NOR/CFI: identify memory accesses not using "bus_width".
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33
34
35 #define CFI_MAX_BUS_WIDTH 4
36 #define CFI_MAX_CHIP_WIDTH 4
37
38 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
39 #define CFI_MAX_INTEL_CODESIZE 256
40
41 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
42 {
43 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
44 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
45 };
46
47 /* CFI fixups foward declarations */
48 static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
49 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
50 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
51
52 /* fixup after reading cmdset 0002 primary query table */
53 static const struct cfi_fixup cfi_0002_fixups[] = {
54 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
55 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
56 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
57 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
58 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
59 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
60 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
61 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
63 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
64 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
65 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
66 {0, 0, NULL, NULL}
67 };
68
69 /* fixup after reading cmdset 0001 primary query table */
70 static const struct cfi_fixup cfi_0001_fixups[] = {
71 {0, 0, NULL, NULL}
72 };
73
74 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
75 {
76 struct cfi_flash_bank *cfi_info = bank->driver_priv;
77 const struct cfi_fixup *f;
78
79 for (f = fixups; f->fixup; f++)
80 {
81 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
82 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
83 {
84 f->fixup(bank, f->param);
85 }
86 }
87 }
88
89 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
90 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
91 {
92 struct cfi_flash_bank *cfi_info = bank->driver_priv;
93
94 if (cfi_info->x16_as_x8) offset *= 2;
95
96 /* while the sector list isn't built, only accesses to sector 0 work */
97 if (sector == 0)
98 return bank->base + offset * bank->bus_width;
99 else
100 {
101 if (!bank->sectors)
102 {
103 LOG_ERROR("BUG: sector list not yet built");
104 exit(-1);
105 }
106 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
107 }
108 }
109
110 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
111 {
112 int i;
113
114 /* clear whole buffer, to ensure bits that exceed the bus_width
115 * are set to zero
116 */
117 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
118 cmd_buf[i] = 0;
119
120 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
121 {
122 for (i = bank->bus_width; i > 0; i--)
123 {
124 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
125 }
126 }
127 else
128 {
129 for (i = 1; i <= bank->bus_width; i++)
130 {
131 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
132 }
133 }
134 }
135
136 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
137 {
138 uint8_t command[CFI_MAX_BUS_WIDTH];
139
140 cfi_command(bank, cmd, command);
141 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
142 }
143
144 /* read unsigned 8-bit value from the bank
145 * flash banks are expected to be made of similar chips
146 * the query result should be the same for all
147 */
148 static uint8_t cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset)
149 {
150 struct target *target = bank->target;
151 uint8_t data[CFI_MAX_BUS_WIDTH];
152
153 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
154
155 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
156 return data[0];
157 else
158 return data[bank->bus_width - 1];
159 }
160
161 /* read unsigned 8-bit value from the bank
162 * in case of a bank made of multiple chips,
163 * the individual values are ORed
164 */
165 static uint8_t cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset)
166 {
167 struct target *target = bank->target;
168 uint8_t data[CFI_MAX_BUS_WIDTH];
169 int i;
170
171 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
172
173 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
174 {
175 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
176 data[0] |= data[i];
177
178 return data[0];
179 }
180 else
181 {
182 uint8_t value = 0;
183 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
184 value |= data[bank->bus_width - 1 - i];
185
186 return value;
187 }
188 }
189
190 static uint16_t cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset)
191 {
192 struct target *target = bank->target;
193 struct cfi_flash_bank *cfi_info = bank->driver_priv;
194 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
195
196 if (cfi_info->x16_as_x8)
197 {
198 uint8_t i;
199 for (i = 0;i < 2;i++)
200 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
201 &data[i*bank->bus_width]);
202 }
203 else
204 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
205
206 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
207 return data[0] | data[bank->bus_width] << 8;
208 else
209 return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
210 }
211
212 static uint32_t cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset)
213 {
214 struct target *target = bank->target;
215 struct cfi_flash_bank *cfi_info = bank->driver_priv;
216 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
217
218 if (cfi_info->x16_as_x8)
219 {
220 uint8_t i;
221 for (i = 0;i < 4;i++)
222 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
223 &data[i*bank->bus_width]);
224 }
225 else
226 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
227
228 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
229 return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
230 else
231 return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
232 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
233 }
234
