- added missing parport configs to texi
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * GDB and OpenOCD:: Using GDB and OpenOCD
55 * TCL and OpenOCD:: Using TCL and OpenOCD
56 * TCL scripting API:: Tcl scripting API
57 * Upgrading:: Deprecated/Removed Commands
58 * FAQ:: Frequently Asked Questions
59 * License:: GNU Free Documentation License
60 * Index:: Main index.
61 @end menu
62
63 @node About
64 @unnumbered About
65 @cindex about
66
67 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
68 and boundary-scan testing for embedded target devices. The targets are interfaced
69 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
70 connection types in the future.
71
72 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
73 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
74 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
75 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
76
77 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
78 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
79 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
80
81 @node Developers
82 @chapter Developers
83 @cindex developers
84
85 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
86 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
87 Others interested in improving the state of free and open debug and testing technology
88 are welcome to participate.
89
90 Other developers have contributed support for additional targets and flashes as well
91 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
92
93 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
94
95 @node Building
96 @chapter Building
97 @cindex building OpenOCD
98
99 You can download the current SVN version with SVN client of your choice from the
100 following repositories:
101
102 (@uref{svn://svn.berlios.de/openocd/trunk})
103
104 or
105
106 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
107
108 Using the SVN command line client, you can use the following command to fetch the
109 latest version (make sure there is no (non-svn) directory called "openocd" in the
110 current directory):
111
112 @smallexample
113 svn checkout svn://svn.berlios.de/openocd/trunk openocd
114 @end smallexample
115
116 Building OpenOCD requires a recent version of the GNU autotools.
117 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
118 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
119 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
120 paths, resulting in obscure dependency errors (This is an observation I've gathered
121 from the logs of one user - correct me if I'm wrong).
122
123 You further need the appropriate driver files, if you want to build support for
124 a FTDI FT2232 based interface:
125 @itemize @bullet
126 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
127 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
128 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
129 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
130 @end itemize
131
132 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
133 see contrib/libftdi for more details.
134
135 In general, the D2XX driver provides superior performance (several times as fast),
136 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
137 a kernel module, only a user space library.
138
139 To build OpenOCD (on both Linux and Cygwin), use the following commands:
140 @smallexample
141 ./bootstrap
142 @end smallexample
143 Bootstrap generates the configure script, and prepares building on your system.
144 @smallexample
145 ./configure
146 @end smallexample
147 Configure generates the Makefiles used to build OpenOCD.
148 @smallexample
149 make
150 @end smallexample
151 Make builds OpenOCD, and places the final executable in ./src/.
152
153 The configure script takes several options, specifying which JTAG interfaces
154 should be included:
155
156 @itemize @bullet
157 @item
158 @option{--enable-parport}
159 @item
160 @option{--enable-parport_ppdev}
161 @item
162 @option{--enable-parport_giveio}
163 @item
164 @option{--enable-amtjtagaccel}
165 @item
166 @option{--enable-ft2232_ftd2xx}
167 @footnote{Using the latest D2XX drivers from FTDI and following their installation
168 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
169 build properly.}
170 @item
171 @option{--enable-ft2232_libftdi}
172 @item
173 @option{--with-ftd2xx=/path/to/d2xx/}
174 @item
175 @option{--enable-gw16012}
176 @item
177 @option{--enable-usbprog}
178 @item
179 @option{--enable-presto_libftdi}
180 @item
181 @option{--enable-presto_ftd2xx}
182 @item
183 @option{--enable-jlink}
184 @end itemize
185
186 If you want to access the parallel port using the PPDEV interface you have to specify
187 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
188 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
189 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
190
191 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
192 absolute path containing no spaces.
193
194 Linux users should copy the various parts of the D2XX package to the appropriate
195 locations, i.e. /usr/include, /usr/lib.
196
197 Miscellaneous configure options
198
199 @itemize @bullet
200 @item
201 @option{--enable-gccwarnings} - enable extra gcc warnings during build
202 @end itemize
203
204 @node Running
205 @chapter Running
206 @cindex running OpenOCD
207 @cindex --configfile
208 @cindex --debug_level
209 @cindex --logfile
210 @cindex --search
211 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
212 Run with @option{--help} or @option{-h} to view the available command line switches.
213
214 It reads its configuration by default from the file openocd.cfg located in the current
215 working directory. This may be overwritten with the @option{-f <configfile>} command line
216 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
217 are executed in order.
218
219 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
220
221 To enable debug output (when reporting problems or working on OpenOCD itself), use
222 the @option{-d} command line switch. This sets the debug_level to "3", outputting
223 the most information, including debug messages. The default setting is "2", outputting
224 only informational messages, warnings and errors. You can also change this setting
225 from within a telnet or gdb session (@option{debug_level <n>}).
226
227 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
228
229 Search paths for config/script files can be added to OpenOCD by using
230 the @option{-s <search>} switch. The current directory and the OpenOCD target library
231 is in the search path by default.
232
233 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
234 with the target. In general, it is possible for the JTAG controller to be unresponsive until
235 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
236
237 @node Configuration
238 @chapter Configuration
239 @cindex configuration
240 OpenOCD runs as a daemon, and reads it current configuration
241 by default from the file openocd.cfg in the current directory. A different configuration
242 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
243
244 The configuration file is used to specify on which ports the daemon listens for new
245 connections, the JTAG interface used to connect to the target, the layout of the JTAG
246 chain, the targets that should be debugged, and connected flashes.
247
248 @section Daemon configuration
249
250 @itemize @bullet
251 @item @b{init} This command terminates the configuration stage and enters the normal
252 command mode. This can be useful to add commands to the startup scripts and commands
253 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
254 add "init" and "reset" at the end of the config script or at the end of the
255 OpenOCD command line using the @option{-c} command line switch.
256 @cindex init
257 @item @b{telnet_port} <@var{number}>
258 @cindex telnet_port
259 Port on which to listen for incoming telnet connections
260 @item @b{gdb_port} <@var{number}>
261 @cindex gdb_port
262 First port on which to listen for incoming GDB connections. The GDB port for the
263 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
264 @item @b{gdb_breakpoint_override} <@var{hard/soft/disabled}>
265 @cindex gdb_breakpoint_override
266 hard/soft/disabled - force breakpoint type for gdb 'break' commands.
