mips: add nor flash write from memory block
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com> *
8 * *
9 * This program is free software; you can redistribute it and/or modify *
10 * it under the terms of the GNU General Public License as published by *
11 * the Free Software Foundation; either version 2 of the License, or *
12 * (at your option) any later version. *
13 * *
14 * This program is distributed in the hope that it will be useful, *
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
17 * GNU General Public License for more details. *
18 * *
19 * You should have received a copy of the GNU General Public License *
20 * along with this program; if not, write to the *
21 * Free Software Foundation, Inc., *
22 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
23 ***************************************************************************/
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include "imp.h"
29 #include "cfi.h"
30 #include "non_cfi.h"
31 #include <target/arm.h>
32 #include <target/arm7_9_common.h>
33 #include <target/armv7m.h>
34 #include <target/mips32.h>
35 #include <helper/binarybuffer.h>
36 #include <target/algorithm.h>
37
38
39 #define CFI_MAX_BUS_WIDTH 4
40 #define CFI_MAX_CHIP_WIDTH 4
41
42 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
43 #define CFI_MAX_INTEL_CODESIZE 256
44
45 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
46 {
47 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
48 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
49 };
50
51 /* CFI fixups foward declarations */
52 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param);
53 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param);
54 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param);
55 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param);
56
57 /* fixup after reading cmdset 0002 primary query table */
58 static const struct cfi_fixup cfi_0002_fixups[] = {
59 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
60 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
61 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
63 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
64 {CFI_MFR_SST, 0x236d, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
65 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_reversed_erase_regions, NULL},
66 {CFI_MFR_ST, 0x22C4, cfi_fixup_reversed_erase_regions, NULL}, /* M29W160ET */
67 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
68 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
69 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
70 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
71 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
72 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
73 {CFI_MFR_ST, 0x227E, cfi_fixup_0002_write_buffer, NULL}, /* M29W128G */
74 {0, 0, NULL, NULL}
75 };
76
77 /* fixup after reading cmdset 0001 primary query table */
78 static const struct cfi_fixup cfi_0001_fixups[] = {
79 {0, 0, NULL, NULL}
80 };
81
82 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
83 {
84 struct cfi_flash_bank *cfi_info = bank->driver_priv;
85 const struct cfi_fixup *f;
86
87 for (f = fixups; f->fixup; f++)
88 {
89 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
90 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
91 {
92 f->fixup(bank, f->param);
93 }
94 }
95 }
96
97 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
98 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
99 {
100 struct cfi_flash_bank *cfi_info = bank->driver_priv;
101
102 if (cfi_info->x16_as_x8) offset *= 2;
103
104 /* while the sector list isn't built, only accesses to sector 0 work */
105 if (sector == 0)
106 return bank->base + offset * bank->bus_width;
107 else
108 {
109 if (!bank->sectors)
110 {
111 LOG_ERROR("BUG: sector list not yet built");
112 exit(-1);
113 }
114 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
115 }
116 }
117
118 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
119 {
120 int i;
121
122 /* clear whole buffer, to ensure bits that exceed the bus_width
123 * are set to zero
124 */
125 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
126 cmd_buf[i] = 0;
127
128 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
129 {
130 for (i = bank->bus_width; i > 0; i--)
131 {
132 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
133 }
134 }
135 else
136 {
137 for (i = 1; i <= bank->bus_width; i++)
138 {
139 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
140 }
141 }
142 }
143
144 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
145 {
146 uint8_t command[CFI_MAX_BUS_WIDTH];
147
148 cfi_command(bank, cmd, command);
149 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
150 }
151
152 /* read unsigned 8-bit value from the bank
153 * flash banks are expected to be made of similar chips
154 * the query result should be the same for all
155 */
156 static int cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
157 {
158 struct target *target = bank->target;
159 uint8_t data[CFI_MAX_BUS_WIDTH];
160
161 int retval;
162 retval = target_read_memory(target, flash_address(bank, sector, offset),
163 bank->bus_width, 1, data);
164 if (retval != ERROR_OK)
165 return retval;
166
167 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
168 *val = data[0];
169 else
170 *val = data[bank->bus_width - 1];
171
172 return ERROR_OK;
173 }
174
175 /* read unsigned 8-bit value from the bank
176 * in case of a bank made of multiple chips,
177 * the individual values are ORed
178 */
179 static int cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset, uint8_t *val)
180 {
181 struct target *target = bank->target;
182 uint8_t data[CFI_MAX_BUS_WIDTH];
183 int i;
184
185 int retval;
186 retval = target_read_memory(target, flash_address(bank, sector, offset),
187 bank->bus_width, 1, data);
188 if (retval != ERROR_OK)
189 return retval;
190
191 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
192 {
193 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
194 data[0] |= data[i];
195
196 *val = data[0];
197 }
198 else
199 {
200 uint8_t value = 0;
201 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
202 value |= data[bank->bus_width - 1 - i];
203
204 *val = value;
205 }
206 return ERROR_OK;
207 }
208
209 static int cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset, uint16_t *val)
210 {
211 struct target *target = bank->target;
212 struct cfi_flash_bank *cfi_info = bank->driver_priv;
213 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
214 int retval;
215
216 if (cfi_info->x16_as_x8)
217 {
218 uint8_t i;
219 for (i = 0;i < 2;i++)
220 {
221 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
222 bank->bus_width, 1, &data[i * bank->bus_width]);
223 if (retval != ERROR_OK)
224 return retval;
225 }
226 } else
227 {
228 retval = target_read_memory(target, flash_address(bank, sector, offset),
229 bank->bus_width, 2, data);
230 if (retval != ERROR_OK)
231 return retval;
232 }
233
234 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
235 *val = data[0] | data[bank->bus_width] << 8;
236 else
237 *val = data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
238
239 return ERROR_OK;
240 }
241
242 static int cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset, uint32_t *val)
243 {
244 struct target *target = bank->target;
245 struct cfi_flash_bank *cfi_info = bank->driver_priv;
246 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
247 int retval;
248
249 if (cfi_info->x16_as_x8)
250 {
251 uint8_t i;
252 for (i = 0;i < 4;i++)
253 {
254 retval = target_read_memory(target, flash_address(bank, sector, offset + i),
255 bank->bus_width, 1, &data[i * bank->bus_width]);
256 if (retval != ERROR_OK)
257 return retval;
258 }
259 }
260 else
261 {
262 retval = target_read_memory(target, flash_address(bank, sector, offset),
263 bank->bus_width, 4, data);
264 if (retval != ERROR_OK)
265 return retval;
266 }
267
268 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
269 *val = data[0] | data[bank->bus_width] << 8 |
270 data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
271 else
272 *val = data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
273 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
274
275 return ERROR_OK;
276 }
277
278 static int cfi_reset(struct flash_bank *bank)
279 {
280 struct cfi_flash_bank *cfi_info = bank->driver_priv;
281 int retval = ERROR_OK;
282
283 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
284 {
285 return retval;
286 }
287
288 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
289 {
290 return retval;
291 }
292
293 if (cfi_info->manufacturer == 0x20 &&
294 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
295 {
296 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
297 * so we send an extra 0xF0 reset to fix the bug */
298 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
299 {
300 return retval;
301 }
302 }
303
304 return retval;
305 }
306
307 static void cfi_intel_clear_status_register(struct flash_bank *bank)
308 {
309 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
310 }
311
312 static int cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout, uint8_t *val)
313 {
314 uint8_t status;
315
316 int retval = ERROR_OK;
317
318 for (;;)
319 {
320 if (timeout-- < 0)
321 {
322 LOG_ERROR("timeout while waiting for WSM to become ready");
323 return ERROR_FAIL;
324 }
325
326 retval = cfi_get_u8(bank, 0, 0x0, &status);
327 if (retval != ERROR_OK)
328 return retval;
329
330 if (status & 0x80)
331 break;
332
333 alive_sleep(1);
334 }
335
336 /* mask out bit 0 (reserved) */
337 status = status & 0xfe;
338
339 LOG_DEBUG("status: 0x%x", status);
340
341 if (status != 0x80)
342 {
343 LOG_ERROR("status register: 0x%x", status);
344 if (status & 0x2)
345 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
346 if (status & 0x4)
347 LOG_ERROR("Program suspended");
348 if (status & 0x8)
349 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
350 if (status & 0x10)
351 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
352 if (status & 0x20)
353 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
354 if (status & 0x40)
355 LOG_ERROR("Block Erase Suspended");
356
357 cfi_intel_clear_status_register(bank);
358
359 retval = ERROR_FAIL;
360 }
361
362 *val = status;
363 return retval;
364 }
365
366 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
367 {
368 uint8_t status, oldstatus;
369 struct cfi_flash_bank *cfi_info = bank->driver_priv;
370 int retval;
371
372 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
373 if (retval != ERROR_OK)
374 return retval;
375
376 do {
377 retval = cfi_get_u8(bank, 0, 0x0, &status);
378
379 if (retval != ERROR_OK)
380 return retval;
381
382 if ((status ^ oldstatus) & 0x40) {
383 if (status & cfi_info->status_poll_mask & 0x20) {
384 retval = cfi_get_u8(bank, 0, 0x0, &oldstatus);
385 if (retval != ERROR_OK)
386 return retval;
387 retval = cfi_get_u8(bank, 0, 0x0, &status);
388 if (retval != ERROR_OK)
389 return retval;
390 if ((status ^ oldstatus) & 0x40) {
391 LOG_ERROR("dq5 timeout, status: 0x%x", status);
392 return(ERROR_FLASH_OPERATION_FAILED);
393 } else {
394 LOG_DEBUG("status: 0x%x", status);
395 return(ERROR_OK);
396 }
397 }
398 } else { /* no toggle: finished, OK */
399 LOG_DEBUG("status: 0x%x", status);
400 return(ERROR_OK);
401 }
402
403 oldstatus = status;
404 alive_sleep(1);
405 } while (timeout-- > 0);
406
407 LOG_ERROR("timeout, status: 0x%x", status);
408
409 return(ERROR_FLASH_BUSY);
410 }
411
412 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
413 {
414 int retval;
415 struct cfi_flash_bank *cfi_info = bank->driver_priv;
416 struct cfi_intel_pri_ext *pri_ext;
417
418 if (cfi_info->pri_ext)
419 free(cfi_info->pri_ext);
420
421 pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
422 if (pri_ext == NULL)
423 {
424 LOG_ERROR("Out of memory");
425 return ERROR_FAIL;
426 }
427 cfi_info->pri_ext = pri_ext;
428
429 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
430 if (retval != ERROR_OK)
431 return retval;
432 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
433 if (retval != ERROR_OK)
434 return retval;
435 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
436 if (retval != ERROR_OK)
437 return retval;
438
439 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
440 {
441 if ((retval = cfi_reset(bank)) != ERROR_OK)
442 {
443 return retval;
444 }
445 LOG_ERROR("Could not read bank flash bank information");
446 return ERROR_FLASH_BANK_INVALID;
447 }
448
449 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
450 if (retval != ERROR_OK)
451 return retval;
452 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
453 if (retval != ERROR_OK)
454 return retval;
455
456 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
457 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
458
459 retval = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5, &pri_ext->feature_support);
460 if (retval != ERROR_OK)
461 return retval;
462 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->suspend_cmd_support);
463 if (retval != ERROR_OK)
464 return retval;
465 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa, &pri_ext->blk_status_reg_mask);
466 if (retval != ERROR_OK)
467 return retval;
468
469 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: "
470 "0x%x, blk_status_reg_mask: 0x%x",
471 pri_ext->feature_support,
472 pri_ext->suspend_cmd_support,
473 pri_ext->blk_status_reg_mask);
474
475 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc, &pri_ext->vcc_optimal);
476 if (retval != ERROR_OK)
477 return retval;
478 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd, &pri_ext->vpp_optimal);
479 if (retval != ERROR_OK)
480 return retval;
481
482 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
483 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
484 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
485
486 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe, &pri_ext->num_protection_fields);
487 if (retval != ERROR_OK)
488 return retval;
489 if (pri_ext->num_protection_fields != 1)
490 {
491 LOG_WARNING("expected one protection register field, but found %i",
492 pri_ext->num_protection_fields);
493 }
494
495 retval = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf, &pri_ext->prot_reg_addr);
496 if (retval != ERROR_OK)
497 return retval;
498 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11, &pri_ext->fact_prot_reg_size);
499 if (retval != ERROR_OK)
500 return retval;
501 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12, &pri_ext->user_prot_reg_size);
502 if (retval != ERROR_OK)
503 return retval;
504
505 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, "
506 "factory pre-programmed: %i, user programmable: %i",
507 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
508 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
509
510 return ERROR_OK;
511 }
512
513 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
514 {
515 int retval;
516 struct cfi_flash_bank *cfi_info = bank->driver_priv;
517 struct cfi_spansion_pri_ext *pri_ext;
518
519 if (cfi_info->pri_ext)
520 free(cfi_info->pri_ext);
521
522 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
523 if (pri_ext == NULL)
524 {
525 LOG_ERROR("Out of memory");
526 return ERROR_FAIL;
527 }
528 cfi_info->pri_ext = pri_ext;
529
530 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &pri_ext->pri[0]);
531 if (retval != ERROR_OK)
532 return retval;
533 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &pri_ext->pri[1]);
534 if (retval != ERROR_OK)
535 return retval;
536 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &pri_ext->pri[2]);
537 if (retval != ERROR_OK)
538 return retval;
539
540 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
541 {
542 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
543 {
544 return retval;
545 }
546 LOG_ERROR("Could not read spansion bank information");
547 return ERROR_FLASH_BANK_INVALID;
548 }
549
550 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &pri_ext->major_version);
551 if (retval != ERROR_OK)
552 return retval;
553 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &pri_ext->minor_version);
554 if (retval != ERROR_OK)
555 return retval;
556
557 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1],
558 pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
559
560 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &pri_ext->SiliconRevision);
561 if (retval != ERROR_OK)
562 return retval;
563 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &pri_ext->EraseSuspend);
564 if (retval != ERROR_OK)
565 return retval;
566 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &pri_ext->BlkProt);
567 if (retval != ERROR_OK)
568 return retval;
569 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &pri_ext->TmpBlkUnprotect);
570 if (retval != ERROR_OK)
571 return retval;
572 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9, &pri_ext->BlkProtUnprot);
573 if (retval != ERROR_OK)
574 return retval;
575 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10, &pri_ext->SimultaneousOps);
576 if (retval != ERROR_OK)
577 return retval;
578 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11, &pri_ext->BurstMode);
579 if (retval != ERROR_OK)
580 return retval;
581 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12, &pri_ext->PageMode);
582 if (retval != ERROR_OK)
583 return retval;
584 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13, &pri_ext->VppMin);
585 if (retval != ERROR_OK)
586 return retval;
587 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14, &pri_ext->VppMax);
588 if (retval != ERROR_OK)
589 return retval;
590 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15, &pri_ext->TopBottom);
591 if (retval != ERROR_OK)
592 return retval;
593
594 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x",
595 pri_ext->SiliconRevision, pri_ext->EraseSuspend, pri_ext->BlkProt);
596
597 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, "
598 "Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
599 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
600
601 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
602
603
604 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
605 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
606 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
607
608 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
609
610 /* default values for implementation specific workarounds */
611 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
612 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
613 pri_ext->_reversed_geometry = 0;
614
615 return ERROR_OK;
616 }
617
618 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
619 {
620 int retval;
621 struct cfi_atmel_pri_ext atmel_pri_ext;
622 struct cfi_flash_bank *cfi_info = bank->driver_priv;
623 struct cfi_spansion_pri_ext *pri_ext;
624
625 if (cfi_info->pri_ext)
626 free(cfi_info->pri_ext);
627
628 pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
629 if (pri_ext == NULL)
630 {
631 LOG_ERROR("Out of memory");
632 return ERROR_FAIL;
633 }
634
635 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
636 * but a different primary extended query table.
