are documented elsewhere.
2443
2444 Intent:
2445 @itemize @bullet
2446 @item @b{Source Of Commands}
2447 @* OpenOCD commands can occur in a configuration script (discussed
2448 elsewhere) or typed manually by a human or supplied programatically,
2449 or via one of several Tcp/Ip Ports.
2450
2451 @item @b{From the human}
2452 @* A human should interact with the Telnet interface (default port: 4444,
2453 or via GDB, default port 3333)
2454
2455 To issue commands from within a GDB session, use the @option{monitor}
2456 command, e.g. use @option{monitor poll} to issue the @option{poll}
2457 command. All output is relayed through the GDB session.
2458
2459 @item @b{Machine Interface}
2460 The TCL interface intent is to be a machine interface. The default TCL
2461 port is 5555.
2462 @end itemize
2463
2464
2465 @section Daemon Commands
2466
2467 @subsection sleep [@var{msec}]
2468 @cindex sleep
2469 @*Wait for n milliseconds before resuming. Useful in connection with script files
2470 (@var{script} command and @var{target_script} configuration).
2471
2472 @subsection shutdown
2473 @cindex shutdown
2474 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2475
2476 @subsection debug_level [@var{n}]
2477 @cindex debug_level
2478 @anchor{debug_level}
2479 @*Display or adjust debug level to n<0-3>
2480
2481 @subsection fast [@var{enable|disable}]
2482 @cindex fast
2483 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2484 downloads and fast memory access will work if the JTAG interface isn't too fast and
2485 the core doesn't run at a too low frequency. Note that this option only changes the default
2486 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2487 individually.
2488
2489 The target specific "dangerous" optimisation tweaking options may come and go
2490 as more robust and user friendly ways are found to ensure maximum throughput
2491 and robustness with a minimum of configuration.
2492
2493 Typically the "fast enable" is specified first on the command line:
2494
2495 @example
2496 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2497 @end example
2498
2499 @subsection log_output <@var{file}>
2500 @cindex log_output
2501 @*Redirect logging to <file> (default: stderr)
2502
2503 @subsection script <@var{file}>
2504 @cindex script
2505 @*Execute commands from <file>
2506 Also see: ``source [find FILENAME]''
2507
2508 @section Target state handling
2509 @subsection power <@var{on}|@var{off}>
2510 @cindex reg
2511 @*Turn power switch to target on/off.
2512 No arguments: print status.
2513 Not all interfaces support this.
2514
2515 @subsection reg [@option{#}|@option{name}] [value]
2516 @cindex reg
2517 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2518 No arguments: list all available registers for the current target.
2519 Number or name argument: display a register
2520 Number or name and value arguments: set register value
2521
2522 @subsection poll [@option{on}|@option{off}]
2523 @cindex poll
2524 @*Poll the target for its current state. If the target is in debug mode, architecture
2525 specific information about the current state is printed. An optional parameter
2526 allows continuous polling to be enabled and disabled.
2527
2528 @subsection halt [@option{ms}]
2529 @cindex halt
2530 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2531 Default [@option{ms}] is 5 seconds if no arg given.
2532 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2533 will stop OpenOCD from waiting.
2534
2535 @subsection wait_halt [@option{ms}]
2536 @cindex wait_halt
2537 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2538 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2539 arg given.
2540
2541 @subsection resume [@var{address}]
2542 @cindex resume
2543 @*Resume the target at its current code position, or at an optional address.
2544 OpenOCD will wait 5 seconds for the target to resume.
2545
2546 @subsection step [@var{address}]
2547 @cindex step
2548 @*Single-step the target at its current code position, or at an optional address.
2549
2550 @subsection reset [@option{run}|@option{halt}|@option{init}]
2551 @cindex reset
2552 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2553
2554 With no arguments a "reset run" is executed
2555 @itemize @minus
2556 @item @b{run}
2557 @cindex reset run
2558 @*Let the target run.
2559 @item @b{halt}
2560 @cindex reset halt
2561 @*Immediately halt the target (works only with certain configurations).
2562 @item @b{init}
2563 @cindex reset init
2564 @*Immediately halt the target, and execute the reset script (works only with certain
2565 configurations)
2566 @end itemize
2567
2568 @subsection soft_reset_halt
2569 @cindex reset
2570 @*Requesting target halt and executing a soft reset. This often used
2571 when a target cannot be reset and halted. The target, after reset is
2572 released begins to execute code. OpenOCD attempts to stop the CPU and
2573 then sets the Program counter back at the reset vector. Unfortunatlly
2574 that code that was executed may have left hardware in an unknown
2575 state.
2576
2577
2578 @section Memory access commands
2579 @subsection meminfo
2580 display available ram memory.
2581 @subsection Memory Peek/Poke type commands
2582 These commands allow accesses of a specific size to the memory
2583 system. Often these are used to configure the current target in some
2584 special way. For example - one may need to write certian values to the
2585 SDRAM controller to enable SDRAM.
2586
2587 @enumerate
2588 @item To change the current target see the ``targets'' (plural) command
2589 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2590 @end enumerate
2591
2592 @itemize @bullet
2593 @item @b{mdw} <@var{addr}> [@var{count}]
2594 @cindex mdw
2595 @*display memory words (32bit)
2596 @item @b{mdh} <@var{addr}> [@var{count}]
2597 @cindex mdh
2598 @*display memory half-words (16bit)
2599 @item @b{mdb} <@var{addr}> [@var{count}]
2600 @cindex mdb
2601 @*display memory bytes (8bit)
2602 @item @b{mww} <@var{addr}> <@var{value}>
2603 @cindex mww
2604 @*write memory word (32bit)
2605 @item @b{mwh} <@var{addr}> <@var{value}>
2606 @cindex mwh
2607 @*write memory half-word (16bit)
2608 @item @b{mwb} <@var{addr}> <@var{value}>
2609 @cindex mwb
2610 @*write memory byte (8bit)
2611 @end itemize
2612
2613 @section Image Loading Commands
2614 @subsection load_image
2615 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2616 @cindex load_image
2617 @anchor{load_image}
2618 @*Load image <@var{file}> to target memory at <@var{address}>
2619 @subsection fast_load_image
2620 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2621 @cindex fast_load_image
2622 @anchor{fast_load_image}
2623 @*Normally you should be using @b{load_image} or GDB load. However, for
2624 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2625 host), then storing the image in memory and uploading the image to the target
2626 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2627 Arguments as @b{load_image}, but image is stored in OpenOCD host
2628 memory, i.e. does not affect target. This approach is also useful when profiling
2629 target programming performance as IO and target programming can easily be profiled
2630 seperately.