235 static int cfi_reset(struct flash_bank *bank)
236 {
237 struct cfi_flash_bank *cfi_info = bank->driver_priv;
238 int retval = ERROR_OK;
239
240 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
241 {
242 return retval;
243 }
244
245 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
246 {
247 return retval;
248 }
249
250 if (cfi_info->manufacturer == 0x20 &&
251 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
252 {
253 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
254 * so we send an extra 0xF0 reset to fix the bug */
255 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
256 {
257 return retval;
258 }
259 }
260
261 return retval;
262 }
263
264 static void cfi_intel_clear_status_register(struct flash_bank *bank)
265 {
266 struct target *target = bank->target;
267
268 if (target->state != TARGET_HALTED)
269 {
270 LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
271 exit(-1);
272 }
273
274 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
275 }
276
277 static uint8_t cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout)
278 {
279 uint8_t status;
280
281 while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
282 {
283 LOG_DEBUG("status: 0x%x", status);
284 alive_sleep(1);
285 }
286
287 /* mask out bit 0 (reserved) */
288 status = status & 0xfe;
289
290 LOG_DEBUG("status: 0x%x", status);
291
292 if ((status & 0x80) != 0x80)
293 {
294 LOG_ERROR("timeout while waiting for WSM to become ready");
295 }
296 else if (status != 0x80)
297 {
298 LOG_ERROR("status register: 0x%x", status);
299 if (status & 0x2)
300 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
301 if (status & 0x4)
302 LOG_ERROR("Program suspended");
303 if (status & 0x8)
304 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
305 if (status & 0x10)
306 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
307 if (status & 0x20)
308 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
309 if (status & 0x40)
310 LOG_ERROR("Block Erase Suspended");
311
312 cfi_intel_clear_status_register(bank);
313 }
314
315 return status;
316 }
317
318 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
319 {
320 uint8_t status, oldstatus;
321 struct cfi_flash_bank *cfi_info = bank->driver_priv;
322
323 oldstatus = cfi_get_u8(bank, 0, 0x0);
324
325 do {
326 status = cfi_get_u8(bank, 0, 0x0);
327 if ((status ^ oldstatus) & 0x40) {
328 if (status & cfi_info->status_poll_mask & 0x20) {
329 oldstatus = cfi_get_u8(bank, 0, 0x0);
330 status = cfi_get_u8(bank, 0, 0x0);
331 if ((status ^ oldstatus) & 0x40) {
332 LOG_ERROR("dq5 timeout, status: 0x%x", status);
333 return(ERROR_FLASH_OPERATION_FAILED);
334 } else {
335 LOG_DEBUG("status: 0x%x", status);
336 return(ERROR_OK);
337 }
338 }
339 } else { /* no toggle: finished, OK */
340 LOG_DEBUG("status: 0x%x", status);
341 return(ERROR_OK);
342 }
343
344 oldstatus = status;
345 alive_sleep(1);
346 } while (timeout-- > 0);
347
348 LOG_ERROR("timeout, status: 0x%x", status);
349
350 return(ERROR_FLASH_BUSY);
351 }
352
353 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
354 {
355 int retval;
356 struct cfi_flash_bank *cfi_info = bank->driver_priv;
357 struct cfi_intel_pri_ext *pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
358
359 cfi_info->pri_ext = pri_ext;
360
361 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
362 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
363 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
364
365 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
366 {
367 if ((retval = cfi_reset(bank)) != ERROR_OK)
368 {
369 return retval;
370 }
371 LOG_ERROR("Could not read bank flash bank information");
372 return ERROR_FLASH_BANK_INVALID;
373 }
374
375 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
376 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
377
378 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
379
380 pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
381 pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
382 pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
383
384 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
385 pri_ext->feature_support,
386 pri_ext->suspend_cmd_support,
387 pri_ext->blk_status_reg_mask);
388
389 pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
390 pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
391
392 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
393 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
394 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
395
396 pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
397 if (pri_ext->num_protection_fields != 1)
398 {
399 LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
400 }
401
402 pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
403 pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
404 pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
405
406 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
407
408 return ERROR_OK;
409 }
410
411 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
412 {
413 int retval;
414 struct cfi_flash_bank *cfi_info = bank->driver_priv;
415 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
416
417 cfi_info->pri_ext = pri_ext;
418
419 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
420 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
421 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
422
423 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
424 {
425 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
426 {
427 return retval;
428 }
429 LOG_ERROR("Could not read spansion bank information");
430 return ERROR_FLASH_BANK_INVALID;
431 }
432
433 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
434 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
435
436 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
437
438 pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
439 pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
440 pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