637 * We read the atmel table, and prepare a valid AMD/Spansion query table.
638 */
639
640 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
641
642 cfi_info->pri_ext = pri_ext;
643
644 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0, &atmel_pri_ext.pri[0]);
645 if (retval != ERROR_OK)
646 return retval;
647 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1, &atmel_pri_ext.pri[1]);
648 if (retval != ERROR_OK)
649 return retval;
650 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2, &atmel_pri_ext.pri[2]);
651 if (retval != ERROR_OK)
652 return retval;
653
654 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R')
655 || (atmel_pri_ext.pri[2] != 'I'))
656 {
657 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
658 {
659 return retval;
660 }
661 LOG_ERROR("Could not read atmel bank information");
662 return ERROR_FLASH_BANK_INVALID;
663 }
664
665 pri_ext->pri[0] = atmel_pri_ext.pri[0];
666 pri_ext->pri[1] = atmel_pri_ext.pri[1];
667 pri_ext->pri[2] = atmel_pri_ext.pri[2];
668
669 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3, &atmel_pri_ext.major_version);
670 if (retval != ERROR_OK)
671 return retval;
672 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4, &atmel_pri_ext.minor_version);
673 if (retval != ERROR_OK)
674 return retval;
675
676 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0],
677 atmel_pri_ext.pri[1], atmel_pri_ext.pri[2],
678 atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
679
680 pri_ext->major_version = atmel_pri_ext.major_version;
681 pri_ext->minor_version = atmel_pri_ext.minor_version;
682
683 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5, &atmel_pri_ext.features);
684 if (retval != ERROR_OK)
685 return retval;
686 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6, &atmel_pri_ext.bottom_boot);
687 if (retval != ERROR_OK)
688 return retval;
689 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7, &atmel_pri_ext.burst_mode);
690 if (retval != ERROR_OK)
691 return retval;
692 retval = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8, &atmel_pri_ext.page_mode);
693 if (retval != ERROR_OK)
694 return retval;
695
696 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
697 atmel_pri_ext.features, atmel_pri_ext.bottom_boot,
698 atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
699
700 if (atmel_pri_ext.features & 0x02)
701 pri_ext->EraseSuspend = 2;
702
703 if (atmel_pri_ext.bottom_boot)
704 pri_ext->TopBottom = 2;
705 else
706 pri_ext->TopBottom = 3;
707
708 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
709 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
710
711 return ERROR_OK;
712 }
713
714 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
715 {
716 struct cfi_flash_bank *cfi_info = bank->driver_priv;
717
718 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
719 {
720 return cfi_read_atmel_pri_ext(bank);
721 }
722 else
723 {
724 return cfi_read_spansion_pri_ext(bank);
725 }
726 }
727
728 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
729 {
730 int printed;
731 struct cfi_flash_bank *cfi_info = bank->driver_priv;
732 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
733
734 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
735 buf += printed;
736 buf_size -= printed;
737
738 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
739 pri_ext->pri[1], pri_ext->pri[2],
740 pri_ext->major_version, pri_ext->minor_version);
741 buf += printed;
742 buf_size -= printed;
743
744 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
745 (pri_ext->SiliconRevision) >> 2,
746 (pri_ext->SiliconRevision) & 0x03);
747 buf += printed;
748 buf_size -= printed;
749
750 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
751 pri_ext->EraseSuspend,
752 pri_ext->BlkProt);
753 buf += printed;
754 buf_size -= printed;
755
756 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
757 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
758 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
759
760 return ERROR_OK;
761 }
762
763 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
764 {
765 int printed;
766 struct cfi_flash_bank *cfi_info = bank->driver_priv;
767 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
768
769 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
770 buf += printed;
771 buf_size -= printed;
772
773 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
774 pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
775 buf += printed;
776 buf_size -= printed;
777
778 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", "
779 "suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n",
780 pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
781 buf += printed;
782 buf_size -= printed;
783
784 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
785 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
786 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
787 buf += printed;
788 buf_size -= printed;
789
790 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, "
791 "factory pre-programmed: %i, user programmable: %i\n",
792 pri_ext->num_protection_fields, pri_ext->prot_reg_addr,
793 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
794
795 return ERROR_OK;
796 }
797
798 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
799 */
800 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
801 {
802 struct cfi_flash_bank *cfi_info;
803
804 if (CMD_ARGC < 6)
805 {
806 LOG_WARNING("incomplete flash_bank cfi configuration");
807 return ERROR_FLASH_BANK_INVALID;
808 }
809
810 /* both widths must:
811 * - not exceed max value;
812 * - not be null;
813 * - be equal to a power of 2.
814 * bus must be wide enought to hold one chip */
815 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
816 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
817 || (bank->chip_width == 0)
818 || (bank->bus_width == 0)
819 || (bank->chip_width & (bank->chip_width - 1))
820 || (bank->bus_width & (bank->bus_width - 1))
821 || (bank->chip_width > bank->bus_width))
822 {
823 LOG_ERROR("chip and bus width have to specified in bytes");
824 return ERROR_FLASH_BANK_INVALID;
825 }
826
827 cfi_info = malloc(sizeof(struct cfi_flash_bank));
828 cfi_info->probed = 0;
829 cfi_info->erase_region_info = NULL;
830 cfi_info->pri_ext = NULL;
831 bank->driver_priv = cfi_info;
832
833 cfi_info->write_algorithm = NULL;
834
835 cfi_info->x16_as_x8 = 0;
836 cfi_info->jedec_probe = 0;
837 cfi_info->not_cfi = 0;
838
839 for (unsigned i = 6; i < CMD_ARGC; i++)
840 {
841 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
842 {
843 cfi_info->x16_as_x8 = 1;
844 }
845 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
846 {
847 cfi_info->jedec_probe = 1;
848 }
849 }
850
851 cfi_info->write_algorithm = NULL;
852
853 /* bank wasn't probed yet */
854 cfi_info->qry[0] = 0xff;
855
856 return ERROR_OK;
857 }
858
859 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
860 {
861 int retval;
862 struct cfi_flash_bank *cfi_info = bank->driver_priv;
863 int i;
864
865 cfi_intel_clear_status_register(bank);
866
867 for (i = first; i <= last; i++)
868 {
869 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
870 {
871 return retval;
872 }
873
874 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
875 {
876 return retval;
877 }
878
879 uint8_t status;
880 retval = cfi_intel_wait_status_busy(bank, cfi_info->block_erase_timeout, &status);
881 if (retval != ERROR_OK)
882 return retval;
883
884 if (status == 0x80)
885 bank->sectors[i].is_erased = 1;
886 else
887 {
888 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
889 {
890 return retval;
891 }
892
893 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
894 return ERROR_FLASH_OPERATION_FAILED;
895 }
896 }
897
898 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
899 }
900
901 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
902 {
903 int retval;
904 struct cfi_flash_bank *cfi_info = bank->driver_priv;
905 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
906 int i;
907
908 for (i = first; i <= last; i++)
909 {
910 if ((retval = cfi_send_command(bank, 0xaa,
911 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
912 {
913 return retval;
914 }
915
916 if ((retval = cfi_send_command(bank, 0x55,
917 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
918 {
919 return retval;
920 }
921
922 if ((retval = cfi_send_command(bank, 0x80,
923 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
924 {
925 return retval;
926 }
927
928 if ((retval = cfi_send_command(bank, 0xaa,
929 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
930 {
931 return retval;
932 }
933
934 if ((retval = cfi_send_command(bank, 0x55,
935 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
936 {
937 return retval;
938 }
939
940 if ((retval = cfi_send_command(bank, 0x30,
941 flash_address(bank, i, 0x0))) != ERROR_OK)
942 {
943 return retval;
944 }
945
946 if (cfi_spansion_wait_status_busy(bank, cfi_info->block_erase_timeout) == ERROR_OK)
947 {
948 bank->sectors[i].is_erased = 1;
949 }
950 else
951 {
952 if ((retval = cfi_send_command(bank, 0xf0,
953 flash_address(bank, 0, 0x0))) != ERROR_OK)
954 {
955 return retval;
956 }
957
958 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%"
959 PRIx32, i, bank->base);
960 return ERROR_FLASH_OPERATION_FAILED;
961 }
962 }
963
964 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
965 }
966
967 static int cfi_erase(struct flash_bank *bank, int first, int last)
968 {
969 struct cfi_flash_bank *cfi_info = bank->driver_priv;
970
971 if (bank->target->state != TARGET_HALTED)
972 {
973 LOG_ERROR("Target not halted");
974 return ERROR_TARGET_NOT_HALTED;
975 }
976
977 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
978 {
979 return ERROR_FLASH_SECTOR_INVALID;
980 }
981
982 if (cfi_info->qry[0] != 'Q')
983 return ERROR_FLASH_BANK_NOT_PROBED;
984
985 switch (cfi_info->pri_id)
986 {
987 case 1:
988 case 3:
989 return cfi_intel_erase(bank, first, last);
990 break;
991 case 2:
992 return cfi_spansion_erase(bank, first, last);
993 break;
994 default:
995 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
996 break;
997 }
998
999 return ERROR_OK;
1000 }
1001
1002 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
1003 {
1004 int retval;
1005 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1006 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
1007 int retry = 0;
1008 int i;
1009
1010 /* if the device supports neither legacy lock/unlock (bit 3) nor
1011 * instant individual block locking (bit 5).
