Add support for Atmel AT91SAMD21E16B (B variant) and a spelling mistake.
[openocd.git] / src / flash / nor / at91samd.c
1 /***************************************************************************
2 * Copyright (C) 2013 by Andrey Yurovsky *
3 * Andrey Yurovsky <yurovsky@gmail.com> *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include "helper/binarybuffer.h"
27
28 #include <target/cortex_m.h>
29
30 #define SAMD_NUM_SECTORS 16
31 #define SAMD_PAGE_SIZE_MAX 1024
32
33 #define SAMD_FLASH ((uint32_t)0x00000000) /* physical Flash memory */
34 #define SAMD_USER_ROW ((uint32_t)0x00804000) /* User Row of Flash */
35 #define SAMD_PAC1 0x41000000 /* Peripheral Access Control 1 */
36 #define SAMD_DSU 0x41002000 /* Device Service Unit */
37 #define SAMD_NVMCTRL 0x41004000 /* Non-volatile memory controller */
38
39 #define SAMD_DSU_STATUSA 1 /* DSU status register */
40 #define SAMD_DSU_DID 0x18 /* Device ID register */
41
42 #define SAMD_NVMCTRL_CTRLA 0x00 /* NVM control A register */
43 #define SAMD_NVMCTRL_CTRLB 0x04 /* NVM control B register */
44 #define SAMD_NVMCTRL_PARAM 0x08 /* NVM parameters register */
45 #define SAMD_NVMCTRL_INTFLAG 0x18 /* NVM Interupt Flag Status & Clear */
46 #define SAMD_NVMCTRL_STATUS 0x18 /* NVM status register */
47 #define SAMD_NVMCTRL_ADDR 0x1C /* NVM address register */
48 #define SAMD_NVMCTRL_LOCK 0x20 /* NVM Lock section register */
49
50 #define SAMD_CMDEX_KEY 0xA5UL
51 #define SAMD_NVM_CMD(n) ((SAMD_CMDEX_KEY << 8) | (n & 0x7F))
52
53 /* NVMCTRL commands. See Table 20-4 in 42129F–SAM–10/2013 */
54 #define SAMD_NVM_CMD_ER 0x02 /* Erase Row */
55 #define SAMD_NVM_CMD_WP 0x04 /* Write Page */
56 #define SAMD_NVM_CMD_EAR 0x05 /* Erase Auxilary Row */
57 #define SAMD_NVM_CMD_WAP 0x06 /* Write Auxilary Page */
58 #define SAMD_NVM_CMD_LR 0x40 /* Lock Region */
59 #define SAMD_NVM_CMD_UR 0x41 /* Unlock Region */
60 #define SAMD_NVM_CMD_SPRM 0x42 /* Set Power Reduction Mode */
61 #define SAMD_NVM_CMD_CPRM 0x43 /* Clear Power Reduction Mode */
62 #define SAMD_NVM_CMD_PBC 0x44 /* Page Buffer Clear */
63 #define SAMD_NVM_CMD_SSB 0x45 /* Set Security Bit */
64 #define SAMD_NVM_CMD_INVALL 0x46 /* Invalidate all caches */
65
66 /* NVMCTRL bits */
67 #define SAMD_NVM_CTRLB_MANW 0x80
68
69 /* Known identifiers */
70 #define SAMD_PROCESSOR_M0 0x01
71 #define SAMD_FAMILY_D 0x00
72 #define SAMD_FAMILY_L 0x01
73 #define SAMD_FAMILY_C 0x02
74 #define SAMD_SERIES_20 0x00
75 #define SAMD_SERIES_21 0x01
76 #define SAMD_SERIES_10 0x02
77 #define SAMD_SERIES_11 0x03
78
79 /* Device ID macros */
80 #define SAMD_GET_PROCESSOR(id) (id >> 28)
81 #define SAMD_GET_FAMILY(id) (((id >> 23) & 0x1F))
82 #define SAMD_GET_SERIES(id) (((id >> 16) & 0x3F))
83 #define SAMD_GET_DEVSEL(id) (id & 0xFF)
84
85 struct samd_part {
86 uint8_t id;
87 const char *name;
88 uint32_t flash_kb;
89 uint32_t ram_kb;
90 };
91
92 /* Known SAMD10 parts */
93 static const struct samd_part samd10_parts[] = {
94 { 0x0, "SAMD10D14AMU", 16, 4 },
95 { 0x1, "SAMD10D13AMU", 8, 4 },
96 { 0x2, "SAMD10D12AMU", 4, 4 },
97 { 0x3, "SAMD10D14ASU", 16, 4 },
98 { 0x4, "SAMD10D13ASU", 8, 4 },
99 { 0x5, "SAMD10D12ASU", 4, 4 },
100 { 0x6, "SAMD10C14A", 16, 4 },
101 { 0x7, "SAMD10C13A", 8, 4 },
102 { 0x8, "SAMD10C12A", 4, 4 },
103 };
104
105 /* Known SAMD11 parts */
106 static const struct samd_part samd11_parts[] = {
107 { 0x0, "SAMD11D14AMU", 16, 4 },
108 { 0x1, "SAMD11D13AMU", 8, 4 },
109 { 0x2, "SAMD11D12AMU", 4, 4 },
110 { 0x3, "SAMD11D14ASU", 16, 4 },
111 { 0x4, "SAMD11D13ASU", 8, 4 },
112 { 0x5, "SAMD11D12ASU", 4, 4 },
113 { 0x6, "SAMD11C14A", 16, 4 },
114 { 0x7, "SAMD11C13A", 8, 4 },
115 { 0x8, "SAMD11C12A", 4, 4 },
116 };
117
118 /* Known SAMD20 parts. See Table 12-8 in 42129F–SAM–10/2013 */
119 static const struct samd_part samd20_parts[] = {
120 { 0x0, "SAMD20J18A", 256, 32 },
121 { 0x1, "SAMD20J17A", 128, 16 },
