- updated docs for cfi command, added missing ft2232_layout names
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (openocd)
5 @c %**end of header
6
7 @include version.texi
8
9 @titlepage
10 @title Open On-Chip Debugger (openocd)
11 @subtitle Edition @value{EDITION} for openocd version @value{VERSION}
12 @subtitle @value{UPDATED}
13 @page
14 @vskip 0pt plus 1filll
15 @end titlepage
16
17 @contents
18
19 @node Top, About, , (dir)
20 @top OpenOCD
21
22 This is edition @value{EDITION} of the openocd manual for version
23 @value{VERSION}, @value{UPDATED}
24
25 @menu
26 * About:: About Openocd.
27 * Developers::
28 * Building:: Building Openocd
29 * Running:: Running Openocd
30 * Configuration:: Openocd Configuration.
31 * Commands:: Openocd Commands
32 * Sample Scripts:: Sample Target Scripts
33 * GDB and Openocd:: Using GDB and Openocd
34 * FAQ:: Frequently Asked Questions
35 * License:: GNU Free Documentation License
36 * Index:: Main index.
37 @end menu
38
39 @node About
40 @unnumbered About
41 @cindex about
42
43 The Open On-Chip Debugger (openocd) aims to provide debugging, in-system programming
44 and boundary-scan testing for embedded target devices. The targets are interfaced
45 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
46 connection types in the future.
47
48 Openocd currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
49 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
50 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
51 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
52
53 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
54 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
55 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
56
57 @node Developers
58 @chapter Developers
59 @cindex developers
60
61 Openocd has been created by Dominic Rath as part of a diploma thesis written at the
62 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
63 Others interested in improving the state of free and open debug and testing technology
64 are welcome to participate.
65
66 Other developers have contributed support for additional targets and flashes as well
67 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
68
69 @node Building
70 @chapter Building
71 @cindex building openocd
72
73 You can download the current SVN version with SVN client of your choice from the
74 following repositories:
75
76 (@uref{svn://svn.berlios.de/openocd/trunk})
77
78 or
79
80 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
81
82 Using the SVN command line client, you could use the following command to fetch the
83 latest version (make sure there is no (non-svn) directory called "openocd" in the
84 current directory):
85
86 @smallexample
87 svn checkout svn://svn.berlios.de/openocd/trunk
88 @end smallexample
89
90 Building the OpenOCD requires a recent version of the GNU autotools.
91 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
92 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
93 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
94 paths, resulting in obscure dependency errors (This is an observation I've gathered
95 from the logs of one user - correct me if I'm wrong).
96
97 You further need the appropriate driver files, if you want to build support for
98 a FTDI FT2232 based interface:
99 @itemize @bullet
100 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
101 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
102 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
103 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
104 @end itemize
105
106 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
107 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
108
109 In general, the D2XX driver provides superior performance (several times as fast),
110 but has the draw-back of being binary-only - though that isn't as worse, as it isn't
111 a kernel module, only a user space library.
112
113 To build OpenOCD (on both Linux and Cygwin), use the following commands:
114 @smallexample
115 ./bootstrap
116 @end smallexample
117 Bootstrap generates the configure script, and prepares building on your system.
118 @smallexample
119 ./configure
120 @end smallexample
121 Configure generates the Makefiles used to build OpenOCD
122 @smallexample
123 make
124 @end smallexample
125 Make builds the OpenOCD, and places the final executable in ./src/
126
127 The configure script takes several options, specifying which JTAG interfaces
128 should be included:
129
130 @itemize @bullet
131 @item
132 --enable-parport
133 @item
134 --enable-parport_ppdev
135 @item
136 --enable-amtjtagaccel
137 @item
138 --enable-ft2232_ftd2xx
139 @footnote{Using the latest D2XX drivers from FTDI and following their installation
140 instructions, I had to use @option{--enable-ft2232_libftd2xx} for the OpenOCD to
141 build properly}
142 @item
143 --enable-ft2232_libftdi
144 @item
145 --with-ftd2xx=/path/to/d2xx/
146 @end itemize
147
148 If you want to access the parallel port using the PPDEV interface you have to specify
149 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
150 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
151 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
152
153 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
154 absolute path containing no spaces.
155
156 Linux users should copy the various parts of the D2XX package to the appropriate
157 locations, i.e. /usr/include, /usr/lib.
158
159 @node Running
160 @chapter Running
161 @cindex running openocd
162 The OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
163 Run with @option{--help} or @option{-h} to view the available command line arguments.
164
165 It reads its configuration by default from the file openocd.cfg located in the current
166 working directory. This may be overwritten with the @option{-f <configfile>} command line
167 switch.
168
169 To enable debug output (when reporting problems or working on OpenOCD itself), use
170 the @option{-d} command line switch. This sets the debug_level to "3", outputting
171 the most information, including debug messages. The default setting is "2", outputting
172 only informational messages, warnings and errors. You can also change this setting
173 from within a telnet or gdb session (@option{debug_level <n>}).
174
175 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
176
177 @node Configuration
178 @chapter Configuration
179 @cindex configuration
180 The Open On-Chip Debugger (OpenOCD) runs as a daemon, and reads it current configuration
181 by default from the file openocd.cfg in the current directory. A different configuration
182 file can be specified with the @option{-f <conf.file>} given at the openocd command line.
183
184 The configuration file is used to specify on which ports the daemon listens for new
185 connections, the JTAG interface used to connect to the target, the layout of the JTAG
186 chain, the targets that should be debugged, and connected flashes.
187
188 @section Daemon configuration
189
190 @itemize @bullet
191 @item @b{telnet_port} <@var{number}>
192 @cindex telnet_port
193 Port on which to listen for incoming telnet connections
194 @item @b{gdb_port} <@var{number}>
195 @cindex gdb_port
196 First port on which to listen for incoming GDB connections. The GDB port for the
197 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
198 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
199 @cindex gdb_detach
200 Configures what openocd will do when gdb detaches from the daeman.
201 Default behaviour is <@var{resume}>
202 @item @b{gdb_memory_map} <@var{enable|disable}>
203 @cindex gdb_memory_map
204 Set to <@var{enable}> so that openocd will send the memory configuration to gdb when
205 requested. gdb will then know when to set hardware breakpoints, and program flash
206 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
207 for flash programming to work.
208 Default behaviour is <@var{disable}>
209 @item @b{gdb_flash_program} <@var{enable|disable}>
210 @cindex gdb_flash_program
211 Set to <@var{enable}> so that openocd will program the flash memory when a
212 vFlash packet is received.
213 Default behaviour is <@var{disable}>
214 @item @b{daemon_startup} <@var{mode}> either @samp{attach} or @samp{reset}
215 @cindex daemon_startup
216 Tells the OpenOCD whether it should reset the target when the daemon is launched, or
217 if it should just attach to the target.
218 @end itemize
219
220 @section JTAG interface configuration
221
222 @itemize @bullet
223 @item @b{interface} <@var{name}>
224 @cindex interface
225 Use the interface driver <@var{name}> to connect to the target. Currently supported
226 interfaces are
227 @itemize @minus
228 @item parport
229 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
230 @end itemize
231 @itemize @minus
232 @item amt_jtagaccel
233 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
234 mode parallel port
235 @end itemize
236 @itemize @minus
237 @item ft2232
238 FTDI FT2232 based devices using either the open-source libftdi or the binary only
239 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
240 platform. The libftdi uses libusb, and should be portable to all systems that provide
241 libusb.
242 @end itemize
243 @itemize @minus
244 @item ep93xx
245 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
246 @end itemize
247 @end itemize
248
249 @itemize @bullet
250 @item @b{jtag_speed} <@var{number}>
251 @cindex jtag_speed
252 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
253 speed. The actual effect of this option depends on the JTAG interface used.
254
255 @itemize @minus
256 @item wiggler: maximum speed / @var{number}
257 @item ft2232: 6MHz / (@var{number}+1)
258 @item amt jtagaccel: 8 / 2**@var{number}
259 @end itemize
260
261 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
262 especially true for synthesized cores (-S).