441 pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
442 pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
443 pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
444 pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
445 pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
446 pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
447 pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
448 pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
449
450 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
451 pri_ext->EraseSuspend, pri_ext->BlkProt);
452
453 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
454 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
455
456 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
457
458
459 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
460 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
461 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
462
463 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
464
465 /* default values for implementation specific workarounds */
466 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
467 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
468 pri_ext->_reversed_geometry = 0;
469
470 return ERROR_OK;
471 }
472
473 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
474 {
475 int retval;
476 struct cfi_atmel_pri_ext atmel_pri_ext;
477 struct cfi_flash_bank *cfi_info = bank->driver_priv;
478 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
479
480 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
481 * but a different primary extended query table.
482 * We read the atmel table, and prepare a valid AMD/Spansion query table.
483 */
484
485 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
486
487 cfi_info->pri_ext = pri_ext;
488
489 atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
490 atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
491 atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
492
493 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
494 {
495 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
496 {
497 return retval;
498 }
499 LOG_ERROR("Could not read atmel bank information");
500 return ERROR_FLASH_BANK_INVALID;
501 }
502
503 pri_ext->pri[0] = atmel_pri_ext.pri[0];
504 pri_ext->pri[1] = atmel_pri_ext.pri[1];
505 pri_ext->pri[2] = atmel_pri_ext.pri[2];
506
507 atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
508 atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
509
510 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
511
512 pri_ext->major_version = atmel_pri_ext.major_version;
513 pri_ext->minor_version = atmel_pri_ext.minor_version;
514
515 atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
516 atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
517 atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
518 atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
519
520 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
521 atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
522
523 if (atmel_pri_ext.features & 0x02)
524 pri_ext->EraseSuspend = 2;
525
526 if (atmel_pri_ext.bottom_boot)
527 pri_ext->TopBottom = 2;
528 else
529 pri_ext->TopBottom = 3;
530
531 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
532 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
533
534 return ERROR_OK;
535 }
536
537 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
538 {
539 struct cfi_flash_bank *cfi_info = bank->driver_priv;
540
541 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
542 {
543 return cfi_read_atmel_pri_ext(bank);
544 }
545 else
546 {
547 return cfi_read_spansion_pri_ext(bank);
548 }
549 }
550
551 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
552 {
553 int printed;
554 struct cfi_flash_bank *cfi_info = bank->driver_priv;
555 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
556
557 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
558 buf += printed;
559 buf_size -= printed;
560
561 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
562 pri_ext->pri[1], pri_ext->pri[2],
563 pri_ext->major_version, pri_ext->minor_version);
564 buf += printed;
565 buf_size -= printed;
566
567 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
568 (pri_ext->SiliconRevision) >> 2,
569 (pri_ext->SiliconRevision) & 0x03);
570 buf += printed;
571 buf_size -= printed;
572
573 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
574 pri_ext->EraseSuspend,
575 pri_ext->BlkProt);
576 buf += printed;
577 buf_size -= printed;
578
579 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
580 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
581 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
582
583 return ERROR_OK;
584 }
585
586 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
587 {
588 int printed;
589 struct cfi_flash_bank *cfi_info = bank->driver_priv;
590 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
591
592 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
593 buf += printed;
594 buf_size -= printed;
595
596 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
597 buf += printed;
598 buf_size -= printed;
599
600 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
601 buf += printed;
602 buf_size -= printed;
603
604 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
605 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
606 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
607 buf += printed;
608 buf_size -= printed;
609
610 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
611
612 return ERROR_OK;
613 }
614
615 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
616 */
617 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
618 {
619 struct cfi_flash_bank *cfi_info;
620
621 if (CMD_ARGC < 6)
622 {
623 LOG_WARNING("incomplete flash_bank cfi configuration");
624 return ERROR_FLASH_BANK_INVALID;
625 }
626
627 /* both widths must:
628 * - not exceed max value;
629 * - not be null;
630 * - be equal to a power of 2.