2631 @subsection fast_load
2632 @b{fast_load}
2633 @cindex fast_image
2634 @anchor{fast_image}
2635 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2636 @subsection dump_image
2637 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2638 @cindex dump_image
2639 @anchor{dump_image}
2640 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2641 (binary) <@var{file}>.
2642 @subsection verify_image
2643 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2644 @cindex verify_image
2645 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2646 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2647
2648
2649 @section Breakpoint commands
2650 @cindex Breakpoint commands
2651 @itemize @bullet
2652 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2653 @cindex bp
2654 @*set breakpoint <address> <length> [hw]
2655 @item @b{rbp} <@var{addr}>
2656 @cindex rbp
2657 @*remove breakpoint <adress>
2658 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2659 @cindex wp
2660 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2661 @item @b{rwp} <@var{addr}>
2662 @cindex rwp
2663 @*remove watchpoint <adress>
2664 @end itemize
2665
2666 @section Misc Commands
2667 @cindex Other Target Commands
2668 @itemize
2669 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2670
2671 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2672 @end itemize
2673
2674 @section Target Specific Commands
2675 @cindex Target Specific Commands
2676
2677
2678 @page
2679 @section Architecture Specific Commands
2680 @cindex Architecture Specific Commands
2681
2682 @subsection ARMV4/5 specific commands
2683 @cindex ARMV4/5 specific commands
2684
2685 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2686 or Intel XScale (XScale isn't supported yet).
2687 @itemize @bullet
2688 @item @b{armv4_5 reg}
2689 @cindex armv4_5 reg
2690 @*Display a list of all banked core registers, fetching the current value from every
2691 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2692 register value.
2693 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2694 @cindex armv4_5 core_mode
2695 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2696 The target is resumed in the currently set @option{core_mode}.
2697 @end itemize
2698
2699 @subsection ARM7/9 specific commands
2700 @cindex ARM7/9 specific commands
2701
2702 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2703 ARM920t or ARM926EJ-S.
2704 @itemize @bullet
2705 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2706 @cindex arm7_9 dbgrq
2707 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2708 safe for all but ARM7TDMI--S cores (like Philips LPC).
2709 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2710 @cindex arm7_9 fast_memory_access
2711 @anchor{arm7_9 fast_memory_access}
2712 @*Allow OpenOCD to read and write memory without checking completion of
2713 the operation. This provides a huge speed increase, especially with USB JTAG
2714 cables (FT2232), but might be unsafe if used with targets running at a very low
2715 speed, like the 32kHz startup clock of an AT91RM9200.
2716 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2717 @cindex arm7_9 dcc_downloads
2718 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2719 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2720 unsafe, especially with targets running at a very low speed. This command was introduced
2721 with OpenOCD rev. 60.
2722 @end itemize
2723
2724 @subsection ARM720T specific commands
2725 @cindex ARM720T specific commands
2726
2727 @itemize @bullet
2728 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2729 @cindex arm720t cp15
2730 @*display/modify cp15 register <@option{num}> [@option{value}].
2731 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2732 @cindex arm720t md<bhw>_phys
2733 @*Display memory at physical address addr.
2734 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2735 @cindex arm720t mw<bhw>_phys
2736 @*Write memory at physical address addr.
2737 @item @b{arm720t virt2phys} <@var{va}>
2738 @cindex arm720t virt2phys
2739 @*Translate a virtual address to a physical address.
2740 @end itemize
2741
2742 @subsection ARM9TDMI specific commands
2743 @cindex ARM9TDMI specific commands
2744
2745 @itemize @bullet
2746 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2747 @cindex arm9tdmi vector_catch
2748 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2749 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2750 @option{irq} @option{fiq}.
2751
2752 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2753 @end itemize
2754
2755 @subsection ARM966E specific commands
2756 @cindex ARM966E specific commands
2757
2758 @itemize @bullet
2759 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2760 @cindex arm966e cp15
2761 @*display/modify cp15 register <@option{num}> [@option{value}].
2762 @end itemize
2763
2764 @subsection ARM920T specific commands
2765 @cindex ARM920T specific commands
2766
2767 @itemize @bullet
2768 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2769 @cindex arm920t cp15
2770 @*display/modify cp15 register <@option{num}> [@option{value}].
2771 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2772 @cindex arm920t cp15i
2773 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2774 @item @b{arm920t cache_info}
2775 @cindex arm920t cache_info
2776 @*Print information about the caches found. This allows you to see if your target
2777 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2778 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2779 @cindex arm920t md<bhw>_phys
2780 @*Display memory at physical address addr.
2781 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2782 @cindex arm920t mw<bhw>_phys
2783 @*Write memory at physical address addr.
2784 @item @b{arm920t read_cache} <@var{filename}>
2785 @cindex arm920t read_cache
2786 @*Dump the content of ICache and DCache to a file.
2787 @item @b{arm920t read_mmu} <@var{filename}>
2788 @cindex arm920t read_mmu
2789 @*Dump the content of the ITLB and DTLB to a file.
2790 @item @b{arm920t virt2phys} <@var{va}>
2791 @cindex arm920t virt2phys
2792 @*Translate a virtual address to a physical address.