267 The raison d'etre for this option is to support GDB GUI's without
268 a hard/soft breakpoint concept where the default OpenOCD and
269 GDB behaviour is not sufficient. Note that GDB will use hardware
270 breakpoints if the memory map has been set up for flash regions.
271
272 This option replaces older arm7_9 target commands that addressed
273 the same issue.
274 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
275 @cindex gdb_detach
276 Configures what OpenOCD will do when gdb detaches from the daeman.
277 Default behaviour is <@var{resume}>
278 @item @b{gdb_memory_map} <@var{enable|disable}>
279 @cindex gdb_memory_map
280 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
281 requested. gdb will then know when to set hardware breakpoints, and program flash
282 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
283 for flash programming to work.
284 Default behaviour is <@var{enable}>
285 @item @b{gdb_flash_program} <@var{enable|disable}>
286 @cindex gdb_flash_program
287 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
288 vFlash packet is received.
289 Default behaviour is <@var{enable}>
290 at item @b{tcl_port} <@var{number}>
291 at cindex tcl_port
292 Port on which to listen for incoming TCL syntax. This port is intended as
293 a simplified RPC connection that can be used by clients to issue commands
294 and get the output from the TCL engine.
295 @end itemize
296
297 @section JTAG interface configuration
298
299 @itemize @bullet
300 @item @b{interface} <@var{name}>
301 @cindex interface
302 Use the interface driver <@var{name}> to connect to the target. Currently supported
303 interfaces are
304 @itemize @minus
305 @item @b{parport}
306 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
307 @end itemize
308 @itemize @minus
309 @item @b{amt_jtagaccel}
310 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
311 mode parallel port
312 @end itemize
313 @itemize @minus
314 @item @b{ft2232}
315 FTDI FT2232 based devices using either the open-source libftdi or the binary only
316 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
317 platform. The libftdi uses libusb, and should be portable to all systems that provide
318 libusb.
319 @end itemize
320 @itemize @minus
321 @item @b{ep93xx}
322 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
323 @end itemize
324 @itemize @minus
325 @item @b{presto}
326 ASIX PRESTO USB JTAG programmer.
327 @end itemize
328 @itemize @minus
329 @item @b{usbprog}
330 usbprog is a freely programmable USB adapter.
331 @end itemize
332 @itemize @minus
333 @item @b{gw16012}
334 Gateworks GW16012 JTAG programmer.
335 @end itemize
336 @itemize @minus
337 @item @b{jlink}
338 Segger jlink usb adapter
339 @end itemize
340 @end itemize
341
342 @itemize @bullet
343 @item @b{jtag_speed} <@var{reset speed}>
344 @cindex jtag_speed
345 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
346 speed. The actual effect of this option depends on the JTAG interface used.
347
348 The speed used during reset can be adjusted using setting jtag_speed during
349 pre_reset and post_reset events.
350 @itemize @minus
351
352 @item wiggler: maximum speed / @var{number}
353 @item ft2232: 6MHz / (@var{number}+1)
354 @item amt jtagaccel: 8 / 2**@var{number}
355 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
356 @end itemize
357
358 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
359 especially true for synthesized cores (-S).
360
361 @item @b{jtag_khz} <@var{reset speed kHz}>
362 @cindex jtag_khz
363 Same as jtag_speed, except that the speed is specified in maximum kHz. If
364 the device can not support the rate asked for, or can not translate from
365 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
366 is not supported, then an error is reported.
367
368 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
369 @cindex reset_config
370 The configuration of the reset signals available on the JTAG interface AND the target.
371 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
372 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
373 @option{srst_only} or @option{trst_and_srst}.
374
375 [@var{combination}] is an optional value specifying broken reset signal implementations.
376 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
377 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
378 that the system is reset together with the test logic (only hypothetical, I haven't
379 seen hardware with such a bug, and can be worked around).
380 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
381 The default behaviour if no option given is @option{separate}.
382
383 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
384 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
385 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
386 (default) and @option{srst_push_pull} for the system reset. These values only affect
387 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
388
389 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
390 @cindex jtag_device
391 Describes the devices that form the JTAG daisy chain, with the first device being
392 the one closest to TDO. The parameters are the length of the instruction register
393 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
394 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
395 The IDCODE instruction will in future be used to query devices for their JTAG
396 identification code. This line is the same for all ARM7 and ARM9 devices.
397 Other devices, like CPLDs, require different parameters. An example configuration
398 line for a Xilinx XC9500 CPLD would look like this:
399 @smallexample
400 jtag_device 8 0x01 0x0e3 0xfe
401 @end smallexample
402 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
403 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
404 The IDCODE instruction is 0xfe.
405
406 @item @b{jtag_nsrst_delay} <@var{ms}>
407 @cindex jtag_nsrst_delay
408 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
409 starting new JTAG operations.
410 @item @b{jtag_ntrst_delay} <@var{ms}>
411 @cindex jtag_ntrst_delay
412 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
413 starting new JTAG operations.
414
415 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
416 or on-chip features) keep a reset line asserted for some time after the external reset
417 got deasserted.
418 @end itemize
419
420 @section parport options
421
422 @itemize @bullet
423 @item @b{parport_port} <@var{number}>
424 @cindex parport_port
425 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
426 the @file{/dev/parport} device
427
428 When using PPDEV to access the parallel port, use the number of the parallel port:
429 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
430 you may encounter a problem.
431 @item @b{parport_cable} <@var{name}>
432 @cindex parport_cable
433 The layout of the parallel port cable used to connect to the target.
434 Currently supported cables are
435 @itemize @minus
436 @item @b{wiggler}
437 @cindex wiggler
438 The original Wiggler layout, also supported by several clones, such
439 as the Olimex ARM-JTAG
440 @item @b{wiggler2}
441 @cindex wiggler2
442 Same as original wiggler except an led is fitted on D5.
443 @item @b{wiggler_ntrst_inverted}
444 @cindex wiggler_ntrst_inverted
445 Same as original wiggler except TRST is inverted.
446 @item @b{old_amt_wiggler}
447 @cindex old_amt_wiggler
448 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
449 version available from the website uses the original Wiggler layout ('@var{wiggler}')
450 @item @b{chameleon}
451 @cindex chameleon
452 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
453 program the Chameleon itself, not a connected target.