1012 */
1013 if (!(pri_ext->feature_support & 0x28))
1014 {
1015 LOG_ERROR("lock/unlock not supported on flash");
1016 return ERROR_FLASH_OPERATION_FAILED;
1017 }
1018
1019 cfi_intel_clear_status_register(bank);
1020
1021 for (i = first; i <= last; i++)
1022 {
1023 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
1024 {
1025 return retval;
1026 }
1027 if (set)
1028 {
1029 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
1030 {
1031 return retval;
1032 }
1033 bank->sectors[i].is_protected = 1;
1034 }
1035 else
1036 {
1037 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
1038 {
1039 return retval;
1040 }
1041 bank->sectors[i].is_protected = 0;
1042 }
1043
1044 /* instant individual block locking doesn't require reading of the status register */
1045 if (!(pri_ext->feature_support & 0x20))
1046 {
1047 /* Clear lock bits operation may take up to 1.4s */
1048 uint8_t status;
1049 retval = cfi_intel_wait_status_busy(bank, 1400, &status);
1050 if (retval != ERROR_OK)
1051 return retval;
1052 }
1053 else
1054 {
1055 uint8_t block_status;
1056 /* read block lock bit, to verify status */
1057 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
1058 {
1059 return retval;
1060 }
1061 retval = cfi_get_u8(bank, i, 0x2, &block_status);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 if ((block_status & 0x1) != set)
1066 {
1067 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)",
1068 set, block_status);
1069 if ((retval = cfi_send_command(bank, 0x70,
1070 flash_address(bank, 0, 0x55))) != ERROR_OK)
1071 {
1072 return retval;
1073 }
1074 uint8_t status;
1075 retval = cfi_intel_wait_status_busy(bank, 10, &status);
1076 if (retval != ERROR_OK)
1077 return retval;
1078
1079 if (retry > 10)
1080 return ERROR_FLASH_OPERATION_FAILED;
1081 else
1082 {
1083 i--;
1084 retry++;
1085 }
1086 }
1087 }
1088 }
1089
1090 /* if the device doesn't support individual block lock bits set/clear,
1091 * all blocks have been unlocked in parallel, so we set those that should be protected
1092 */
1093 if ((!set) && (!(pri_ext->feature_support & 0x20)))
1094 {
1095 /* FIX!!! this code path is broken!!!
1096 *
1097 * The correct approach is:
1098 *
1099 * 1. read out current protection status
1100 *
1101 * 2. override read out protection status w/unprotected.
1102 *
1103 * 3. re-protect what should be protected.
1104 *
1105 */
1106 for (i = 0; i < bank->num_sectors; i++)
1107 {
1108 if (bank->sectors[i].is_protected == 1)
1109 {
1110 cfi_intel_clear_status_register(bank);
1111
1112 if ((retval = cfi_send_command(bank, 0x60,
1113 flash_address(bank, i, 0x0))) != ERROR_OK)
1114 {
1115 return retval;
1116 }
1117
1118 if ((retval = cfi_send_command(bank, 0x01,
1119 flash_address(bank, i, 0x0))) != ERROR_OK)
1120 {
1121 return retval;
1122 }
1123
1124 uint8_t status;
1125 retval = cfi_intel_wait_status_busy(bank, 100, &status);
1126 if (retval != ERROR_OK)
1127 return retval;
1128 }
1129 }
1130 }
1131
1132 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
1133 }
1134
1135 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
1136 {
1137 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1138
1139 if (bank->target->state != TARGET_HALTED)
1140 {
1141 LOG_ERROR("Target not halted");
1142 return ERROR_TARGET_NOT_HALTED;
1143 }
1144
1145 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
1146 {
1147 LOG_ERROR("Invalid sector range");
1148 return ERROR_FLASH_SECTOR_INVALID;
1149 }
1150
1151 if (cfi_info->qry[0] != 'Q')
1152 return ERROR_FLASH_BANK_NOT_PROBED;
1153
1154 switch (cfi_info->pri_id)
1155 {
1156 case 1:
1157 case 3:
1158 return cfi_intel_protect(bank, set, first, last);
1159 break;
1160 default:
1161 LOG_WARNING("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
1162 return ERROR_OK;
1163 }
1164 }
1165
1166 /* Convert code image to target endian */
1167 /* FIXME create general block conversion fcts in target.c?) */
1168 static void cfi_fix_code_endian(struct target *target, uint8_t *dest,
1169 const uint32_t *src, uint32_t count)
1170 {
1171 uint32_t i;
1172 for (i = 0; i< count; i++)
1173 {
1174 target_buffer_set_u32(target, dest, *src);
1175 dest += 4;
1176 src++;
1177 }
1178 }
1179
1180 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1181 {
1182 struct target *target = bank->target;
1183
1184 uint8_t buf[CFI_MAX_BUS_WIDTH];
1185 cfi_command(bank, cmd, buf);
1186 switch (bank->bus_width)
1187 {
1188 case 1 :
1189 return buf[0];
1190 break;
1191 case 2 :
1192 return target_buffer_get_u16(target, buf);
1193 break;
1194 case 4 :
1195 return target_buffer_get_u32(target, buf);
1196 break;
1197 default :
1198 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1199 return 0;
1200 }
1201 }
1202
1203 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer,
1204 uint32_t address, uint32_t count)
1205 {
1206 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1207 struct target *target = bank->target;
1208 struct reg_param reg_params[7];
1209 struct arm_algorithm armv4_5_info;
1210 struct working_area *source;
1211 uint32_t buffer_size = 32768;
1212 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1213
1214 /* algorithm register usage:
1215 * r0: source address (in RAM)
1216 * r1: target address (in Flash)
1217 * r2: count
1218 * r3: flash write command
1219 * r4: status byte (returned to host)
1220 * r5: busy test pattern
1221 * r6: error test pattern
1222 */
1223
1224 /* see contib/loaders/flash/armv4_5_cfi_intel_32.s for src */
1225 static const uint32_t word_32_code[] = {
1226 0xe4904004, /* loop: ldr r4, [r0], #4 */
1227 0xe5813000, /* str r3, [r1] */
1228 0xe5814000, /* str r4, [r1] */
1229 0xe5914000, /* busy: ldr r4, [r1] */
1230 0xe0047005, /* and r7, r4, r5 */
1231 0xe1570005, /* cmp r7, r5 */
1232 0x1afffffb, /* bne busy */
1233 0xe1140006, /* tst r4, r6 */
1234 0x1a000003, /* bne done */
1235 0xe2522001, /* subs r2, r2, #1 */
1236 0x0a000001, /* beq done */
1237 0xe2811004, /* add r1, r1 #4 */
1238 0xeafffff2, /* b loop */
1239 0xeafffffe /* done: b -2 */
1240 };
1241
1242 /* see contib/loaders/flash/armv4_5_cfi_intel_16.s for src */
1243 static const uint32_t word_16_code[] = {
1244 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1245 0xe1c130b0, /* strh r3, [r1] */
1246 0xe1c140b0, /* strh r4, [r1] */
1247 0xe1d140b0, /* busy ldrh r4, [r1] */
1248 0xe0047005, /* and r7, r4, r5 */
1249 0xe1570005, /* cmp r7, r5 */
1250 0x1afffffb, /* bne busy */
1251 0xe1140006, /* tst r4, r6 */
1252 0x1a000003, /* bne done */
1253 0xe2522001, /* subs r2, r2, #1 */
1254 0x0a000001, /* beq done */
1255 0xe2811002, /* add r1, r1 #2 */
1256 0xeafffff2, /* b loop */
1257 0xeafffffe /* done: b -2 */
1258 };
1259
1260 /* see contib/loaders/flash/armv4_5_cfi_intel_8.s for src */
1261 static const uint32_t word_8_code[] = {
1262 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1263 0xe5c13000, /* strb r3, [r1] */
1264 0xe5c14000, /* strb r4, [r1] */
1265 0xe5d14000, /* busy ldrb r4, [r1] */
1266 0xe0047005, /* and r7, r4, r5 */
1267 0xe1570005, /* cmp r7, r5 */
1268 0x1afffffb, /* bne busy */
1269 0xe1140006, /* tst r4, r6 */
1270 0x1a000003, /* bne done */
1271 0xe2522001, /* subs r2, r2, #1 */
1272 0x0a000001, /* beq done */
1273 0xe2811001, /* add r1, r1 #1 */
1274 0xeafffff2, /* b loop */
1275 0xeafffffe /* done: b -2 */
1276 };
1277 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1278 const uint32_t *target_code_src;
1279 uint32_t target_code_size;
1280 int retval = ERROR_OK;
1281
1282 /* todo: if ( (!is_armv7m(target_to_armv7m(target)) && (!is_arm(target_to_arm(target)) ) */
1283 if (strncmp(target_type_name(target),"mips_m4k",8) == 0)
1284 {
1285 LOG_ERROR("Your target has no flash block write support yet.");
1286 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1287 }
1288
1289 cfi_intel_clear_status_register(bank);
1290
1291 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1292 armv4_5_info.core_mode = ARM_MODE_SVC;
1293 armv4_5_info.core_state = ARM_STATE_ARM;
1294
1295 /* If we are setting up the write_algorith, we need target_code_src */
1296 /* if not we only need target_code_size. */
1297
1298 /* However, we don't want to create multiple code paths, so we */
1299 /* do the unecessary evaluation of target_code_src, which the */
1300 /* compiler will probably nicely optimize away if not needed */
1301
1302 /* prepare algorithm code for target endian */
1303 switch (bank->bus_width)
1304 {
1305 case 1 :
1306 target_code_src = word_8_code;
1307 target_code_size = sizeof(word_8_code);
1308 break;
1309 case 2 :
1310 target_code_src = word_16_code;
1311 target_code_size = sizeof(word_16_code);
1312 break;
1313 case 4 :
1314 target_code_src = word_32_code;
1315 target_code_size = sizeof(word_32_code);
1316 break;
1317 default:
1318 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1319 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1320 }
1321
1322 /* flash write code */
1323 if (!cfi_info->write_algorithm)
1324 {
1325 if (target_code_size > sizeof(target_code))
1326 {
1327 LOG_WARNING("Internal error - target code buffer to small. "
1328 "Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1329 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1330 }
1331 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1332
1333 /* Get memory for block write handler */
1334 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1335 if (retval != ERROR_OK)
1336 {
1337 LOG_WARNING("No working area available, can't do block memory writes");
1338 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1339 };
1340
1341 /* write algorithm code to working area */
1342 retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1343 target_code_size, target_code);
1344 if (retval != ERROR_OK)
1345 {
1346 LOG_ERROR("Unable to write block write code to target");
1347 goto cleanup;
1348 }
1349 }
1350
1351 /* Get a workspace buffer for the data to flash starting with 32k size.