2793 @end itemize
2794
2795 @subsection ARM926EJS specific commands
2796 @cindex ARM926EJS specific commands
2797
2798 @itemize @bullet
2799 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2800 @cindex arm926ejs cp15
2801 @*display/modify cp15 register <@option{num}> [@option{value}].
2802 @item @b{arm926ejs cache_info}
2803 @cindex arm926ejs cache_info
2804 @*Print information about the caches found.
2805 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2806 @cindex arm926ejs md<bhw>_phys
2807 @*Display memory at physical address addr.
2808 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2809 @cindex arm926ejs mw<bhw>_phys
2810 @*Write memory at physical address addr.
2811 @item @b{arm926ejs virt2phys} <@var{va}>
2812 @cindex arm926ejs virt2phys
2813 @*Translate a virtual address to a physical address.
2814 @end itemize
2815
2816 @subsection CORTEX_M3 specific commands
2817 @cindex CORTEX_M3 specific commands
2818
2819 @itemize @bullet
2820 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2821 @cindex cortex_m3 maskisr
2822 @*Enable masking (disabling) interrupts during target step/resume.
2823 @end itemize
2824
2825 @page
2826 @section Debug commands
2827 @cindex Debug commands
2828 The following commands give direct access to the core, and are most likely
2829 only useful while debugging OpenOCD.
2830 @itemize @bullet
2831 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2832 @cindex arm7_9 write_xpsr
2833 @*Immediately write either the current program status register (CPSR) or the saved
2834 program status register (SPSR), without changing the register cache (as displayed
2835 by the @option{reg} and @option{armv4_5 reg} commands).
2836 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2837 <@var{0=cpsr},@var{1=spsr}>
2838 @cindex arm7_9 write_xpsr_im8
2839 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2840 operation (similar to @option{write_xpsr}).
2841 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2842 @cindex arm7_9 write_core_reg
2843 @*Write a core register, without changing the register cache (as displayed by the
2844 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2845 encoding of the [M4:M0] bits of the PSR.
2846 @end itemize
2847
2848 @section Target Requests
2849 @cindex Target Requests
2850 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2851 See libdcc in the contrib dir for more details.
2852 @itemize @bullet
2853 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2854 @cindex target_request debugmsgs
2855 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2856 @end itemize
2857
2858 @node JTAG Commands
2859 @chapter JTAG Commands
2860 @cindex JTAG commands
2861 Generally most people will not use the bulk of these commands. They
2862 are mostly used by the OpenOCD developers or those who need to
2863 directly manipulate the JTAG taps.
2864
2865 In general these commands control JTAG taps at a very low level. For
2866 example if you need to control a JTAG Route Controller (ie: the
2867 OMAP3530 on the Beagle Board has one) you might use these commands in
2868 a script or an event procedure.
2869 @section Commands
2870 @cindex Commands
2871 @itemize @bullet
2872 @item @b{scan_chain}
2873 @cindex scan_chain
2874 @*Print current scan chain configuration.
2875 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2876 @cindex jtag_reset
2877 @*Toggle reset lines.
2878 @item @b{endstate} <@var{tap_state}>
2879 @cindex endstate
2880 @*Finish JTAG operations in <@var{tap_state}>.
2881 @item @b{runtest} <@var{num_cycles}>
2882 @cindex runtest
2883 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2884 @item @b{statemove} [@var{tap_state}]
2885 @cindex statemove
2886 @*Move to current endstate or [@var{tap_state}]
2887 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2888 @cindex irscan
2889 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2890 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2891 @cindex drscan
2892 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2893 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2894 @cindex verify_ircapture
2895 @*Verify value captured during Capture-IR. Default is enabled.
2896 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2897 @cindex var
2898 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2899 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2900 @cindex field
2901 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2902 @end itemize
2903
2904 @section Tap states
2905 @cindex Tap states
2906 Available tap_states are:
2907 @itemize @bullet
2908 @item @b{RESET}
2909 @cindex RESET
2910 @item @b{IDLE}
2911 @cindex IDLE
2912 @item @b{DRSELECT}
2913 @cindex DRSELECT
2914 @item @b{DRCAPTURE}
2915 @cindex DRCAPTURE
2916 @item @b{DRSHIFT}
2917 @cindex DRSHIFT
2918 @item @b{DREXIT1}
2919 @cindex DREXIT1
2920 @item @b{DRPAUSE}
2921 @cindex DRPAUSE
2922 @item @b{DREXIT2}
2923 @cindex DREXIT2
2924 @item @b{DRUPDATE}
2925 @cindex DRUPDATE
2926 @item @b{IRSELECT}
2927 @cindex IRSELECT
2928 @item @b{IRCAPTURE}
2929 @cindex IRCAPTURE
2930 @item @b{IRSHIFT}
2931 @cindex IRSHIFT
2932 @item @b{IREXIT1}
2933 @cindex IREXIT1
2934 @item @b{IRPAUSE}
2935 @cindex IRPAUSE
2936 @item @b{IREXIT2}
2937 @cindex IREXIT2
2938 @item @b{IRUPDATE}
2939 @cindex IRUPDATE
2940 @end itemize
2941
2942
2943 @node TFTP
2944 @chapter TFTP
2945 @cindex TFTP
2946 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2947 be used to access files on PCs(either developer PC or some other PC).
2948
2949 The way this works on the ZY1000 is to prefix a filename by
2950 "/tftp/ip/" and append the tftp path on the tftp
2951 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2952 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2953 if the file was hosted on the embedded host.
2954
2955 In order to achieve decent performance, you must choose a tftp server
2956 that supports a packet size bigger than the default packet size(512 bytes). There
2957 are numerous tftp servers out there(free and commercial) and you will have to do
2958 a bit of googling to find something that fits your requirements.
