Tim Hudson worked on English language.
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
15 @quotation
16 Permission is granted to copy, distribute and/or modify this document
17 under the terms of the GNU Free Documentation License, Version 1.2 or
18 any later version published by the Free Software Foundation; with no
19 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
20 Texts. A copy of the license is included in the section entitled ``GNU
21 Free Documentation License''.
22 @end quotation
23 @end copying
24
25 @titlepage
26 @title Open On-Chip Debugger (OpenOCD)
27 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
28 @subtitle @value{UPDATED}
29 @page
30 @vskip 0pt plus 1filll
31 @insertcopying
32 @end titlepage
33
34 @contents
35
36 @node Top, About, , (dir)
37 @top OpenOCD
38
39 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
40 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
41
42 @insertcopying
43
44 @menu
45 * About:: About OpenOCD.
46 * Developers:: OpenOCD developers
47 * Building:: Building OpenOCD
48 * Running:: Running OpenOCD
49 * Configuration:: OpenOCD Configuration.
50 * Target library:: Target library
51 * Commands:: OpenOCD Commands
52 * Sample Scripts:: Sample Target Scripts
53 * GDB and OpenOCD:: Using GDB and OpenOCD
54 * Upgrading:: Deprecated/Removed Commands
55 * FAQ:: Frequently Asked Questions
56 * License:: GNU Free Documentation License
57 * Index:: Main index.
58 @end menu
59
60 @node About
61 @unnumbered About
62 @cindex about
63
64 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
65 and boundary-scan testing for embedded target devices. The targets are interfaced
66 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
67 connection types in the future.
68
69 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
70 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
71 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
72 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
73
74 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
75 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
76 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
77
78 @node Developers
79 @chapter Developers
80 @cindex developers
81
82 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
83 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
84 Others interested in improving the state of free and open debug and testing technology
85 are welcome to participate.
86
87 Other developers have contributed support for additional targets and flashes as well
88 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
89
90 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
91
92 @node Building
93 @chapter Building
94 @cindex building OpenOCD
95
96 You can download the current SVN version with SVN client of your choice from the
97 following repositories:
98
99 (@uref{svn://svn.berlios.de/openocd/trunk})
100
101 or
102
103 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
104
105 Using the SVN command line client, you can use the following command to fetch the
106 latest version (make sure there is no (non-svn) directory called "openocd" in the
107 current directory):
108
109 @smallexample
110 svn checkout svn://svn.berlios.de/openocd/trunk openocd
111 @end smallexample
112
113 Building OpenOCD requires a recent version of the GNU autotools.
114 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
115 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
116 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
117 paths, resulting in obscure dependency errors (This is an observation I've gathered
118 from the logs of one user - correct me if I'm wrong).
119
120 You further need the appropriate driver files, if you want to build support for
121 a FTDI FT2232 based interface:
122 @itemize @bullet
123 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
124 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
125 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
126 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
127 @end itemize
128
129 Please note that the ftdi2232 variant (using libftdi) isn't supported under Cygwin.
130 You have to use the ftd2xx variant (using FTDI's D2XX) on Cygwin.
131
132 In general, the D2XX driver provides superior performance (several times as fast),
133 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
134 a kernel module, only a user space library.
135
136 To build OpenOCD (on both Linux and Cygwin), use the following commands:
137 @smallexample
138 ./bootstrap
139 @end smallexample
140 Bootstrap generates the configure script, and prepares building on your system.
141 @smallexample
142 ./configure
143 @end smallexample
144 Configure generates the Makefiles used to build OpenOCD.
145 @smallexample
146 make
147 @end smallexample
148 Make builds OpenOCD, and places the final executable in ./src/.
149
150 The configure script takes several options, specifying which JTAG interfaces
151 should be included:
152
153 @itemize @bullet
154 @item
155 @option{--enable-parport}
156 @item
157 @option{--enable-parport_ppdev}
158 @item
159 @option{--enable-parport_giveio}
160 @item
161 @option{--enable-amtjtagaccel}
162 @item
163 @option{--enable-ft2232_ftd2xx}
164 @footnote{Using the latest D2XX drivers from FTDI and following their installation
165 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
166 build properly.}
167 @item
168 @option{--enable-ft2232_libftdi}
169 @item
170 @option{--with-ftd2xx=/path/to/d2xx/}
171 @item
172 @option{--enable-gw16012}
173 @item
174 @option{--enable-usbprog}
175 @item
176 @option{--enable-presto_libftdi}
177 @item
178 @option{--enable-presto_ftd2xx}
179 @end itemize
180
181 If you want to access the parallel port using the PPDEV interface you have to specify
182 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
183 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
184 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
185
186 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
187 absolute path containing no spaces.
188
189 Linux users should copy the various parts of the D2XX package to the appropriate
190 locations, i.e. /usr/include, /usr/lib.
191
192 @node Running
193 @chapter Running
194 @cindex running OpenOCD
195 @cindex --configfile
196 @cindex --debug_level
197 @cindex --logfile
198 @cindex --search
199 OpenOCD runs as a daemon, waiting for connections from clients (Telnet or GDB).
200 Run with @option{--help} or @option{-h} to view the available command line switches.
201
202 It reads its configuration by default from the file openocd.cfg located in the current
203 working directory. This may be overwritten with the @option{-f <configfile>} command line
204 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
205 are executed in order.
206
207 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
208
209 To enable debug output (when reporting problems or working on OpenOCD itself), use
210 the @option{-d} command line switch. This sets the debug_level to "3", outputting
211 the most information, including debug messages. The default setting is "2", outputting
212 only informational messages, warnings and errors. You can also change this setting
213 from within a telnet or gdb session (@option{debug_level <n>}).
214
215 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
216
217 Search paths for config/script files can be added to OpenOCD by using
218 the @option{-s <search>} switch. The current directory and the OpenOCD target library
219 is in the search path by default.
220
221 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
222 with the target. In general, it is possible for the JTAG controller to be unresponsive until
223 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
224
225 @node Configuration
226 @chapter Configuration
227 @cindex configuration
228 OpenOCD runs as a daemon, and reads it current configuration
229 by default from the file openocd.cfg in the current directory. A different configuration
230 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
231
232 The configuration file is used to specify on which ports the daemon listens for new
233 connections, the JTAG interface used to connect to the target, the layout of the JTAG
234 chain, the targets that should be debugged, and connected flashes.