631 * bus must be wide enought to hold one chip */
632 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
633 || (bank->bus_width > CFI_MAX_BUS_WIDTH)
634 || (bank->chip_width == 0)
635 || (bank->bus_width == 0)
636 || (bank->chip_width & (bank->chip_width - 1))
637 || (bank->bus_width & (bank->bus_width - 1))
638 || (bank->chip_width > bank->bus_width))
639 {
640 LOG_ERROR("chip and bus width have to specified in bytes");
641 return ERROR_FLASH_BANK_INVALID;
642 }
643
644 cfi_info = malloc(sizeof(struct cfi_flash_bank));
645 cfi_info->probed = 0;
646 bank->driver_priv = cfi_info;
647
648 cfi_info->write_algorithm = NULL;
649
650 cfi_info->x16_as_x8 = 0;
651 cfi_info->jedec_probe = 0;
652 cfi_info->not_cfi = 0;
653
654 for (unsigned i = 6; i < CMD_ARGC; i++)
655 {
656 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
657 {
658 cfi_info->x16_as_x8 = 1;
659 }
660 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
661 {
662 cfi_info->jedec_probe = 1;
663 }
664 }
665
666 cfi_info->write_algorithm = NULL;
667
668 /* bank wasn't probed yet */
669 cfi_info->qry[0] = -1;
670
671 return ERROR_OK;
672 }
673
674 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
675 {
676 int retval;
677 struct cfi_flash_bank *cfi_info = bank->driver_priv;
678 int i;
679
680 cfi_intel_clear_status_register(bank);
681
682 for (i = first; i <= last; i++)
683 {
684 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
685 {
686 return retval;
687 }
688
689 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
690 {
691 return retval;
692 }
693
694 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
695 bank->sectors[i].is_erased = 1;
696 else
697 {
698 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
699 {
700 return retval;
701 }
702
703 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
704 return ERROR_FLASH_OPERATION_FAILED;
705 }
706 }
707
708 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
709 }
710
711 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
712 {
713 int retval;
714 struct cfi_flash_bank *cfi_info = bank->driver_priv;
715 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
716 int i;
717
718 for (i = first; i <= last; i++)
719 {
720 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
721 {
722 return retval;
723 }
724
725 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
726 {
727 return retval;
728 }
729
730 if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
731 {
732 return retval;
733 }
734
735 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
736 {
737 return retval;
738 }
739
740 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
741 {
742 return retval;
743 }
744
745 if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
746 {
747 return retval;
748 }
749
750 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
751 bank->sectors[i].is_erased = 1;
752 else
753 {
754 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
755 {
756 return retval;
757 }
758
759 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
760 return ERROR_FLASH_OPERATION_FAILED;
761 }
762 }
763
764 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
765 }
766
767 static int cfi_erase(struct flash_bank *bank, int first, int last)
768 {
769 struct cfi_flash_bank *cfi_info = bank->driver_priv;
770
771 if (bank->target->state != TARGET_HALTED)
772 {
773 LOG_ERROR("Target not halted");
774 return ERROR_TARGET_NOT_HALTED;
775 }
776
777 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
778 {
779 return ERROR_FLASH_SECTOR_INVALID;
780 }
781
782 if (cfi_info->qry[0] != 'Q')
783 return ERROR_FLASH_BANK_NOT_PROBED;
784
785 switch (cfi_info->pri_id)
786 {
787 case 1:
788 case 3:
789 return cfi_intel_erase(bank, first, last);
790 break;
791 case 2:
792 return cfi_spansion_erase(bank, first, last);
793 break;
794 default:
795 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
796 break;
797 }
798
799 return ERROR_OK;
800 }
801
802 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
803 {
804 int retval;
805 struct cfi_flash_bank *cfi_info = bank->driver_priv;
806 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
807 struct target *target = bank->target; /* FIXME: to be removed */
808 uint8_t command[CFI_MAX_BUS_WIDTH]; /* FIXME: to be removed */
809 int retry = 0;
810 int i;
811
812 /* if the device supports neither legacy lock/unlock (bit 3) nor
813 * instant individual block locking (bit 5).