263
264 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
265 @cindex reset_config
266 The configuration of the reset signals available on the JTAG interface AND the target.
267 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
268 then OpenOCD can't use it. <@var{signals}> can be @samp{none}, @samp{trst_only},
269 @samp{srst_only} or @samp{trst_and_srst}.
270 [@var{combination}] is an optional value specifying broken reset signal implementations.
271 @samp{srst_pulls_trst} states that the testlogic is reset together with the reset of
272 the system (e.g. Philips LPC2000, "broken" board layout), @samp{trst_pulls_srst} says
273 that the system is reset together with the test logic (only hypothetical, I haven't
274 seen hardware with such a bug, and can be worked around).
275
276 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
277 reset lines to be specified. Possible values are @samp{trst_push_pull} (default)
278 and @samp{trst_open_drain} for the test reset signal, and @samp{srst_open_drain}
279 (default) and @samp{srst_push_pull} for the system reset. These values only affect
280 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
281
282 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
283 @cindex jtag_device
284 Describes the devices that form the JTAG daisy chain, with the first device being
285 the one closest to TDO. The parameters are the length of the instruction register
286 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
287 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
288 The IDCODE instruction will in future be used to query devices for their JTAG
289 identification code. This line is the same for all ARM7 and ARM9 devices.
290 Other devices, like CPLDs, require different parameters. An example configuration
291 line for a Xilinx XC9500 CPLD would look like this:
292 @smallexample
293 jtag_device 8 0x01 0x0e3 0xfe
294 @end smallexample
295 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
296 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
297 The IDCODE instruction is 0xfe.
298
299 @item @b{jtag_nsrst_delay} <@var{ms}>
300 @cindex jtag_nsrst_delay
301 How long (in miliseconds) the OpenOCD should wait after deasserting nSRST before
302 starting new JTAG operations.
303 @item @b{jtag_ntrst_delay} <@var{ms}>
304 @cindex jtag_ntrst_delay
305 How long (in miliseconds) the OpenOCD should wait after deasserting nTRST before
306 starting new JTAG operations.
307
308 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
309 or on-chip features) keep a reset line asserted for some time after the external reset
310 got deasserted.
311 @end itemize
312
313 @section parport options
314
315 @itemize @bullet
316 @item @b{parport_port} <@var{number}>
317 @cindex parport_port
318 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
319 the @file{/dev/parport} device
320
321 When using PPDEV to access the parallel port, use the number of the parallel port:
322 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
323 you may encounter a problem.
324 @item @b{parport_cable} <@var{name}>
325 @cindex parport_cable
326 The layout of the parallel port cable used to connect to the target.
327 Currently supported cables are
328 @itemize @minus
329 @item wiggler
330 @cindex wiggler
331 Original Wiggler layout, also supported by several clones, such
332 as the Olimex ARM-JTAG
333 @item old_amt_wiggler
334 @cindex old_amt_wiggler
335 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
336 version available from the website uses the original Wiggler layout ('@var{wiggler}')
337 @item chameleon
338 @cindex chameleon
339 Describes the connection of the Amontec Chameleon's CPLD when operated in
340 configuration mode. This is only used to program the Chameleon itself, not
341 a connected target.
342 @item dlc5
343 @cindex dlc5
344 Xilinx Parallel cable III.
345 @item triton
346 @cindex triton
347 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
348 This is also the layout used by the HollyGates design
349 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
350 @item flashlink
351 @cindex flashlink
352 ST Parallel cable.
353 @end itemize
354 @item @b{parport_write_on_exit} <@var{on|off}>
355 @cindex parport_write_on_exit
356 This will configure the parallel driver to write a known value to the parallel
357 interface on exiting openocd
358 @end itemize
359
360 @section amt_jtagaccel options
361 @itemize @bullet
362 @item @b{parport_port} <@var{number}>
363 @cindex parport_port
364 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
365 @file{/dev/parport} device
366 @end itemize
367 @section ft2232 options
368
369 @itemize @bullet
370 @item @b{ft2232_device_desc} <@var{description}>
371 @cindex ft2232_device_desc
372 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
373 default value is used. This setting is only valid if compiled with FTD2XX support.
374 @item @b{ft2232_layout} <@var{name}>
375 @cindex ft2232_layout
376 The layout of the FT2232 GPIO signals used to control output-enables and reset
377 signals. Valid layouts are
378 @itemize @minus
379 @item usbjtag
380 The "USBJTAG-1" layout described in the original OpenOCD diploma thesis
381 @item jtagkey
382 Amontec JTAGkey and JTAGkey-tiny
383 @item signalyzer
384 Signalyzer
385 @item olimex-jtag
386 Olimex ARM-USB-OCD
387 @item m5960
388 American Microsystems M5960
389 @item evb_lm3s811
390 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
391 SRST signals on external connector
392 @item comstick
393 Hitex STR9 comstick
394 @item stm32stick
395 Hitex STM32 Performance Stick
396 @item flyswatter
397 Tin Can Tools Flyswatter
398 @item turtelizer2
399 egnite Software turtelizer2
400 @item oocdlink
401 OOCDLink
402 @end itemize
403
404 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
405 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
406 default values are used. This command is not available on Windows.
407 @item @b{ft2232_latency} <@var{ms}>
408 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
409 ft2232_read() fails to return the expected number of bytes. This can be caused by
410 USB communication delays and has proved hard to reproduce and debug. Setting the
411 FT2232 latency timer to a larger value increases delays for short USB packages but it
412 also reduces the risk of timeouts before receiving the expected number of bytes.
413 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
414 @end itemize
415
416 @section ep93xx options
417 @cindex ep93xx options
418 Currently, there are no options available for the ep93xx interface.
419
420 @page
421 @section Target configuration
422
423 @itemize @bullet
424 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
425 <@var{variant}>
426 @cindex target
427 Defines a target that should be debugged. Currently supported types are:
428 @itemize @minus
429 @item arm7tdmi
430 @item arm720t
431 @item arm9tdmi
432 @item arm920t
433 @item arm922t
434 @item arm926ejs
435 @item arm966e
436 @item cortex_m3
437 @item xscale
438 @end itemize
439
440 If you want to use a target board that is not on this list, see Adding a new
441 target board
442
443 Endianess may be @option{little} or @option{big}.
444
445 The reset_mode specifies what should happen to the target when a reset occurs:
446 @itemize @minus
447 @item reset_halt
448 @cindex reset_halt
449 Immediately request a target halt after reset. This allows targets to be debugged
450 from the very first instruction. This is only possible with targets and JTAG
451 interfaces that correctly implement the reset signals.
452 @item reset_init
453 @cindex reset_init
454 Similar to @option{reset_halt}, but executes the script file defined to handle the
455 'reset' event for the target. Like @option{reset_halt} this only works with
456 correct reset implementations.
457 @item reset_run
458 @cindex reset_run
459 Simply let the target run after a reset.
460 @item run_and_halt
461 @cindex run_and_halt
462 Let the target run for some time (default: 1s), and then request halt.
463 @item run_and_init
464 @cindex run_and_init
465 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
466 to run for some time, then halted, and the @option{reset} event script is executed.
467 @end itemize
468
469 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
470 completely independent (like the LPC2000 series), or where the JTAG interface is
471 unavailable for some time during startup (like the STR7 series), you can't use
472 @option{reset_halt} or @option{reset_init}.
473
474 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
475 @cindex target_script
476 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
477
478 TODO: describe exact semantic of events
479 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
480 @cindex run_and_halt_time
481 The amount of time the debugger should wait after releasing reset before it asserts
482 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
483 reset modes.
484 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
485 <@var{backup}|@var{nobackup}>
486 @cindex working_area
487 Specifies a working area for the debugger to use. This may be used to speed-up
488 downloads to target memory and flash operations, or to perform otherwise unavailable
489 operations (some coprocessor operations on ARM7/9 systems, for example). The last
490 parameter decides whether the memory should be preserved <@var{backup}>. If possible, use
491 a working_area that doesn't need to be backed up, as that slows down operation.