235
236 @section Daemon configuration
237
238 @itemize @bullet
239 @item @b{init} This command terminates the configuration stage and enters the normal
240 command mode. This can be useful to add commands to the startup scripts and commands
241 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
242 add "init" and "reset" at the end of the config script or at the end of the
243 OpenOCD command line using the @option{-c} command line switch.
244 @cindex init
245 @item @b{telnet_port} <@var{number}>
246 @cindex telnet_port
247 Port on which to listen for incoming telnet connections
248 @item @b{gdb_port} <@var{number}>
249 @cindex gdb_port
250 First port on which to listen for incoming GDB connections. The GDB port for the
251 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
252 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
253 @cindex gdb_detach
254 Configures what OpenOCD will do when gdb detaches from the daeman.
255 Default behaviour is <@var{resume}>
256 @item @b{gdb_memory_map} <@var{enable|disable}>
257 @cindex gdb_memory_map
258 Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
259 requested. gdb will then know when to set hardware breakpoints, and program flash
260 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
261 for flash programming to work.
262 Default behaviour is <@var{disable}>
263 @item @b{gdb_flash_program} <@var{enable|disable}>
264 @cindex gdb_flash_program
265 Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
266 vFlash packet is received.
267 Default behaviour is <@var{enable}>
268 @item @b{daemon_startup} <@var{mode}>
269 @cindex daemon_startup
270 @option{mode} can either @option{attach} or @option{reset}
271 This is equivalent to adding "init" and "reset" to the end of the config script.
272
273 It is available as a command mainly for backwards compatibility.
274 @end itemize
275
276 @section JTAG interface configuration
277
278 @itemize @bullet
279 @item @b{interface} <@var{name}>
280 @cindex interface
281 Use the interface driver <@var{name}> to connect to the target. Currently supported
282 interfaces are
283 @itemize @minus
284 @item @b{parport}
285 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
286 @end itemize
287 @itemize @minus
288 @item @b{amt_jtagaccel}
289 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
290 mode parallel port
291 @end itemize
292 @itemize @minus
293 @item @b{ft2232}
294 FTDI FT2232 based devices using either the open-source libftdi or the binary only
295 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
296 platform. The libftdi uses libusb, and should be portable to all systems that provide
297 libusb.
298 @end itemize
299 @itemize @minus
300 @item @b{ep93xx}
301 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
302 @end itemize
303 @itemize @minus
304 @item @b{presto}
305 ASIX PRESTO USB JTAG programmer.
306 @end itemize
307 @itemize @minus
308 @item @b{usbprog}
309 usbprog is a freely programmable USB adapter.
310 @end itemize
311 @itemize @minus
312 @item @b{gw16012}
313 Gateworks GW16012 JTAG programmer.
314 @end itemize
315 @end itemize
316
317 @itemize @bullet
318 @item @b{jtag_speed} <@var{reset speed}> <@var{post reset speed}>
319 @cindex jtag_speed
320 Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
321 speed. The actual effect of this option depends on the JTAG interface used. Reset
322 speed is used during reset and post reset speed after reset. post reset speed
323 is optional, in which case the reset speed is used.
324 @itemize @minus
325
326 @item wiggler: maximum speed / @var{number}
327 @item ft2232: 6MHz / (@var{number}+1)
328 @item amt jtagaccel: 8 / 2**@var{number}
329 @end itemize
330
331 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
332 especially true for synthesized cores (-S).
333
334 @item @b{jtag_khz} <@var{reset speed kHz}> <@var{post reset speed kHz}>
335 @cindex jtag_khz
336 Same as jtag_speed, except that the speed is specified in maximum kHz. If
337 the device can not support the rate asked for, or can not translate from
338 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
339 is not supported, then an error is reported.
340
341 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
342 @cindex reset_config
343 The configuration of the reset signals available on the JTAG interface AND the target.
344 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
345 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
346 @option{srst_only} or @option{trst_and_srst}.
347
348 [@var{combination}] is an optional value specifying broken reset signal implementations.
349 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
350 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
351 that the system is reset together with the test logic (only hypothetical, I haven't
352 seen hardware with such a bug, and can be worked around).
353 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
354 The default behaviour if no option given is @option{separate}.
355
356 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
357 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
358 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
359 (default) and @option{srst_push_pull} for the system reset. These values only affect
360 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
361
362 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
363 @cindex jtag_device
364 Describes the devices that form the JTAG daisy chain, with the first device being
365 the one closest to TDO. The parameters are the length of the instruction register
366 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
367 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
368 The IDCODE instruction will in future be used to query devices for their JTAG
369 identification code. This line is the same for all ARM7 and ARM9 devices.
370 Other devices, like CPLDs, require different parameters. An example configuration
371 line for a Xilinx XC9500 CPLD would look like this:
372 @smallexample
373 jtag_device 8 0x01 0x0e3 0xfe
374 @end smallexample
375 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
376 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
377 The IDCODE instruction is 0xfe.
378
379 @item @b{jtag_nsrst_delay} <@var{ms}>
380 @cindex jtag_nsrst_delay
381 How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
382 starting new JTAG operations.
383 @item @b{jtag_ntrst_delay} <@var{ms}>
384 @cindex jtag_ntrst_delay
385 How long (in milliseconds) OpenOCD should wait after deasserting nTRST before
386 starting new JTAG operations.
387
388 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
389 or on-chip features) keep a reset line asserted for some time after the external reset
390 got deasserted.
391 @end itemize
392
393 @section parport options
394
395 @itemize @bullet
396 @item @b{parport_port} <@var{number}>
397 @cindex parport_port
398 Either the address of the I/O port (default: 0x378 for LPT1) or the number of
399 the @file{/dev/parport} device
400
401 When using PPDEV to access the parallel port, use the number of the parallel port:
402 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
403 you may encounter a problem.