2959
2960 @node Sample Scripts
2961 @chapter Sample Scripts
2962 @cindex scripts
2963
2964 This page shows how to use the target library.
2965
2966 The configuration script can be divided in the following section:
2967 @itemize @bullet
2968 @item daemon configuration
2969 @item interface
2970 @item jtag scan chain
2971 @item target configuration
2972 @item flash configuration
2973 @end itemize
2974
2975 Detailed information about each section can be found at OpenOCD configuration.
2976
2977 @section AT91R40008 example
2978 @cindex AT91R40008 example
2979 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2980 the CPU upon startup of the OpenOCD daemon.
2981 @example
2982 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2983 @end example
2984
2985
2986 @node GDB and OpenOCD
2987 @chapter GDB and OpenOCD
2988 @cindex GDB and OpenOCD
2989 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2990 to debug remote targets.
2991
2992 @section Connecting to GDB
2993 @cindex Connecting to GDB
2994 @anchor{Connecting to GDB}
2995 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2996 instance 6.3 has a known bug where it produces bogus memory access
2997 errors, which has since been fixed: look up 1836 in
2998 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2999
3000 @*OpenOCD can communicate with GDB in two ways:
3001 @enumerate
3002 @item
3003 A socket (tcp) connection is typically started as follows:
3004 @example
3005 target remote localhost:3333
3006 @end example
3007 This would cause GDB to connect to the gdbserver on the local pc using port 3333.
3008 @item
3009 A pipe connection is typically started as follows:
3010 @example
3011 target remote | openocd --pipe
3012 @end example
3013 This would cause GDB to run OpenOCD and communicate using pipes (stdin/stdout).
3014 Using this method has the advantage of GDB starting/stopping OpenOCD for the debug
3015 session.
3016 @end enumerate
3017
3018 @*To see a list of available OpenOCD commands type @option{monitor help} on the
3019 GDB commandline.
3020
3021 OpenOCD supports the gdb @option{qSupported} packet, this enables information
3022 to be sent by the gdb server (OpenOCD) to GDB. Typical information includes
3023 packet size and device memory map.
3024
3025 Previous versions of OpenOCD required the following GDB options to increase
3026 the packet size and speed up GDB communication.
3027 @example
3028 set remote memory-write-packet-size 1024
3029 set remote memory-write-packet-size fixed
3030 set remote memory-read-packet-size 1024
3031 set remote memory-read-packet-size fixed
3032 @end example
3033 This is now handled in the @option{qSupported} PacketSize and should not be required.
3034
3035 @section Programming using GDB
3036 @cindex Programming using GDB
3037
3038 By default the target memory map is sent to GDB, this can be disabled by
3039 the following OpenOCD config option:
3040 @example
3041 gdb_memory_map disable
3042 @end example
3043 For this to function correctly a valid flash config must also be configured
3044 in OpenOCD. For faster performance you should also configure a valid
3045 working area.
3046
3047 Informing GDB of the memory map of the target will enable GDB to protect any
3048 flash area of the target and use hardware breakpoints by default. This means
3049 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
3050 using a memory map. @xref{gdb_breakpoint_override}.
3051
3052 To view the configured memory map in GDB, use the gdb command @option{info mem}
3053 All other unasigned addresses within GDB are treated as RAM.
3054
3055 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
3056 this can be changed to the old behaviour by using the following GDB command.
3057 @example
3058 set mem inaccessible-by-default off
3059 @end example
3060
3061 If @option{gdb_flash_program enable} is also used, GDB will be able to
3062 program any flash memory using the vFlash interface.
3063
3064 GDB will look at the target memory map when a load command is given, if any
3065 areas to be programmed lie within the target flash area the vFlash packets
3066 will be used.
3067
3068 If the target needs configuring before GDB programming, an event
3069 script can be executed.
3070 @example
3071 $_TARGETNAME configure -event EVENTNAME BODY
3072 @end example
3073
3074 To verify any flash programming the GDB command @option{compare-sections}
3075 can be used.
3076
3077 @node TCL scripting API
3078 @chapter TCL scripts
3079 @cindex TCL scripting API
3080 @cindex TCL scripts
3081 @section API Rules
3082
3083 The commands are stateless. E.g. the telnet command line has a concept
3084 of currently active target, the Tcl API proc's take this sort of state
3085 information as an argument to each proc.
3086
3087 There are three main types of return values: single value, name value
3088 pair list and lists.
3089
3090 Name value pair. The proc 'foo' below returns a name/value pair
3091 list.
3092
3093 @verbatim
3094
3095 > set foo(me) Duane
3096 > set foo(you) Oyvind
3097 > set foo(mouse) Micky
3098 > set foo(duck) Donald
3099
3100 If one does this:
3101
3102 > set foo
3103
3104 The result is:
3105
3106 me Duane you Oyvind mouse Micky duck Donald
3107
3108 Thus, to get the names of the associative array is easy:
3109
3110 foreach { name value } [set foo] {
3111 puts "Name: $name, Value: $value"
3112 }
3113 @end verbatim
3114
3115 Lists returned must be relatively small. Otherwise a range
3116 should be passed in to the proc in question.
3117
3118 @section Internal Low Level Commands
3119
3120 By Low level, the intent is a human would not directly use these commands.
3121
3122 Low level commands are (should be) prefixed with "openocd_", e.g. openocd_flash_banks
3123 is the low level API upon which "flash banks" is implemented.
3124
3125 @itemize @bullet
3126 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3127
3128 Read memory and return as a TCL array for script processing
3129 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
3130
3131 Convert a TCL array to memory locations and write the values
3132 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
3133
3134 Return information about the flash banks
3135 @end itemize
3136
3137 OpenOCD commands can consist of two words, e.g. "flash banks". The
3138 startup.tcl "unknown" proc will translate this into a tcl proc
3139 called "flash_banks".
3140
3141 @section OpenOCD specific Global Variables
3142
3143 @subsection HostOS
3144
3145 Real TCL has ::tcl_platform(), and platform::identify, and many other
3146 variables. JimTCL, as implimented in OpenOCD creates $HostOS which
3147 holds one of the following values.