122 { 0x2, "SAMD20J16A", 64, 8 },
123 { 0x3, "SAMD20J15A", 32, 4 },
124 { 0x4, "SAMD20J14A", 16, 2 },
125 { 0x5, "SAMD20G18A", 256, 32 },
126 { 0x6, "SAMD20G17A", 128, 16 },
127 { 0x7, "SAMD20G16A", 64, 8 },
128 { 0x8, "SAMD20G15A", 32, 4 },
129 { 0x9, "SAMD20G14A", 16, 2 },
130 { 0xA, "SAMD20E18A", 256, 32 },
131 { 0xB, "SAMD20E17A", 128, 16 },
132 { 0xC, "SAMD20E16A", 64, 8 },
133 { 0xD, "SAMD20E15A", 32, 4 },
134 { 0xE, "SAMD20E14A", 16, 2 },
135 };
136
137 /* Known SAMD21 parts. */
138 static const struct samd_part samd21_parts[] = {
139 { 0x0, "SAMD21J18A", 256, 32 },
140 { 0x1, "SAMD21J17A", 128, 16 },
141 { 0x2, "SAMD21J16A", 64, 8 },
142 { 0x3, "SAMD21J15A", 32, 4 },
143 { 0x4, "SAMD21J14A", 16, 2 },
144 { 0x5, "SAMD21G18A", 256, 32 },
145 { 0x6, "SAMD21G17A", 128, 16 },
146 { 0x7, "SAMD21G16A", 64, 8 },
147 { 0x8, "SAMD21G15A", 32, 4 },
148 { 0x9, "SAMD21G14A", 16, 2 },
149 { 0xA, "SAMD21E18A", 256, 32 },
150 { 0xB, "SAMD21E17A", 128, 16 },
151 { 0xC, "SAMD21E16A", 64, 8 },
152 { 0xD, "SAMD21E15A", 32, 4 },
153 { 0xE, "SAMD21E14A", 16, 2 },
154 { 0x26, "SAMD21E16B", 64, 8 },
155 };
156
157 /* Known SAMR21 parts. */
158 static const struct samd_part samr21_parts[] = {
159 { 0x19, "SAMR21G18A", 256, 32 },
160 { 0x1A, "SAMR21G17A", 128, 32 },
161 { 0x1B, "SAMR21G16A", 64, 32 },
162 { 0x1C, "SAMR21E18A", 256, 32 },
163 { 0x1D, "SAMR21E17A", 128, 32 },
164 { 0x1E, "SAMR21E16A", 64, 32 },
165 };
166
167 /* Known SAML21 parts. */
168 static const struct samd_part saml21_parts[] = {
169 { 0x00, "SAML21J18A", 256, 32 },
170 { 0x01, "SAML21J17A", 128, 16 },
171 { 0x02, "SAML21J16A", 64, 8 },
172 { 0x05, "SAML21G18A", 256, 32 },
173 { 0x06, "SAML21G17A", 128, 16 },
174 { 0x07, "SAML21G16A", 64, 8 },
175 { 0x0A, "SAML21E18A", 256, 32 },
176 { 0x0B, "SAML21E17A", 128, 16 },
177 { 0x0C, "SAML21E16A", 64, 8 },
178 { 0x0D, "SAML21E15A", 32, 4 },
179 { 0x0F, "SAML21J18B", 256, 32 },
180 { 0x10, "SAML21J17B", 128, 16 },
181 { 0x11, "SAML21J16B", 64, 8 },
182 { 0x14, "SAML21G18B", 256, 32 },
183 { 0x15, "SAML21G17B", 128, 16 },
184 { 0x16, "SAML21G16B", 64, 8 },
185 { 0x19, "SAML21E18B", 256, 32 },
186 { 0x1A, "SAML21E17B", 128, 16 },
187 { 0x1B, "SAML21E16B", 64, 8 },
188 { 0x1C, "SAML21E15B", 32, 4 },
189 };
190
191 /* Known SAMC20 parts. */
192 static const struct samd_part samc20_parts[] = {
193 { 0x00, "SAMC20J18A", 256, 32 },
194 { 0x01, "SAMC20J17A", 128, 16 },
195 { 0x02, "SAMC20J16A", 64, 8 },
196 { 0x03, "SAMC20J15A", 32, 4 },
197 { 0x05, "SAMC20G18A", 256, 32 },
198 { 0x06, "SAMC20G17A", 128, 16 },
199 { 0x07, "SAMC20G16A", 64, 8 },
200 { 0x08, "SAMC20G15A", 32, 4 },
201 { 0x0A, "SAMC20E18A", 256, 32 },
202 { 0x0B, "SAMC20E17A", 128, 16 },
203 { 0x0C, "SAMC20E16A", 64, 8 },
204 { 0x0D, "SAMC20E15A", 32, 4 },
205 };
206
207 /* Known SAMC21 parts. */
208 static const struct samd_part samc21_parts[] = {
209 { 0x00, "SAMC21J18A", 256, 32 },
210 { 0x01, "SAMC21J17A", 128, 16 },
211 { 0x02, "SAMC21J16A", 64, 8 },
212 { 0x03, "SAMC21J15A", 32, 4 },
213 { 0x05, "SAMC21G18A", 256, 32 },
214 { 0x06, "SAMC21G17A", 128, 16 },
215 { 0x07, "SAMC21G16A", 64, 8 },
216 { 0x08, "SAMC21G15A", 32, 4 },
217 { 0x0A, "SAMC21E18A", 256, 32 },
218 { 0x0B, "SAMC21E17A", 128, 16 },
219 { 0x0C, "SAMC21E16A", 64, 8 },
220 { 0x0D, "SAMC21E15A", 32, 4 },
221 };
222
223 /* Each family of parts contains a parts table in the DEVSEL field of DID. The
224 * processor ID, family ID, and series ID are used to determine which exact
225 * family this is and then we can use the corresponding table. */
226 struct samd_family {
227 uint8_t processor;
228 uint8_t family;
229 uint8_t series;
230 const struct samd_part *parts;
231 size_t num_parts;
232 };
233
234 /* Known SAMD families */
235 static const struct samd_family samd_families[] = {
236 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_20,