454 @item @b{dlc5}
455 @cindex dlc5
456 The Xilinx Parallel cable III.
457 @item @b{triton}
458 @cindex triton
459 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
460 This is also the layout used by the HollyGates design
461 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
462 @item @b{flashlink}
463 @cindex flashlink
464 The ST Parallel cable.
465 @item @b{arm-jtag}
466 @cindex arm-jtag
467 Same as original wiggler except SRST and TRST connections reversed and
468 TRST is also inverted.
469 @item @b{altium}
470 @cindex altium
471 Altium Universal JTAG cable.
472 @end itemize
473 @item @b{parport_write_on_exit} <@var{on|off}>
474 @cindex parport_write_on_exit
475 This will configure the parallel driver to write a known value to the parallel
476 interface on exiting OpenOCD
477 @end itemize
478
479 @section amt_jtagaccel options
480 @itemize @bullet
481 @item @b{parport_port} <@var{number}>
482 @cindex parport_port
483 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
484 @file{/dev/parport} device
485 @end itemize
486 @section ft2232 options
487
488 @itemize @bullet
489 @item @b{ft2232_device_desc} <@var{description}>
490 @cindex ft2232_device_desc
491 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
492 default value is used. This setting is only valid if compiled with FTD2XX support.
493 @item @b{ft2232_layout} <@var{name}>
494 @cindex ft2232_layout
495 The layout of the FT2232 GPIO signals used to control output-enables and reset
496 signals. Valid layouts are
497 @itemize @minus
498 @item @b{usbjtag}
499 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
500 @item @b{jtagkey}
501 Amontec JTAGkey and JTAGkey-tiny
502 @item @b{signalyzer}
503 Signalyzer
504 @item @b{olimex-jtag}
505 Olimex ARM-USB-OCD
506 @item @b{m5960}
507 American Microsystems M5960
508 @item @b{evb_lm3s811}
509 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
510 SRST signals on external connector
511 @item @b{comstick}
512 Hitex STR9 comstick
513 @item @b{stm32stick}
514 Hitex STM32 Performance Stick
515 @item @b{flyswatter}
516 Tin Can Tools Flyswatter
517 @item @b{turtelizer2}
518 egnite Software turtelizer2
519 @item @b{oocdlink}
520 OOCDLink
521 @end itemize
522
523 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
524 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
525 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
526 @smallexample
527 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
528 @end smallexample
529 @item @b{ft2232_latency} <@var{ms}>
530 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
531 ft2232_read() fails to return the expected number of bytes. This can be caused by
532 USB communication delays and has proved hard to reproduce and debug. Setting the
533 FT2232 latency timer to a larger value increases delays for short USB packages but it
534 also reduces the risk of timeouts before receiving the expected number of bytes.
535 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
536 @end itemize
537
538 @section ep93xx options
539 @cindex ep93xx options
540 Currently, there are no options available for the ep93xx interface.
541
542 @page
543 @section Target configuration
544
545 @itemize @bullet
546 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
547 <@var{variant}>
548 @cindex target
549 Defines a target that should be debugged. Currently supported types are:
550 @itemize @minus
551 @item @b{arm7tdmi}
552 @item @b{arm720t}
553 @item @b{arm9tdmi}
554 @item @b{arm920t}
555 @item @b{arm922t}
556 @item @b{arm926ejs}
557 @item @b{arm966e}
558 @item @b{cortex_m3}
559 @item @b{feroceon}
560 @item @b{xscale}
561 @end itemize
562
563 If you want to use a target board that is not on this list, see Adding a new
564 target board
565
566 Endianess may be @option{little} or @option{big}.
567
568 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
569 @cindex target_script
570 Event is one of the following:
571 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
572 @option{pre_resume} or @option{gdb_program_config}.
573 @option{post_reset} and @option{reset} will produce the same results.
574
575 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
576 <@var{backup}|@var{nobackup}>
577 @cindex working_area
578 Specifies a working area for the debugger to use. This may be used to speed-up
579 downloads to target memory and flash operations, or to perform otherwise unavailable
580 operations (some coprocessor operations on ARM7/9 systems, for example). The last
581 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
582 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
583 @end itemize
584
585 @subsection arm7tdmi options
586 @cindex arm7tdmi options
587 target arm7tdmi <@var{endianess}> <@var{jtag#}>
588 The arm7tdmi target definition requires at least one additional argument, specifying
589 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
590 The optional [@var{variant}] parameter has been removed in recent versions.
591 The correct feature set is determined at runtime.
592
593 @subsection arm720t options
594 @cindex arm720t options
595 ARM720t options are similar to ARM7TDMI options.
596
597 @subsection arm9tdmi options
598 @cindex arm9tdmi options
599 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
600 @option{arm920t}, @option{arm922t} and @option{arm940t}.
601 This enables the hardware single-stepping support found on these cores.
602
603 @subsection arm920t options
604 @cindex arm920t options
605 ARM920t options are similar to ARM9TDMI options.
606
607 @subsection arm966e options
608 @cindex arm966e options
609 ARM966e options are similar to ARM9TDMI options.
610
611 @subsection cortex_m3 options
612 @cindex cortex_m3 options
613 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
614 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
615 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
616 be detected and the normal reset behaviour used.
617
618 @subsection xscale options
619 @cindex xscale options
620 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
621 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
622
623 @section Flash configuration
624 @cindex Flash configuration
625
626 @itemize @bullet
627 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
628 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
629 @cindex flash bank
630 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
631 and <@var{bus_width}> bytes using the selected flash <driver>.
632 @end itemize
633
634 @subsection lpc2000 options
635 @cindex lpc2000 options
636
637 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
638 <@var{clock}> [@var{calc_checksum}]
639 LPC flashes don't require the chip and bus width to be specified. Additional
640 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
641 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
642 of the target this flash belongs to (first is 0), the frequency at which the core
643 is currently running (in kHz - must be an integral number), and the optional keyword
644 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
645 vector table.