492 @end itemize
493
494 @subsection arm7tdmi options
495 @cindex arm7tdmi options
496 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
497 The arm7tdmi target definition requires at least one additional argument, specifying
498 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
499 The optional [@var{variant}] parameter has been removed in recent versions.
500 The correct feature set is determined at runtime.
501
502 @subsection arm720t options
503 @cindex arm720t options
504 ARM720t options are similar to ARM7TDMI options.
505
506 @subsection arm9tdmi options
507 @cindex arm9tdmi options
508 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
509 @option{arm920t}, @option{arm922t} and @option{arm940t}.
510 This enables the hardware single-stepping support found on these cores.
511
512 @subsection arm920t options
513 @cindex arm920t options
514 ARM920t options are similar to ARM9TDMI options.
515
516 @subsection arm966e options
517 @cindex arm966e options
518 ARM966e options are similar to ARM9TDMI options.
519
520 @subsection xscale options
521 @cindex xscale options
522 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
523 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
524
525 @section Flash configuration
526 @cindex Flash configuration
527
528 @itemize @bullet
529 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
530 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
531 @cindex flash bank
532 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
533 and <@var{bus_width}> bytes using the selected flash <driver>.
534
535 @item @b{flash autoerase} <@option{on}|@option{off}>
536 @cindex flash autoerase
537 auto erase flash banks prior to writing. Currently only works when using
538 @option{flash write_image} command. Default is @option{off}.
539 @end itemize
540
541 @subsection lpc2000 options
542 @cindex lpc2000 options
543
544 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
545 <@var{clock}> [@var{calc_checksum}]
546 LPC flashes don't require the chip and bus width to be specified. Additional
547 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
548 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
549 of the target this flash belongs to (first is 0), the frequency at which the core
550 is currently running (in kHz - must be an integral number), and the optional keyword
551 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
552 vector table.
553
554 @subsection cfi options
555 @cindex cfi options
556
557 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
558 <@var{target#}>
559 CFI flashes require the number of the target they're connected to as an additional
560 argument. The CFI driver makes use of a working area (specified for the target)
561 to significantly speed up operation.
562
563 @var{chip_width} and @var{bus_width} are specified in bytes.
564
565 @subsection at91sam7 options
566 @cindex at91sam7 options
567
568 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
569 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
570 reading the chip-id and type.
571
572 @subsection str7 options
573 @cindex str7 options
574
575 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
576 variant can be either STR71x, STR73x or STR75x.
577
578 @subsection str9 options
579 @cindex str9 options
580
581 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
582 The str9 needs the flash controller to be configured prior to Flash programming, eg.
583 @smallexample
584 str9x flash_config 0 4 2 0 0x80000
585 @end smallexample
586 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
587
588 @subsection str9 options (str9xpec driver)
589
590 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
591 Before using the flash commands the turbo mode will need enabling using str9xpec
592 @option{enable_turbo} <@var{num>.}
593
594 Only use this driver for locking/unlocking the device or configuring the option bytes.
595 Use the standard str9 driver for programming.
596
597 @subsection stellaris (LM3Sxxx) options
598 @cindex stellaris (LM3Sxxx) options
599
600 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
601 stellaris flash plugin only require the @var{target#}.
602
603 @subsection stm32x options
604 @cindex stm32x options
605
606 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
607 stm32x flash plugin only require the @var{target#}.
608
609 @node Commands
610 @chapter Commands
611 @cindex commands
612
613 The Open On-Chip Debugger (OpenOCD) allows user interaction through a telnet interface
614 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
615 is available from both the telnet interface and a GDB session. To issue commands to the
616 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
617 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
618 GDB session.
619
620 @section Daemon
621
622 @itemize @bullet
623 @item @b{sleep} <@var{msec}>
624 @cindex sleep
625 Wait for n milliseconds before resuming. Useful in connection with script files
626 (@var{script} command and @var{target_script} configuration).
627
628 @item @b{shutdown}
629 @cindex shutdown
630 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
631
632 @item @b{debug_level} [@var{n}]
633 @cindex debug_level
634 Display or adjust debug level to n<0-3>
635
636 @item @b{log_output} <@var{file}>
637 @cindex log_output
638 Redirect logging to <file> (default: stderr)
639
640 @item @b{script} <@var{file}>
641 @cindex script
642 Execute commands from <file>
643
644 @end itemize
645
646 @subsection Target state handling
647 @itemize @bullet
648 @item @b{poll} [@option{on}|@option{off}]
649 @cindex poll
650 Poll the target for its current state. If the target is in debug mode, architecture
651 specific information about the current state are printed. An optional parameter
652 allows continuous polling to be enabled and disabled.
653
654 @item @b{halt}
655 @cindex halt
656 Send a halt request to the target. The debugger signals the debug request,
657 and waits for the target to enter debug mode.
658
659 @item @b{resume} [@var{address}]
660 @cindex resume
661 Resume the target at its current code position, or at an optional address.
662
663 @item @b{step} [@var{address}]
664 @cindex step
665 Single-step the target at its current code position, or at an optional address.
666
667 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
668 |@option{run_and_init}]
669 @cindex reset
670 Do a hard-reset. The optional parameter specifies what should happen after the reset.
671 This optional parameter overwrites the setting specified in the configuration file,
672 making the new behaviour the default for the @option{reset} command.
673 @itemize @minus
674 @item run
675 @cindex reset run
676 Let the target run.
677 @item halt
678 @cindex reset halt
679 Immediately halt the target (works only with certain configurations).
680 @item init
681 @cindex reset init
682 Immediately halt the target, and execute the reset script (works only with certain
683 configurations)
684 @item run_and_halt
685 @cindex reset run_and_halt
686 Let the target run for a certain amount of time, then request a halt.
687 @item run_and_init
688 @cindex reset run_and_init
689 Let the target run for a certain amount of time, then request a halt. Execute the
690 reset script once the target entered debug mode.
691 @end itemize
692 @end itemize
693
694 @subsection Memory access commands
695 These commands allow accesses of a specific size to the memory system:
696 @itemize @bullet
697 @item @b{mdw} <@var{addr}> [@var{count}]
698 @cindex mdw
699 display memory words
700 @item @b{mdh} <@var{addr}> [@var{count}]
701 @cindex mdh
702 display memory half-words
703 @item @b{mdb} <@var{addr}> [@var{count}]
704 @cindex mdb
705 display memory bytes
706 @item @b{mww} <@var{addr}> <@var{value}>
707 @cindex mww
708 write memory word
709 @item @b{mwh} <@var{addr}> <@var{value}>
710 @cindex mwh
711 write memory half-word
712 @item @b{mwb} <@var{addr}> <@var{value}>
713 @cindex mwb
714 write memory byte
715
716 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
717 @cindex load_image
718 Load image <@var{file}> to target memory at <@var{address}>
719 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
720 @cindex dump_image
721 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
722 (binary) <@var{file}>.
723 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
724 @cindex verify_image
725 Verify <@var{file}> to target memory starting at <@var{address}>.
726 This will first attempt using a crc checksum, if this fails it will try a binary compare.
727 @item @b{load_binary} <@var{file}> <@var{address}> [DEPRECATED]
728 @cindex load_binary
729 Load binary <@var{file}> to target memory at <@var{address}>
730 @item @b{dump_binary} <@var{file}> <@var{address}> <@var{size}> [DEPRECATED]
731 @cindex dump_binary
732 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
733 (binary) <@var{file}>.
734 @end itemize
735
736 @subsection Flash commands
737 @cindex Flash commands
738 @itemize @bullet
739 @item @b{flash banks}
740 @cindex flash banks
741 List configured flash banks
742 @item @b{flash info} <@var{num}>
743 @cindex flash info
744 Print info about flash bank <@option{num}>
745 @item @b{flash probe} <@var{num}>
746 @cindex flash probe
747 Identify the flash, or validate the parameters of the configured flash. Operation
748 depends on the flash type.
749 @item @b{flash erase_check} <@var{num}>
750 @cindex flash erase_check
751 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
752 updates the erase state information displayed by @option{flash info}. That means you have
753 to issue an @option{erase_check} command after erasing or programming the device to get
754 updated information.