1352 Half size until buffer would be smaller 256 Bytem then fail back */
1353 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1354 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1355 {
1356 buffer_size /= 2;
1357 if (buffer_size <= 256)
1358 {
1359 LOG_WARNING("no large enough working area available, can't do block memory writes");
1360 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1361 goto cleanup;
1362 }
1363 };
1364
1365 /* setup algo registers */
1366 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1367 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1368 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1369 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1370 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1371 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1372 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1373
1374 /* prepare command and status register patterns */
1375 write_command_val = cfi_command_val(bank, 0x40);
1376 busy_pattern_val = cfi_command_val(bank, 0x80);
1377 error_pattern_val = cfi_command_val(bank, 0x7e);
1378
1379 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32,
1380 source->address, buffer_size);
1381
1382 /* Programming main loop */
1383 while (count > 0)
1384 {
1385 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1386 uint32_t wsm_error;
1387
1388 if ((retval = target_write_buffer(target, source->address,
1389 thisrun_count, buffer)) != ERROR_OK)
1390 {
1391 goto cleanup;
1392 }
1393
1394 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1395 buf_set_u32(reg_params[1].value, 0, 32, address);
1396 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1397
1398 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1399 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1400 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1401
1402 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1403
1404 /* Execute algorithm, assume breakpoint for last instruction */
1405 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1406 cfi_info->write_algorithm->address,
1407 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1408 10000, /* 10s should be enough for max. 32k of data */
1409 &armv4_5_info);
1410
1411 /* On failure try a fall back to direct word writes */
1412 if (retval != ERROR_OK)
1413 {
1414 cfi_intel_clear_status_register(bank);
1415 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1416 retval = ERROR_FLASH_OPERATION_FAILED;
1417 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1418 /* FIXME To allow fall back or recovery, we must save the actual status
1419 * somewhere, so that a higher level code can start recovery. */
1420 goto cleanup;
1421 }
1422
1423 /* Check return value from algo code */
1424 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1425 if (wsm_error)
1426 {
1427 /* read status register (outputs debug inforation) */
1428 uint8_t status;
1429 cfi_intel_wait_status_busy(bank, 100, &status);
1430 cfi_intel_clear_status_register(bank);
1431 retval = ERROR_FLASH_OPERATION_FAILED;
1432 goto cleanup;
1433 }
1434
1435 buffer += thisrun_count;
1436 address += thisrun_count;
1437 count -= thisrun_count;
1438
1439 keep_alive();
1440 }
1441
1442 /* free up resources */
1443 cleanup:
1444 if (source)
1445 target_free_working_area(target, source);
1446
1447 if (cfi_info->write_algorithm)
1448 {
1449 target_free_working_area(target, cfi_info->write_algorithm);
1450 cfi_info->write_algorithm = NULL;
1451 }
1452
1453 destroy_reg_param(&reg_params[0]);
1454 destroy_reg_param(&reg_params[1]);
1455 destroy_reg_param(&reg_params[2]);
1456 destroy_reg_param(&reg_params[3]);
1457 destroy_reg_param(&reg_params[4]);
1458 destroy_reg_param(&reg_params[5]);
1459 destroy_reg_param(&reg_params[6]);
1460
1461 return retval;
1462 }
1463
1464 static int cfi_spansion_write_block_mips(struct flash_bank *bank, uint8_t *buffer,
1465 uint32_t address, uint32_t count)
1466 {
1467 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1468 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1469 struct target *target = bank->target;
1470 struct reg_param reg_params[10];
1471 struct mips32_algorithm mips32_info;
1472 struct working_area *source;
1473 uint32_t buffer_size = 32768;
1474 uint32_t status;
1475 int retval = ERROR_OK;
1476
1477 /* input parameters - */
1478 /* 4 A0 = source address */
1479 /* 5 A1 = destination address */
1480 /* 6 A2 = number of writes */
1481 /* 7 A3 = flash write command */
1482 /* 8 T0 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1483 /* output parameters - */
1484 /* 9 T1 = 0x80 ok 0x00 bad */
1485 /* temp registers - */
1486 /* 10 T2 = value read from flash to test status */
1487 /* 11 T3 = holding register */
1488 /* unlock registers - */
1489 /* 12 T4 = unlock1_addr */
1490 /* 13 T5 = unlock1_cmd */
1491 /* 14 T6 = unlock2_addr */
1492 /* 15 T7 = unlock2_cmd */
1493
1494 static const uint32_t mips_word_16_code[] = {
1495 /* start: */
1496 MIPS32_LHU(9,0,4), /* lhu $t1, ($a0) ; out = &saddr */
1497 MIPS32_ADDI(4,4,2), /* addi $a0, $a0, 2 ; saddr += 2 */
1498 MIPS32_SH(13,0,12), /* sh $t5, ($t4) ; *fl_unl_addr1 = fl_unl_cmd1 */
1499 MIPS32_SH(15,0,14), /* sh $t7, ($t6) ; *fl_unl_addr2 = fl_unl_cmd2 */
1500 MIPS32_SH(7,0,12), /* sh $a3, ($t4) ; *fl_unl_addr1 = fl_write_cmd */
1501 MIPS32_SH(9,0,5), /* sh $t1, ($a1) ; *daddr = out */
1502 MIPS32_NOP, /* nop */
1503 /* busy: */
1504 MIPS32_LHU(10,0,5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1505 MIPS32_XOR(11,9,10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1506 MIPS32_AND(11,8,11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1507 MIPS32_BNE(11,8, 13), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1508 MIPS32_NOP, /* nop */
1509
1510 MIPS32_SRL(10,8,2), /* srl $t2,$t0,2 ; temp1 = DQ7mask >> 2 */
1511 MIPS32_AND(11,10,11), /* and $t3, $t2, $t3 ; temp2 = temp2 & temp1 */
1512 MIPS32_BNE(11,10, NEG16(8)), /* bne $t3, $t2, busy ; if (temp2 != temp1) goto busy */
1513 MIPS32_NOP, /* nop */
1514
1515 MIPS32_LHU(10,0,5), /* lhu $t2, ($a1) ; temp1 = *daddr */
1516 MIPS32_XOR(11,9,10), /* xor $t3, $a0, $t2 ; temp2 = out ^ temp1; */
1517 MIPS32_AND(11,8,11), /* and $t3, $t0, $t3 ; temp2 = temp2 & DQ7mask */
1518 MIPS32_BNE(11,8, 4), /* bne $t3, $t0, cont ; if (temp2 != DQ7mask) goto cont */
1519 MIPS32_NOP, /* nop */
1520
1521 MIPS32_XOR(9,9,9), /* xor $t1, $t1, $t1 ; out = 0 */
1522 MIPS32_BEQ(9,0, 11), /* beq $t1, $zero, done ; if (out == 0) goto done */
1523 MIPS32_NOP, /* nop */
1524 /* cont: */
1525 MIPS32_ADDI(6,6,NEG16(1)), /* addi, $a2, $a2, -1 ; numwrites-- */
1526 MIPS32_BNE(6,0, 5), /* bne $a2, $zero, cont2 ; if (numwrite != 0) goto cont2 */
1527 MIPS32_NOP, /* nop */
1528
1529 MIPS32_LUI(9,0), /* lui $t1, 0 */
1530 MIPS32_ORI(9,9,0x80), /* ori $t1, $t1, 0x80 ; out = 0x80 */
1531
1532 MIPS32_B(4), /* b done ; goto done */
1533 MIPS32_NOP, /* nop */
1534 /* cont2: */
1535 MIPS32_ADDI(5,5,2), /* addi $a0, $a0, 2 ; daddr += 2 */
1536 MIPS32_B(NEG16(33)), /* b start ; goto start */
1537 MIPS32_NOP, /* nop */
1538 /* done: */
1539 /*MIPS32_B(NEG16(1)), */ /* b done ; goto done */
1540 MIPS32_SDBBP, /* sdbbp ; break(); */
1541 /*MIPS32_B(NEG16(33)), */ /* b start ; goto start */
1542 /* MIPS32_NOP, */
1543 };
1544
1545 mips32_info.common_magic = MIPS32_COMMON_MAGIC;
1546 mips32_info.isa_mode = MIPS32_ISA_MIPS32;
1547
1548 int target_code_size = 0;
1549 const uint32_t *target_code_src = NULL;
1550
1551 switch (bank->bus_width)
1552 {
1553 case 2 :
1554 /* Check for DQ5 support */
1555 if( cfi_info->status_poll_mask & (1 << 5) )
1556 {
1557 target_code_src = mips_word_16_code;
1558 target_code_size = sizeof(mips_word_16_code);
1559 }
1560 else
1561 {
1562 LOG_ERROR("Need DQ5 support");
1563 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1564 //target_code_src = mips_word_16_code_dq7only;
1565 //target_code_size = sizeof(mips_word_16_code_dq7only);
1566 }
1567 break;
1568 default:
1569 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1570 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1571 }
1572
1573 /* flash write code */
1574 if (!cfi_info->write_algorithm)
1575 {
1576 uint8_t *target_code;
1577
1578 /* convert bus-width dependent algorithm code to correct endiannes */
1579 target_code = malloc(target_code_size);
1580 if (target_code == NULL)
1581 {
1582 LOG_ERROR("Out of memory");
1583 return ERROR_FAIL;
1584 }
1585 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1586
1587 /* allocate working area */
1588 retval = target_alloc_working_area(target, target_code_size,
1589 &cfi_info->write_algorithm);
1590 if (retval != ERROR_OK)
1591 {
1592 free(target_code);
1593 return retval;
1594 }
1595
1596 /* write algorithm code to working area */
1597 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1598 target_code_size, target_code)) != ERROR_OK)
1599 {
1600 free(target_code);
1601 return retval;
1602 }
1603
1604 free(target_code);
1605 }
1606 /* the following code still assumes target code is fixed 24*4 bytes */
1607
1608 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1609 {
1610 buffer_size /= 2;
1611 if (buffer_size <= 256)
1612 {
1613 /* if we already allocated the writing code, but failed to get a
1614 * buffer, free the algorithm */
1615 if (cfi_info->write_algorithm)
1616 target_free_working_area(target, cfi_info->write_algorithm);
1617
1618 LOG_WARNING("not enough working area available, can't do block memory writes");
1619 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1620 }
1621 };
1622
1623 init_reg_param(&reg_params[0], "a0", 32, PARAM_OUT);
1624 init_reg_param(&reg_params[1], "a1", 32, PARAM_OUT);
1625 init_reg_param(&reg_params[2], "a2", 32, PARAM_OUT);
1626 init_reg_param(&reg_params[3], "a3", 32, PARAM_OUT);
1627 init_reg_param(&reg_params[4], "t0", 32, PARAM_OUT);
1628 init_reg_param(&reg_params[5], "t1", 32, PARAM_IN);
1629 init_reg_param(&reg_params[6], "t4", 32, PARAM_OUT);
1630 init_reg_param(&reg_params[7], "t5", 32, PARAM_OUT);
1631 init_reg_param(&reg_params[8], "t6", 32, PARAM_OUT);
1632 init_reg_param(&reg_params[9], "t7", 32, PARAM_OUT);
1633
1634 while (count > 0)
1635 {
1636 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1637
1638 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
1639 if (retval != ERROR_OK)
1640 {
1641 break;
1642 }
1643
1644 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1645 buf_set_u32(reg_params[1].value, 0, 32, address);
1646 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1647 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1648 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1649 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1650 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1651 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1652 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1653
1654 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1655 cfi_info->write_algorithm->address,
1656 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1657 10000, &mips32_info);
1658 if (retval != ERROR_OK)
1659 {
1660 break;
1661 }
1662
1663 status = buf_get_u32(reg_params[5].value, 0, 32);
1664 if (status != 0x80)