646
647 @subsection cfi options
648 @cindex cfi options
649
650 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
651 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
652 CFI flashes require the number of the target they're connected to as an additional
653 argument. The CFI driver makes use of a working area (specified for the target)
654 to significantly speed up operation.
655
656 @var{chip_width} and @var{bus_width} are specified in bytes.
657
658 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
659
660 @var{x16_as_x8} ???
661
662 @subsection at91sam7 options
663 @cindex at91sam7 options
664
665 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
666 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
667 reading the chip-id and type.
668
669 @subsection str7 options
670 @cindex str7 options
671
672 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
673 variant can be either STR71x, STR73x or STR75x.
674
675 @subsection str9 options
676 @cindex str9 options
677
678 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
679 The str9 needs the flash controller to be configured prior to Flash programming, eg.
680 @smallexample
681 str9x flash_config 0 4 2 0 0x80000
682 @end smallexample
683 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
684
685 @subsection str9 options (str9xpec driver)
686
687 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
688 Before using the flash commands the turbo mode will need enabling using str9xpec
689 @option{enable_turbo} <@var{num>.}
690
691 Only use this driver for locking/unlocking the device or configuring the option bytes.
692 Use the standard str9 driver for programming.
693
694 @subsection stellaris (LM3Sxxx) options
695 @cindex stellaris (LM3Sxxx) options
696
697 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
698 stellaris flash plugin only require the @var{target#}.
699
700 @subsection stm32x options
701 @cindex stm32x options
702
703 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
704 stm32x flash plugin only require the @var{target#}.
705
706 @node Target library
707 @chapter Target library
708 @cindex Target library
709
710 OpenOCD comes with a target configuration script library. These scripts can be
711 used as-is or serve as a starting point.
712
713 The target library is published together with the openocd executable and
714 the path to the target library is in the OpenOCD script search path.
715 Similarly there are example scripts for configuring the JTAG interface.
716
717 The command line below uses the example parport configuration scripts
718 that ship with OpenOCD, then configures the str710.cfg target and
719 finally issues the init and reset command. The communication speed
720 is set to 10kHz for reset and 8MHz for post reset.
721
722
723 @smallexample
724 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
725 @end smallexample
726
727
728 To list the target scripts available:
729
730 @smallexample
731 $ ls /usr/local/lib/openocd/target
732
733 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
734 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
735 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
736 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
737 @end smallexample
738
739
740 @node Commands
741 @chapter Commands
742 @cindex commands
743
744 OpenOCD allows user interaction through a GDB server (default: port 3333),
745 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
746 is available from both the telnet interface and a GDB session. To issue commands to the
747 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
748 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
749 GDB session.
750
751 The TCL interface is used as a simplified RPC mechanism that feeds all the
752 input into the TCL interpreter and returns the output from the evaluation of
753 the commands.
754
755 @section Daemon
756
757 @itemize @bullet
758 @item @b{sleep} <@var{msec}>
759 @cindex sleep
760 Wait for n milliseconds before resuming. Useful in connection with script files
761 (@var{script} command and @var{target_script} configuration).
762
763 @item @b{shutdown}
764 @cindex shutdown
765 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
766
767 @item @b{debug_level} [@var{n}]
768 @cindex debug_level
769 Display or adjust debug level to n<0-3>
770
771 @item @b{fast} [@var{enable/disable}]
772 @cindex fast
773 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
774 downloads and fast memory access will work if the JTAG interface isn't too fast and
775 the core doesn't run at a too low frequency. Note that this option only changes the default
776 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
777 individually.
778
779 The target specific "dangerous" optimisation tweaking options may come and go
780 as more robust and user friendly ways are found to ensure maximum throughput
781 and robustness with a minimum of configuration.
782
783 Typically the "fast enable" is specified first on the command line:
784
785 @smallexample
786 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
787 @end smallexample
788
789 @item @b{log_output} <@var{file}>
790 @cindex log_output
791 Redirect logging to <file> (default: stderr)
792
793 @item @b{script} <@var{file}>
794 @cindex script
795 Execute commands from <file>
796
797 @end itemize
798
799 @subsection Target state handling
800 @itemize @bullet
801 @item @b{poll} [@option{on}|@option{off}]
802 @cindex poll
803 Poll the target for its current state. If the target is in debug mode, architecture
804 specific information about the current state is printed. An optional parameter
805 allows continuous polling to be enabled and disabled.
806
807 @item @b{halt} [@option{ms}]
808 @cindex halt
809 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
810 Default [@option{ms}] is 5 seconds if no arg given.
811 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
812 will stop OpenOCD from waiting.
813
814 @item @b{wait_halt} [@option{ms}]
815 @cindex wait_halt
816 Wait for the target to enter debug mode. Optional [@option{ms}] is
817 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
818 arg given.
819
820 @item @b{resume} [@var{address}]
821 @cindex resume
822 Resume the target at its current code position, or at an optional address.
823 OpenOCD will wait 5 seconds for the target to resume.
824
825 @item @b{step} [@var{address}]
826 @cindex step
827 Single-step the target at its current code position, or at an optional address.
828
829 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
830 @cindex reset
831 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
832
833 With no arguments a "reset run" is executed
834 @itemize @minus
835 @item @b{run}
836 @cindex reset run
837 Let the target run.
838 @item @b{halt}
839 @cindex reset halt
840 Immediately halt the target (works only with certain configurations).
841 @item @b{init}
842 @cindex reset init
843 Immediately halt the target, and execute the reset script (works only with certain
844 configurations)
845 @end itemize
846 @end itemize
847
848 @subsection Memory access commands
849 These commands allow accesses of a specific size to the memory system:
850 @itemize @bullet
851 @item @b{mdw} <@var{addr}> [@var{count}]
852 @cindex mdw
853 display memory words
854 @item @b{mdh} <@var{addr}> [@var{count}]
855 @cindex mdh
856 display memory half-words
857 @item @b{mdb} <@var{addr}> [@var{count}]
858 @cindex mdb
859 display memory bytes
860 @item @b{mww} <@var{addr}> <@var{value}>
861 @cindex mww
862 write memory word
863 @item @b{mwh} <@var{addr}> <@var{value}>
864 @cindex mwh
865 write memory half-word
866 @item @b{mwb} <@var{addr}> <@var{value}>
867 @cindex mwb
868 write memory byte
869
870 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
871 @cindex load_image
872 Load image <@var{file}> to target memory at <@var{address}>
873 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
874 @cindex dump_image
875 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
876 (binary) <@var{file}>.