755 @item @b{flash protect_check} <@var{num}>
756 @cindex flash protect_check
757 Check protection state of sectors in flash bank <num>.
758
759 @item @b{flash erase} <@var{num}> <@var{first}> <@var{last}> [DEPRECATED]
760 @cindex flash erase
761 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
762 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
763 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
764 the CFI driver). This command was replaced by the new command
765 @option{flash erase_sector} using the same syntax.
766 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
767 @cindex flash erase_sector
768 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
769 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing might
770 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
771 the CFI driver).
772 @item @b{flash erase_address} <@var{address}> <@var{length}>
773 @cindex flash erase_address
774 Erase sectors starting at <@var{address}> for <@var{length}> number of bytes
775 @item @b{flash write} <@var{num}> <@var{file}> <@var{offset}> [DEPRECATED]
776 @cindex flash write
777 Write the binary <@var{file}> to flash bank <@var{num}>, starting at <@var{offset}>
778 bytes from the beginning of the bank. This command was replaced by the new command
779 @option{flash write_binary} using the same syntax.
780 @item @b{flash write_binary} <@var{num}> <@var{file}> <@var{offset}>
781 @cindex flash write_binary
782 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
783 <@option{offset}> bytes from the beginning of the bank.
784 @item @b{flash write_image} <@var{file}> [@var{offset}] [@var{type}]
785 @cindex flash write_image
786 Write the image <@var{file}> to the current target's flash bank(s). A relocation
787 [@var{offset}] can be specified and the file [@var{type}] can be specified
788 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
789 (ELF file) or @option{s19} (Motorola s19).
790 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
791 @cindex flash protect
792 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
793 <@var{last}> of @option{flash bank} <@var{num}>.
794 @item @b{flash auto_erase} <@var{on}|@var{off}>
795 @cindex flash auto_erase
796 Enable (@option{on}) to erase flash banks prior to writing using the flash @option{write_image} command
797 only. Default is (@option{off}), flash banks have to be erased using @option{flash erase} command.
798 @end itemize
799
800 @page
801 @section Target Specific Commands
802 @cindex Target Specific Commands
803
804 @subsection AT91SAM7 specific commands
805 @cindex AT91SAM7 specific commands
806 The flash configuration is deduced from the chip identification register. The flash
807 controller handles erases automatically on a page (128/265 byte) basis so erase is
808 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
809 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
810 that can be erased separatly.Only an EraseAll command is supported by the controller
811 for each flash plane and this is called with
812 @itemize @bullet
813 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
814 bulk erase flash planes first_plane to last_plane.
815 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
816 @cindex at91sam7 gpnvm
817 set or clear a gpnvm bit for the processor
818 @end itemize
819
820 @subsection STR9 specific commands
821 @cindex STR9 specific commands
822 These are flash specific commands when using the str9xpec driver.
823 @itemize @bullet
824 @item @b{str9xpec enable_turbo} <@var{num}>
825 @cindex str9xpec enable_turbo
826 enable turbo mode, simply this will remove the str9 from the chain and talk
827 directly to the embedded flash controller.
828 @item @b{str9xpec disable_turbo} <@var{num}>
829 @cindex str9xpec disable_turbo
830 restore the str9 into jtag chain.
831 @item @b{str9xpec lock} <@var{num}>
832 @cindex str9xpec lock
833 lock str9 device. The str9 will only respond to an unlock command that will
834 erase the device.
835 @item @b{str9xpec unlock} <@var{num}>
836 @cindex str9xpec unlock
837 unlock str9 device.
838 @item @b{str9xpec options_read} <@var{num}>
839 @cindex str9xpec options_read
840 read str9 option bytes.
841 @item @b{str9xpec options_write} <@var{num}>
842 @cindex str9xpec options_write
843 write str9 option bytes.
844 @end itemize
845
846 @subsection STR9 configuration
847 @cindex STR9 configuration
848 @itemize @bullet
849 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
850 <@var{BBADR}> <@var{NBBADR}>
851 @cindex str9x flash_config
852 Configure str9 flash controller.
853 @smallexample
854 eg. str9x flash_config 0 4 2 0 0x80000
855 This will setup
856 BBSR - Boot Bank Size register
857 NBBSR - Non Boot Bank Size register
858 BBADR - Boot Bank Start Address register
859 NBBADR - Boot Bank Start Address register
860 @end smallexample
861 @end itemize
862
863 @subsection STR9 option byte configuration
864 @cindex STR9 option byte configuration
865 @itemize @bullet
866 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
867 @cindex str9xpec options_cmap
868 configure str9 boot bank.
869 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
870 @cindex str9xpec options_lvdthd
871 configure str9 lvd threshold.
872 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
873 @cindex str9xpec options_lvdsel
874 configure str9 lvd source.
875 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
876 @cindex str9xpec options_lvdwarn
877 configure str9 lvd reset warning source.
878 @end itemize
879
880 @subsection STM32x specific commands
881 @cindex STM32x specific commands
882
883 These are flash specific commands when using the stm32x driver.
884 @itemize @bullet
885 @item @b{stm32x lock} <@var{num}>
886 @cindex stm32x lock
887 lock stm32 device.
888 @item @b{stm32x unlock} <@var{num}>
889 @cindex stm32x unlock
890 unlock stm32 device.
891 @item @b{stm32x options_read} <@var{num}>
892 @cindex stm32x options_read
893 read stm32 option bytes.
894 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
895 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
896 @cindex stm32x options_write
897 write stm32 option bytes.
898 @item @b{stm32x mass_erase} <@var{num}>
899 @cindex stm32x mass_erase
900 mass erase flash memory.
901 @end itemize
902
903 @page
904 @section Architecture Specific Commands
905 @cindex Architecture Specific Commands
906
907 @subsection ARMV4/5 specific commands
908 @cindex ARMV4/5 specific commands
909
910 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
911 or Intel XScale (XScale isn't supported yet).
912 @itemize @bullet
913 @item @b{armv4_5 reg}
914 @cindex armv4_5 reg
915 Display a list of all banked core registers, fetching the current value from every
916 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
917 register value.
918 @item @b{armv4_5 core_mode} [@option{arm}|@option{thumb}]
919 @cindex armv4_5 core_mode
920 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
921 The target is resumed in the currently set @option{core_mode}.
922 @end itemize
923
924 @subsection ARM7/9 specific commands
925 @cindex ARM7/9 specific commands
926
927 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
928 ARM920t or ARM926EJ-S.
929 @itemize @bullet
930 @item @b{arm7_9 sw_bkpts} <@option{enable}|@option{disable}>
931 @cindex arm7_9 sw_bkpts
932 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
933 one of the watchpoint registers to implement software breakpoints. Disabling
934 SW Bkpts frees that register again.
935 @item @b{arm7_9 force_hw_bkpts} <@option{enable}|@option{disable}>
936 @cindex arm7_9 force_hw_bkpts
937 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
938 breakpoints are turned into hardware breakpoints.
939 @item @b{arm7_9 dbgrq} <@option{enable}|@option{disable}>
940 @cindex arm7_9 dbgrq
941 Enable use of the DBGRQ bit to force entry into debug mode. This should be
942 safe for all but ARM7TDMI--S cores (like Philips LPC).
943 @item @b{arm7_9 fast_writes} <@option{enable}|@option{disable}>
944 @cindex arm7_9 fast_writes [DEPRECATED]
945 See @option{arm7_9 fast_memory_access} instead.
946 @item @b{arm7_9 fast_memory_access} <@option{enable}|@option{disable}>
947 @cindex arm7_9 fast_memory_access
948 Allow the OpenOCD to read and write memory without checking completion of
949 the operation. This provides a huge speed increase, especially with USB JTAG
950 cables (FT2232), but might be unsafe if used with targets running at a very low
951 speed, like the 32kHz startup clock of an AT91RM9200.