404 @item @b{parport_cable} <@var{name}>
405 @cindex parport_cable
406 The layout of the parallel port cable used to connect to the target.
407 Currently supported cables are
408 @itemize @minus
409 @item @b{wiggler}
410 @cindex wiggler
411 The original Wiggler layout, also supported by several clones, such
412 as the Olimex ARM-JTAG
413 @item @b{old_amt_wiggler}
414 @cindex old_amt_wiggler
415 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
416 version available from the website uses the original Wiggler layout ('@var{wiggler}')
417 @item @b{chameleon}
418 @cindex chameleon
419 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to program the Chameleon itself, not a connected target.
420 @item @b{dlc5}
421 @cindex dlc5
422 The Xilinx Parallel cable III.
423 @item @b{triton}
424 @cindex triton
425 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
426 This is also the layout used by the HollyGates design
427 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
428 @item @b{flashlink}
429 @cindex flashlink
430 The ST Parallel cable.
431 @end itemize
432 @item @b{parport_write_on_exit} <@var{on|off}>
433 @cindex parport_write_on_exit
434 This will configure the parallel driver to write a known value to the parallel
435 interface on exiting OpenOCD
436 @end itemize
437
438 @section amt_jtagaccel options
439 @itemize @bullet
440 @item @b{parport_port} <@var{number}>
441 @cindex parport_port
442 Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
443 @file{/dev/parport} device
444 @end itemize
445 @section ft2232 options
446
447 @itemize @bullet
448 @item @b{ft2232_device_desc} <@var{description}>
449 @cindex ft2232_device_desc
450 The USB device description of the FTDI FT2232 device. If not specified, the FTDI
451 default value is used. This setting is only valid if compiled with FTD2XX support.
452 @item @b{ft2232_layout} <@var{name}>
453 @cindex ft2232_layout
454 The layout of the FT2232 GPIO signals used to control output-enables and reset
455 signals. Valid layouts are
456 @itemize @minus
457 @item @b{usbjtag}
458 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
459 @item @b{jtagkey}
460 Amontec JTAGkey and JTAGkey-tiny
461 @item @b{signalyzer}
462 Signalyzer
463 @item @b{olimex-jtag}
464 Olimex ARM-USB-OCD
465 @item @b{m5960}
466 American Microsystems M5960
467 @item @b{evb_lm3s811}
468 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
469 SRST signals on external connector
470 @item @b{comstick}
471 Hitex STR9 comstick
472 @item @b{stm32stick}
473 Hitex STM32 Performance Stick
474 @item @b{flyswatter}
475 Tin Can Tools Flyswatter
476 @item @b{turtelizer2}
477 egnite Software turtelizer2
478 @item @b{oocdlink}
479 OOCDLink
480 @end itemize
481
482 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
483 The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
484 default values are used. This command is not available on Windows.
485 @item @b{ft2232_latency} <@var{ms}>
486 On some systems using ft2232 based JTAG interfaces the FT_Read function call in
487 ft2232_read() fails to return the expected number of bytes. This can be caused by
488 USB communication delays and has proved hard to reproduce and debug. Setting the
489 FT2232 latency timer to a larger value increases delays for short USB packages but it
490 also reduces the risk of timeouts before receiving the expected number of bytes.
491 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
492 @end itemize
493
494 @section ep93xx options
495 @cindex ep93xx options
496 Currently, there are no options available for the ep93xx interface.
497
498 @page
499 @section Target configuration
500
501 @itemize @bullet
502 @item @b{target} <@var{type}> <@var{endianess}> <@var{reset_mode}> <@var{JTAG pos}>
503 <@var{variant}>
504 @cindex target
505 Defines a target that should be debugged. Currently supported types are:
506 @itemize @minus
507 @item @b{arm7tdmi}
508 @item @b{arm720t}
509 @item @b{arm9tdmi}
510 @item @b{arm920t}
511 @item @b{arm922t}
512 @item @b{arm926ejs}
513 @item @b{arm966e}
514 @item @b{cortex_m3}
515 @item @b{feroceon}
516 @item @b{xscale}
517 @end itemize
518
519 If you want to use a target board that is not on this list, see Adding a new
520 target board
521
522 Endianess may be @option{little} or @option{big}.
523
524 The reset_mode specifies what should happen to the target when a reset occurs:
525 @itemize @minus
526 @item @b{reset_halt}
527 @cindex reset_halt
528 Immediately request a target halt after reset. This allows targets to be debugged
529 from the very first instruction. This is only possible with targets and JTAG
530 interfaces that correctly implement the reset signals.
531 @item @b{reset_init}
532 @cindex reset_init
533 Similar to @option{reset_halt}, but executes the script file defined to handle the
534 'reset' event for the target. Like @option{reset_halt} this only works with
535 correct reset implementations.
536 @item @b{reset_run}
537 @cindex reset_run
538 Simply let the target run after a reset.
539 @item @b{run_and_halt}
540 @cindex run_and_halt
541 Let the target run for some time (default: 1s), and then request halt.
542 @item @b{run_and_init}
543 @cindex run_and_init
544 A combination of @option{reset_init} and @option{run_and_halt}. The target is allowed
545 to run for some time, then halted, and the @option{reset} event script is executed.
546 @end itemize
547
548 On JTAG interfaces / targets where system reset and test-logic reset can't be driven
549 completely independent (like the LPC2000 series), or where the JTAG interface is
550 unavailable for some time during startup (like the STR7 series), you can't use
551 @option{reset_halt} or @option{reset_init}.
552
553 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
554 @cindex target_script
555 Event is either @option{reset}, @option{post_halt}, @option{pre_resume} or @option{gdb_program_config}
556
557 TODO: describe exact semantic of events
558 @item @b{run_and_halt_time} <@var{target#}> <@var{time_in_ms}>
559 @cindex run_and_halt_time
560 The amount of time the debugger should wait after releasing reset before it asserts
561 a debug request. This is used by the @option{run_and_halt} and @option{run_and_init}
562 reset modes.