237 samd20_parts, ARRAY_SIZE(samd20_parts) },
238 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
239 samd21_parts, ARRAY_SIZE(samd21_parts) },
240 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_21,
241 samr21_parts, ARRAY_SIZE(samr21_parts) },
242 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_10,
243 samd10_parts, ARRAY_SIZE(samd10_parts) },
244 { SAMD_PROCESSOR_M0, SAMD_FAMILY_D, SAMD_SERIES_11,
245 samd11_parts, ARRAY_SIZE(samd11_parts) },
246 { SAMD_PROCESSOR_M0, SAMD_FAMILY_L, SAMD_SERIES_21,
247 saml21_parts, ARRAY_SIZE(saml21_parts) },
248 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_20,
249 samc20_parts, ARRAY_SIZE(samc20_parts) },
250 { SAMD_PROCESSOR_M0, SAMD_FAMILY_C, SAMD_SERIES_21,
251 samc21_parts, ARRAY_SIZE(samc21_parts) },
252 };
253
254 struct samd_info {
255 uint32_t page_size;
256 int num_pages;
257 int sector_size;
258
259 bool probed;
260 struct target *target;
261 struct samd_info *next;
262 };
263
264 static struct samd_info *samd_chips;
265
266
267
268 static const struct samd_part *samd_find_part(uint32_t id)
269 {
270 uint8_t processor = SAMD_GET_PROCESSOR(id);
271 uint8_t family = SAMD_GET_FAMILY(id);
272 uint8_t series = SAMD_GET_SERIES(id);
273 uint8_t devsel = SAMD_GET_DEVSEL(id);
274
275 for (unsigned i = 0; i < ARRAY_SIZE(samd_families); i++) {
276 if (samd_families[i].processor == processor &&
277 samd_families[i].series == series &&
278 samd_families[i].family == family) {
279 for (unsigned j = 0; j < samd_families[i].num_parts; j++) {
280 if (samd_families[i].parts[j].id == devsel)
281 return &samd_families[i].parts[j];
282 }
283 }
284 }
285
286 return NULL;
287 }
288
289 static int samd_protect_check(struct flash_bank *bank)
290 {
291 int res;
292 uint16_t lock;
293
294 res = target_read_u16(bank->target,
295 SAMD_NVMCTRL + SAMD_NVMCTRL_LOCK, &lock);
296 if (res != ERROR_OK)
297 return res;
298
299 /* Lock bits are active-low */
300 for (int i = 0; i < bank->num_sectors; i++)
301 bank->sectors[i].is_protected = !(lock & (1<<i));
302
303 return ERROR_OK;
304 }
305
306 static int samd_get_flash_page_info(struct target *target,
307 uint32_t *sizep, int *nump)
308 {
309 int res;
310 uint32_t param;
311
312 res = target_read_u32(target, SAMD_NVMCTRL + SAMD_NVMCTRL_PARAM, &param);
313 if (res == ERROR_OK) {
314 /* The PSZ field (bits 18:16) indicate the page size bytes as 2^(3+n)
315 * so 0 is 8KB and 7 is 1024KB. */
316 if (sizep)
317 *sizep = (8 << ((param >> 16) & 0x7));
318 /* The NVMP field (bits 15:0) indicates the total number of pages */
319 if (nump)
320 *nump = param & 0xFFFF;
321 } else {
322 LOG_ERROR("Couldn't read NVM Parameters register");
323 }
324
325 return res;
326 }
327
328 static int samd_probe(struct flash_bank *bank)
329 {
330 uint32_t id;
331 int res;
332 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
333 const struct samd_part *part;
334
335 if (chip->probed)
336 return ERROR_OK;
337
338 res = target_read_u32(bank->target, SAMD_DSU + SAMD_DSU_DID, &id);
339 if (res != ERROR_OK) {
340 LOG_ERROR("Couldn't read Device ID register");
341 return res;
342 }
343
344 part = samd_find_part(id);
345 if (part == NULL) {
346 LOG_ERROR("Couldn't find part corresponding to DID %08" PRIx32, id);
347 return ERROR_FAIL;
348 }
349
350 bank->size = part->flash_kb * 1024;
351
352 chip->sector_size = bank->size / SAMD_NUM_SECTORS;
353
354 res = samd_get_flash_page_info(bank->target, &chip->page_size,
355 &chip->num_pages);
356 if (res != ERROR_OK) {
357 LOG_ERROR("Couldn't determine Flash page size");
358 return res;
359 }
360
361 /* Sanity check: the total flash size in the DSU should match the page size
362 * multiplied by the number of pages. */
363 if (bank->size != chip->num_pages * chip->page_size) {
364 LOG_WARNING("SAMD: bank size doesn't match NVM parameters. "