952 @item @b{arm7_9 dcc_downloads} <@option{enable}|@option{disable}>
953 @cindex arm7_9 dcc_downloads
954 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
955 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
956 unsafe, especially with targets running at a very low speed. This command was introduced
957 with OpenOCD rev. 60.
958 @end itemize
959
960 @subsection ARM920T specific commands
961 @cindex ARM920T specific commands
962
963 @itemize @bullet
964 @item @b{arm920t cache_info}
965 @cindex arm920t cache_info
966 Print information about the caches found. This allows you to see if your target
967 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
968 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
969 @cindex arm920t md<bhw>_phys
970 Display memory at physical address addr.
971 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
972 @cindex arm920t mw<bhw>_phys
973 Write memory at physical address addr.
974 @item @b{arm920t read_cache} <@var{filename}>
975 @cindex arm920t read_cache
976 Dump the content of ICache and DCache to a file.
977 @item @b{arm920t read_mmu} <@var{filename}>
978 @cindex arm920t read_mmu
979 Dump the content of the ITLB and DTLB to a file.
980 @item @b{arm920t virt2phys} <@var{VA}>
981 @cindex arm920t virt2phys
982 Translate a virtual address to a physical address.
983 @end itemize
984
985 @page
986 @section Debug commands
987 @cindex Debug commands
988 The following commands give direct access to the core, and are most likely
989 only useful while debugging the OpenOCD.
990 @itemize @bullet
991 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
992 @cindex arm7_9 write_xpsr
993 Immediately write either the current program status register (CPSR) or the saved
994 program status register (SPSR), without changing the register cache (as displayed
995 by the @option{reg} and @option{armv4_5 reg} commands).
996 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
997 <@var{0=cpsr},@var{1=spsr}>
998 @cindex arm7_9 write_xpsr_im8
999 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1000 operation (similar to @option{write_xpsr}).
1001 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1002 @cindex arm7_9 write_core_reg
1003 Write a core register, without changing the register cache (as displayed by the
1004 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1005 encoding of the [M4:M0] bits of the PSR.
1006 @end itemize
1007
1008 @page
1009 @section JTAG commands
1010 @cindex JTAG commands
1011 @itemize @bullet
1012 @item @b{scan_chain}
1013 @cindex scan_chain
1014 Print current scan chain configuration.
1015 @item @b{jtag_reset}
1016 @cindex jtag_reset
1017 Toggle reset lines <@var{trst}> <@var{srst}>.
1018 @item @b{endstate} <@var{tap_state}>
1019 @cindex endstate
1020 Finish JTAG operations in <@var{tap_state}>.
1021 @item @b{runtest} <@var{num_cycles}>
1022 @cindex runtest
1023 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1024 @item @b{statemove} [@var{tap_state}]
1025 @cindex statemove
1026 Move to current endstate or [@var{tap_state}]
1027 @item @b{irscan}
1028 @cindex irscan
1029 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1030 @item @b{drscan}
1031 @cindex drscan
1032 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1033 @item @b{verify_ircapture}
1034 @cindex verify_ircapture
1035 Verify value captured during Capture-IR <@option{enable}|@option{disable}>
1036 @item @b{var}
1037 @cindex var
1038 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1039 @item @b{field}
1040 @cindex field
1041 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1042 @end itemize
1043
1044 @node Sample Scripts
1045 @chapter Sample Scripts
1046 @cindex scripts
1047
1048 This page will collect some script examples for different CPUs.
1049
1050 The configuration script can be divided in the following section:
1051 @itemize @bullet
1052 @item daemon configuration
1053 @item interface
1054 @item jtag scan chain
1055 @item target configuration
1056 @item flash configuration
1057 @end itemize
1058
1059 Detailed information about each section can be found at OpenOCD configuration
1060
1061 @section OMAP5912 Flash Debug
1062 @cindex OMAP5912 Flash Debug
1063 The following two scripts were used with a wiggler PP and and a TI OMAP5912
1064 dual core processor - (@uref{http://www.ti.com}), on a OMAP5912 OSK board
1065 - (@uref{http://www.spectrumdigital.com}).
1066 @subsection Openocd config
1067 @smallexample
1068 #daemon configuration
1069 telnet_port 4444
1070 gdb_port 3333
1071
1072 #interface
1073 interface parport
1074 parport_port 0x378
1075 parport_cable wiggler
1076 jtag_speed 0
1077
1078 #use combined on interfaces or targets that can't set TRST/SRST separately
1079 reset_config trst_and_srst
1080
1081 #jtag scan chain
1082 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1083 jtag_device 38 0x0 0x0 0x0
1084 jtag_device 4 0x1 0x0 0xe
1085 jtag_device 8 0x0 0x0 0x0
1086
1087 #target configuration
1088 daemon_startup reset
1089
1090 #target <type> <endianness> <reset mode> <chainpos> <variant>
1091 target arm926ejs little run_and_init 1 arm926ejs
1092 target_script 0 reset omap5912_osk.init
1093 run_and_halt_time 0 30
1094
1095 # omap5912 lcd frame buffer as working area
1096 working_area 0 0x20000000 0x3e800 nobackup
1097
1098 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1099 flash bank cfi 0x00000000 0x1000000 2 2 0
1100 @end smallexample
1101
1102 @subsection Openocd init
1103 @smallexample
1104 #
1105 # halt target
1106 #
1107 poll
1108 sleep 1
1109 halt
1110 wait_halt
1111 #
1112 # disable wdt
1113 #
1114 mww 0xfffec808 0x000000f5
1115 mww 0xfffec808 0x000000a0
1116
1117 mww 0xfffeb048 0x0000aaaa
1118 sleep 500
1119 mww 0xfffeb048 0x00005555
1120 sleep 500
1121 #
1122 # detect flash
1123 #
1124 flash probe 0
1125
1126 @end smallexample
1127
1128 @section STR71x Script
1129 @cindex STR71x Script
1130 The following script was used with an Amontec JTAGkey and a STR710 / STR711 cpu:
1131 @smallexample
1132 #daemon configuration
1133 telnet_port 4444
1134 gdb_port 3333
1135
1136 #interface
1137 interface ft2232
1138 ft2232_device_desc "Amontec JTAGkey A"
1139 ft2232_layout jtagkey
1140 ft2232_vid_pid 0x0403 0xcff8
1141 jtag_speed 0
1142
1143 #use combined on interfaces or targets that can't set TRST/SRST separately
1144 reset_config trst_and_srst srst_pulls_trst
1145
1146 #jtag scan chain
1147 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1148 jtag_device 4 0x1 0xf 0xe
1149
1150 #target configuration
1151 daemon_startup reset
1152
1153 #target <type> <startup mode>
1154 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1155 target arm7tdmi little run_and_halt 0 arm7tdmi
1156 run_and_halt_time 0 30
1157
1158 working_area 0 0x2000C000 0x4000 nobackup
1159
1160 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1161 flash bank str7x 0x40000000 0x00040000 0 0 0 STR71x
1162 @end smallexample
1163
1164 @section STR750 Script
1165 @cindex STR750 Script
1166 The following script was used with an Amontec JTAGkey and a STR750 cpu:
1167 @smallexample
1168 #daemon configuration
1169 telnet_port 4444
1170 gdb_port 3333
1171
1172 #interface
1173 interface ft2232
1174 ft2232_device_desc "Amontec JTAGkey A"
1175 ft2232_layout jtagkey
1176 ft2232_vid_pid 0x0403 0xcff8
1177 jtag_speed 19
1178