563 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
564 <@var{backup}|@var{nobackup}>
565 @cindex working_area
566 Specifies a working area for the debugger to use. This may be used to speed-up
567 downloads to target memory and flash operations, or to perform otherwise unavailable
568 operations (some coprocessor operations on ARM7/9 systems, for example). The last
569 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
570 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
571 @end itemize
572
573 @subsection arm7tdmi options
574 @cindex arm7tdmi options
575 target arm7tdmi <@var{endianess}> <@var{reset_mode}> <@var{jtag#}>
576 The arm7tdmi target definition requires at least one additional argument, specifying
577 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
578 The optional [@var{variant}] parameter has been removed in recent versions.
579 The correct feature set is determined at runtime.
580
581 @subsection arm720t options
582 @cindex arm720t options
583 ARM720t options are similar to ARM7TDMI options.
584
585 @subsection arm9tdmi options
586 @cindex arm9tdmi options
587 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
588 @option{arm920t}, @option{arm922t} and @option{arm940t}.
589 This enables the hardware single-stepping support found on these cores.
590
591 @subsection arm920t options
592 @cindex arm920t options
593 ARM920t options are similar to ARM9TDMI options.
594
595 @subsection arm966e options
596 @cindex arm966e options
597 ARM966e options are similar to ARM9TDMI options.
598
599 @subsection cortex_m3 options
600 @cindex cortex_m3 options
601 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
602 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
603 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
604 be detected and the normal reset behaviour used.
605
606 @subsection xscale options
607 @cindex xscale options
608 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
609 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
610
611 @section Flash configuration
612 @cindex Flash configuration
613
614 @itemize @bullet
615 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
616 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
617 @cindex flash bank
618 Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
619 and <@var{bus_width}> bytes using the selected flash <driver>.
620 @end itemize
621
622 @subsection lpc2000 options
623 @cindex lpc2000 options
624
625 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
626 <@var{clock}> [@var{calc_checksum}]
627 LPC flashes don't require the chip and bus width to be specified. Additional
628 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
629 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
630 of the target this flash belongs to (first is 0), the frequency at which the core
631 is currently running (in kHz - must be an integral number), and the optional keyword
632 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
633 vector table.
634
635 @subsection cfi options
636 @cindex cfi options
637
638 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
639 <@var{target#}>
640 CFI flashes require the number of the target they're connected to as an additional
641 argument. The CFI driver makes use of a working area (specified for the target)
642 to significantly speed up operation.
643
644 @var{chip_width} and @var{bus_width} are specified in bytes.
645
646 @subsection at91sam7 options
647 @cindex at91sam7 options
648
649 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
650 AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
651 reading the chip-id and type.
652
653 @subsection str7 options
654 @cindex str7 options
655
656 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
657 variant can be either STR71x, STR73x or STR75x.
658
659 @subsection str9 options
660 @cindex str9 options
661
662 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
663 The str9 needs the flash controller to be configured prior to Flash programming, eg.
664 @smallexample
665 str9x flash_config 0 4 2 0 0x80000
666 @end smallexample
667 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
668
669 @subsection str9 options (str9xpec driver)
670
671 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
672 Before using the flash commands the turbo mode will need enabling using str9xpec
673 @option{enable_turbo} <@var{num>.}
674
675 Only use this driver for locking/unlocking the device or configuring the option bytes.
676 Use the standard str9 driver for programming.
677
678 @subsection stellaris (LM3Sxxx) options
679 @cindex stellaris (LM3Sxxx) options
680
681 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
682 stellaris flash plugin only require the @var{target#}.
683
684 @subsection stm32x options
685 @cindex stm32x options
686
687 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
688 stm32x flash plugin only require the @var{target#}.
689
690 @node Target library
691 @chapter Target library
692 @cindex Target library
693
694 OpenOCD comes with a target configuration script library. These scripts can be
695 used as-is or serve as a starting point.
696
697 The target library is published together with the openocd executable and
698 the path to the target library is in the OpenOCD script search path.
699 Similarly there are example scripts for configuring the JTAG interface.
700
701 The command line below uses the example parport configuration scripts
702 that ship with OpenOCD, then configures the str710.cfg target and
703 finally issues the init and reset command. The communication speed
704 is set to 10kHz for reset and 8MHz for post reset.
705
706
707 @smallexample
708 openocd -f interface/parport.cfg -c "jtag_khz 10 8000" -f target/str710.cfg -c "init" -c "reset"
709 @end smallexample
710
711
712 To list the target scripts available:
713
714 @smallexample
715 $ ls /usr/local/lib/openocd/target
716
717 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
718 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
719 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
720 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
721 @end smallexample
722
723
724 @node Commands
725 @chapter Commands
726 @cindex commands
727
728 OpenOCD allows user interaction through a telnet interface
729 (default: port 4444) and a GDB server (default: port 3333). The command line interpreter
730 is available from both the telnet interface and a GDB session. To issue commands to the
731 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
732 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
733 GDB session.
734
735 @section Daemon
736
737 @itemize @bullet
738 @item @b{sleep} <@var{msec}>
739 @cindex sleep
740 Wait for n milliseconds before resuming. Useful in connection with script files
741 (@var{script} command and @var{target_script} configuration).
742
743 @item @b{shutdown}
744 @cindex shutdown
745 Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet).
746
747 @item @b{debug_level} [@var{n}]
748 @cindex debug_level
749 Display or adjust debug level to n<0-3>
750
751 @item @b{fast} [@var{enable/disable}]
752 @cindex fast
753 Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
754 downloads and fast memory access will work if the JTAG interface isn't too fast and
755 the core doesn't run at a too low frequency. Note that this option only changes the default
756 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
757 individually.
758
759 The target specific "dangerous" optimisation tweaking options may come and go
760 as more robust and user friendly ways are found to ensure maximum throughput
761 and robustness with a minimum of configuration.
762
763 Typically the "fast enable" is specified first on the command line:
764
765 @smallexample
766 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
767 @end smallexample
768
769 @item @b{log_output} <@var{file}>
770 @cindex log_output
771 Redirect logging to <file> (default: stderr)
772
773 @item @b{script} <@var{file}>
774 @cindex script
775 Execute commands from <file>
776
777 @end itemize
778
779 @subsection Target state handling
780 @itemize @bullet
781 @item @b{poll} [@option{on}|@option{off}]
782 @cindex poll
783 Poll the target for its current state. If the target is in debug mode, architecture
784 specific information about the current state is printed. An optional parameter
785 allows continuous polling to be enabled and disabled.