3148
3149 @itemize @bullet
3150 @item @b{winxx} Built using Microsoft Visual Studio
3151 @item @b{linux} Linux is the underlying operating sytem
3152 @item @b{darwin} Darwin (mac-os) is the underlying operating sytem.
3153 @item @b{cygwin} Running under Cygwin
3154 @item @b{mingw32} Running under MingW32
3155 @item @b{other} Unknown, none of the above.
3156 @end itemize
3157
3158 Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
3159
3160 @node Upgrading
3161 @chapter Deprecated/Removed Commands
3162 @cindex Deprecated/Removed Commands
3163 Certain OpenOCD commands have been deprecated/removed during the various revisions.
3164
3165 @itemize @bullet
3166 @item @b{arm7_9 fast_writes}
3167 @cindex arm7_9 fast_writes
3168 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
3169 @item @b{arm7_9 force_hw_bkpts}
3170 @cindex arm7_9 force_hw_bkpts
3171 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
3172 for flash if the gdb memory map has been set up(default when flash is declared in
3173 target configuration). @xref{gdb_breakpoint_override}.
3174 @item @b{arm7_9 sw_bkpts}
3175 @cindex arm7_9 sw_bkpts
3176 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
3177 @item @b{daemon_startup}
3178 @cindex daemon_startup
3179 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
3180 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
3181 and @option{target cortex_m3 little reset_halt 0}.
3182 @item @b{dump_binary}
3183 @cindex dump_binary
3184 @*use @option{dump_image} command with same args. @xref{dump_image}.
3185 @item @b{flash erase}
3186 @cindex flash erase
3187 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
3188 @item @b{flash write}
3189 @cindex flash write
3190 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3191 @item @b{flash write_binary}
3192 @cindex flash write_binary
3193 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
3194 @item @b{flash auto_erase}
3195 @cindex flash auto_erase
3196 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
3197 @item @b{load_binary}
3198 @cindex load_binary
3199 @*use @option{load_image} command with same args. @xref{load_image}.
3200 @item @b{run_and_halt_time}
3201 @cindex run_and_halt_time
3202 @*This command has been removed for simpler reset behaviour, it can be simulated with the
3203 following commands:
3204 @smallexample
3205 reset run
3206 sleep 100
3207 halt
3208 @end smallexample
3209 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
3210 @cindex target
3211 @*use the create subcommand of @option{target}.
3212 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
3213 @cindex target_script
3214 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
3215 @item @b{working_area}
3216 @cindex working_area
3217 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
3218 @end itemize
3219
3220 @node FAQ
3221 @chapter FAQ
3222 @cindex faq
3223 @enumerate
3224 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
3225 @cindex RTCK
3226 @cindex adaptive clocking
3227 @*
3228
3229 In digital circuit design it is often refered to as ``clock
3230 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
3231 operating at some speed, your target is operating at another. The two
3232 clocks are not synchronised, they are ``asynchronous''
3233
3234 In order for the two to work together they must be synchronised. Otherwise
3235 the two systems will get out of sync with each other and nothing will
3236 work. There are 2 basic options.
3237 @enumerate
3238 @item
3239 Use a special circuit.
3240 @item
3241 One clock must be some multiple slower the the other.
3242 @end enumerate
3243
3244 @b{Does this really matter?} For some chips and some situations, this
3245 is a non-issue (ie: A 500MHz ARM926) but for others - for example some
3246 ATMEL SAM7 and SAM9 chips start operation from reset at 32kHz -
3247 program/enable the oscillators and eventually the main clock. It is in
3248 those critical times you must slow the jtag clock to sometimes 1 to
3249 4kHz.
3250
3251 Imagine debugging that 500MHz ARM926 hand held battery powered device
3252 that ``deep sleeps'' at 32kHz between every keystroke. It can be
3253 painful.
3254
3255 @b{Solution #1 - A special circuit}
3256
3257 In order to make use of this your jtag dongle must support the RTCK
3258 feature. Not all dongles support this - keep reading!
3259
3260 The RTCK signal often found in some ARM chips is used to help with
3261 this problem. ARM has a good description of the problem described at
3262 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3263 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3264 work? / how does adaptive clocking work?''.
3265
3266 The nice thing about adaptive clocking is that ``battery powered hand
3267 held device example'' - the adaptiveness works perfectly all the
3268 time. One can set a break point or halt the system in the deep power
3269 down code, slow step out until the system speeds up.
3270
3271 @b{Solution #2 - Always works - but may be slower}
3272
3273 Often this is a perfectly acceptable solution.
3274
3275 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3276 the target clock speed. But what is that ``magic division'' it varies
3277 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3278 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3279 1/12 the clock speed.
3280
3281 Note: Many FTDI2232C based JTAG dongles are limited to 6MHz.
3282
3283 You can still debug the 'lower power' situations - you just need to
3284 manually adjust the clock speed at every step. While painful and
3285 teadious, it is not always practical.
3286
3287 It is however easy to ``code your way around it'' - ie: Cheat a little
3288 have a special debug mode in your application that does a ``high power
3289 sleep''. If you are careful - 98% of your problems can be debugged
3290 this way.
3291
3292 To set the JTAG frequency use the command:
3293
3294 @example
3295 # Example: 1.234MHz
3296 jtag_khz 1234
3297 @end example
3298
3299
3300 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3301
3302 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3303 around Windows filenames.
3304
3305 @example
3306 > echo \a
3307
3308 > echo @{\a@}
3309 \a
3310 > echo "\a"
3311
3312 >
3313 @end example
3314
3315
3316 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3317
3318 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3319 claims to come with all the necessary dlls. When using Cygwin, try launching
3320 OpenOCD from the Cygwin shell.
3321
3322 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3323 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3324 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3325
3326 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3327 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3328 software breakpoints consume one of the two available hardware breakpoints.
3329
3330 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3331 and works sometimes fine.