1179 #use combined on interfaces or targets that can't set TRST/SRST separately
1180 #reset_config trst_and_srst srst_pulls_trst
1181 reset_config trst_and_srst srst_pulls_trst
1182
1183 #jtag scan chain
1184 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1185 jtag_device 4 0x1 0xf 0xe
1186
1187 #jtag nTRST and nSRST delay
1188 jtag_nsrst_delay 500
1189 jtag_ntrst_delay 500
1190
1191 #target configuration
1192 daemon_startup reset
1193
1194 #target <type> <startup mode>
1195 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1196 target arm7tdmi little run_and_halt 0 arm7tdmi
1197 run_and_halt_time 0 30
1198
1199 working_area 0 0x40000000 0x4000 nobackup
1200
1201 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1202 flash bank str7x 0x20000000 0x000040000 0 0 0 STR75x
1203 @end smallexample
1204
1205 @section STR912 Script
1206 @cindex STR912 Script
1207 The following script was used with an Amontec JTAGkey and a STR912 cpu:
1208 @smallexample
1209 #daemon configuration
1210 telnet_port 4444
1211 gdb_port 3333
1212
1213 #interface
1214 interface ft2232
1215 ft2232_device_desc "Amontec JTAGkey A"
1216 ft2232_layout jtagkey
1217 jtag_speed 1
1218
1219 #use combined on interfaces or targets that can't set TRST/SRST separately
1220 reset_config trst_and_srst
1221
1222 #jtag scan chain
1223 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1224 jtag_device 8 0x1 0x1 0xfe
1225 jtag_device 4 0x1 0xf 0xe
1226 jtag_device 5 0x1 0x1 0x1e
1227
1228 #target configuration
1229 daemon_startup reset
1230
1231 #target <type> <startup mode>
1232 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1233 target arm966e little reset_halt 1 arm966e
1234 run_and_halt_time 0 30
1235
1236 working_area 0 0x50000000 16384 nobackup
1237
1238 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1239 flash bank str9x 0x00000000 0x00080000 0 0 0
1240 @end smallexample
1241
1242 @section STR912 comstick
1243 @cindex STR912 comstick Script
1244 The following script was used with a Hitex STR9 Comstick:
1245 @smallexample
1246 #daemon configuration
1247 telnet_port 4444
1248 gdb_port 3333
1249
1250 #interface
1251 interface ft2232
1252 ft2232_device_desc "STR9-comStick A"
1253 ft2232_layout comstick
1254 jtag_speed 1
1255
1256 jtag_nsrst_delay 100
1257 jtag_ntrst_delay 100
1258
1259 #use combined on interfaces or targets that can't set TRST/SRST separately
1260 reset_config trst_and_srst
1261
1262 #jtag scan chain
1263 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1264 jtag_device 8 0x1 0x1 0xfe
1265 jtag_device 4 0x1 0xf 0xe
1266 jtag_device 5 0x1 0x1 0x1e
1267
1268 #target configuration
1269 daemon_startup reset
1270
1271 #target <type> <startup mode>
1272 #target arm966e <endianness> <reset mode> <chainpos> <variant>
1273 target arm966e little reset_halt 1 arm966e
1274 run_and_halt_time 0 30
1275
1276 working_area 0 0x50000000 16384 nobackup
1277
1278 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1279 flash bank str9x 0x00000000 0x00080000 0 0 0
1280 @end smallexample
1281
1282 @section STM32x Script
1283 @cindex STM32x Script
1284 The following script was used with an Amontec JTAGkey and a STM32x cpu:
1285 @smallexample
1286 #daemon configuration
1287 telnet_port 4444
1288 gdb_port 3333
1289
1290 #interface
1291 interface ft2232
1292 ft2232_device_desc "Amontec JTAGkey A"
1293 ft2232_layout jtagkey
1294 jtag_speed 10
1295
1296 jtag_nsrst_delay 100
1297 jtag_ntrst_delay 100
1298
1299 #use combined on interfaces or targets that can't set TRST/SRST separately
1300 reset_config trst_and_srst
1301
1302 #jtag scan chain
1303 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1304 jtag_device 4 0x1 0xf 0xe
1305 jtag_device 5 0x1 0x1 0x1e
1306
1307 #target configuration
1308 daemon_startup reset
1309
1310 #target <type> <startup mode>
1311 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1312 target cortex_m3 little run_and_halt 0
1313 run_and_halt_time 0 30
1314
1315 working_area 0 0x20000000 16384 nobackup
1316
1317 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1318 flash bank stm32x 0x08000000 0x00020000 0 0 0
1319 @end smallexample
1320
1321 @section STM32x Performance Stick
1322 @cindex STM32x Performance Stick Script
1323 The following script was used with the Hitex STM32 Performance Stick
1324 @smallexample
1325 #daemon configuration
1326 telnet_port 4444
1327 gdb_port 3333
1328
1329 #interface
1330 interface ft2232
1331 ft2232_device_desc "STM32-PerformanceStick A"
1332 ft2232_layout stm32stick
1333 jtag_speed 10
1334
1335 jtag_nsrst_delay 100
1336 jtag_ntrst_delay 100
1337
1338 #use combined on interfaces or targets that can't set TRST/SRST separately
1339 reset_config trst_and_srst
1340
1341 #jtag scan chain
1342 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1343 jtag_device 4 0x1 0xf 0xe
1344 jtag_device 5 0x1 0x1 0x1e
1345 jtag_device 4 0x1 0xf 0xe
1346
1347 #target configuration
1348 daemon_startup reset
1349
1350 #target <type> <startup mode>
1351 #target cortex_m3 <endianness> <reset mode> <chainpos> <variant>
1352 target cortex_m3 little run_and_halt 0
1353 run_and_halt_time 0 30
1354
1355 working_area 0 0x20000000 16384 nobackup
1356
1357 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1358 flash bank stm32x 0x08000000 0x00020000 0 0 0
1359 @end smallexample
1360
1361 @section LPC2129 Script
1362 @cindex LPC2129 Script
1363 The following script was used with an wiggler PP and a LPC-2129 cpu:
1364 @smallexample
1365 #daemon configuration
1366 telnet_port 4444
1367 gdb_port 3333
1368
1369 #interface
1370 interface parport
1371 parport_port 0x378
1372 parport_cable wiggler
1373 jtag_speed 0
1374
1375 #use combined on interfaces or targets that can't set TRST/SRST separately
1376 reset_config trst_and_srst srst_pulls_trst
1377
1378 #jtag scan chain
1379 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1380 jtag_device 4 0x1 0xf 0xe
1381
1382 #target configuration
1383 daemon_startup reset
1384
1385 #target <type> <startup mode>
1386 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1387 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1388 run_and_halt_time 0 30
1389
1390 working_area 0 0x40000000 0x4000 nobackup
1391
1392 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1393 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1394 @end smallexample
1395
1396 @section LPC2148 Script
1397 @cindex LPC2148 Script
1398 The following script was used with an Amontec JTAGkey and a LPC2148 cpu:
1399 @smallexample
1400 #daemon configuration
1401 telnet_port 4444
1402 gdb_port 3333
1403
1404 #interface
1405 interface ft2232
1406 ft2232_device_desc "Amontec JTAGkey A"
1407 ft2232_layout jtagkey
1408 ft2232_vid_pid 0x0403 0xcff8
1409 jtag_speed 3
1410
1411 #use combined on interfaces or targets that can't set TRST/SRST separately
1412 reset_config trst_and_srst srst_pulls_trst
1413
1414 #jtag scan chain
1415 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1416 jtag_device 4 0x1 0xf 0xe
1417
1418 #target configuration
1419 daemon_startup reset
1420
1421 #target <type> <startup mode>
1422 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1423 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1424 run_and_halt_time 0 30
1425
1426 working_area 0 0x40000000 0x8000 nobackup
1427
1428 #flash configuration