786
787 @item @b{halt} [@option{ms}]
788 @cindex halt
789 Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
790 Default [@option{ms}] is 5 seconds if no arg given.
791 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
792 will stop OpenOCD from waiting.
793
794 @item @b{wait_halt} [@option{ms}]
795 @cindex wait_halt
796 Wait for the target to enter debug mode. Optional [@option{ms}] is
797 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
798 arg given.
799
800 @item @b{resume} [@var{address}]
801 @cindex resume
802 Resume the target at its current code position, or at an optional address.
803 OpenOCD will wait 5 seconds for the target to resume.
804
805 @item @b{step} [@var{address}]
806 @cindex step
807 Single-step the target at its current code position, or at an optional address.
808
809 @item @b{reset} [@option{run}|@option{halt}|@option{init}|@option{run_and_halt}
810 |@option{run_and_init}]
811 @cindex reset
812 Perform a hard-reset. The optional parameter specifies what should happen after the reset.
813 This optional parameter overrides the setting specified in the configuration file,
814 making the new behaviour the default for the @option{reset} command.
815 @itemize @minus
816 @item @b{run}
817 @cindex reset run
818 Let the target run.
819 @item @b{halt}
820 @cindex reset halt
821 Immediately halt the target (works only with certain configurations).
822 @item @b{init}
823 @cindex reset init
824 Immediately halt the target, and execute the reset script (works only with certain
825 configurations)
826 @item @b{run_and_halt}
827 @cindex reset run_and_halt
828 Let the target run for a certain amount of time, then request a halt.
829 @item @b{run_and_init}
830 @cindex reset run_and_init
831 Let the target run for a certain amount of time, then request a halt. Execute the
832 reset script once the target enters debug mode.
833 @end itemize
834 @end itemize
835
836 @subsection Memory access commands
837 These commands allow accesses of a specific size to the memory system:
838 @itemize @bullet
839 @item @b{mdw} <@var{addr}> [@var{count}]
840 @cindex mdw
841 display memory words
842 @item @b{mdh} <@var{addr}> [@var{count}]
843 @cindex mdh
844 display memory half-words
845 @item @b{mdb} <@var{addr}> [@var{count}]
846 @cindex mdb
847 display memory bytes
848 @item @b{mww} <@var{addr}> <@var{value}>
849 @cindex mww
850 write memory word
851 @item @b{mwh} <@var{addr}> <@var{value}>
852 @cindex mwh
853 write memory half-word
854 @item @b{mwb} <@var{addr}> <@var{value}>
855 @cindex mwb
856 write memory byte
857
858 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
859 @cindex load_image
860 Load image <@var{file}> to target memory at <@var{address}>
861 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
862 @cindex dump_image
863 Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
864 (binary) <@var{file}>.
865 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
866 @cindex verify_image
867 Verify <@var{file}> against target memory starting at <@var{address}>.
868 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
869 @end itemize
870
871 @subsection Flash commands
872 @cindex Flash commands
873 @itemize @bullet
874 @item @b{flash banks}
875 @cindex flash banks
876 List configured flash banks
877 @item @b{flash info} <@var{num}>
878 @cindex flash info
879 Print info about flash bank <@option{num}>
880 @item @b{flash probe} <@var{num}>
881 @cindex flash probe
882 Identify the flash, or validate the parameters of the configured flash. Operation
883 depends on the flash type.
884 @item @b{flash erase_check} <@var{num}>
885 @cindex flash erase_check
886 Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
887 updates the erase state information displayed by @option{flash info}. That means you have
888 to issue an @option{erase_check} command after erasing or programming the device to get
889 updated information.
890 @item @b{flash protect_check} <@var{num}>
891 @cindex flash protect_check
892 Check protection state of sectors in flash bank <num>.
893 @option{flash erase_sector} using the same syntax.
894 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
895 @cindex flash erase_sector
896 Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
897 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
898 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
899 the CFI driver).
900 @item @b{flash erase_address} <@var{address}> <@var{length}>
901 @cindex flash erase_address
902 Erase sectors starting at <@var{address}> for <@var{length}> bytes
903 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
904 @cindex flash write_bank
905 Write the binary <@var{file}> to flash bank <@var{num}>, starting at
906 <@option{offset}> bytes from the beginning of the bank.
907 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
908 @cindex flash write_image
909 Write the image <@var{file}> to the current target's flash bank(s). A relocation
910 [@var{offset}] can be specified and the file [@var{type}] can be specified
911 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
912 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
913 if the @option{erase} parameter is given.
914 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
915 @cindex flash protect
916 Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
917 <@var{last}> of @option{flash bank} <@var{num}>.
918 @end itemize
919
920 @page
921 @section Target Specific Commands
922 @cindex Target Specific Commands
923
924 @subsection AT91SAM7 specific commands
925 @cindex AT91SAM7 specific commands
926 The flash configuration is deduced from the chip identification register. The flash
927 controller handles erases automatically on a page (128/265 byte) basis so erase is
928 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
929 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
930 that can be erased separatly. Only an EraseAll command is supported by the controller
931 for each flash plane and this is called with
932 @itemize @bullet
933 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
934 bulk erase flash planes first_plane to last_plane.
935 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
936 @cindex at91sam7 gpnvm
937 set or clear a gpnvm bit for the processor
938 @end itemize
939
940 @subsection STR9 specific commands
941 @cindex STR9 specific commands
942 These are flash specific commands when using the str9xpec driver.
943 @itemize @bullet
944 @item @b{str9xpec enable_turbo} <@var{num}>
945 @cindex str9xpec enable_turbo
946 enable turbo mode, simply this will remove the str9 from the chain and talk
947 directly to the embedded flash controller.
948 @item @b{str9xpec disable_turbo} <@var{num}>
949 @cindex str9xpec disable_turbo
950 restore the str9 into jtag chain.
951 @item @b{str9xpec lock} <@var{num}>
952 @cindex str9xpec lock
953 lock str9 device. The str9 will only respond to an unlock command that will
954 erase the device.
955 @item @b{str9xpec unlock} <@var{num}>
956 @cindex str9xpec unlock
957 unlock str9 device.