3332
3333 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3334 clock at the time you're programming the flash. If you've specified the crystal's
3335 frequency, make sure the PLL is disabled, if you've specified the full core speed
3336 (e.g. 60MHz), make sure the PLL is enabled.
3337
3338 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3339 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3340 out while waiting for end of scan, rtck was disabled".
3341
3342 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3343 settings in your PC BIOS (ECP, EPP, and different versions of those).
3344
3345 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3346 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3347 memory read caused data abort".
3348
3349 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3350 beyond the last valid frame. It might be possible to prevent this by setting up
3351 a proper "initial" stack frame, if you happen to know what exactly has to
3352 be done, feel free to add this here.
3353
3354 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3355 stack before calling main(). What GDB is doing is ``climbing'' the run
3356 time stack by reading various values on the stack using the standard
3357 call frame for the target. GDB keeps going - until one of 2 things
3358 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3359 stackframes have been processed. By pushing ZEROs on the stack, GDB
3360 gracefully stops.
3361
3362 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3363 your C code, do the same, artifically push some zeros on to the stack,
3364 remember to pop them off when the ISR is done.
3365
3366 @b{Also note:} If you have a multi-threaded operating system, they
3367 often do not @b{in the intrest of saving memory} waste these few
3368 bytes. Painful...
3369
3370
3371 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3372 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3373
3374 This warning doesn't indicate any serious problem, as long as you don't want to
3375 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3376 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3377 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3378 independently. With this setup, it's not possible to halt the core right out of
3379 reset, everything else should work fine.
3380
3381 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3382 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3383 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3384 quit with an error message. Is there a stability issue with OpenOCD?
3385
3386 No, this is not a stability issue concerning OpenOCD. Most users have solved
3387 this issue by simply using a self-powered USB hub, which they connect their
3388 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3389 supply stable enough for the Amontec JTAGkey to be operated.
3390
3391 @b{Laptops running on battery have this problem too...}
3392
3393 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3394 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3395 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3396 What does that mean and what might be the reason for this?
3397
3398 First of all, the reason might be the USB power supply. Try using a self-powered
3399 hub instead of a direct connection to your computer. Secondly, the error code 4
3400 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3401 chip ran into some sort of error - this points us to a USB problem.
3402
3403 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3404 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3405 What does that mean and what might be the reason for this?
3406
3407 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3408 has closed the connection to OpenOCD. This might be a GDB issue.
3409
3410 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3411 are described, there is a parameter for specifying the clock frequency
3412 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3413 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3414 specified in kilohertz. However, I do have a quartz crystal of a
3415 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3416 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3417 clock frequency?
3418
3419 No. The clock frequency specified here must be given as an integral number.
3420 However, this clock frequency is used by the In-Application-Programming (IAP)
3421 routines of the LPC2000 family only, which seems to be very tolerant concerning
3422 the given clock frequency, so a slight difference between the specified clock
3423 frequency and the actual clock frequency will not cause any trouble.
3424
3425 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3426
3427 Well, yes and no. Commands can be given in arbitrary order, yet the
3428 devices listed for the JTAG scan chain must be given in the right
3429 order (jtag newdevice), with the device closest to the TDO-Pin being
3430 listed first. In general, whenever objects of the same type exist
3431 which require an index number, then these objects must be given in the
3432 right order (jtag newtap, targets and flash banks - a target
3433 references a jtag newtap and a flash bank references a target).
3434
3435 You can use the ``scan_chain'' command to verify and display the tap order.
3436
3437 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3438
3439 Many newer devices have multiple JTAG taps. For example: ST
3440 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3441 ``CortexM3'' tap. Example: The STM32 reference manual, Document ID:
3442 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3443 connected to the Boundary Scan Tap, which then connects to the
3444 CortexM3 Tap, which then connects to the TDO pin.
3445
3446 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3447 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3448 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3449 place it before or after the stm32 chip in the chain. For example:
3450
3451 @itemize @bullet
3452 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3453 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3454 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3455 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3456 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3457 @end itemize
3458
3459 The ``jtag device'' commands would thus be in the order shown below. Note
3460
3461 @itemize @bullet
3462 @item jtag newtap Xilinx tap -irlen ...
3463 @item jtag newtap stm32 cpu -irlen ...
3464 @item jtag newtap stm32 bs -irlen ...
3465 @item # Create the debug target and say where it is
3466 @item target create stm32.cpu -chain-position stm32.cpu ...
3467 @end itemize
3468
3469
3470 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3471 log file, I can see these error messages: Error: arm7_9_common.c:561
3472 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3473
3474 TODO.
3475
3476 @end enumerate
3477
3478 @node TCL Crash Course
3479 @chapter TCL Crash Course
3480 @cindex TCL
3481
3482 Not everyone knows TCL - this is not intended to be a replacement for
3483 learning TCL, the intent of this chapter is to give you some idea of
3484 how the TCL Scripts work.
3485
3486 This chapter is written with two audiences in mind. (1) OpenOCD users
3487 who need to understand a bit more of how JIM-Tcl works so they can do
3488 something useful, and (2) those that want to add a new command to
3489 OpenOCD.
3490
3491 @section TCL Rule #1
3492 There is a famous joke, it goes like this:
3493 @enumerate
3494 @item Rule #1: The wife is always correct
3495 @item Rule #2: If you think otherwise, See Rule #1
3496 @end enumerate
3497
3498 The TCL equal is this:
3499
3500 @enumerate
3501 @item Rule #1: Everything is a string
3502 @item Rule #2: If you think otherwise, See Rule #1
3503 @end enumerate
3504
3505 As in the famous joke, the consequences of Rule #1 are profound. Once
3506 you understand Rule #1, you will understand TCL.
3507
3508 @section TCL Rule #1b
3509 There is a second pair of rules.
3510 @enumerate
3511 @item Rule #1: Control flow does not exist. Only commands
3512 @* For example: the classic FOR loop or IF statement is not a control
3513 flow item, they are commands, there is no such thing as control flow
3514 in TCL.