365 "Identified %" PRIu32 "KB Flash but NVMCTRL reports %u %" PRIu32 "B pages",
366 part->flash_kb, chip->num_pages, chip->page_size);
367 }
368
369 /* Allocate the sector table */
370 bank->num_sectors = SAMD_NUM_SECTORS;
371 bank->sectors = calloc(bank->num_sectors, sizeof((bank->sectors)[0]));
372 if (!bank->sectors)
373 return ERROR_FAIL;
374
375 /* Fill out the sector information: all SAMD sectors are the same size and
376 * there is always a fixed number of them. */
377 for (int i = 0; i < bank->num_sectors; i++) {
378 bank->sectors[i].size = chip->sector_size;
379 bank->sectors[i].offset = i * chip->sector_size;
380 /* mark as unknown */
381 bank->sectors[i].is_erased = -1;
382 bank->sectors[i].is_protected = -1;
383 }
384
385 samd_protect_check(bank);
386
387 /* Done */
388 chip->probed = true;
389
390 LOG_INFO("SAMD MCU: %s (%" PRIu32 "KB Flash, %" PRIu32 "KB RAM)", part->name,
391 part->flash_kb, part->ram_kb);
392
393 return ERROR_OK;
394 }
395
396 static bool samd_check_error(struct target *target)
397 {
398 int ret;
399 bool error;
400 uint16_t status;
401
402 ret = target_read_u16(target,
403 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, &status);
404 if (ret != ERROR_OK) {
405 LOG_ERROR("Can't read NVM status");
406 return true;
407 }
408
409 if (status & 0x001C) {
410 if (status & (1 << 4)) /* NVME */
411 LOG_ERROR("SAMD: NVM Error");
412 if (status & (1 << 3)) /* LOCKE */
413 LOG_ERROR("SAMD: NVM lock error");
414 if (status & (1 << 2)) /* PROGE */
415 LOG_ERROR("SAMD: NVM programming error");
416
417 error = true;
418 } else {
419 error = false;
420 }
421
422 /* Clear the error conditions by writing a one to them */
423 ret = target_write_u16(target,
424 SAMD_NVMCTRL + SAMD_NVMCTRL_STATUS, status);
425 if (ret != ERROR_OK)
426 LOG_ERROR("Can't clear NVM error conditions");
427
428 return error;
429 }
430
431 static int samd_issue_nvmctrl_command(struct target *target, uint16_t cmd)
432 {
433 int res;
434
435 if (target->state != TARGET_HALTED) {
436 LOG_ERROR("Target not halted");
437 return ERROR_TARGET_NOT_HALTED;
438 }
439
440 /* Issue the NVM command */
441 res = target_write_u16(target,
442 SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLA, SAMD_NVM_CMD(cmd));
443 if (res != ERROR_OK)
444 return res;
445
446 /* Check to see if the NVM command resulted in an error condition. */
447 if (samd_check_error(target))
448 return ERROR_FAIL;
449
450 return ERROR_OK;
451 }
452
453 static int samd_erase_row(struct target *target, uint32_t address)
454 {
455 int res;
456
457 /* Set an address contained in the row to be erased */
458 res = target_write_u32(target,
459 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR, address >> 1);
460
461 /* Issue the Erase Row command to erase that row. */
462 if (res == ERROR_OK)
463 res = samd_issue_nvmctrl_command(target,
464 address == SAMD_USER_ROW ? SAMD_NVM_CMD_EAR : SAMD_NVM_CMD_ER);
465
466 if (res != ERROR_OK) {
467 LOG_ERROR("Failed to erase row containing %08" PRIx32, address);
468 return ERROR_FAIL;
469 }
470
471 return ERROR_OK;
472 }
473
474 static bool is_user_row_reserved_bit(uint8_t bit)
475 {
476 /* See Table 9-3 in the SAMD20 datasheet for more information. */
477 switch (bit) {
478 /* Reserved bits */
479 case 3:
480 case 7:
481 /* Voltage regulator internal configuration with default value of 0x70,
482 * may not be changed. */
483 case 17 ... 24:
484 /* 41 is voltage regulator internal configuration and must not be
485 * changed. 42 through 47 are reserved. */
486 case 41 ... 47:
487 return true;
488 default:
489 break;
490 }
491
492 return false;
493 }
494
495 /* Modify the contents of the User Row in Flash. These are described in Table
496 * 9-3 of the SAMD20 datasheet. The User Row itself has a size of one page
497 * and contains a combination of "fuses" and calibration data in bits 24:17.