1429 flash bank lpc2000 0x0 0x7d000 0 0 0 lpc2000_v1 14765 calc_checksum
1430 @end smallexample
1431
1432 @section LPC2294 Script
1433 @cindex LPC2294 Script
1434 The following script was used with an Amontec JTAGkey and a LPC2294 cpu:
1435 @smallexample
1436 #daemon configuration
1437 telnet_port 4444
1438 gdb_port 3333
1439
1440 #interface
1441 interface ft2232
1442 ft2232_device_desc "Amontec JTAGkey A"
1443 ft2232_layout jtagkey
1444 ft2232_vid_pid 0x0403 0xcff8
1445 jtag_speed 3
1446
1447 #use combined on interfaces or targets that can't set TRST/SRST separately
1448 reset_config trst_and_srst srst_pulls_trst
1449
1450 #jtag scan chain
1451 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1452 jtag_device 4 0x1 0xf 0xe
1453
1454 #target configuration
1455 daemon_startup reset
1456
1457 #target <type> <startup mode>
1458 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1459 target arm7tdmi little run_and_halt 0 arm7tdmi-s_r4
1460 run_and_halt_time 0 30
1461
1462 working_area 0 0x40000000 0x4000 nobackup
1463
1464 #flash configuration
1465 flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14765 calc_checksum
1466 @end smallexample
1467
1468 @section AT91R40008 Script
1469 @cindex AT91R40008 Script
1470 The following script was used with an Amontec JTAGkey and a AT91R40008 cpu:
1471 @smallexample
1472 #daemon configuration
1473 telnet_port 4444
1474 gdb_port 3333
1475
1476 #interface
1477 interface ft2232
1478 ft2232_device_desc "Amontec JTAGkey A"
1479 ft2232_layout jtagkey
1480 ft2232_vid_pid 0x0403 0xcff8
1481 jtag_speed 0
1482 jtag_nsrst_delay 200
1483 jtag_ntrst_delay 200
1484
1485 #use combined on interfaces or targets that can't set TRST/SRST separately
1486 reset_config srst_only srst_pulls_trst
1487
1488 #jtag scan chain
1489 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1490 jtag_device 4 0x1 0xf 0xe
1491
1492 #target configuration
1493 daemon_startup reset
1494
1495 #target <type> <startup mode>
1496 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1497 target arm7tdmi little run_and_halt 0 arm7tdmi
1498 run_and_halt_time 0 30
1499 @end smallexample
1500
1501 @section AT91SAM7s Script
1502 @cindex AT91SAM7s Script
1503 The following script was used with an Olimex ARM-JTAG-OCD and a AT91SAM7S64 cpu:
1504 @smallexample
1505 #daemon configuration
1506 telnet_port 4444
1507 gdb_port 3333
1508
1509 #interface
1510 interface ft2232
1511 ft2232_device_desc "Olimex OpenOCD JTAG A"
1512 ft2232_layout olimex-jtag
1513 ft2232_vid_pid 0x15BA 0x0003
1514 jtag_speed 0
1515 jtag_nsrst_delay 200
1516 jtag_ntrst_delay 200
1517
1518 #use combined on interfaces or targets that can't set TRST/SRST separately
1519 reset_config srst_only srst_pulls_trst
1520
1521 #jtag scan chain
1522 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1523 jtag_device 4 0x1 0xf 0xe
1524
1525 #target configuration
1526 daemon_startup reset
1527
1528 #target <type> <startup mode>
1529 #target arm7tdmi <endianness> <reset mode> <chainpos> <variant>
1530 target arm7tdmi little run_and_halt 0 arm7tdmi
1531 run_and_halt_time 0 30
1532
1533 # flash-options AT91
1534 working_area 0 0x00200000 0x4000 nobackup
1535 flash bank at91sam7 0 0 0 0 0
1536
1537 # Information:
1538 # erase command (telnet-interface) for complete flash:
1539 # flash erase <num> 0 numlockbits-1 (can be seen from output of flash info 0)
1540 # SAM7S64 with 16 lockbits and bank 0: flash erase 0 0 15
1541 # set/clear NVM-Bits:
1542 # at91sam7 gpnvm <num> <bit> <set|clear>
1543 # disable locking from SAM-BA:
1544 # flash protect 0 0 1 off
1545 @end smallexample
1546
1547 @section XSCALE IXP42x Script
1548 @cindex XSCALE IXP42x Script
1549 The following script was used with an Amontec JTAGkey-Tiny and a xscale ixp42x cpu:
1550 @smallexample
1551 #daemon configuration
1552 telnet_port 4444
1553 gdb_port 3333
1554
1555 #interface
1556 interface ft2232
1557 ft2232_device_desc "Amontec JTAGkey A"
1558 ft2232_layout jtagkey
1559 ft2232_vid_pid 0x0403 0xcff8
1560 jtag_speed 0
1561 jtag_nsrst_delay 200
1562 jtag_ntrst_delay 200
1563
1564 #use combined on interfaces or targets that can't set TRST/SRST separately
1565 reset_config srst_only srst_pulls_trst
1566
1567 #jtag scan chain
1568 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1569 jtag_device 7 0x1 0x7f 0x7e
1570
1571 #target configuration
1572 daemon_startup reset
1573
1574 #target <type> <startup mode>
1575 #target arm7tdmi <reset mode> <chainpos> <endianness> <variant>
1576 target xscale big run_and_halt 0 IXP42x
1577 run_and_halt_time 0 30
1578 @end smallexample
1579
1580 @section Cirrus Logic EP9301 Script
1581 @cindex Cirrus Logic EP9301 Script
1582 The following script was used with FT2232 based JTAG interfaces and a
1583 Cirrus Logic EP9301 processor on an Olimex CS-E9301 board.
1584 @smallexample
1585 #daemon configuration
1586 telnet_port 4444
1587 gdb_port 3333
1588
1589 #interface
1590 interface ft2232
1591
1592 #Olimex ARM-USB-OCD
1593 #ft2232_device_desc "Olimex OpenOCD JTAG"
1594 #ft2232_layout olimex-jtag
1595 #ft2232_vid_pid 0x15ba 0x0003
1596
1597 #Amontec JTAGkey (and JTAGkey-Tiny)
1598 #Serial is only necessary if more than one JTAGkey is connected
1599 ft2232_device_desc "Amontec JTAGkey A"
1600 #ft2232_serial AMTJKV31
1601 #ft2232_serial T1P3S2W8
1602 ft2232_layout jtagkey
1603 ft2232_vid_pid 0x0403 0xcff8
1604
1605 #wiggler/parallel port interface
1606 #interface parport
1607 #parport_port 0x378
1608 #parport_cable wiggler
1609 #jtag_speed 0
1610 jtag_speed 1
1611 reset_config trst_and_srst
1612
1613 #jtag scan chain
1614 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1615 jtag_device 4 0x1 0xf 0xe
1616
1617 jtag_nsrst_delay 100
1618 jtag_ntrst_delay 100
1619
1620 #target configuration
1621 daemon_startup attach
1622
1623 #target <type> <endianess> <reset mode>
1624 target arm920t little reset_halt 0
1625 working_area 0 0x80014000 0x1000 backup
1626
1627 #flash configuration
1628 #flash bank <driver> <base> <size> <chip_width> <bus_width> [driver_options ...]
1629 flash bank cfi 0x60000000 0x1000000 2 2 0
1630 @end smallexample
1631
1632 @section Hilscher netX 100 / 500 Script
1633 @cindex Hilscher netX 100 / 500 Script
1634 The following script was used with an Amontec JTAGkey and a Hilscher
1635 netX 500 cpu:
1636 @smallexample
1637 #daemon configuration
1638 telnet_port 4444
1639 gdb_port 3333
1640
1641 #interface
1642 interface ft2232
1643 ft2232_device_desc "Amontec JTAGkey A"
1644 ft2232_layout jtagkey
1645 ft2232_vid_pid 0x0403 0xcff8
1646 jtag_speed 5
1647
1648 #use combined on interfaces or targets that can't set TRST/SRST separately
1649 reset_config trst_and_srst
1650
1651 #jtag scan chain
1652 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1653 jtag_device 4 0x1 0xf 0xe
1654
1655 jtag_nsrst_delay 100
1656 jtag_ntrst_delay 100
1657
1658 #target configuration
1659 daemon_startup reset
1660
1661 #target <type> <endianness> <startup mode> <chainpos> <variant>
1662 target arm926ejs little run_and_halt 0 arm926ejs
1663 run_and_halt_time 0 500
1664 @end smallexample
1665
1666 @section Marvell/Intel PXA270 Script
1667 @cindex Marvell/Intel PXA270 Script
1668 @smallexample
1669 # config for Intel PXA270
1670 # not, as of 2007-06-22, openocd only works with the
1671 # libftd2xx library from ftdi. libftdi does not work.