3515 @item Rule #2: If you think otherwise, See Rule #1
3516 @* Actually what happens is this: There are commands that by
3517 convention, act like control flow key words in other languages. One of
3518 those commands is the word ``for'', another command is ``if''.
3519 @end enumerate
3520
3521 @section Per Rule #1 - All Results are strings
3522 Every TCL command results in a string. The word ``result'' is used
3523 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3524 Everything is a string}
3525
3526 @section TCL Quoting Operators
3527 In life of a TCL script, there are two important periods of time, the
3528 difference is subtle.
3529 @enumerate
3530 @item Parse Time
3531 @item Evaluation Time
3532 @end enumerate
3533
3534 The two key items here are how ``quoted things'' work in TCL. TCL has
3535 three primary quoting constructs, the [square-brackets] the
3536 @{curly-braces@} and ``double-quotes''
3537
3538 By now you should know $VARIABLES always start with a $DOLLAR
3539 sign. BTW, to set a variable, you actually use the command ``set'', as
3540 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3541 = 1'' statement, but without the equal sign.
3542
3543 @itemize @bullet
3544 @item @b{[square-brackets]}
3545 @* @b{[square-brackets]} are command subsitution. It operates much
3546 like Unix Shell `back-ticks`. The result of a [square-bracket]
3547 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3548 string}. These two statments are roughly identical.
3549 @example
3550 # bash example
3551 X=`date`
3552 echo "The Date is: $X"
3553 # TCL example
3554 set X [date]
3555 puts "The Date is: $X"
3556 @end example
3557 @item @b{``double-quoted-things''}
3558 @* @b{``double-quoted-things''} are just simply quoted
3559 text. $VARIABLES and [square-brackets] are expanded in place - the
3560 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3561 is a string}
3562 @example
3563 set x "Dinner"
3564 puts "It is now \"[date]\", $x is in 1 hour"
3565 @end example
3566 @item @b{@{Curly-Braces@}}
3567 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3568 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3569 'single-quote' operators in BASH shell scripts, with the added
3570 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3571 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3572 28/nov/2008, Jim/OpenOCD does not have a date command.
3573 @end itemize
3574
3575 @section Consequences of Rule 1/2/3/4
3576
3577 The consequences of Rule 1 is profound.
3578
3579 @subsection Tokenizing & Execution.
3580
3581 Of course, whitespace, blank lines and #comment lines are handled in
3582 the normal way.
3583
3584 As a script is parsed, each (multi) line in the script file is
3585 tokenized and according to the quoting rules. After tokenizing, that
3586 line is immedatly executed.
3587
3588 Multi line statements end with one or more ``still-open''
3589 @{curly-braces@} which - eventually - a few lines later closes.
3590
3591 @subsection Command Execution
3592
3593 Remember earlier: There is no such thing as ``control flow''
3594 statements in TCL. Instead there are COMMANDS that simpily act like
3595 control flow operators.
3596
3597 Commands are executed like this:
3598
3599 @enumerate
3600 @item Parse the next line into (argc) and (argv[]).
3601 @item Look up (argv[0]) in a table and call its function.
3602 @item Repeat until End Of File.
3603 @end enumerate
3604
3605 It sort of works like this:
3606 @example
3607 for(;;)@{
3608 ReadAndParse( &argc, &argv );
3609
3610 cmdPtr = LookupCommand( argv[0] );
3611
3612 (*cmdPtr->Execute)( argc, argv );
3613 @}
3614 @end example
3615
3616 When the command ``proc'' is parsed (which creates a procedure
3617 function) it gets 3 parameters on the command line. @b{1} the name of
3618 the proc (function), @b{2} the list of parameters, and @b{3} the body
3619 of the function. Not the choice of words: LIST and BODY. The PROC
3620 command stores these items in a table somewhere so it can be found by
3621 ``LookupCommand()''
3622
3623 @subsection The FOR Command
3624
3625 The most interesting command to look at is the FOR command. In TCL,
3626 the FOR command is normally implimented in C. Remember, FOR is a
3627 command just like any other command.
3628
3629 When the ascii text containing the FOR command is parsed, the parser
3630 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3631 are:
3632
3633 @enumerate 0
3634 @item The ascii text 'for'
3635 @item The start text
3636 @item The test expression
3637 @item The next text
3638 @item The body text
3639 @end enumerate
3640
3641 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3642 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3643 Often many of those parameters are in @{curly-braces@} - thus the
3644 variables inside are not expanded or replaced until later.
3645
3646 Remember that every TCL command looks like the classic ``main( argc,
3647 argv )'' function in C. In JimTCL - they actually look like this:
3648
3649 @example
3650 int
3651 MyCommand( Jim_Interp *interp,
3652 int *argc,
3653 Jim_Obj * const *argvs );
3654 @end example
3655
3656 Real TCL is nearly identical. Although the newer versions have
3657 introduced a byte-code parser and intepreter, but at the core, it
3658 still operates in the same basic way.
3659
3660 @subsection FOR Command Implimentation
3661
3662 To understand TCL it is perhaps most helpful to see the FOR
3663 command. Remember, it is a COMMAND not a control flow structure.
3664
3665 In TCL there are two underying C helper functions.
3666
3667 Remember Rule #1 - You are a string.
3668
3669 The @b{first} helper parses and executes commands found in an ascii
3670 string. Commands can be seperated by semi-colons, or newlines. While
3671 parsing, variables are expanded per the quoting rules
3672
3673 The @b{second} helper evaluates an ascii string as a numerical
3674 expression and returns a value.
3675
3676 Here is an example of how the @b{FOR} command could be
3677 implimented. The pseudo code below does not show error handling.
3678 @example
3679 void Execute_AsciiString( void *interp, const char *string );
3680
3681 int Evaluate_AsciiExpression( void *interp, const char *string );
3682
3683 int
3684 MyForCommand( void *interp,
3685 int argc,
3686 char **argv )
3687 @{
3688 if( argc != 5 )@{
3689 SetResult( interp, "WRONG number of parameters");
3690 return ERROR;
3691 @}
3692
3693 // argv[0] = the ascii string just like C
3694
3695 // Execute the start statement.