498 * We therefore try not to erase the row's contents unless we absolutely have
499 * to and we don't permit modifying reserved bits. */
500 static int samd_modify_user_row(struct target *target, uint32_t value,
501 uint8_t startb, uint8_t endb)
502 {
503 int res;
504
505 if (is_user_row_reserved_bit(startb) || is_user_row_reserved_bit(endb)) {
506 LOG_ERROR("Can't modify bits in the requested range");
507 return ERROR_FAIL;
508 }
509
510 /* Retrieve the MCU's page size, in bytes. This is also the size of the
511 * entire User Row. */
512 uint32_t page_size;
513 res = samd_get_flash_page_info(target, &page_size, NULL);
514 if (res != ERROR_OK) {
515 LOG_ERROR("Couldn't determine Flash page size");
516 return res;
517 }
518
519 /* Make sure the size is sane before we allocate. */
520 assert(page_size > 0 && page_size <= SAMD_PAGE_SIZE_MAX);
521
522 /* Make sure we're within the single page that comprises the User Row. */
523 if (startb >= (page_size * 8) || endb >= (page_size * 8)) {
524 LOG_ERROR("Can't modify bits outside the User Row page range");
525 return ERROR_FAIL;
526 }
527
528 uint8_t *buf = malloc(page_size);
529 if (!buf)
530 return ERROR_FAIL;
531
532 /* Read the user row (comprising one page) by half-words. */
533 res = target_read_memory(target, SAMD_USER_ROW, 2, page_size / 2, buf);
534 if (res != ERROR_OK)
535 goto out_user_row;
536
537 /* We will need to erase before writing if the new value needs a '1' in any
538 * position for which the current value had a '0'. Otherwise we can avoid
539 * erasing. */
540 uint32_t cur = buf_get_u32(buf, startb, endb - startb + 1);
541 if ((~cur) & value) {
542 res = samd_erase_row(target, SAMD_USER_ROW);
543 if (res != ERROR_OK) {
544 LOG_ERROR("Couldn't erase user row");
545 goto out_user_row;
546 }
547 }
548
549 /* Modify */
550 buf_set_u32(buf, startb, endb - startb + 1, value);
551
552 /* Write the page buffer back out to the target. A Flash write will be
553 * triggered automatically. */
554 res = target_write_memory(target, SAMD_USER_ROW, 4, page_size / 4, buf);
555 if (res != ERROR_OK)
556 goto out_user_row;
557
558 if (samd_check_error(target)) {
559 res = ERROR_FAIL;
560 goto out_user_row;
561 }
562
563 /* Success */
564 res = ERROR_OK;
565
566 out_user_row:
567 free(buf);
568
569 return res;
570 }
571
572 static int samd_protect(struct flash_bank *bank, int set, int first, int last)
573 {
574 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
575
576 /* We can issue lock/unlock region commands with the target running but
577 * the settings won't persist unless we're able to modify the LOCK regions
578 * and that requires the target to be halted. */
579 if (bank->target->state != TARGET_HALTED) {
580 LOG_ERROR("Target not halted");
581 return ERROR_TARGET_NOT_HALTED;
582 }
583
584 int res = ERROR_OK;
585
586 for (int s = first; s <= last; s++) {
587 if (set != bank->sectors[s].is_protected) {
588 /* Load an address that is within this sector (we use offset 0) */
589 res = target_write_u32(bank->target,
590 SAMD_NVMCTRL + SAMD_NVMCTRL_ADDR,
591 ((s * chip->sector_size) >> 1));
592 if (res != ERROR_OK)
593 goto exit;
594
595 /* Tell the controller to lock that sector */
596 res = samd_issue_nvmctrl_command(bank->target,
597 set ? SAMD_NVM_CMD_LR : SAMD_NVM_CMD_UR);
598 if (res != ERROR_OK)
599 goto exit;
600 }
601 }
602
603 /* We've now applied our changes, however they will be undone by the next
604 * reset unless we also apply them to the LOCK bits in the User Page. The
605 * LOCK bits start at bit 48, corresponding to Sector 0 and end with bit 63,
606 * corresponding to Sector 15. A '1' means unlocked and a '0' means
607 * locked. See Table 9-3 in the SAMD20 datasheet for more details. */
608
609 res = samd_modify_user_row(bank->target, set ? 0x0000 : 0xFFFF,
610 48 + first, 48 + last);
611 if (res != ERROR_OK)
612 LOG_WARNING("SAMD: protect settings were not made persistent!");
613
614 res = ERROR_OK;
615
616 exit:
617 samd_protect_check(bank);
618
619 return res;
620 }
621
622 static int samd_erase(struct flash_bank *bank, int first, int last)
623 {
624 int res;
625 int rows_in_sector;
626 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
627
628 if (bank->target->state != TARGET_HALTED) {
629 LOG_ERROR("Target not halted");
630
631 return ERROR_TARGET_NOT_HALTED;
632 }
633
634 if (!chip->probed) {