1665 {
1666 LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status);
1667 retval = ERROR_FLASH_OPERATION_FAILED;
1668 break;
1669 }
1670
1671 buffer += thisrun_count;
1672 address += thisrun_count;
1673 count -= thisrun_count;
1674 }
1675
1676 target_free_all_working_areas(target);
1677
1678 destroy_reg_param(&reg_params[0]);
1679 destroy_reg_param(&reg_params[1]);
1680 destroy_reg_param(&reg_params[2]);
1681 destroy_reg_param(&reg_params[3]);
1682 destroy_reg_param(&reg_params[4]);
1683 destroy_reg_param(&reg_params[5]);
1684 destroy_reg_param(&reg_params[6]);
1685 destroy_reg_param(&reg_params[7]);
1686 destroy_reg_param(&reg_params[8]);
1687 destroy_reg_param(&reg_params[9]);
1688
1689 return retval;
1690 }
1691
1692 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer,
1693 uint32_t address, uint32_t count)
1694 {
1695 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1696 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1697 struct target *target = bank->target;
1698 struct reg_param reg_params[10];
1699 struct arm_algorithm armv4_5_info;
1700 struct working_area *source;
1701 uint32_t buffer_size = 32768;
1702 uint32_t status;
1703 int retval = ERROR_OK;
1704
1705 /* input parameters - */
1706 /* R0 = source address */
1707 /* R1 = destination address */
1708 /* R2 = number of writes */
1709 /* R3 = flash write command */
1710 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1711 /* output parameters - */
1712 /* R5 = 0x80 ok 0x00 bad */
1713 /* temp registers - */
1714 /* R6 = value read from flash to test status */
1715 /* R7 = holding register */
1716 /* unlock registers - */
1717 /* R8 = unlock1_addr */
1718 /* R9 = unlock1_cmd */
1719 /* R10 = unlock2_addr */
1720 /* R11 = unlock2_cmd */
1721
1722 /* see contib/loaders/flash/armv4_5_cfi_span_32.s for src */
1723 static const uint32_t armv4_5_word_32_code[] = {
1724 /* 00008100 <sp_32_code>: */
1725 0xe4905004, /* ldr r5, [r0], #4 */
1726 0xe5889000, /* str r9, [r8] */
1727 0xe58ab000, /* str r11, [r10] */
1728 0xe5883000, /* str r3, [r8] */
1729 0xe5815000, /* str r5, [r1] */
1730 0xe1a00000, /* nop */
1731 /* */
1732 /* 00008110 <sp_32_busy>: */
1733 0xe5916000, /* ldr r6, [r1] */
1734 0xe0257006, /* eor r7, r5, r6 */
1735 0xe0147007, /* ands r7, r4, r7 */
1736 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1737 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1738 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1739 0xe5916000, /* ldr r6, [r1] */
1740 0xe0257006, /* eor r7, r5, r6 */
1741 0xe0147007, /* ands r7, r4, r7 */
1742 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1743 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1744 0x1a000004, /* bne 8154 <sp_32_done> */
1745 /* */
1746 /* 00008140 <sp_32_cont>: */
1747 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1748 0x03a05080, /* moveq r5, #128 ; 0x80 */
1749 0x0a000001, /* beq 8154 <sp_32_done> */
1750 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1751 0xeaffffe8, /* b 8100 <sp_32_code> */
1752 /* */
1753 /* 00008154 <sp_32_done>: */
1754 0xeafffffe /* b 8154 <sp_32_done> */
1755 };
1756
1757 /* see contib/loaders/flash/armv4_5_cfi_span_16.s for src */
1758 static const uint32_t armv4_5_word_16_code[] = {
1759 /* 00008158 <sp_16_code>: */
1760 0xe0d050b2, /* ldrh r5, [r0], #2 */
1761 0xe1c890b0, /* strh r9, [r8] */
1762 0xe1cab0b0, /* strh r11, [r10] */
1763 0xe1c830b0, /* strh r3, [r8] */
1764 0xe1c150b0, /* strh r5, [r1] */
1765 0xe1a00000, /* nop (mov r0,r0) */
1766 /* */
1767 /* 00008168 <sp_16_busy>: */
1768 0xe1d160b0, /* ldrh r6, [r1] */
1769 0xe0257006, /* eor r7, r5, r6 */
1770 0xe0147007, /* ands r7, r4, r7 */
1771 0x0a000007, /* beq 8198 <sp_16_cont> */
1772 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1773 0x0afffff9, /* beq 8168 <sp_16_busy> */
1774 0xe1d160b0, /* ldrh r6, [r1] */
1775 0xe0257006, /* eor r7, r5, r6 */
1776 0xe0147007, /* ands r7, r4, r7 */
1777 0x0a000001, /* beq 8198 <sp_16_cont> */
1778 0xe3a05000, /* mov r5, #0 ; 0x0 */
1779 0x1a000004, /* bne 81ac <sp_16_done> */
1780 /* */
1781 /* 00008198 <sp_16_cont>: */
1782 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1783 0x03a05080, /* moveq r5, #128 ; 0x80 */
1784 0x0a000001, /* beq 81ac <sp_16_done> */
1785 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1786 0xeaffffe8, /* b 8158 <sp_16_code> */
1787 /* */
1788 /* 000081ac <sp_16_done>: */
1789 0xeafffffe /* b 81ac <sp_16_done> */
1790 };
1791
1792 /* see contib/loaders/flash/armv7m_cfi_span_16.s for src */
1793 static const uint32_t armv7m_word_16_code[] = {
1794 0x5B02F830,
1795 0x9000F8A8,
1796 0xB000F8AA,
1797 0x3000F8A8,
1798 0xBF00800D,
1799 0xEA85880E,
1800 0x40270706,
1801 0xEA16D00A,
1802 0xD0F70694,
1803 0xEA85880E,
1804 0x40270706,
1805 0xF04FD002,
1806 0xD1070500,
1807 0xD0023A01,
1808 0x0102F101,
1809 0xF04FE7E0,
1810 0xE7FF0580,
1811 0x0000BE00
1812 };
1813
1814 /* see contib/loaders/flash/armv4_5_cfi_span_16_dq7.s for src */
1815 static const uint32_t armv4_5_word_16_code_dq7only[] = {
1816 /* <sp_16_code>: */
1817 0xe0d050b2, /* ldrh r5, [r0], #2 */
1818 0xe1c890b0, /* strh r9, [r8] */
1819 0xe1cab0b0, /* strh r11, [r10] */
1820 0xe1c830b0, /* strh r3, [r8] */
1821 0xe1c150b0, /* strh r5, [r1] */
1822 0xe1a00000, /* nop (mov r0,r0) */
1823 /* */
1824 /* <sp_16_busy>: */
1825 0xe1d160b0, /* ldrh r6, [r1] */
1826 0xe0257006, /* eor r7, r5, r6 */
1827 0xe2177080, /* ands r7, #0x80 */
1828 0x1afffffb, /* bne 8168 <sp_16_busy> */
1829 /* */
1830 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1831 0x03a05080, /* moveq r5, #128 ; 0x80 */
1832 0x0a000001, /* beq 81ac <sp_16_done> */
1833 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1834 0xeafffff0, /* b 8158 <sp_16_code> */
1835 /* */
1836 /* 000081ac <sp_16_done>: */
1837 0xeafffffe /* b 81ac <sp_16_done> */
1838 };
1839
1840 /* see contib/loaders/flash/armv4_5_cfi_span_8.s for src */
1841 static const uint32_t armv4_5_word_8_code[] = {
1842 /* 000081b0 <sp_16_code_end>: */
1843 0xe4d05001, /* ldrb r5, [r0], #1 */
1844 0xe5c89000, /* strb r9, [r8] */
1845 0xe5cab000, /* strb r11, [r10] */
1846 0xe5c83000, /* strb r3, [r8] */
1847 0xe5c15000, /* strb r5, [r1] */
1848 0xe1a00000, /* nop (mov r0,r0) */
1849 /* */
1850 /* 000081c0 <sp_8_busy>: */
1851 0xe5d16000, /* ldrb r6, [r1] */
1852 0xe0257006, /* eor r7, r5, r6 */
1853 0xe0147007, /* ands r7, r4, r7 */
1854 0x0a000007, /* beq 81f0 <sp_8_cont> */
1855 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1856 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1857 0xe5d16000, /* ldrb r6, [r1] */
1858 0xe0257006, /* eor r7, r5, r6 */
1859 0xe0147007, /* ands r7, r4, r7 */
1860 0x0a000001, /* beq 81f0 <sp_8_cont> */
1861 0xe3a05000, /* mov r5, #0 ; 0x0 */
1862 0x1a000004, /* bne 8204 <sp_8_done> */
1863 /* */
1864 /* 000081f0 <sp_8_cont>: */
1865 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1866 0x03a05080, /* moveq r5, #128 ; 0x80 */
1867 0x0a000001, /* beq 8204 <sp_8_done> */
1868 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1869 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1870 /* */
1871 /* 00008204 <sp_8_done>: */
1872 0xeafffffe /* b 8204 <sp_8_done> */
1873 };
1874
1875 if (strncmp(target_type_name(target),"mips_m4k",8) == 0)
1876 {
1877 return cfi_spansion_write_block_mips(bank,buffer,address,count);
1878 }
1879
1880 if (is_armv7m(target_to_armv7m(target))) /* Cortex-M3 target */
1881 {
1882 armv4_5_info.common_magic = ARMV7M_COMMON_MAGIC;
1883 armv4_5_info.core_mode = ARMV7M_MODE_HANDLER;
1884 armv4_5_info.core_state = ARM_STATE_ARM;
1885 }
1886 else
1887 {
1888 /* All other ARM CPUs have 32 bit instructions */
1889 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1890 armv4_5_info.core_mode = ARM_MODE_SVC;
1891 armv4_5_info.core_state = ARM_STATE_ARM;
1892 }
1893
1894 int target_code_size = 0;
1895 const uint32_t *target_code_src = NULL;
1896
1897 switch (bank->bus_width)
1898 {
1899 case 1 :
1900 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) /* armv4_5 target */
1901 {
1902 target_code_src = armv4_5_word_8_code;
1903 target_code_size = sizeof(armv4_5_word_8_code);
1904 }
1905 break;
1906 case 2 :
1907 /* Check for DQ5 support */
1908 if( cfi_info->status_poll_mask & (1 << 5) )
1909 {
1910 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) /* armv4_5 target */
1911 {
1912 target_code_src = armv4_5_word_16_code;
1913 target_code_size = sizeof(armv4_5_word_16_code);
1914 }
1915 else if (armv4_5_info.common_magic == ARMV7M_COMMON_MAGIC) /* cortex-m3 target */
1916 {
1917 target_code_src = armv7m_word_16_code;
1918 target_code_size = sizeof(armv7m_word_16_code);
1919 }
1920 }
1921 else
1922 {
1923 /* No DQ5 support. Use DQ7 DATA# polling only. */
1924 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) // armv4_5 target
1925 {
1926 target_code_src = armv4_5_word_16_code_dq7only;
1927 target_code_size = sizeof(armv4_5_word_16_code_dq7only);
1928 }
1929 }
1930 break;
1931 case 4 :
1932 if(armv4_5_info.common_magic == ARM_COMMON_MAGIC) // armv4_5 target
1933 {
1934 target_code_src = armv4_5_word_32_code;
1935 target_code_size = sizeof(armv4_5_word_32_code);
1936 }
1937 break;
1938 default:
1939 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1940 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1941 }
1942
1943 /* flash write code */
1944 if (!cfi_info->write_algorithm)
1945 {
1946 uint8_t *target_code;
1947
1948 /* convert bus-width dependent algorithm code to correct endiannes */
1949 target_code = malloc(target_code_size);
1950 if (target_code == NULL)
1951 {
1952 LOG_ERROR("Out of memory");
1953 return ERROR_FAIL;
1954 }
1955 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1956
1957 /* allocate working area */
1958 retval = target_alloc_working_area(target, target_code_size,
1959 &cfi_info->write_algorithm);
1960 if (retval != ERROR_OK)
1961 {
1962 free(target_code);
1963 return retval;
1964 }
1965
1966 /* write algorithm code to working area */
1967 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1968 target_code_size, target_code)) != ERROR_OK)
1969 {
1970 free(target_code);
1971 return retval;
1972 }
1973
1974 free(target_code);
1975 }
1976 /* the following code still assumes target code is fixed 24*4 bytes */
1977
1978 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1979 {
1980 buffer_size /= 2;
1981 if (buffer_size <= 256)
1982 {
1983 /* if we already allocated the writing code, but failed to get a
1984 * buffer, free the algorithm */
1985 if (cfi_info->write_algorithm)
1986 target_free_working_area(target, cfi_info->write_algorithm);
1987
1988 LOG_WARNING("not enough working area available, can't do block memory writes");
1989 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1990 }
1991 };
1992
1993 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1994 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1995 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1996 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1997 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1998 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1999 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