1672
1673 telnet_port 3333
1674 gdb_port 4444
1675
1676 interface ft2232
1677 ft2232_layout olimex-jtag
1678 ft2232_vid_pid 0x15BA 0x0003
1679 ft2232_device_desc "Olimex OpenOCD JTAG"
1680 jtag_speed 0
1681 # set jtag_nsrst_delay to the delay introduced by your reset circuit
1682 # the rest of the needed delays are built into the openocd program
1683 jtag_nsrst_delay 260
1684 # set the jtag_ntrst_delay to the delay introduced by a reset circuit
1685 # the rest of the needed delays are built into the openocd program
1686 jtag_ntrst_delay 0
1687
1688 #use combined on interfaces or targets that can't set TRST/SRST separately
1689 reset_config trst_and_srst separate
1690
1691 #jtag scan chain
1692 #format L IRC IRCM IDCODE (Length, IR Capture, IR Capture Mask, IDCODE)
1693 jtag_device 7 0x1 0x7f 0x7e
1694
1695 #target configuration
1696 daemon_startup reset
1697
1698 target xscale little reset_halt 0 pxa27x
1699
1700 # maps to PXA internal RAM. If you are using a PXA255
1701 # you must initialize SDRAM or leave this option off
1702 working_area 0 0x5c000000 0x10000 nobackup
1703
1704 run_and_halt_time 0 30
1705
1706 #flash bank <driver> <base> <size> <chip_width> <bus_width>
1707 # works for P30 flash
1708 flash bank cfi 0x00000000 0x1000000 2 4 0
1709 @end smallexample
1710
1711 @node GDB and Openocd
1712 @chapter GDB and Openocd
1713 @cindex GDB and Openocd
1714 Openocd complies with the remote gdbserver protocol, and as such can be used
1715 to debug remote targets.
1716
1717 @section Connecting to gdb
1718 @cindex Connecting to gdb
1719 A connection is typically started as follows:
1720 @smallexample
1721 target remote localhost:3333
1722 @end smallexample
1723 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1724
1725 To see a list of available openocd commands type @option{monitor help} on the
1726 gdb commandline.
1727
1728 Openocd supports the gdb @option{qSupported} packet, this enables information
1729 to be sent by the gdb server (openocd) to gdb. Typical information includes
1730 packet size and device memory map.
1731
1732 Previous versions of openocd required the following gdb options to increase
1733 the packet size and speed up gdb communication.
1734 @smallexample
1735 set remote memory-write-packet-size 1024
1736 set remote memory-write-packet-size fixed
1737 set remote memory-read-packet-size 1024
1738 set remote memory-read-packet-size fixed
1739 @end smallexample
1740 This is now handled in the @option{qSupported} PacketSize.
1741
1742 @section Programming using gdb
1743 @cindex Programming using gdb
1744
1745 By default the target memory map is not sent to gdb, this can be enabled by
1746 the following openocd config option:
1747 @smallexample
1748 gdb_memory_map enable
1749 @end smallexample
1750 For this to function correctly a valid flash config must also be configured
1751 in openocd. For speed also configure a valid working area.
1752
1753 Informing gdb of the memory map of the target will enable gdb to protect any
1754 flash area of the target and use hardware breakpoints by default. This means
1755 that the openocd option @option{arm7_9 force_hw_bkpts} is not required when
1756 using a memory map.
1757
1758 To view the configured memory map in gdb, use the gdb command @option{info mem}
1759 All other unasigned addresses within gdb are treated as ram.
1760
1761 If @option{gdb_flash_program enable} is also used, gdb will be able to
1762 program any flash memory using the vFlash interface.
1763
1764 gdb will look at the target memory map when a load command is given, if any
1765 areas to be programmed lie within the target flash area the vFlash packets
1766 will be used.
1767
1768 Incase the target needs configuring before gdb programming, a script can be executed.
1769 @smallexample
1770 target_script 0 gdb_program_config config.script
1771 @end smallexample
1772
1773 To verify any flash programming the gdb command @option{compare-sections}
1774 can be used.
1775
1776 @node FAQ
1777 @chapter FAQ
1778 @cindex faq
1779 @enumerate
1780 @item OpenOCD complains about a missing cygwin1.dll
1781
1782 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1783 claims to come with all the necessary dlls. When using Cygwin, try launching
1784 the OpenOCD from the Cygwin shell.
1785
1786 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1787 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1788 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1789
1790 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1791 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1792 software breakpoints consume one of the two available hardware breakpoints,
1793 and are therefor disabled by default. If your code is running from RAM, you
1794 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1795 your code resides in Flash, you can't use software breakpoints, but you can force
1796 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1797
1798 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1799 and works sometimes fine.
1800
1801 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1802 clock at the time you're programming the flash. If you've specified the crystal's
1803 frequency, make sure the PLL is disabled, if you've specified the full core speed
1804 (e.g. 60MHz), make sure the PLL is enabled.
1805
1806 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1807 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1808 out while waiting for end of scan, rtck was disabled".
1809
1810 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1811 settings in your PC Bios (ECP, EPP, and different versions of those).
1812
1813 @item When debugging with the OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1814 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1815 memory read caused data abort".
1816
1817 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1818 beyond the last valid frame. It might be possible to prevent this by setting up
1819 a proper "initial" stack frame, if you happen to know what exactly has to
1820 be done, feel free to add this here.
1821
1822 @item I get the following message in the OpenOCD console (or log file):
1823 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1824
1825 This warning doesn't indicate any serious problem, as long as you don't want to
1826 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1827 trst_and_srst srst_pulls_trst} to tell the OpenOCD that either your board,
1828 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1829 independently. With this setup, it's not possible to halt the core right out of
1830 reset, everything else should work fine.
1831
1832 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1833 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1834 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1835 quit with an error message. Is there a stability issue with OpenOCD?
1836
1837 No, this is not a stability issue concering OpenOCD. Most users have solved
1838 this issue by simply using a self-powered USB Hub, which they connect their
1839 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1840 supply stable enough for the Amontec JTAGkey to be operated.
1841
1842 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1843 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1844 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1845 What does that mean and what might be the reason for this?
1846
1847 First of all, the reason might be the USB power supply. Try using a self-powered
1848 hub instead of a direct connection to your computer. Secondly, the error code 4
1849 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1850 Chip ran into some sort of error - this points us to a USB problem.
1851
1852 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1853 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1854 What does that mean and what might be the reason for this?
1855
1856 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1857 has closed the connection to OpenOCD. This might be a GDB issue.
1858
1859 @item In the configuration file in the section where flash device configurations
1860 are described, there is a parameter for specifying the clock frequency for
1861 LPC2000 internal flash devices (e.g.
1862 @option{flash bank lpc2000 0x0 0x40000 0 0 lpc2000_v1 0 14746 calc_checksum}),
1863 which must be sepcified in kilohertz. However, I do have a quartz crystal of a
1864 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1865 Is it possible to specify real numbers for the clock frequency?
1866
1867 No. The clock frequency specified here must be given as an integral number.
1868 However, this clock frequency is used by the In-Application-Programming (IAP)
1869 routines of the LPC2000 family only, which seems to be very tolerant concerning
1870 the given clock frequency, so a slight difference between the specified clock
1871 frequency and the actual clock frequency will not cause any trouble.
1872
1873 @item Do I have to keep a specific order for the commands in the configuration file?
1874
1875 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1876 listed for the JTAG scan chain must be given in the right order (jtag_device),
1877 with the device closest to the TDO-Pin being listed first. In general,
1878 whenever objects of the same type exist which require an index number, then
1879 these objects must be given in the right order (jtag_devices, targets and flash
1880 banks - a target references a jtag_device and a flash bank references a target).
1881
1882 @item Sometimes my debugging session terminates with an error. When I look into the
1883 log file, I can see these error messages: Error: arm7_9_common.c:561
1884 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1885
1886 @end enumerate
1887
1888 @include fdl.texi
1889
1890 @node Index
1891 @unnumbered Index
1892
1893 @printindex cp
1894
1895 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)