877 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
878 @cindex verify_image
879 Verify <@var{file}> against target memory starting at <@var{address}>.
880 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
881 @end itemize
882
883 @subsection Flash commands
884 @cindex Flash commands
885 @itemize @bullet
886 @item @b{flash banks}
887 @cindex flash banks
888 List configured flash banks
889 @item @b{flash info} <@var{num}>
890 @cindex flash info
891 Print info about flash bank <@option{num}>
892 @item @b{flash probe} <@var{num}>
893 @cindex flash probe
894 Identify the flash, or validate the parameters of the configured flash. Operation
895 depends on the flash type.
896 @item @b{flash erase_check} <@var{num}>
897 @cindex flash erase_check
898 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
899 updates the erase state information displayed by @option{flash info}. That means you have
900 to issue an @option{erase_check} command after erasing or programming the device to get
901 updated information.
902 @item @b{flash protect_check} <@var{num}>
903 @cindex flash protect_check
904 Check protection state of sectors in flash bank <num>.
905 @option{flash erase_sector} using the same syntax.
906 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
907 @cindex flash erase_sector
908 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
909 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
910 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
911 the CFI driver).
912 @item @b{flash erase_address} <@var{address}> <@var{length}>
913 @cindex flash erase_address
914 Erase sectors starting at <@var{address}> for <@var{length}> bytes
915 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
916 @cindex flash write_bank
917 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
918 <@option{offset}> bytes from the beginning of the bank.
919 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
920 @cindex flash write_image
921 Write the image <@var{file}> to the current target's flash bank(s). A relocation
922 [@var{offset}] can be specified and the file [@var{type}] can be specified
923 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
924 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
925 if the @option{erase} parameter is given.
926 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
927 @cindex flash protect
928 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
929 <@var{last}> of @option{flash bank} <@var{num}>.
930 @end itemize
931
932 @page
933 @section Target Specific Commands
934 @cindex Target Specific Commands
935
936 @subsection AT91SAM7 specific commands
937 @cindex AT91SAM7 specific commands
938 The flash configuration is deduced from the chip identification register. The flash
939 controller handles erases automatically on a page (128/265 byte) basis so erase is
940 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
941 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
942 that can be erased separatly. Only an EraseAll command is supported by the controller
943 for each flash plane and this is called with
944 @itemize @bullet
945 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
946 bulk erase flash planes first_plane to last_plane.
947 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
948 @cindex at91sam7 gpnvm
949 set or clear a gpnvm bit for the processor
950 @end itemize
951
952 @subsection STR9 specific commands
953 @cindex STR9 specific commands
954 These are flash specific commands when using the str9xpec driver.
955 @itemize @bullet
956 @item @b{str9xpec enable_turbo} <@var{num}>
957 @cindex str9xpec enable_turbo
958 enable turbo mode, simply this will remove the str9 from the chain and talk
959 directly to the embedded flash controller.
960 @item @b{str9xpec disable_turbo} <@var{num}>
961 @cindex str9xpec disable_turbo
962 restore the str9 into jtag chain.
963 @item @b{str9xpec lock} <@var{num}>
964 @cindex str9xpec lock
965 lock str9 device. The str9 will only respond to an unlock command that will
966 erase the device.
967 @item @b{str9xpec unlock} <@var{num}>
968 @cindex str9xpec unlock
969 unlock str9 device.
970 @item @b{str9xpec options_read} <@var{num}>
971 @cindex str9xpec options_read
972 read str9 option bytes.
973 @item @b{str9xpec options_write} <@var{num}>
974 @cindex str9xpec options_write
975 write str9 option bytes.
976 @end itemize
977
978 @subsection STR9 configuration
979 @cindex STR9 configuration
980 @itemize @bullet
981 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
982 <@var{BBADR}> <@var{NBBADR}>
983 @cindex str9x flash_config
984 Configure str9 flash controller.
985 @smallexample
986 eg. str9x flash_config 0 4 2 0 0x80000
987 This will setup
988 BBSR - Boot Bank Size register
989 NBBSR - Non Boot Bank Size register
990 BBADR - Boot Bank Start Address register
991 NBBADR - Boot Bank Start Address register
992 @end smallexample
993 @end itemize
994
995 @subsection STR9 option byte configuration
996 @cindex STR9 option byte configuration
997 @itemize @bullet
998 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
999 @cindex str9xpec options_cmap
1000 configure str9 boot bank.
1001 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1002 @cindex str9xpec options_lvdthd
1003 configure str9 lvd threshold.
1004 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1005 @cindex str9xpec options_lvdsel
1006 configure str9 lvd source.
1007 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1008 @cindex str9xpec options_lvdwarn
1009 configure str9 lvd reset warning source.
1010 @end itemize
1011
1012 @subsection STM32x specific commands
1013 @cindex STM32x specific commands
1014
1015 These are flash specific commands when using the stm32x driver.
1016 @itemize @bullet
1017 @item @b{stm32x lock} <@var{num}>
1018 @cindex stm32x lock
1019 lock stm32 device.
1020 @item @b{stm32x unlock} <@var{num}>
1021 @cindex stm32x unlock
1022 unlock stm32 device.
1023 @item @b{stm32x options_read} <@var{num}>
1024 @cindex stm32x options_read
1025 read stm32 option bytes.
1026 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1027 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1028 @cindex stm32x options_write
1029 write stm32 option bytes.
1030 @item @b{stm32x mass_erase} <@var{num}>
1031 @cindex stm32x mass_erase
1032 mass erase flash memory.