2000 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
2001 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
2002 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
2003
2004 while (count > 0)
2005 {
2006 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
2007
2008 retval = target_write_buffer(target, source->address, thisrun_count, buffer);
2009 if (retval != ERROR_OK)
2010 {
2011 break;
2012 }
2013
2014 buf_set_u32(reg_params[0].value, 0, 32, source->address);
2015 buf_set_u32(reg_params[1].value, 0, 32, address);
2016 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
2017 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
2018 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
2019 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
2020 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
2021 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
2022 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
2023
2024 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
2025 cfi_info->write_algorithm->address,
2026 cfi_info->write_algorithm->address + ((target_code_size) - 4),
2027 10000, &armv4_5_info);
2028 if (retval != ERROR_OK)
2029 {
2030 break;
2031 }
2032
2033 status = buf_get_u32(reg_params[5].value, 0, 32);
2034 if (status != 0x80)
2035 {
2036 LOG_ERROR("flash write block failed status: 0x%" PRIx32 , status);
2037 retval = ERROR_FLASH_OPERATION_FAILED;
2038 break;
2039 }
2040
2041 buffer += thisrun_count;
2042 address += thisrun_count;
2043 count -= thisrun_count;
2044 }
2045
2046 target_free_all_working_areas(target);
2047
2048 destroy_reg_param(&reg_params[0]);
2049 destroy_reg_param(&reg_params[1]);
2050 destroy_reg_param(&reg_params[2]);
2051 destroy_reg_param(&reg_params[3]);
2052 destroy_reg_param(&reg_params[4]);
2053 destroy_reg_param(&reg_params[5]);
2054 destroy_reg_param(&reg_params[6]);
2055 destroy_reg_param(&reg_params[7]);
2056 destroy_reg_param(&reg_params[8]);
2057 destroy_reg_param(&reg_params[9]);
2058
2059 return retval;
2060 }
2061
2062 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2063 {
2064 int retval;
2065 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2066 struct target *target = bank->target;
2067
2068 cfi_intel_clear_status_register(bank);
2069 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
2070 {
2071 return retval;
2072 }
2073
2074 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
2075 {
2076 return retval;
2077 }
2078
2079 uint8_t status;
2080 retval = cfi_intel_wait_status_busy(bank, cfi_info->word_write_timeout, &status);
2081 if (retval != 0x80)
2082 {
2083 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
2084 {
2085 return retval;
2086 }
2087
2088 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address 0x%" PRIx32,
2089 bank->base, address);
2090 return ERROR_FLASH_OPERATION_FAILED;
2091 }
2092
2093 return ERROR_OK;
2094 }
2095
2096 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word,
2097 uint32_t wordcount, uint32_t address)
2098 {
2099 int retval;
2100 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2101 struct target *target = bank->target;
2102
2103 /* Calculate buffer size and boundary mask */
2104 /* buffersize is (buffer size per chip) * (number of chips) */
2105 /* bufferwsize is buffersize in words */
2106 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2107 uint32_t buffermask = buffersize-1;
2108 uint32_t bufferwsize = buffersize / bank->bus_width;
2109
2110 /* Check for valid range */
2111 if (address & buffermask)
2112 {
2113 LOG_ERROR("Write address at base 0x%" PRIx32 ", address 0x%" PRIx32
2114 " not aligned to 2^%d boundary",
2115 bank->base, address, cfi_info->max_buf_write_size);
2116 return ERROR_FLASH_OPERATION_FAILED;
2117 }
2118
2119 /* Check for valid size */
2120 if (wordcount > bufferwsize)
2121 {
2122 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32,
2123 wordcount, buffersize);
2124 return ERROR_FLASH_OPERATION_FAILED;
2125 }
2126
2127 /* Write to flash buffer */
2128 cfi_intel_clear_status_register(bank);
2129
2130 /* Initiate buffer operation _*/
2131 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
2132 {
2133 return retval;
2134 }
2135 uint8_t status;
2136 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2137 if (retval != ERROR_OK)
2138 return retval;
2139 if (status != 0x80)
2140 {
2141 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
2142 {
2143 return retval;
2144 }
2145
2146 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address 0x%" PRIx32,
2147 bank->base, address);
2148 return ERROR_FLASH_OPERATION_FAILED;
2149 }
2150
2151 /* Write buffer wordcount-1 and data words */
2152 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
2153 {
2154 return retval;
2155 }
2156
2157 if ((retval = target_write_memory(target,
2158 address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
2159 {
2160 return retval;
2161 }
2162
2163 /* Commit write operation */
2164 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
2165 {
2166 return retval;
2167 }
2168
2169 retval = cfi_intel_wait_status_busy(bank, cfi_info->buf_write_timeout, &status);
2170 if (retval != ERROR_OK)
2171 return retval;
2172
2173 if (status != 0x80)
2174 {
2175 if ((retval = cfi_send_command(bank, 0xff,
2176 flash_address(bank, 0, 0x0))) != ERROR_OK)
2177 {
2178 return retval;
2179 }
2180
2181 LOG_ERROR("Buffer write at base 0x%" PRIx32
2182 ", address 0x%" PRIx32 " failed.", bank->base, address);
2183 return ERROR_FLASH_OPERATION_FAILED;
2184 }
2185
2186 return ERROR_OK;
2187 }
2188
2189 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2190 {
2191 int retval;
2192 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2193 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2194 struct target *target = bank->target;
2195
2196 if ((retval = cfi_send_command(bank, 0xaa,
2197 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2198 {
2199 return retval;
2200 }
2201
2202 if ((retval = cfi_send_command(bank, 0x55,
2203 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2204 {
2205 return retval;
2206 }
2207
2208 if ((retval = cfi_send_command(bank, 0xa0,
2209 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2210 {
2211 return retval;
2212 }
2213
2214 if ((retval = target_write_memory(target,
2215 address, bank->bus_width, 1, word)) != ERROR_OK)
2216 {
2217 return retval;
2218 }
2219
2220 if (cfi_spansion_wait_status_busy(bank, cfi_info->word_write_timeout) != ERROR_OK)
2221 {
2222 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
2223 {
2224 return retval;
2225 }
2226
2227 LOG_ERROR("couldn't write word at base 0x%" PRIx32
2228 ", address 0x%" PRIx32 , bank->base, address);
2229 return ERROR_FLASH_OPERATION_FAILED;
2230 }
2231
2232 return ERROR_OK;
2233 }
2234
2235 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word,
2236 uint32_t wordcount, uint32_t address)
2237 {
2238 int retval;
2239 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2240 struct target *target = bank->target;
2241 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2242
2243 /* Calculate buffer size and boundary mask */
2244 /* buffersize is (buffer size per chip) * (number of chips) */
2245 /* bufferwsize is buffersize in words */
2246 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2247 uint32_t buffermask = buffersize-1;
2248 uint32_t bufferwsize = buffersize / bank->bus_width;
2249
2250 /* Check for valid range */
2251 if (address & buffermask)
2252 {
2253 LOG_ERROR("Write address at base 0x%" PRIx32
2254 ", address 0x%" PRIx32 " not aligned to 2^%d boundary",
2255 bank->base, address, cfi_info->max_buf_write_size);
2256 return ERROR_FLASH_OPERATION_FAILED;
2257 }
2258
2259 /* Check for valid size */
2260 if (wordcount > bufferwsize)
2261 {
2262 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %"
2263 PRId32, wordcount, buffersize);
2264 return ERROR_FLASH_OPERATION_FAILED;
2265 }
2266
2267 /* Unlock */
2268 if ((retval = cfi_send_command(bank, 0xaa,
2269 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2270 {
2271 return retval;
2272 }
2273
2274 if ((retval = cfi_send_command(bank, 0x55,
2275 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2276 {
2277 return retval;
2278 }
2279
2280 /* Buffer load command */
2281 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
2282 {
2283 return retval;
2284 }
2285
2286 /* Write buffer wordcount-1 and data words */
2287 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
2288 {
2289 return retval;
2290 }
2291
2292 if ((retval = target_write_memory(target,
2293 address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
2294 {
2295 return retval;
2296 }
2297
2298 /* Commit write operation */
2299 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
2300 {
2301 return retval;
2302 }
2303
2304 if (cfi_spansion_wait_status_busy(bank, cfi_info->buf_write_timeout) != ERROR_OK)
2305 {
2306 if ((retval = cfi_send_command(bank, 0xf0,
2307 flash_address(bank, 0, 0x0))) != ERROR_OK)
2308 {
2309 return retval;
2310 }
2311
2312 LOG_ERROR("couldn't write block at base 0x%" PRIx32
2313 ", address 0x%" PRIx32 ", size 0x%" PRIx32, bank->base, address, bufferwsize);
2314 return ERROR_FLASH_OPERATION_FAILED;
2315 }
2316
2317 return ERROR_OK;
2318 }
2319
2320 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
2321 {
2322 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2323
2324 switch (cfi_info->pri_id)
2325 {
2326 case 1:
2327 case 3:
2328 return cfi_intel_write_word(bank, word, address);
2329 break;
2330 case 2:
2331 return cfi_spansion_write_word(bank, word, address);
2332 break;
2333 default:
2334 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2335 break;
2336 }
2337
2338 return ERROR_FLASH_OPERATION_FAILED;
2339 }
2340
2341 static int cfi_write_words(struct flash_bank *bank, uint8_t *word,
2342 uint32_t wordcount, uint32_t address)
2343 {
2344 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2345
2346 if (cfi_info->buf_write_timeout_typ == 0)
2347 {
2348 /* buffer writes are not supported */
2349 LOG_DEBUG("Buffer Writes Not Supported");
2350 return ERROR_FLASH_OPER_UNSUPPORTED;
2351 }
2352
2353 switch (cfi_info->pri_id)
2354 {
2355 case 1:
2356 case 3:
2357 return cfi_intel_write_words(bank, word, wordcount, address);
2358 break;
2359 case 2:
2360 return cfi_spansion_write_words(bank, word, wordcount, address);
2361 break;
2362 default:
2363 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2364 break;
2365 }
2366
2367 return ERROR_FLASH_OPERATION_FAILED;
2368 }
2369
2370 static int cfi_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2371 {
2372 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2373 struct target *target = bank->target;
2374 uint32_t address = bank->base + offset;
2375 uint32_t read_p;
2376 int align; /* number of unaligned bytes */
2377 uint8_t current_word[CFI_MAX_BUS_WIDTH];
2378 int i;
2379 int retval;
2380
2381 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
2382 (int)count, (unsigned)offset);
2383
2384 if (bank->target->state != TARGET_HALTED)
2385 {
2386 LOG_ERROR("Target not halted");
2387 return ERROR_TARGET_NOT_HALTED;
2388 }
2389
2390 if (offset + count > bank->size)
2391 return ERROR_FLASH_DST_OUT_OF_BANK;
2392