3696 Execute_AsciiString( interp, argv[1] );
3697
3698 // Top of loop test
3699 for(;;)@{
3700 i = Evaluate_AsciiExpression(interp, argv[2]);
3701 if( i == 0 )
3702 break;
3703
3704 // Execute the body
3705 Execute_AsciiString( interp, argv[3] );
3706
3707 // Execute the LOOP part
3708 Execute_AsciiString( interp, argv[4] );
3709 @}
3710
3711 // Return no error
3712 SetResult( interp, "" );
3713 return SUCCESS;
3714 @}
3715 @end example
3716
3717 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3718 in the same basic way.
3719
3720 @section OpenOCD TCL Usage
3721
3722 @subsection source and find commands
3723 @b{Where:} In many configuration files
3724 @* Example: @b{ source [find FILENAME] }
3725 @*Remember the parsing rules
3726 @enumerate
3727 @item The FIND command is in square brackets.
3728 @* The FIND command is executed with the parameter FILENAME. It should
3729 find the full path to the named file. The RESULT is a string, which is
3730 subsituted on the orginal command line.
3731 @item The command source is executed with the resulting filename.
3732 @* SOURCE reads a file and executes as a script.
3733 @end enumerate
3734 @subsection format command
3735 @b{Where:} Generally occurs in numerous places.
3736 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3737 @b{sprintf()}.
3738 @b{Example}
3739 @example
3740 set x 6
3741 set y 7
3742 puts [format "The answer: %d" [expr $x * $y]]
3743 @end example
3744 @enumerate
3745 @item The SET command creates 2 variables, X and Y.
3746 @item The double [nested] EXPR command performs math
3747 @* The EXPR command produces numerical result as a string.
3748 @* Refer to Rule #1
3749 @item The format command is executed, producing a single string
3750 @* Refer to Rule #1.
3751 @item The PUTS command outputs the text.
3752 @end enumerate
3753 @subsection Body Or Inlined Text
3754 @b{Where:} Various TARGET scripts.
3755 @example
3756 #1 Good
3757 proc someproc @{@} @{
3758 ... multiple lines of stuff ...
3759 @}
3760 $_TARGETNAME configure -event FOO someproc
3761 #2 Good - no variables
3762 $_TARGETNAME confgure -event foo "this ; that;"
3763 #3 Good Curly Braces
3764 $_TARGETNAME configure -event FOO @{
3765 puts "Time: [date]"
3766 @}
3767 #4 DANGER DANGER DANGER
3768 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3769 @end example
3770 @enumerate
3771 @item The $_TARGETNAME is an OpenOCD variable convention.
3772 @*@b{$_TARGETNAME} represents the last target created, the value changes
3773 each time a new target is created. Remember the parsing rules. When
3774 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3775 the name of the target which happens to be a TARGET (object)
3776 command.
3777 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3778 @*There are 4 examples:
3779 @enumerate
3780 @item The TCLBODY is a simple string that happens to be a proc name
3781 @item The TCLBODY is several simple commands semi-colon seperated
3782 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3783 @item The TCLBODY is a string with variables that get expanded.
3784 @end enumerate
3785
3786 In the end, when the target event FOO occurs the TCLBODY is
3787 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3788 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3789
3790 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3791 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3792 and the text is evaluated. In case #4, they are replaced before the
3793 ``Target Object Command'' is executed. This occurs at the same time
3794 $_TARGETNAME is replaced. In case #4 the date will never
3795 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3796 Jim/OpenOCD does not have a date command@}
3797 @end enumerate
3798 @subsection Global Variables
3799 @b{Where:} You might discover this when writing your own procs @* In
3800 simple terms: Inside a PROC, if you need to access a global variable
3801 you must say so. Also see ``upvar''. Example:
3802 @example
3803 proc myproc @{ @} @{
3804 set y 0 #Local variable Y
3805 global x #Global variable X
3806 puts [format "X=%d, Y=%d" $x $y]
3807 @}
3808 @end example
3809 @section Other Tcl Hacks
3810 @b{Dynamic Variable Creation}
3811 @example
3812 # Dynamically create a bunch of variables.
3813 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3814 # Create var name
3815 set vn [format "BIT%d" $x]
3816 # Make it a global
3817 global $vn
3818 # Set it.
3819 set $vn [expr (1 << $x)]
3820 @}
3821 @end example
3822 @b{Dynamic Proc/Command Creation}
3823 @example
3824 # One "X" function - 5 uart functions.
3825 foreach who @{A B C D E@}
3826 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3827 @}
3828 @end example
3829
3830 @node Target library
3831 @chapter Target library
3832 @cindex Target library
3833
3834 OpenOCD comes with a target configuration script library. These scripts can be
3835 used as-is or serve as a starting point.
3836
3837 The target library is published together with the OpenOCD executable and
3838 the path to the target library is in the OpenOCD script search path.
3839 Similarly there are example scripts for configuring the JTAG interface.
3840
3841 The command line below uses the example parport configuration scripts
3842 that ship with OpenOCD, then configures the str710.cfg target and
3843 finally issues the init and reset command. The communication speed
3844 is set to 10kHz for reset and 8MHz for post reset.
3845
3846
3847 @example
3848 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3849 @end example
3850
3851
3852 To list the target scripts available:
3853
3854 @example
3855 $ ls /usr/local/lib/openocd/target
3856
3857 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3858 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3859 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3860 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3861 @end example
3862
3863
3864
3865 @include fdl.texi
3866
3867 @node OpenOCD Index
3868 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3869 @comment case issue with ``Index.html'' and ``index.html''
3870 @comment Occurs when creating ``--html --no-split'' output
3871 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3872 @unnumbered OpenOCD Index
3873
3874 @printindex cp
3875
3876 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)