814 */
815 if (!(pri_ext->feature_support & 0x28))
816 return ERROR_FLASH_OPERATION_FAILED;
817
818 cfi_intel_clear_status_register(bank);
819
820 for (i = first; i <= last; i++)
821 {
822 cfi_command(bank, 0x60, command); /* FIXME: to be removed */
823 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
824 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
825 {
826 return retval;
827 }
828 if (set)
829 {
830 cfi_command(bank, 0x01, command); /* FIXME: to be removed */
831 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
832 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
833 {
834 return retval;
835 }
836 bank->sectors[i].is_protected = 1;
837 }
838 else
839 {
840 cfi_command(bank, 0xd0, command); /* FIXME: to be removed */
841 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
842 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
843 {
844 return retval;
845 }
846 bank->sectors[i].is_protected = 0;
847 }
848
849 /* instant individual block locking doesn't require reading of the status register */
850 if (!(pri_ext->feature_support & 0x20))
851 {
852 /* Clear lock bits operation may take up to 1.4s */
853 cfi_intel_wait_status_busy(bank, 1400);
854 }
855 else
856 {
857 uint8_t block_status;
858 /* read block lock bit, to verify status */
859 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
860 {
861 return retval;
862 }
863 block_status = cfi_get_u8(bank, i, 0x2);
864
865 if ((block_status & 0x1) != set)
866 {
867 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
868 if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
869 {
870 return retval;
871 }
872 cfi_intel_wait_status_busy(bank, 10);
873
874 if (retry > 10)
875 return ERROR_FLASH_OPERATION_FAILED;
876 else
877 {
878 i--;
879 retry++;
880 }
881 }
882 }
883 }
884
885 /* if the device doesn't support individual block lock bits set/clear,
886 * all blocks have been unlocked in parallel, so we set those that should be protected
887 */
888 if ((!set) && (!(pri_ext->feature_support & 0x20)))
889 {
890 /* FIX!!! this code path is broken!!!
891 *
892 * The correct approach is:
893 *
894 * 1. read out current protection status
895 *
896 * 2. override read out protection status w/unprotected.
897 *
898 * 3. re-protect what should be protected.