2393 if (cfi_info->qry[0] != 'Q')
2394 return ERROR_FLASH_BANK_NOT_PROBED;
2395
2396 /* start at the first byte of the first word (bus_width size) */
2397 read_p = address & ~(bank->bus_width - 1);
2398 if ((align = address - read_p) != 0)
2399 {
2400 LOG_INFO("Fixup %d unaligned read head bytes", align);
2401
2402 /* read a complete word from flash */
2403 if ((retval = target_read_memory(target, read_p,
2404 bank->bus_width, 1, current_word)) != ERROR_OK)
2405 return retval;
2406
2407 /* take only bytes we need */
2408 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2409 *buffer++ = current_word[i];
2410
2411 read_p += bank->bus_width;
2412 }
2413
2414 align = count / bank->bus_width;
2415 if (align)
2416 {
2417 if ((retval = target_read_memory(target, read_p,
2418 bank->bus_width, align, buffer)) != ERROR_OK)
2419 return retval;
2420
2421 read_p += align * bank->bus_width;
2422 buffer += align * bank->bus_width;
2423 count -= align * bank->bus_width;
2424 }
2425
2426 if (count)
2427 {
2428 LOG_INFO("Fixup %d unaligned read tail bytes", count);
2429
2430 /* read a complete word from flash */
2431 if ((retval = target_read_memory(target, read_p,
2432 bank->bus_width, 1, current_word)) != ERROR_OK)
2433 return retval;
2434
2435 /* take only bytes we need */
2436 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2437 *buffer++ = current_word[i];
2438 }
2439
2440 return ERROR_OK;
2441 }
2442
2443 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
2444 {
2445 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2446 struct target *target = bank->target;
2447 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
2448 uint32_t write_p;
2449 int align; /* number of unaligned bytes */
2450 int blk_count; /* number of bus_width bytes for block copy */
2451 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
2452 int i;
2453 int retval;
2454
2455 if (bank->target->state != TARGET_HALTED)
2456 {
2457 LOG_ERROR("Target not halted");
2458 return ERROR_TARGET_NOT_HALTED;
2459 }
2460
2461 if (offset + count > bank->size)
2462 return ERROR_FLASH_DST_OUT_OF_BANK;
2463
2464 if (cfi_info->qry[0] != 'Q')
2465 return ERROR_FLASH_BANK_NOT_PROBED;
2466
2467 /* start at the first byte of the first word (bus_width size) */
2468 write_p = address & ~(bank->bus_width - 1);
2469 if ((align = address - write_p) != 0)
2470 {
2471 LOG_INFO("Fixup %d unaligned head bytes", align);
2472
2473 /* read a complete word from flash */
2474 if ((retval = target_read_memory(target, write_p,
2475 bank->bus_width, 1, current_word)) != ERROR_OK)
2476 return retval;
2477
2478 /* replace only bytes that must be written */
2479 for (i = align; (i < bank->bus_width) && (count > 0); i++, count--)
2480 current_word[i] = *buffer++;
2481
2482 retval = cfi_write_word(bank, current_word, write_p);
2483 if (retval != ERROR_OK)
2484 return retval;
2485 write_p += bank->bus_width;
2486 }
2487
2488 /* handle blocks of bus_size aligned bytes */
2489 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
2490 switch (cfi_info->pri_id)
2491 {
2492 /* try block writes (fails without working area) */
2493 case 1:
2494 case 3:
2495 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
2496 break;
2497 case 2:
2498 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
2499 break;
2500 default:
2501 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2502 retval = ERROR_FLASH_OPERATION_FAILED;
2503 break;
2504 }
2505 if (retval == ERROR_OK)
2506 {
2507 /* Increment pointers and decrease count on succesful block write */
2508 buffer += blk_count;
2509 write_p += blk_count;
2510 count -= blk_count;
2511 }
2512 else
2513 {
2514 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
2515 {
2516 /* Calculate buffer size and boundary mask */
2517 /* buffersize is (buffer size per chip) * (number of chips) */
2518 /* bufferwsize is buffersize in words */
2519 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
2520 uint32_t buffermask = buffersize-1;
2521 uint32_t bufferwsize = buffersize / bank->bus_width;
2522
2523 /* fall back to memory writes */
2524 while (count >= (uint32_t)bank->bus_width)
2525 {
2526 int fallback;
2527 if ((write_p & 0xff) == 0)
2528 {
2529 LOG_INFO("Programming at 0x%08" PRIx32 ", count 0x%08"
2530 PRIx32 " bytes remaining", write_p, count);
2531 }
2532 fallback = 1;
2533 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
2534 {
2535 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
2536 if (retval == ERROR_OK)
2537 {
2538 buffer += buffersize;
2539 write_p += buffersize;
2540 count -= buffersize;
2541 fallback = 0;
2542 }
2543 else if (retval != ERROR_FLASH_OPER_UNSUPPORTED)
2544 return retval;
2545 }
2546 /* try the slow way? */
2547 if (fallback)
2548 {
2549 for (i = 0; i < bank->bus_width; i++)
2550 current_word[i] = *buffer++;
2551
2552 retval = cfi_write_word(bank, current_word, write_p);
2553 if (retval != ERROR_OK)
2554 return retval;
2555
2556 write_p += bank->bus_width;
2557 count -= bank->bus_width;
2558 }
2559 }
2560 }
2561 else
2562 return retval;
2563 }
2564
2565 /* return to read array mode, so we can read from flash again for padding */
2566 if ((retval = cfi_reset(bank)) != ERROR_OK)
2567 {
2568 return retval;
2569 }
2570
2571 /* handle unaligned tail bytes */
2572 if (count > 0)
2573 {
2574 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2575
2576 /* read a complete word from flash */
2577 if ((retval = target_read_memory(target, write_p,
2578 bank->bus_width, 1, current_word)) != ERROR_OK)
2579 return retval;
2580
2581 /* replace only bytes that must be written */
2582 for (i = 0; (i < bank->bus_width) && (count > 0); i++, count--)
2583 current_word[i] = *buffer++;
2584
2585 retval = cfi_write_word(bank, current_word, write_p);
2586 if (retval != ERROR_OK)
2587 return retval;
2588 }
2589
2590 /* return to read array mode */
2591 return cfi_reset(bank);
2592 }
2593
2594 static void cfi_fixup_reversed_erase_regions(struct flash_bank *bank, void *param)
2595 {
2596 (void) param;
2597 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2598 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2599
2600 pri_ext->_reversed_geometry = 1;
2601 }
2602
2603 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2604 {
2605 int i;
2606 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2607 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2608 (void) param;
2609
2610 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2611 {
2612 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2613
2614 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2615 {
2616 int j = (cfi_info->num_erase_regions - 1) - i;
2617 uint32_t swap;
2618
2619 swap = cfi_info->erase_region_info[i];
2620 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2621 cfi_info->erase_region_info[j] = swap;
2622 }
2623 }
2624 }
2625
2626 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2627 {
2628 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2629 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2630 struct cfi_unlock_addresses *unlock_addresses = param;
2631
2632 pri_ext->_unlock1 = unlock_addresses->unlock1;
2633 pri_ext->_unlock2 = unlock_addresses->unlock2;
2634 }
2635
2636
2637 static int cfi_query_string(struct flash_bank *bank, int address)
2638 {
2639 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2640 int retval;
2641
2642 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2643 {
2644 return retval;
2645 }
2646
2647 retval = cfi_query_u8(bank, 0, 0x10, &cfi_info->qry[0]);
2648 if (retval != ERROR_OK)
2649 return retval;
2650 retval = cfi_query_u8(bank, 0, 0x11, &cfi_info->qry[1]);
2651 if (retval != ERROR_OK)
2652 return retval;
2653 retval = cfi_query_u8(bank, 0, 0x12, &cfi_info->qry[2]);
2654 if (retval != ERROR_OK)
2655 return retval;
2656
2657 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x",
2658 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2659
2660 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2661 {
2662 if ((retval = cfi_reset(bank)) != ERROR_OK)
2663 {
2664 return retval;
2665 }
2666 LOG_ERROR("Could not probe bank: no QRY");
2667 return ERROR_FLASH_BANK_INVALID;
2668 }
2669
2670 return ERROR_OK;
2671 }
2672
2673 static int cfi_probe(struct flash_bank *bank)
2674 {
2675 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2676 struct target *target = bank->target;
2677 int num_sectors = 0;
2678 int i;
2679 int sector = 0;
2680 uint32_t unlock1 = 0x555;
2681 uint32_t unlock2 = 0x2aa;
2682 int retval;
2683 uint8_t value_buf0[CFI_MAX_BUS_WIDTH], value_buf1[CFI_MAX_BUS_WIDTH];
2684
2685 if (bank->target->state != TARGET_HALTED)
2686 {
2687 LOG_ERROR("Target not halted");
2688 return ERROR_TARGET_NOT_HALTED;
2689 }
2690
2691 cfi_info->probed = 0;
2692 if (bank->sectors)
2693 {
2694 free(bank->sectors);
2695 bank->sectors = NULL;
2696 }
2697 if(cfi_info->erase_region_info)
2698 {
2699 free(cfi_info->erase_region_info);
2700 cfi_info->erase_region_info = NULL;
2701 }
2702
2703 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2704 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2705 */
2706 if (cfi_info->jedec_probe)
2707 {
2708 unlock1 = 0x5555;
2709 unlock2 = 0x2aaa;
2710 }
2711
2712 /* switch to read identifier codes mode ("AUTOSELECT") */
2713 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2714 {
2715 return retval;
2716 }
2717 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2718 {
2719 return retval;
2720 }
2721 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2722 {
2723 return retval;
2724 }
2725
2726 if ((retval = target_read_memory(target, flash_address(bank, 0, 0x00),
2727 bank->bus_width, 1, value_buf0)) != ERROR_OK)
2728 {
2729 return retval;
2730 }
2731 if ((retval = target_read_memory(target, flash_address(bank, 0, 0x01),
2732 bank->bus_width, 1, value_buf1)) != ERROR_OK)
2733 {
2734 return retval;
2735 }
2736 switch (bank->chip_width) {
2737 case 1:
2738 cfi_info->manufacturer = *value_buf0;
2739 cfi_info->device_id = *value_buf1;
2740 break;
2741 case 2:
2742 cfi_info->manufacturer = target_buffer_get_u16(target, value_buf0);
2743 cfi_info->device_id = target_buffer_get_u16(target, value_buf1);
2744 break;
2745 case 4:
2746 cfi_info->manufacturer = target_buffer_get_u32(target, value_buf0);
2747 cfi_info->device_id = target_buffer_get_u32(target, value_buf1);
2748 break;
2749 default:
2750 LOG_ERROR("Unsupported bank chipwidth %d, can't probe memory", bank->chip_width);
2751 return ERROR_FLASH_OPERATION_FAILED;
2752 }
2753
2754 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x",
2755 cfi_info->manufacturer, cfi_info->device_id);
2756 /* switch back to read array mode */
2757 if ((retval = cfi_reset(bank)) != ERROR_OK)
2758 {
2759 return retval;
2760 }
2761
2762 /* check device/manufacturer ID for known non-CFI flashes. */
2763 cfi_fixup_non_cfi(bank);
2764
2765 /* query only if this is a CFI compatible flash,
2766 * otherwise the relevant info has already been filled in
2767 */
2768 if (cfi_info->not_cfi == 0)
2769 {
2770 /* enter CFI query mode
2771 * according to JEDEC Standard No. 68.01,
2772 * a single bus sequence with address = 0x55, data = 0x98 should put
2773 * the device into CFI query mode.