635 if (samd_probe(bank) != ERROR_OK)
636 return ERROR_FLASH_BANK_NOT_PROBED;
637 }
638
639 /* The SAMD NVM has row erase granularity. There are four pages in a row
640 * and the number of rows in a sector depends on the sector size, which in
641 * turn depends on the Flash capacity as there is a fixed number of
642 * sectors. */
643 rows_in_sector = chip->sector_size / (chip->page_size * 4);
644
645 /* For each sector to be erased */
646 for (int s = first; s <= last; s++) {
647 if (bank->sectors[s].is_protected) {
648 LOG_ERROR("SAMD: failed to erase sector %d. That sector is write-protected", s);
649 return ERROR_FLASH_OPERATION_FAILED;
650 }
651
652 /* For each row in that sector */
653 for (int r = s * rows_in_sector; r < (s + 1) * rows_in_sector; r++) {
654 res = samd_erase_row(bank->target, r * chip->page_size * 4);
655 if (res != ERROR_OK) {
656 LOG_ERROR("SAMD: failed to erase sector %d", s);
657 return res;
658 }
659 }
660 }
661
662 return ERROR_OK;
663 }
664
665
666 static int samd_write(struct flash_bank *bank, const uint8_t *buffer,
667 uint32_t offset, uint32_t count)
668 {
669 int res;
670 uint32_t nvm_ctrlb;
671 uint32_t address;
672 uint32_t pg_offset;
673 uint32_t nb;
674 uint32_t nw;
675 struct samd_info *chip = (struct samd_info *)bank->driver_priv;
676 uint8_t *pb = NULL;
677 bool manual_wp;
678
679 if (bank->target->state != TARGET_HALTED) {
680 LOG_ERROR("Target not halted");
681 return ERROR_TARGET_NOT_HALTED;
682 }
683
684 if (!chip->probed) {
685 if (samd_probe(bank) != ERROR_OK)
686 return ERROR_FLASH_BANK_NOT_PROBED;
687 }
688
689 /* Check if we need to do manual page write commands */
690 res = target_read_u32(bank->target, SAMD_NVMCTRL + SAMD_NVMCTRL_CTRLB, &nvm_ctrlb);
691
692 if (res != ERROR_OK)
693 return res;
694
695 if (nvm_ctrlb & SAMD_NVM_CTRLB_MANW)
696 manual_wp = true;
697 else
698 manual_wp = false;
699
700 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_PBC);
701 if (res != ERROR_OK) {
702 LOG_ERROR("%s: %d", __func__, __LINE__);
703 return res;
704 }
705
706 while (count) {
707 nb = chip->page_size - offset % chip->page_size;
708 if (count < nb)
709 nb = count;
710
711 address = bank->base + offset;
712 pg_offset = offset % chip->page_size;
713
714 if (offset % 4 || (offset + nb) % 4) {
715 /* Either start or end of write is not word aligned */
716 if (!pb) {
717 pb = malloc(chip->page_size);
718 if (!pb)
719 return ERROR_FAIL;
720 }
721
722 /* Set temporary page buffer to 0xff and overwrite the relevant part */
723 memset(pb, 0xff, chip->page_size);
724 memcpy(pb + pg_offset, buffer, nb);
725
726 /* Align start address to a word boundary */
727 address -= offset % 4;
728 pg_offset -= offset % 4;
729 assert(pg_offset % 4 == 0);
730
731 /* Extend length to whole words */
732 nw = (nb + offset % 4 + 3) / 4;
733 assert(pg_offset + 4 * nw <= chip->page_size);
734
735 /* Now we have original data extended by 0xff bytes
736 * to the nearest word boundary on both start and end */
737 res = target_write_memory(bank->target, address, 4, nw, pb + pg_offset);
738 } else {
739 assert(nb % 4 == 0);
740 nw = nb / 4;
741 assert(pg_offset + 4 * nw <= chip->page_size);
742
743 /* Word aligned data, use direct write from buffer */
744 res = target_write_memory(bank->target, address, 4, nw, buffer);
745 }
746 if (res != ERROR_OK) {
747 LOG_ERROR("%s: %d", __func__, __LINE__);
748 goto free_pb;
749 }
750
751 /* Devices with errata 13134 have automatic page write enabled by default
752 * For other devices issue a write page CMD to the NVM
753 * If the page has not been written up to the last word
754 * then issue CMD_WP always */
755 if (manual_wp || pg_offset + 4 * nw < chip->page_size) {
756 res = samd_issue_nvmctrl_command(bank->target, SAMD_NVM_CMD_WP);
757 if (res != ERROR_OK) {
758 LOG_ERROR("%s: %d", __func__, __LINE__);
759 goto free_pb;
760 }
761 }
762
763 /* Access through AHB is stalled while flash is being programmed */
764 usleep(200);
765
766 if (samd_check_error(bank->target)) {
767 LOG_ERROR("%s: write failed at address 0x%08" PRIx32, __func__, address);
768 res = ERROR_FAIL;
769 goto free_pb;
770 }
771
772 /* We're done with the page contents */
773 count -= nb;
774 offset += nb;
775 buffer += nb;
776 }
777
778 free_pb:
779 if (pb)
780 free(pb);
781
782 return res;
783 }
784
785 FLASH_BANK_COMMAND_HANDLER(samd_flash_bank_command)