958 @item @b{str9xpec options_read} <@var{num}>
959 @cindex str9xpec options_read
960 read str9 option bytes.
961 @item @b{str9xpec options_write} <@var{num}>
962 @cindex str9xpec options_write
963 write str9 option bytes.
964 @end itemize
965
966 @subsection STR9 configuration
967 @cindex STR9 configuration
968 @itemize @bullet
969 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
970 <@var{BBADR}> <@var{NBBADR}>
971 @cindex str9x flash_config
972 Configure str9 flash controller.
973 @smallexample
974 eg. str9x flash_config 0 4 2 0 0x80000
975 This will setup
976 BBSR - Boot Bank Size register
977 NBBSR - Non Boot Bank Size register
978 BBADR - Boot Bank Start Address register
979 NBBADR - Boot Bank Start Address register
980 @end smallexample
981 @end itemize
982
983 @subsection STR9 option byte configuration
984 @cindex STR9 option byte configuration
985 @itemize @bullet
986 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
987 @cindex str9xpec options_cmap
988 configure str9 boot bank.
989 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
990 @cindex str9xpec options_lvdthd
991 configure str9 lvd threshold.
992 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
993 @cindex str9xpec options_lvdsel
994 configure str9 lvd source.
995 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
996 @cindex str9xpec options_lvdwarn
997 configure str9 lvd reset warning source.
998 @end itemize
999
1000 @subsection STM32x specific commands
1001 @cindex STM32x specific commands
1002
1003 These are flash specific commands when using the stm32x driver.
1004 @itemize @bullet
1005 @item @b{stm32x lock} <@var{num}>
1006 @cindex stm32x lock
1007 lock stm32 device.
1008 @item @b{stm32x unlock} <@var{num}>
1009 @cindex stm32x unlock
1010 unlock stm32 device.
1011 @item @b{stm32x options_read} <@var{num}>
1012 @cindex stm32x options_read
1013 read stm32 option bytes.
1014 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1015 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1016 @cindex stm32x options_write
1017 write stm32 option bytes.
1018 @item @b{stm32x mass_erase} <@var{num}>
1019 @cindex stm32x mass_erase
1020 mass erase flash memory.
1021 @end itemize
1022
1023 @page
1024 @section Architecture Specific Commands
1025 @cindex Architecture Specific Commands
1026
1027 @subsection ARMV4/5 specific commands
1028 @cindex ARMV4/5 specific commands
1029
1030 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1031 or Intel XScale (XScale isn't supported yet).
1032 @itemize @bullet
1033 @item @b{armv4_5 reg}
1034 @cindex armv4_5 reg
1035 Display a list of all banked core registers, fetching the current value from every
1036 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1037 register value.
1038 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1039 @cindex armv4_5 core_mode
1040 Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1041 The target is resumed in the currently set @option{core_mode}.
1042 @end itemize
1043
1044 @subsection ARM7/9 specific commands
1045 @cindex ARM7/9 specific commands
1046
1047 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1048 ARM920t or ARM926EJ-S.
1049 @itemize @bullet
1050 @item @b{arm7_9 sw_bkpts} <@var{enable}|@var{disable}>
1051 @cindex arm7_9 sw_bkpts
1052 Enable/disable use of software breakpoints. On ARMv4 systems, this reserves
1053 one of the watchpoint registers to implement software breakpoints. Disabling
1054 SW Bkpts frees that register again.
1055 @item @b{arm7_9 force_hw_bkpts} <@var{enable}|@var{disable}>
1056 @cindex arm7_9 force_hw_bkpts
1057 When @option{force_hw_bkpts} is enabled, the @option{sw_bkpts} support is disabled, and all
1058 breakpoints are turned into hardware breakpoints.
1059 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1060 @cindex arm7_9 dbgrq
1061 Enable use of the DBGRQ bit to force entry into debug mode. This should be
1062 safe for all but ARM7TDMI--S cores (like Philips LPC).
1063 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1064 @cindex arm7_9 fast_memory_access
1065 Allow OpenOCD to read and write memory without checking completion of
1066 the operation. This provides a huge speed increase, especially with USB JTAG
1067 cables (FT2232), but might be unsafe if used with targets running at a very low
1068 speed, like the 32kHz startup clock of an AT91RM9200.
1069 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1070 @cindex arm7_9 dcc_downloads
1071 Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1072 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1073 unsafe, especially with targets running at a very low speed. This command was introduced
1074 with OpenOCD rev. 60.
1075 @end itemize
1076
1077 @subsection ARM720T specific commands
1078 @cindex ARM720T specific commands
1079
1080 @itemize @bullet
1081 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1082 @cindex arm720t cp15
1083 display/modify cp15 register <@option{num}> [@option{value}].
1084 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1085 @cindex arm720t md<bhw>_phys
1086 Display memory at physical address addr.
1087 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1088 @cindex arm720t mw<bhw>_phys
1089 Write memory at physical address addr.
1090 @item @b{arm720t virt2phys} <@var{va}>
1091 @cindex arm720t virt2phys
1092 Translate a virtual address to a physical address.
1093 @end itemize
1094
1095 @subsection ARM9TDMI specific commands
1096 @cindex ARM9TDMI specific commands
1097
1098 @itemize @bullet
1099 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1100 @cindex arm9tdmi vector_catch
1101 Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1102 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1103 @option{irq} @option{fiq}.
1104
1105 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1106 @end itemize
1107
1108 @subsection ARM966E specific commands
1109 @cindex ARM966E specific commands
1110
1111 @itemize @bullet
1112 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1113 @cindex arm966e cp15
1114 display/modify cp15 register <@option{num}> [@option{value}].
1115 @end itemize
1116
1117 @subsection ARM920T specific commands
1118 @cindex ARM920T specific commands
1119
1120 @itemize @bullet
1121 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1122 @cindex arm920t cp15
1123 display/modify cp15 register <@option{num}> [@option{value}].