899 *
900 */
901 for (i = 0; i < bank->num_sectors; i++)
902 {
903 if (bank->sectors[i].is_protected == 1)
904 {
905 cfi_intel_clear_status_register(bank);
906
907 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
908 {
909 return retval;
910 }
911
912 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
913 {
914 return retval;
915 }
916
917 cfi_intel_wait_status_busy(bank, 100);
918 }
919 }
920 }
921
922 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
923 }
924
925 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
926 {
927 struct cfi_flash_bank *cfi_info = bank->driver_priv;
928
929 if (bank->target->state != TARGET_HALTED)
930 {
931 LOG_ERROR("Target not halted");
932 return ERROR_TARGET_NOT_HALTED;
933 }
934
935 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
936 {
937 LOG_ERROR("Invalid sector range");
938 return ERROR_FLASH_SECTOR_INVALID;
939 }
940
941 if (cfi_info->qry[0] != 'Q')
942 return ERROR_FLASH_BANK_NOT_PROBED;
943
944 switch (cfi_info->pri_id)
945 {
946 case 1:
947 case 3:
948 return cfi_intel_protect(bank, set, first, last);
949 break;
950 default:
951 LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
952 return ERROR_FAIL;
953 }
954 }
955
956 /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
957 static void cfi_add_byte(struct flash_bank *bank, uint8_t *word, uint8_t byte)
958 {
959 /* struct target *target = bank->target; */
960
961 int i;
962
963 /* NOTE:
964 * The data to flash must not be changed in endian! We write a bytestrem in
965 * target byte order already. Only the control and status byte lane of the flash
966 * WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t
967 * word (data seems to be in the upper or lower byte lane for uint16_t accesses).
968 */
969
970 #if 0
971 if (target->endianness == TARGET_LITTLE_ENDIAN)
972 {
973 #endif
974 /* shift bytes */
975 for (i = 0; i < bank->bus_width - 1; i++)
976 word[i] = word[i + 1];
977 word[bank->bus_width - 1] = byte;
978 #if 0
979 }
980 else
981 {
982 /* shift bytes */
983 for (i = bank->bus_width - 1; i > 0; i--)
984 word[i] = word[i - 1];
985 word[0] = byte;
986 }
987 #endif
988 }
989
990 /* Convert code image to target endian */
991 /* FIXME create general block conversion fcts in target.c?) */
992 static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
993 {
994 uint32_t i;
995 for (i = 0; i< count; i++)
996 {
997 target_buffer_set_u32(target, dest, *src);
998 dest += 4;
999 src++;
1000 }
1001 }
1002
1003 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
1004 {
1005 struct target *target = bank->target;
1006
1007 uint8_t buf[CFI_MAX_BUS_WIDTH];
1008 cfi_command(bank, cmd, buf);
1009 switch (bank->bus_width)
1010 {
1011 case 1 :
1012 return buf[0];
1013 break;
1014 case 2 :
1015 return target_buffer_get_u16(target, buf);
1016 break;
1017 case 4 :
1018 return target_buffer_get_u32(target, buf);
1019 break;
1020 default :
1021 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1022 return 0;
1023 }
1024 }
1025
1026 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1027 {
1028 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1029 struct target *target = bank->target;
1030 struct reg_param reg_params[7];
1031 struct arm_algorithm armv4_5_info;
1032 struct working_area *source;
1033 uint32_t buffer_size = 32768;
1034 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1035
1036 /* algorithm register usage:
1037 * r0: source address (in RAM)
1038 * r1: target address (in Flash)
1039 * r2: count
1040 * r3: flash write command
1041 * r4: status byte (returned to host)
1042 * r5: busy test pattern
1043 * r6: error test pattern
1044 */
1045
1046 static const uint32_t word_32_code[] = {
1047 0xe4904004, /* loop: ldr r4, [r0], #4 */
1048 0xe5813000, /* str r3, [r1] */
1049 0xe5814000, /* str r4, [r1] */
1050 0xe5914000, /* busy: ldr r4, [r1] */
1051 0xe0047005, /* and r7, r4, r5 */
1052 0xe1570005, /* cmp r7, r5 */
1053 0x1afffffb, /* bne busy */
1054 0xe1140006, /* tst r4, r6 */
1055 0x1a000003, /* bne done */
1056 0xe2522001, /* subs r2, r2, #1 */
1057 0x0a000001, /* beq done */
1058 0xe2811004, /* add r1, r1 #4 */
1059 0xeafffff2, /* b loop */
1060 0xeafffffe /* done: b -2 */
1061 };
1062
1063 static const uint32_t word_16_code[] = {
1064 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1065 0xe1c130b0, /* strh r3, [r1] */