786 {
787 struct samd_info *chip = samd_chips;
788
789 while (chip) {
790 if (chip->target == bank->target)
791 break;
792 chip = chip->next;
793 }
794
795 if (!chip) {
796 /* Create a new chip */
797 chip = calloc(1, sizeof(*chip));
798 if (!chip)
799 return ERROR_FAIL;
800
801 chip->target = bank->target;
802 chip->probed = false;
803
804 bank->driver_priv = chip;
805
806 /* Insert it into the chips list (at head) */
807 chip->next = samd_chips;
808 samd_chips = chip;
809 }
810
811 if (bank->base != SAMD_FLASH) {
812 LOG_ERROR("Address 0x%08" PRIx32 " invalid bank address (try 0x%08" PRIx32
813 "[at91samd series] )",
814 bank->base, SAMD_FLASH);
815 return ERROR_FAIL;
816 }
817
818 return ERROR_OK;
819 }
820
821 COMMAND_HANDLER(samd_handle_info_command)
822 {
823 return ERROR_OK;
824 }
825
826 COMMAND_HANDLER(samd_handle_chip_erase_command)
827 {
828 struct target *target = get_current_target(CMD_CTX);
829
830 if (target) {
831 /* Enable access to the DSU by disabling the write protect bit */
832 target_write_u32(target, SAMD_PAC1, (1<<1));
833 /* Tell the DSU to perform a full chip erase. It takes about 240ms to
834 * perform the erase. */
835 target_write_u8(target, SAMD_DSU, (1<<4));
836
837 command_print(CMD_CTX, "chip erased");
838 }
839
840 return ERROR_OK;
841 }
842
843 COMMAND_HANDLER(samd_handle_set_security_command)
844 {
845 int res = ERROR_OK;
846 struct target *target = get_current_target(CMD_CTX);
847
848 if (CMD_ARGC < 1 || (CMD_ARGC >= 1 && (strcmp(CMD_ARGV[0], "enable")))) {
849 command_print(CMD_CTX, "supply the \"enable\" argument to proceed.");
850 return ERROR_COMMAND_SYNTAX_ERROR;
851 }
852
853 if (target) {
854 if (target->state != TARGET_HALTED) {
855 LOG_ERROR("Target not halted");
856 return ERROR_TARGET_NOT_HALTED;
857 }
858
859 res = samd_issue_nvmctrl_command(target, SAMD_NVM_CMD_SSB);
860
861 /* Check (and clear) error conditions */
862 if (res == ERROR_OK)
863 command_print(CMD_CTX, "chip secured on next power-cycle");
864 else
865 command_print(CMD_CTX, "failed to secure chip");
866 }
867
868 return res;
869 }
870
871 COMMAND_HANDLER(samd_handle_eeprom_command)
872 {
873 int res = ERROR_OK;
874 struct target *target = get_current_target(CMD_CTX);
875
876 if (target) {
877 if (target->state != TARGET_HALTED) {
878 LOG_ERROR("Target not halted");
879 return ERROR_TARGET_NOT_HALTED;
880 }
881
882 if (CMD_ARGC >= 1) {
883 int val = atoi(CMD_ARGV[0]);
884 uint32_t code;
885
886 if (val == 0)
887 code = 7;
888 else {
889 /* Try to match size in bytes with corresponding size code */
890 for (code = 0; code <= 6; code++) {
891 if (val == (2 << (13 - code)))
892 break;
893 }
894
895 if (code > 6) {
896 command_print(CMD_CTX, "Invalid EEPROM size. Please see "
897 "datasheet for a list valid sizes.");
898 return ERROR_COMMAND_SYNTAX_ERROR;
899 }
900 }
901
902 res = samd_modify_user_row(target, code, 4, 6);
903 } else {
904 uint16_t val;
905 res = target_read_u16(target, SAMD_USER_ROW, &val);
906 if (res == ERROR_OK) {
907 uint32_t size = ((val >> 4) & 0x7); /* grab size code */
908
909 if (size == 0x7)
910 command_print(CMD_CTX, "EEPROM is disabled");
911 else {
912 /* Otherwise, 6 is 256B, 0 is 16KB */
913 command_print(CMD_CTX, "EEPROM size is %u bytes",
914 (2 << (13 - size)));
915 }
916 }
917 }
918 }
919
920 return res;
921 }
922
923 COMMAND_HANDLER(samd_handle_bootloader_command)
924 {
925 int res = ERROR_OK;
926 struct target *target = get_current_target(CMD_CTX);
927
928 if (target) {
929 if (target->state != TARGET_HALTED) {
930 LOG_ERROR("Target not halted");
931 return ERROR_TARGET_NOT_HALTED;
932 }
933
934 /* Retrieve the MCU's page size, in bytes. */
935 uint32_t page_size;
936 res = samd_get_flash_page_info(target, &page_size, NULL);
937 if (res != ERROR_OK) {
938 LOG_ERROR("Couldn't determine Flash page size");
939 return res;
940 }
941
942 if (CMD_ARGC >= 1) {
943 int val = atoi(CMD_ARGV[0]);
944 uint32_t code;
945
946 if (val == 0)
947 code = 7;
948 else {
949 /* Try to match size in bytes with corresponding size code */
950 for (code = 0; code <= 6; code++) {
951 if ((unsigned int)val == (2UL << (8UL - code)) * page_size)
952 break;
953 }
954
955 if (code > 6) {
956 command_print(CMD_CTX, "Invalid bootloader size. Please "
957 "see datasheet for a list valid sizes.");
958 return ERROR_COMMAND_SYNTAX_ERROR;