2774 *
2775 * SST flashes clearly violate this, and we will consider them incompatbile for now
2776 */
2777
2778 retval = cfi_query_string(bank, 0x55);
2779 if (retval != ERROR_OK)
2780 {
2781 /*
2782 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2783 * be harmless enough:
2784 *
2785 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2786 */
2787 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2788 retval = cfi_query_string(bank, 0x555);
2789 }
2790 if (retval != ERROR_OK)
2791 return retval;
2792
2793 retval = cfi_query_u16(bank, 0, 0x13, &cfi_info->pri_id);
2794 if (retval != ERROR_OK)
2795 return retval;
2796 retval = cfi_query_u16(bank, 0, 0x15, &cfi_info->pri_addr);
2797 if (retval != ERROR_OK)
2798 return retval;
2799 retval = cfi_query_u16(bank, 0, 0x17, &cfi_info->alt_id);
2800 if (retval != ERROR_OK)
2801 return retval;
2802 retval = cfi_query_u16(bank, 0, 0x19, &cfi_info->alt_addr);
2803 if (retval != ERROR_OK)
2804 return retval;
2805
2806 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: "
2807 "0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1],
2808 cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr,
2809 cfi_info->alt_id, cfi_info->alt_addr);
2810
2811 retval = cfi_query_u8(bank, 0, 0x1b, &cfi_info->vcc_min);
2812 if (retval != ERROR_OK)
2813 return retval;
2814 retval = cfi_query_u8(bank, 0, 0x1c, &cfi_info->vcc_max);
2815 if (retval != ERROR_OK)
2816 return retval;
2817 retval = cfi_query_u8(bank, 0, 0x1d, &cfi_info->vpp_min);
2818 if (retval != ERROR_OK)
2819 return retval;
2820 retval = cfi_query_u8(bank, 0, 0x1e, &cfi_info->vpp_max);
2821 if (retval != ERROR_OK)
2822 return retval;
2823
2824 retval = cfi_query_u8(bank, 0, 0x1f, &cfi_info->word_write_timeout_typ);
2825 if (retval != ERROR_OK)
2826 return retval;
2827 retval = cfi_query_u8(bank, 0, 0x20, &cfi_info->buf_write_timeout_typ);
2828 if (retval != ERROR_OK)
2829 return retval;
2830 retval = cfi_query_u8(bank, 0, 0x21, &cfi_info->block_erase_timeout_typ);
2831 if (retval != ERROR_OK)
2832 return retval;
2833 retval = cfi_query_u8(bank, 0, 0x22, &cfi_info->chip_erase_timeout_typ);
2834 if (retval != ERROR_OK)
2835 return retval;
2836 retval = cfi_query_u8(bank, 0, 0x23, &cfi_info->word_write_timeout_max);
2837 if (retval != ERROR_OK)
2838 return retval;
2839 retval = cfi_query_u8(bank, 0, 0x24, &cfi_info->buf_write_timeout_max);
2840 if (retval != ERROR_OK)
2841 return retval;
2842 retval = cfi_query_u8(bank, 0, 0x25, &cfi_info->block_erase_timeout_max);
2843 if (retval != ERROR_OK)
2844 return retval;
2845 retval = cfi_query_u8(bank, 0, 0x26, &cfi_info->chip_erase_timeout_max);
2846 if (retval != ERROR_OK)
2847 return retval;
2848
2849 uint8_t data;
2850 retval = cfi_query_u8(bank, 0, 0x27, &data);
2851 if (retval != ERROR_OK)
2852 return retval;
2853 cfi_info->dev_size = 1 << data;
2854
2855 retval = cfi_query_u16(bank, 0, 0x28, &cfi_info->interface_desc);
2856 if (retval != ERROR_OK)
2857 return retval;
2858 retval = cfi_query_u16(bank, 0, 0x2a, &cfi_info->max_buf_write_size);
2859 if (retval != ERROR_OK)
2860 return retval;
2861 retval = cfi_query_u8(bank, 0, 0x2c, &cfi_info->num_erase_regions);
2862 if (retval != ERROR_OK)
2863 return retval;
2864
2865 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: 0x%x",
2866 cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2867
2868 if (cfi_info->num_erase_regions)
2869 {
2870 cfi_info->erase_region_info = malloc(sizeof(*cfi_info->erase_region_info)
2871 * cfi_info->num_erase_regions);
2872 for (i = 0; i < cfi_info->num_erase_regions; i++)
2873 {
2874 retval = cfi_query_u32(bank, 0, 0x2d + (4 * i), &cfi_info->erase_region_info[i]);
2875 if (retval != ERROR_OK)
2876 return retval;
2877 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "", i,
2878 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2879 (cfi_info->erase_region_info[i] >> 16) * 256);
2880 }
2881 }
2882 else
2883 {
2884 cfi_info->erase_region_info = NULL;
2885 }
2886
2887 /* We need to read the primary algorithm extended query table before calculating
2888 * the sector layout to be able to apply fixups
2889 */
2890 switch (cfi_info->pri_id)
2891 {
2892 /* Intel command set (standard and extended) */
2893 case 0x0001:
2894 case 0x0003:
2895 cfi_read_intel_pri_ext(bank);
2896 break;
2897 /* AMD/Spansion, Atmel, ... command set */
2898 case 0x0002:
2899 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2900 cfi_read_0002_pri_ext(bank);
2901 break;
2902 default:
2903 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2904 break;
2905 }
2906
2907 /* return to read array mode
2908 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2909 */
2910 if ((retval = cfi_reset(bank)) != ERROR_OK)
2911 {
2912 return retval;
2913 }
2914 } /* end CFI case */
2915
2916 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2917 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2918 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2919 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2920 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2921
2922 LOG_DEBUG("typ. word write timeout: %u us, typ. buf write timeout: %u us, "
2923 "typ. block erase timeout: %u ms, typ. chip erase timeout: %u ms",
2924 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2925 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2926
2927 LOG_DEBUG("max. word write timeout: %u us, max. buf write timeout: %u us, "
2928 "max. block erase timeout: %u ms, max. chip erase timeout: %u ms",
2929 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2930 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2931 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2932 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2933
2934 /* convert timeouts to real values in ms */
2935 cfi_info->word_write_timeout = DIV_ROUND_UP((1L << cfi_info->word_write_timeout_typ) *
2936 (1L << cfi_info->word_write_timeout_max), 1000);
2937 cfi_info->buf_write_timeout = DIV_ROUND_UP((1L << cfi_info->buf_write_timeout_typ) *
2938 (1L << cfi_info->buf_write_timeout_max), 1000);
2939 cfi_info->block_erase_timeout = (1L << cfi_info->block_erase_timeout_typ) *
2940 (1L << cfi_info->block_erase_timeout_max);
2941 cfi_info->chip_erase_timeout = (1L << cfi_info->chip_erase_timeout_typ) *
2942 (1L << cfi_info->chip_erase_timeout_max);
2943
2944 LOG_DEBUG("calculated word write timeout: %u ms, buf write timeout: %u ms, "
2945 "block erase timeout: %u ms, chip erase timeout: %u ms",
2946 cfi_info->word_write_timeout, cfi_info->buf_write_timeout,
2947 cfi_info->block_erase_timeout, cfi_info->chip_erase_timeout);
2948
2949 /* apply fixups depending on the primary command set */
2950 switch (cfi_info->pri_id)
2951 {
2952 /* Intel command set (standard and extended) */
2953 case 0x0001:
2954 case 0x0003:
2955 cfi_fixup(bank, cfi_0001_fixups);
2956 break;
2957 /* AMD/Spansion, Atmel, ... command set */
2958 case 0x0002:
2959 cfi_fixup(bank, cfi_0002_fixups);
2960 break;
2961 default:
2962 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2963 break;
2964 }
2965
2966 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2967 {
2968 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32
2969 " size flash was found", bank->size, cfi_info->dev_size);
2970 }
2971
2972 if (cfi_info->num_erase_regions == 0)
2973 {
2974 /* a device might have only one erase block, spanning the whole device */
2975 bank->num_sectors = 1;
2976 bank->sectors = malloc(sizeof(struct flash_sector));
2977
2978 bank->sectors[sector].offset = 0x0;
2979 bank->sectors[sector].size = bank->size;
2980 bank->sectors[sector].is_erased = -1;
2981 bank->sectors[sector].is_protected = -1;
2982 }
2983 else
2984 {
2985 uint32_t offset = 0;
2986
2987 for (i = 0; i < cfi_info->num_erase_regions; i++)
2988 {
2989 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2990 }
2991
2992 bank->num_sectors = num_sectors;
2993 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2994
2995 for (i = 0; i < cfi_info->num_erase_regions; i++)
2996 {
2997 uint32_t j;
2998 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2999 {
3000 bank->sectors[sector].offset = offset;
3001 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256)
3002 * bank->bus_width / bank->chip_width;
3003 offset += bank->sectors[sector].size;
3004 bank->sectors[sector].is_erased = -1;
3005 bank->sectors[sector].is_protected = -1;
3006 sector++;
3007 }
3008 }
3009 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
3010 {
3011 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
3012 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
3013 }
3014 }
3015
3016 cfi_info->probed = 1;
3017
3018 return ERROR_OK;
3019 }
3020
3021 static int cfi_auto_probe(struct flash_bank *bank)
3022 {
3023 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3024 if (cfi_info->probed)
3025 return ERROR_OK;
3026 return cfi_probe(bank);
3027 }
3028
3029 static int cfi_intel_protect_check(struct flash_bank *bank)
3030 {
3031 int retval;
3032 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3033 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
3034 int i;
3035
3036 /* check if block lock bits are supported on this device */
3037 if (!(pri_ext->blk_status_reg_mask & 0x1))
3038 return ERROR_FLASH_OPERATION_FAILED;
3039
3040 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
3041 {
3042 return retval;
3043 }
3044
3045 for (i = 0; i < bank->num_sectors; i++)
3046 {
3047 uint8_t block_status;
3048 retval = cfi_get_u8(bank, i, 0x2, &block_status);
3049 if (retval != ERROR_OK)
3050 return retval;
3051
3052 if (block_status & 1)
3053 bank->sectors[i].is_protected = 1;
3054 else
3055 bank->sectors[i].is_protected = 0;
3056 }
3057
3058 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
3059 }
3060
3061 static int cfi_spansion_protect_check(struct flash_bank *bank)
3062 {
3063 int retval;
3064 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3065 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
3066 int i;
3067
3068 if ((retval = cfi_send_command(bank, 0xaa,
3069 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
3070 {
3071 return retval;
3072 }
3073
3074 if ((retval = cfi_send_command(bank, 0x55,
3075 flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
3076 {
3077 return retval;
3078 }
3079
3080 if ((retval = cfi_send_command(bank, 0x90,
3081 flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
3082 {
3083 return retval;
3084 }
3085
3086 for (i = 0; i < bank->num_sectors; i++)
3087 {
3088 uint8_t block_status;
3089 retval = cfi_get_u8(bank, i, 0x2, &block_status);
3090 if (retval != ERROR_OK)
3091 return retval;
3092
3093 if (block_status & 1)
3094 bank->sectors[i].is_protected = 1;
3095 else
3096 bank->sectors[i].is_protected = 0;
3097 }
3098
3099 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
3100 }
3101
3102 static int cfi_protect_check(struct flash_bank *bank)
3103 {
3104 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3105
3106 if (bank->target->state != TARGET_HALTED)
3107 {
3108 LOG_ERROR("Target not halted");
3109 return ERROR_TARGET_NOT_HALTED;
3110 }
3111
3112 if (cfi_info->qry[0] != 'Q')
3113 return ERROR_FLASH_BANK_NOT_PROBED;
3114
3115 switch (cfi_info->pri_id)
3116 {
3117 case 1:
3118 case 3:
3119 return cfi_intel_protect_check(bank);
3120 break;
3121 case 2:
3122 return cfi_spansion_protect_check(bank);
3123 break;
3124 default:
3125 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3126 break;
3127 }
3128
3129 return ERROR_OK;
3130 }
3131
3132 static int get_cfi_info(struct flash_bank *bank, char *buf, int buf_size)
3133 {
3134 int printed;
3135 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3136
3137 if (cfi_info->qry[0] == 0xff)
3138 {
3139 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
3140 return ERROR_OK;
3141 }
3142
3143 if (cfi_info->not_cfi == 0)
3144 printed = snprintf(buf, buf_size, "\nCFI flash: ");
3145 else
3146 printed = snprintf(buf, buf_size, "\nnon-CFI flash: ");
3147 buf += printed;
3148 buf_size -= printed;
3149
3150 printed = snprintf(buf, buf_size, "mfr: 0x%4.4x, id:0x%4.4x\n\n",
3151 cfi_info->manufacturer, cfi_info->device_id);
3152 buf += printed;
3153 buf_size -= printed;
3154
3155 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: "
3156 "0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n",
3157 cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2],
3158 cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
3159 buf += printed;
3160 buf_size -= printed;
3161
3162 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, "
3163 "Vpp min: %u.%x, Vpp max: %u.%x\n",
3164 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
3165 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
3166 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
3167 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
3168 buf += printed;
3169 buf_size -= printed;
3170
3171 printed = snprintf(buf, buf_size, "typ. word write timeout: %u us, "
3172 "typ. buf write timeout: %u us, "
3173 "typ. block erase timeout: %u ms, "
3174 "typ. chip erase timeout: %u ms\n",
3175 1 << cfi_info->word_write_timeout_typ,
3176 1 << cfi_info->buf_write_timeout_typ,
3177 1 << cfi_info->block_erase_timeout_typ,
3178 1 << cfi_info->chip_erase_timeout_typ);
3179 buf += printed;
3180 buf_size -= printed;
3181
3182 printed = snprintf(buf, buf_size, "max. word write timeout: %u us, "
3183 "max. buf write timeout: %u us, max. "
3184 "block erase timeout: %u ms, max. chip erase timeout: %u ms\n",
3185 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
3186 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
3187 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
3188 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
3189 buf += printed;
3190 buf_size -= printed;
3191
3192 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, "
3193 "max buffer write size: 0x%x\n",
3194 cfi_info->dev_size,
3195 cfi_info->interface_desc,
3196 1 << cfi_info->max_buf_write_size);
3197 buf += printed;
3198 buf_size -= printed;
3199
3200 switch (cfi_info->pri_id)
3201 {
3202 case 1:
3203 case 3:
3204 cfi_intel_info(bank, buf, buf_size);
3205 break;
3206 case 2:
3207 cfi_spansion_info(bank, buf, buf_size);
3208 break;
3209 default:
3210 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
3211 break;
3212 }
3213
3214 return ERROR_OK;
3215 }
3216
3217 static void cfi_fixup_0002_write_buffer(struct flash_bank *bank, void *param)
3218 {
3219 struct cfi_flash_bank *cfi_info = bank->driver_priv;
3220
3221 /* disable write buffer for M29W128G */
3222 cfi_info->buf_write_timeout_typ = 0;
3223 }
3224
3225 struct flash_driver cfi_flash = {
3226 .name = "cfi",
3227 .flash_bank_command = cfi_flash_bank_command,
3228 .erase = cfi_erase,
3229 .protect = cfi_protect,
3230 .write = cfi_write,
3231 .read = cfi_read,
3232 .probe = cfi_probe,
3233 .auto_probe = cfi_auto_probe,
3234 /* FIXME: access flash at bus_width size */
3235 .erase_check = default_flash_blank_check,
3236 .protect_check = cfi_protect_check,
3237 .info = get_cfi_info,
3238 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)