1033 @end itemize
1034
1035 @subsection Stellaris specific commands
1036 @cindex Stellaris specific commands
1037
1038 These are flash specific commands when using the Stellaris driver.
1039 @itemize @bullet
1040 @item @b{stellaris mass_erase} <@var{num}>
1041 @cindex stellaris mass_erase
1042 mass erase flash memory.
1043 @end itemize
1044
1045 @page
1046 @section Architecture Specific Commands
1047 @cindex Architecture Specific Commands
1048
1049 @subsection ARMV4/5 specific commands
1050 @cindex ARMV4/5 specific commands
1051
1052 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1053 or Intel XScale (XScale isn't supported yet).
1054 @itemize @bullet
1055 @item @b{armv4_5 reg}
1056 @cindex armv4_5 reg
1057 Display a list of all banked core registers, fetching the current value from every
1058 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1059 register value.
1060 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1061 @cindex armv4_5 core_mode
1062 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1063 The target is resumed in the currently set @option{core_mode}.
1064 @end itemize
1065
1066 @subsection ARM7/9 specific commands
1067 @cindex ARM7/9 specific commands
1068
1069 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1070 ARM920t or ARM926EJ-S.
1071 @itemize @bullet
1072 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1073 @cindex arm7_9 dbgrq
1074 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1075 safe for all but ARM7TDMI--S cores (like Philips LPC).
1076 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1077 @cindex arm7_9 fast_memory_access
1078 Allow OpenOCD to read and write memory without checking completion of
1079 the operation. This provides a huge speed increase, especially with USB JTAG
1080 cables (FT2232), but might be unsafe if used with targets running at a very low
1081 speed, like the 32kHz startup clock of an AT91RM9200.
1082 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1083 @cindex arm7_9 dcc_downloads
1084 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1085 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1086 unsafe, especially with targets running at a very low speed. This command was introduced
1087 with OpenOCD rev. 60.
1088 @end itemize
1089
1090 @subsection ARM720T specific commands
1091 @cindex ARM720T specific commands
1092
1093 @itemize @bullet
1094 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1095 @cindex arm720t cp15
1096 display/modify cp15 register <@option{num}> [@option{value}].
1097 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1098 @cindex arm720t md<bhw>_phys
1099 Display memory at physical address addr.
1100 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1101 @cindex arm720t mw<bhw>_phys
1102 Write memory at physical address addr.
1103 @item @b{arm720t virt2phys} <@var{va}>
1104 @cindex arm720t virt2phys
1105 Translate a virtual address to a physical address.
1106 @end itemize
1107
1108 @subsection ARM9TDMI specific commands
1109 @cindex ARM9TDMI specific commands
1110
1111 @itemize @bullet
1112 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1113 @cindex arm9tdmi vector_catch
1114 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1115 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1116 @option{irq} @option{fiq}.
1117
1118 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1119 @end itemize
1120
1121 @subsection ARM966E specific commands
1122 @cindex ARM966E specific commands
1123
1124 @itemize @bullet
1125 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1126 @cindex arm966e cp15
1127 display/modify cp15 register <@option{num}> [@option{value}].
1128 @end itemize
1129
1130 @subsection ARM920T specific commands
1131 @cindex ARM920T specific commands
1132
1133 @itemize @bullet
1134 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1135 @cindex arm920t cp15
1136 display/modify cp15 register <@option{num}> [@option{value}].
1137 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1138 @cindex arm920t cp15i
1139 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1140 @item @b{arm920t cache_info}
1141 @cindex arm920t cache_info
1142 Print information about the caches found. This allows you to see if your target
1143 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1144 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1145 @cindex arm920t md<bhw>_phys
1146 Display memory at physical address addr.
1147 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1148 @cindex arm920t mw<bhw>_phys
1149 Write memory at physical address addr.
1150 @item @b{arm920t read_cache} <@var{filename}>
1151 @cindex arm920t read_cache
1152 Dump the content of ICache and DCache to a file.
1153 @item @b{arm920t read_mmu} <@var{filename}>
1154 @cindex arm920t read_mmu
1155 Dump the content of the ITLB and DTLB to a file.
1156 @item @b{arm920t virt2phys} <@var{va}>
1157 @cindex arm920t virt2phys
1158 Translate a virtual address to a physical address.
1159 @end itemize
1160
1161 @subsection ARM926EJS specific commands
1162 @cindex ARM926EJS specific commands
1163
1164 @itemize @bullet
1165 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1166 @cindex arm926ejs cp15
1167 display/modify cp15 register <@option{num}> [@option{value}].
1168 @item @b{arm926ejs cache_info}
1169 @cindex arm926ejs cache_info
1170 Print information about the caches found.
1171 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1172 @cindex arm926ejs md<bhw>_phys
1173 Display memory at physical address addr.
1174 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1175 @cindex arm926ejs mw<bhw>_phys
1176 Write memory at physical address addr.
1177 @item @b{arm926ejs virt2phys} <@var{va}>
1178 @cindex arm926ejs virt2phys
1179 Translate a virtual address to a physical address.
1180 @end itemize
1181
1182 @page
1183 @section Debug commands
1184 @cindex Debug commands
1185 The following commands give direct access to the core, and are most likely
1186 only useful while debugging OpenOCD.
1187 @itemize @bullet
1188 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1189 @cindex arm7_9 write_xpsr
1190 Immediately write either the current program status register (CPSR) or the saved
1191 program status register (SPSR), without changing the register cache (as displayed
1192 by the @option{reg} and @option{armv4_5 reg} commands).
1193 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1194 <@var{0=cpsr},@var{1=spsr}>
1195 @cindex arm7_9 write_xpsr_im8
1196 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1197 operation (similar to @option{write_xpsr}).
1198 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1199 @cindex arm7_9 write_core_reg
1200 Write a core register, without changing the register cache (as displayed by the
1201 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1202 encoding of the [M4:M0] bits of the PSR.