959 }
960
961 }
962
963 res = samd_modify_user_row(target, code, 0, 2);
964 } else {
965 uint16_t val;
966 res = target_read_u16(target, SAMD_USER_ROW, &val);
967 if (res == ERROR_OK) {
968 uint32_t size = (val & 0x7); /* grab size code */
969 uint32_t nb;
970
971 if (size == 0x7)
972 nb = 0;
973 else
974 nb = (2 << (8 - size)) * page_size;
975
976 /* There are 4 pages per row */
977 command_print(CMD_CTX, "Bootloader size is %" PRIu32 " bytes (%" PRIu32 " rows)",
978 nb, (uint32_t)(nb / (page_size * 4)));
979 }
980 }
981 }
982
983 return res;
984 }
985
986
987
988 COMMAND_HANDLER(samd_handle_reset_deassert)
989 {
990 struct target *target = get_current_target(CMD_CTX);
991 struct armv7m_common *armv7m = target_to_armv7m(target);
992 int retval = ERROR_OK;
993 enum reset_types jtag_reset_config = jtag_get_reset_config();
994
995 /* In case of sysresetreq, debug retains state set in cortex_m_assert_reset()
996 * so we just release reset held by DSU
997 *
998 * n_RESET (srst) clears the DP, so reenable debug and set vector catch here
999 *
1000 * After vectreset DSU release is not needed however makes no harm
1001 */
1002 if (target->reset_halt && (jtag_reset_config & RESET_HAS_SRST)) {
1003 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DHCSR, DBGKEY | C_HALT | C_DEBUGEN);
1004 if (retval == ERROR_OK)
1005 retval = mem_ap_write_u32(armv7m->debug_ap, DCB_DEMCR,
1006 TRCENA | VC_HARDERR | VC_BUSERR | VC_CORERESET);
1007 /* do not return on error here, releasing DSU reset is more important */
1008 }
1009
1010 /* clear CPU Reset Phase Extension bit */
1011 int retval2 = target_write_u8(target, SAMD_DSU + SAMD_DSU_STATUSA, (1<<1));
1012 if (retval2 != ERROR_OK)
1013 return retval2;
1014
1015 return retval;
1016 }
1017
1018 static const struct command_registration at91samd_exec_command_handlers[] = {
1019 {
1020 .name = "dsu_reset_deassert",
1021 .handler = samd_handle_reset_deassert,
1022 .mode = COMMAND_EXEC,
1023 .help = "deasert internal reset held by DSU"
1024 },
1025 {
1026 .name = "info",
1027 .handler = samd_handle_info_command,
1028 .mode = COMMAND_EXEC,
1029 .help = "Print information about the current at91samd chip"
1030 "and its flash configuration.",
1031 },
1032 {
1033 .name = "chip-erase",
1034 .handler = samd_handle_chip_erase_command,
1035 .mode = COMMAND_EXEC,
1036 .help = "Erase the entire Flash by using the Chip"
1037 "Erase feature in the Device Service Unit (DSU).",
1038 },
1039 {
1040 .name = "set-security",
1041 .handler = samd_handle_set_security_command,
1042 .mode = COMMAND_EXEC,
1043 .help = "Secure the chip's Flash by setting the Security Bit."
1044 "This makes it impossible to read the Flash contents."
1045 "The only way to undo this is to issue the chip-erase"
1046 "command.",
1047 },
1048 {
1049 .name = "eeprom",
1050 .usage = "[size_in_bytes]",
1051 .handler = samd_handle_eeprom_command,
1052 .mode = COMMAND_EXEC,
1053 .help = "Show or set the EEPROM size setting, stored in the User Row."
1054 "Please see Table 20-3 of the SAMD20 datasheet for allowed values."
1055 "Changes are stored immediately but take affect after the MCU is"
1056 "reset.",
1057 },
1058 {
1059 .name = "bootloader",
1060 .usage = "[size_in_bytes]",
1061 .handler = samd_handle_bootloader_command,
1062 .mode = COMMAND_EXEC,
1063 .help = "Show or set the bootloader size, stored in the User Row."
1064 "Please see Table 20-2 of the SAMD20 datasheet for allowed values."
1065 "Changes are stored immediately but take affect after the MCU is"
1066 "reset.",
1067 },
1068 COMMAND_REGISTRATION_DONE
1069 };
1070
1071 static const struct command_registration at91samd_command_handlers[] = {
1072 {
1073 .name = "at91samd",
1074 .mode = COMMAND_ANY,
1075 .help = "at91samd flash command group",
1076 .usage = "",
1077 .chain = at91samd_exec_command_handlers,
1078 },
1079 COMMAND_REGISTRATION_DONE
1080 };
1081
1082 struct flash_driver at91samd_flash = {
1083 .name = "at91samd",
1084 .commands = at91samd_command_handlers,
1085 .flash_bank_command = samd_flash_bank_command,
1086 .erase = samd_erase,
1087 .protect = samd_protect,
1088 .write = samd_write,
1089 .read = default_flash_read,
1090 .probe = samd_probe,
1091 .auto_probe = samd_probe,
1092 .erase_check = default_flash_blank_check,
1093 .protect_check = samd_protect_check,
1094 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)