1124 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1125 @cindex arm920t cp15i
1126 display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1127 @item @b{arm920t cache_info}
1128 @cindex arm920t cache_info
1129 Print information about the caches found. This allows you to see if your target
1130 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1131 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1132 @cindex arm920t md<bhw>_phys
1133 Display memory at physical address addr.
1134 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1135 @cindex arm920t mw<bhw>_phys
1136 Write memory at physical address addr.
1137 @item @b{arm920t read_cache} <@var{filename}>
1138 @cindex arm920t read_cache
1139 Dump the content of ICache and DCache to a file.
1140 @item @b{arm920t read_mmu} <@var{filename}>
1141 @cindex arm920t read_mmu
1142 Dump the content of the ITLB and DTLB to a file.
1143 @item @b{arm920t virt2phys} <@var{va}>
1144 @cindex arm920t virt2phys
1145 Translate a virtual address to a physical address.
1146 @end itemize
1147
1148 @subsection ARM926EJS specific commands
1149 @cindex ARM926EJS specific commands
1150
1151 @itemize @bullet
1152 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1153 @cindex arm926ejs cp15
1154 display/modify cp15 register <@option{num}> [@option{value}].
1155 @item @b{arm926ejs cache_info}
1156 @cindex arm926ejs cache_info
1157 Print information about the caches found.
1158 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1159 @cindex arm926ejs md<bhw>_phys
1160 Display memory at physical address addr.
1161 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1162 @cindex arm926ejs mw<bhw>_phys
1163 Write memory at physical address addr.
1164 @item @b{arm926ejs virt2phys} <@var{va}>
1165 @cindex arm926ejs virt2phys
1166 Translate a virtual address to a physical address.
1167 @end itemize
1168
1169 @page
1170 @section Debug commands
1171 @cindex Debug commands
1172 The following commands give direct access to the core, and are most likely
1173 only useful while debugging OpenOCD.
1174 @itemize @bullet
1175 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1176 @cindex arm7_9 write_xpsr
1177 Immediately write either the current program status register (CPSR) or the saved
1178 program status register (SPSR), without changing the register cache (as displayed
1179 by the @option{reg} and @option{armv4_5 reg} commands).
1180 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1181 <@var{0=cpsr},@var{1=spsr}>
1182 @cindex arm7_9 write_xpsr_im8
1183 Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1184 operation (similar to @option{write_xpsr}).
1185 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1186 @cindex arm7_9 write_core_reg
1187 Write a core register, without changing the register cache (as displayed by the
1188 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1189 encoding of the [M4:M0] bits of the PSR.
1190 @end itemize
1191
1192 @page
1193 @section JTAG commands
1194 @cindex JTAG commands
1195 @itemize @bullet
1196 @item @b{scan_chain}
1197 @cindex scan_chain
1198 Print current scan chain configuration.
1199 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1200 @cindex jtag_reset
1201 Toggle reset lines.
1202 @item @b{endstate} <@var{tap_state}>
1203 @cindex endstate
1204 Finish JTAG operations in <@var{tap_state}>.
1205 @item @b{runtest} <@var{num_cycles}>
1206 @cindex runtest
1207 Move to Run-Test/Idle, and execute <@var{num_cycles}>
1208 @item @b{statemove} [@var{tap_state}]
1209 @cindex statemove
1210 Move to current endstate or [@var{tap_state}]
1211 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1212 @cindex irscan
1213 Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1214 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1215 @cindex drscan
1216 Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1217 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1218 @cindex verify_ircapture
1219 Verify value captured during Capture-IR. Default is enabled.
1220 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1221 @cindex var
1222 Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1223 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1224 @cindex field
1225 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1226 @end itemize
1227
1228 @page
1229 @section Target Requests
1230 @cindex Target Requests
1231 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1232 See libdcc in the contrib dir for more details.
1233 @itemize @bullet
1234 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1235 @cindex target_request debugmsgs
1236 Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1237 @end itemize
1238
1239 @node Sample Scripts
1240 @chapter Sample Scripts
1241 @cindex scripts
1242
1243 This page shows how to use the target library.
1244
1245 The configuration script can be divided in the following section:
1246 @itemize @bullet
1247 @item daemon configuration
1248 @item interface
1249 @item jtag scan chain
1250 @item target configuration
1251 @item flash configuration
1252 @end itemize
1253
1254 Detailed information about each section can be found at OpenOCD configuration.
1255
1256 @section AT91R40008 example
1257 @cindex AT91R40008 example
1258 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1259 the CPU upon startup of the OpenOCD daemon.
1260 @smallexample
1261 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1262 @end smallexample
1263
1264
1265 @node GDB and OpenOCD
1266 @chapter GDB and OpenOCD
1267 @cindex GDB and OpenOCD
1268 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1269 to debug remote targets.
1270
1271 @section Connecting to gdb
1272 @cindex Connecting to gdb
1273 A connection is typically started as follows:
1274 @smallexample
1275 target remote localhost:3333
1276 @end smallexample
1277 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1278
1279 To see a list of available OpenOCD commands type @option{monitor help} on the
1280 gdb commandline.
1281
1282 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1283 to be sent by the gdb server (openocd) to gdb. Typical information includes
1284 packet size and device memory map.
1285
1286 Previous versions of OpenOCD required the following gdb options to increase
1287 the packet size and speed up gdb communication.
1288 @smallexample
1289 set remote memory-write-packet-size 1024
1290 set remote memory-write-packet-size fixed
1291 set remote memory-read-packet-size 1024
1292 set remote memory-read-packet-size fixed
1293 @end smallexample
1294 This is now handled in the @option{qSupported} PacketSize.
1295
1296 @section Programming using gdb
1297 @cindex Programming using gdb
1298
1299 By default the target memory map is sent to gdb, this can be disabled by
1300 the following OpenOCD config option:
1301 @smallexample
1302 gdb_memory_map disable
1303 @end smallexample
1304 For this to function correctly a valid flash config must also be configured
1305 in OpenOCD. For faster performance you should also configure a valid
1306 working area.
1307
1308 Informing gdb of the memory map of the target will enable gdb to protect any
1309 flash area of the target and use hardware breakpoints by default. This means
1310 that the OpenOCD option @option{arm7_9 force_hw_bkpts} is not required when
1311 using a memory map.