1203 @end itemize
1204
1205 @page
1206 @section JTAG commands
1207 @cindex JTAG commands
1208 @itemize @bullet
1209 @item @b{scan_chain}
1210 @cindex scan_chain
1211 Print current scan chain configuration.
1212 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1213 @cindex jtag_reset
1214 Toggle reset lines.
1215 @item @b{endstate} <@var{tap_state}>
1216 @cindex endstate
1217 Finish JTAG operations in <@var{tap_state}>.
1218 @item @b{runtest} <@var{num_cycles}>
1219 @cindex runtest
1220 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1221 @item @b{statemove} [@var{tap_state}]
1222 @cindex statemove
1223 Move to current endstate or [@var{tap_state}]
1224 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1225 @cindex irscan
1226 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1227 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1228 @cindex drscan
1229 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1230 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1231 @cindex verify_ircapture
1232 Verify value captured during Capture-IR. Default is enabled.
1233 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1234 @cindex var
1235 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1236 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1237 @cindex field
1238 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1239 @end itemize
1240
1241 @page
1242 @section Target Requests
1243 @cindex Target Requests
1244 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1245 See libdcc in the contrib dir for more details.
1246 @itemize @bullet
1247 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1248 @cindex target_request debugmsgs
1249 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1250 @end itemize
1251
1252 @node Sample Scripts
1253 @chapter Sample Scripts
1254 @cindex scripts
1255
1256 This page shows how to use the target library.
1257
1258 The configuration script can be divided in the following section:
1259 @itemize @bullet
1260 @item daemon configuration
1261 @item interface
1262 @item jtag scan chain
1263 @item target configuration
1264 @item flash configuration
1265 @end itemize
1266
1267 Detailed information about each section can be found at OpenOCD configuration.
1268
1269 @section AT91R40008 example
1270 @cindex AT91R40008 example
1271 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1272 the CPU upon startup of the OpenOCD daemon.
1273 @smallexample
1274 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1275 @end smallexample
1276
1277
1278 @node GDB and OpenOCD
1279 @chapter GDB and OpenOCD
1280 @cindex GDB and OpenOCD
1281 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1282 to debug remote targets.
1283
1284 @section Connecting to gdb
1285 @cindex Connecting to gdb
1286 A connection is typically started as follows:
1287 @smallexample
1288 target remote localhost:3333
1289 @end smallexample
1290 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1291
1292 To see a list of available OpenOCD commands type @option{monitor help} on the
1293 gdb commandline.
1294
1295 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1296 to be sent by the gdb server (openocd) to gdb. Typical information includes
1297 packet size and device memory map.
1298
1299 Previous versions of OpenOCD required the following gdb options to increase
1300 the packet size and speed up gdb communication.
1301 @smallexample
1302 set remote memory-write-packet-size 1024
1303 set remote memory-write-packet-size fixed
1304 set remote memory-read-packet-size 1024
1305 set remote memory-read-packet-size fixed
1306 @end smallexample
1307 This is now handled in the @option{qSupported} PacketSize.
1308
1309 @section Programming using gdb
1310 @cindex Programming using gdb
1311
1312 By default the target memory map is sent to gdb, this can be disabled by
1313 the following OpenOCD config option:
1314 @smallexample
1315 gdb_memory_map disable
1316 @end smallexample
1317 For this to function correctly a valid flash config must also be configured
1318 in OpenOCD. For faster performance you should also configure a valid
1319 working area.
1320
1321 Informing gdb of the memory map of the target will enable gdb to protect any
1322 flash area of the target and use hardware breakpoints by default. This means
1323 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1324 using a memory map.
1325
1326 To view the configured memory map in gdb, use the gdb command @option{info mem}
1327 All other unasigned addresses within gdb are treated as RAM.
1328
1329 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1330 this can be changed to the old behaviour by using the following gdb command.
1331 @smallexample
1332 set mem inaccessible-by-default off
1333 @end smallexample
1334
1335 If @option{gdb_flash_program enable} is also used, gdb will be able to
1336 program any flash memory using the vFlash interface.
1337
1338 gdb will look at the target memory map when a load command is given, if any
1339 areas to be programmed lie within the target flash area the vFlash packets
1340 will be used.
1341
1342 If the target needs configuring before gdb programming, a script can be executed.
1343 @smallexample
1344 target_script 0 gdb_program_config config.script
1345 @end smallexample
1346
1347 To verify any flash programming the gdb command @option{compare-sections}
1348 can be used.
1349
1350 @node TCL and OpenOCD
1351 @chapter TCL and OpenOCD
1352 @cindex TCL and OpenOCD
1353 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1354 support.
1355
1356 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1357
1358 The command and file interfaces are fairly straightforward, while the network
1359 port is geared toward intergration with external clients. A small example
1360 of an external TCL script that can connect to openocd is shown below.
1361
1362 @verbatim
1363 # Simple tcl client to connect to openocd
1364 puts "Use empty line to exit"
1365 set fo [socket 127.0.0.1 6666]
1366 puts -nonewline stdout "> "
1367 flush stdout
1368 while {[gets stdin line] >= 0} {
1369 if {$line eq {}} break
1370 puts $fo $line
1371 flush $fo
1372 gets $fo line
1373 puts $line
1374 puts -nonewline stdout "> "
1375 flush stdout
1376 }
1377 close $fo
1378 @end verbatim
1379
1380 This script can easily be modified to front various GUIs or be a sub
1381 component of a larger framework for control and interaction.
1382
1383
1384 @node TCL scripting API
1385 @chapter TCL scripting API
1386 @cindex TCL scripting API
1387 API rules
1388
1389 The commands are stateless. E.g. the telnet command line has a concept
1390 of currently active target, the Tcl API proc's take this sort of state
1391 information as an argument to each proc.
1392
1393 There are three main types of return values: single value, name value
1394 pair list and lists.
1395
1396 Name value pair. The proc 'foo' below returns a name/value pair
1397 list.
1398
1399 @verbatim
1400
1401 > set foo(me) Duane
1402 > set foo(you) Oyvind
1403 > set foo(mouse) Micky
1404 > set foo(duck) Donald
1405
1406 If one does this:
1407
1408 > set foo
1409
1410 The result is:
1411
1412 me Duane you Oyvind mouse Micky duck Donald
1413
1414 Thus, to get the names of the associative array is easy:
1415
1416 foreach { name value } [set foo] {
1417 puts "Name: $name, Value: $value"
1418 }
1419 @end verbatim
1420
1421 Lists returned must be relatively small. Otherwise a range
1422 should be passed in to the proc in question.