1312
1313 To view the configured memory map in gdb, use the gdb command @option{info mem}
1314 All other unasigned addresses within gdb are treated as RAM.
1315
1316 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1317 this can be changed to the old behaviour by using the following gdb command.
1318 @smallexample
1319 set mem inaccessible-by-default off
1320 @end smallexample
1321
1322 If @option{gdb_flash_program enable} is also used, gdb will be able to
1323 program any flash memory using the vFlash interface.
1324
1325 gdb will look at the target memory map when a load command is given, if any
1326 areas to be programmed lie within the target flash area the vFlash packets
1327 will be used.
1328
1329 If the target needs configuring before gdb programming, a script can be executed.
1330 @smallexample
1331 target_script 0 gdb_program_config config.script
1332 @end smallexample
1333
1334 To verify any flash programming the gdb command @option{compare-sections}
1335 can be used.
1336
1337 @node Upgrading
1338 @chapter Deprecated/Removed Commands
1339 @cindex Deprecated/Removed Commands
1340 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1341
1342 @itemize @bullet
1343 @item @b{load_binary}
1344 @cindex load_binary
1345 use @option{load_image} command with same args
1346 @item @b{dump_binary}
1347 @cindex dump_binary
1348 use @option{dump_image} command with same args
1349 @item @b{flash erase}
1350 @cindex flash erase
1351 use @option{flash erase_sector} command with same args
1352 @item @b{flash write}
1353 @cindex flash write
1354 use @option{flash write_bank} command with same args
1355 @item @b{flash write_binary}
1356 @cindex flash write_binary
1357 use @option{flash write_bank} command with same args
1358 @item @b{arm7_9 fast_writes}
1359 @cindex arm7_9 fast_writes
1360 use @option{arm7_9 fast_memory_access} command with same args
1361 @item @b{flash auto_erase}
1362 @cindex flash auto_erase
1363 use @option{flash write_image} command passing @option{erase} as the first parameter.
1364 @end itemize
1365
1366 @node FAQ
1367 @chapter FAQ
1368 @cindex faq
1369 @enumerate
1370 @item OpenOCD complains about a missing cygwin1.dll.
1371
1372 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1373 claims to come with all the necessary dlls. When using Cygwin, try launching
1374 OpenOCD from the Cygwin shell.
1375
1376 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1377 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1378 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1379
1380 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
1381 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
1382 software breakpoints consume one of the two available hardware breakpoints,
1383 and are therefore disabled by default. If your code is running from RAM, you
1384 can enable software breakpoints with the @option{arm7_9 sw_bkpts enable} command. If
1385 your code resides in Flash, you can't use software breakpoints, but you can force
1386 OpenOCD to use hardware breakpoints instead: @option{arm7_9 force_hw_bkpts enable}.
1387
1388 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
1389 and works sometimes fine.
1390
1391 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
1392 clock at the time you're programming the flash. If you've specified the crystal's
1393 frequency, make sure the PLL is disabled, if you've specified the full core speed
1394 (e.g. 60MHz), make sure the PLL is enabled.
1395
1396 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
1397 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
1398 out while waiting for end of scan, rtck was disabled".
1399
1400 Make sure your PC's parallel port operates in EPP mode. You might have to try several
1401 settings in your PC BIOS (ECP, EPP, and different versions of those).
1402
1403 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
1404 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
1405 memory read caused data abort".
1406
1407 The errors are non-fatal, and are the result of GDB trying to trace stack frames
1408 beyond the last valid frame. It might be possible to prevent this by setting up
1409 a proper "initial" stack frame, if you happen to know what exactly has to
1410 be done, feel free to add this here.
1411
1412 @item I get the following message in the OpenOCD console (or log file):
1413 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
1414
1415 This warning doesn't indicate any serious problem, as long as you don't want to
1416 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
1417 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
1418 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
1419 independently. With this setup, it's not possible to halt the core right out of
1420 reset, everything else should work fine.
1421
1422 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
1423 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
1424 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
1425 quit with an error message. Is there a stability issue with OpenOCD?
1426
1427 No, this is not a stability issue concerning OpenOCD. Most users have solved
1428 this issue by simply using a self-powered USB hub, which they connect their
1429 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
1430 supply stable enough for the Amontec JTAGkey to be operated.
1431
1432 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
1433 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
1434 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
1435 What does that mean and what might be the reason for this?
1436
1437 First of all, the reason might be the USB power supply. Try using a self-powered
1438 hub instead of a direct connection to your computer. Secondly, the error code 4
1439 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
1440 chip ran into some sort of error - this points us to a USB problem.
1441
1442 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
1443 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
1444 What does that mean and what might be the reason for this?
1445
1446 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
1447 has closed the connection to OpenOCD. This might be a GDB issue.
1448
1449 @item In the configuration file in the section where flash device configurations
1450 are described, there is a parameter for specifying the clock frequency for
1451 LPC2000 internal flash devices (e.g.
1452 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
1453 which must be specified in kilohertz. However, I do have a quartz crystal of a
1454 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
1455 Is it possible to specify real numbers for the clock frequency?
1456
1457 No. The clock frequency specified here must be given as an integral number.
1458 However, this clock frequency is used by the In-Application-Programming (IAP)
1459 routines of the LPC2000 family only, which seems to be very tolerant concerning
1460 the given clock frequency, so a slight difference between the specified clock
1461 frequency and the actual clock frequency will not cause any trouble.
1462
1463 @item Do I have to keep a specific order for the commands in the configuration file?
1464
1465 Well, yes and no. Commands can be given in arbitrary order, yet the devices
1466 listed for the JTAG scan chain must be given in the right order (jtag_device),
1467 with the device closest to the TDO-Pin being listed first. In general,
1468 whenever objects of the same type exist which require an index number, then
1469 these objects must be given in the right order (jtag_devices, targets and flash
1470 banks - a target references a jtag_device and a flash bank references a target).
1471
1472 @item Sometimes my debugging session terminates with an error. When I look into the
1473 log file, I can see these error messages: Error: arm7_9_common.c:561
1474 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
1475
1476 TODO.
1477
1478 @end enumerate
1479
1480 @include fdl.texi
1481
1482 @node Index
1483 @unnumbered Index
1484
1485 @printindex cp
1486
1487 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)