1423
1424 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1425 is the low level API upon which "flash banks" is implemented.
1426
1427 OpenOCD commands can consist of two words, e.g. "flash banks". The
1428 startup.tcl "unknown" proc will translate this into a tcl proc
1429 called "flash_banks".
1430
1431
1432 @node Upgrading
1433 @chapter Deprecated/Removed Commands
1434 @cindex Deprecated/Removed Commands
1435 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1436
1437 @itemize @bullet
1438 @item @b{load_binary}
1439 @cindex load_binary
1440 use @option{load_image} command with same args
1441 @item @b{dump_binary}
1442 @cindex dump_binary
1443 use @option{dump_image} command with same args
1444 @item @b{flash erase}
1445 @cindex flash erase
1446 use @option{flash erase_sector} command with same args
1447 @item @b{flash write}
1448 @cindex flash write
1449 use @option{flash write_bank} command with same args
1450 @item @b{flash write_binary}
1451 @cindex flash write_binary
1452 use @option{flash write_bank} command with same args
1453 @item @b{arm7_9 fast_writes}
1454 @cindex arm7_9 fast_writes
1455 use @option{arm7_9 fast_memory_access} command with same args
1456 @item @b{flash auto_erase}
1457 @cindex flash auto_erase
1458 use @option{flash write_image} command passing @option{erase} as the first parameter.
1459 @item @b{daemon_startup}
1460 @cindex daemon_startup
1461 this config option has been removed, simply adding @option{init} and @option{reset halt} to
1462 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1463 and @option{target cortex_m3 little reset_halt 0}.
1464 @item @b{arm7_9 sw_bkpts}
1465 @cindex arm7_9 sw_bkpts
1466 On by default. See also @option{gdb_breakpoint_override}.
1467 @item @b{arm7_9 force_hw_bkpts}
1468 @cindex arm7_9 force_hw_bkpts
1469 Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
1470 for flash if the gdb memory map has been set up(default when flash is declared in
1471 target configuration).
1472 @item @b{run_and_halt_time}
1473 @cindex run_and_halt_time
1474 This command has been removed for simpler reset behaviour, it can be simulated with the
1475 following commands:
1476 @smallexample
1477 reset run
1478 sleep 100
1479 halt
1480 @end smallexample
1481 @end itemize
1482
1483 @node FAQ
1484 @chapter FAQ
1485 @cindex faq
1486 @enumerate
1487 @item OpenOCD complains about a missing cygwin1.dll.
1488
1489 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1490 claims to come with all the necessary dlls. When using Cygwin, try launching
1491 OpenOCD from the Cygwin shell.
1492
1493 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1494 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1495 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1496
1497 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1498 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1499 software breakpoints consume one of the two available hardware breakpoints.
1500
1501 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1502 and works sometimes fine.
1503
1504 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1505 clock at the time you're programming the flash. If you've specified the crystal's
1506 frequency, make sure the PLL is disabled, if you've specified the full core speed
1507 (e.g. 60MHz), make sure the PLL is enabled.
1508
1509 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1510 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1511 out while waiting for end of scan, rtck was disabled".
1512
1513 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1514 settings in your PC BIOS (ECP, EPP, and different versions of those).
1515
1516 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1517 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1518 memory read caused data abort".
1519
1520 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1521 beyond the last valid frame. It might be possible to prevent this by setting up
1522 a proper "initial" stack frame, if you happen to know what exactly has to
1523 be done, feel free to add this here.
1524
1525 @item I get the following message in the OpenOCD console (or log file):
1526 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1527
1528 This warning doesn't indicate any serious problem, as long as you don't want to
1529 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1530 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1531 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1532 independently. With this setup, it's not possible to halt the core right out of
1533 reset, everything else should work fine.
1534
1535 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1536 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1537 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1538 quit with an error message. Is there a stability issue with OpenOCD?
1539
1540 No, this is not a stability issue concerning OpenOCD. Most users have solved
1541 this issue by simply using a self-powered USB hub, which they connect their
1542 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1543 supply stable enough for the Amontec JTAGkey to be operated.
1544
1545 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1546 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1547 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1548 What does that mean and what might be the reason for this?
1549
1550 First of all, the reason might be the USB power supply. Try using a self-powered
1551 hub instead of a direct connection to your computer. Secondly, the error code 4
1552 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1553 chip ran into some sort of error - this points us to a USB problem.
1554
1555 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1556 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1557 What does that mean and what might be the reason for this?
1558
1559 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1560 has closed the connection to OpenOCD. This might be a GDB issue.
1561
1562 @item In the configuration file in the section where flash device configurations
1563 are described, there is a parameter for specifying the clock frequency for
1564 LPC2000 internal flash devices (e.g.
1565 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1566 which must be specified in kilohertz. However, I do have a quartz crystal of a
1567 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1568 Is it possible to specify real numbers for the clock frequency?
1569
1570 No. The clock frequency specified here must be given as an integral number.
1571 However, this clock frequency is used by the In-Application-Programming (IAP)
1572 routines of the LPC2000 family only, which seems to be very tolerant concerning
1573 the given clock frequency, so a slight difference between the specified clock
1574 frequency and the actual clock frequency will not cause any trouble.
1575
1576 @item Do I have to keep a specific order for the commands in the configuration file?
1577
1578 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1579 listed for the JTAG scan chain must be given in the right order (jtag_device),
1580 with the device closest to the TDO-Pin being listed first. In general,
1581 whenever objects of the same type exist which require an index number, then
1582 these objects must be given in the right order (jtag_devices, targets and flash
1583 banks - a target references a jtag_device and a flash bank references a target).
1584
1585 @item Sometimes my debugging session terminates with an error. When I look into the
1586 log file, I can see these error messages: Error: arm7_9_common.c:561
1587 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1588
1589 TODO.
1590
1591 @end enumerate
1592
1593 @include fdl.texi
1594
1595 @node Index
1596 @unnumbered Index
1597
1598 @printindex cp
1599
1600 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)