1066 0xe1c140b0, /* strh r4, [r1] */
1067 0xe1d140b0, /* busy ldrh r4, [r1] */
1068 0xe0047005, /* and r7, r4, r5 */
1069 0xe1570005, /* cmp r7, r5 */
1070 0x1afffffb, /* bne busy */
1071 0xe1140006, /* tst r4, r6 */
1072 0x1a000003, /* bne done */
1073 0xe2522001, /* subs r2, r2, #1 */
1074 0x0a000001, /* beq done */
1075 0xe2811002, /* add r1, r1 #2 */
1076 0xeafffff2, /* b loop */
1077 0xeafffffe /* done: b -2 */
1078 };
1079
1080 static const uint32_t word_8_code[] = {
1081 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1082 0xe5c13000, /* strb r3, [r1] */
1083 0xe5c14000, /* strb r4, [r1] */
1084 0xe5d14000, /* busy ldrb r4, [r1] */
1085 0xe0047005, /* and r7, r4, r5 */
1086 0xe1570005, /* cmp r7, r5 */
1087 0x1afffffb, /* bne busy */
1088 0xe1140006, /* tst r4, r6 */
1089 0x1a000003, /* bne done */
1090 0xe2522001, /* subs r2, r2, #1 */
1091 0x0a000001, /* beq done */
1092 0xe2811001, /* add r1, r1 #1 */
1093 0xeafffff2, /* b loop */
1094 0xeafffffe /* done: b -2 */
1095 };
1096 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1097 const uint32_t *target_code_src;
1098 uint32_t target_code_size;
1099 int retval = ERROR_OK;
1100
1101
1102 cfi_intel_clear_status_register(bank);
1103
1104 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1105 armv4_5_info.core_mode = ARM_MODE_SVC;
1106 armv4_5_info.core_state = ARM_STATE_ARM;
1107
1108 /* If we are setting up the write_algorith, we need target_code_src */
1109 /* if not we only need target_code_size. */
1110
1111 /* However, we don't want to create multiple code paths, so we */
1112 /* do the unecessary evaluation of target_code_src, which the */
1113 /* compiler will probably nicely optimize away if not needed */
1114
1115 /* prepare algorithm code for target endian */
1116 switch (bank->bus_width)
1117 {
1118 case 1 :
1119 target_code_src = word_8_code;
1120 target_code_size = sizeof(word_8_code);
1121 break;
1122 case 2 :
1123 target_code_src = word_16_code;
1124 target_code_size = sizeof(word_16_code);
1125 break;
1126 case 4 :
1127 target_code_src = word_32_code;
1128 target_code_size = sizeof(word_32_code);
1129 break;
1130 default:
1131 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1132 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1133 }
1134
1135 /* flash write code */
1136 if (!cfi_info->write_algorithm)
1137 {
1138 if (target_code_size > sizeof(target_code))
1139 {
1140 LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1141 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1142 }
1143 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1144
1145 /* Get memory for block write handler */
1146 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1147 if (retval != ERROR_OK)
1148 {
1149 LOG_WARNING("No working area available, can't do block memory writes");
1150 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1151 };
1152
1153 /* write algorithm code to working area */
1154 retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
1155 if (retval != ERROR_OK)
1156 {
1157 LOG_ERROR("Unable to write block write code to target");
1158 goto cleanup;
1159 }
1160 }
1161
1162 /* Get a workspace buffer for the data to flash starting with 32k size.
1163 Half size until buffer would be smaller 256 Bytem then fail back */
1164 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1165 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1166 {
1167 buffer_size /= 2;
1168 if (buffer_size <= 256)
1169 {
1170 LOG_WARNING("no large enough working area available, can't do block memory writes");
1171 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1172 goto cleanup;
1173 }
1174 };
1175
1176 /* setup algo registers */
1177 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1178 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1179 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1180 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1181 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1182 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1183 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1184
1185 /* prepare command and status register patterns */
1186 write_command_val = cfi_command_val(bank, 0x40);
1187 busy_pattern_val = cfi_command_val(bank, 0x80);
1188 error_pattern_val = cfi_command_val(bank, 0x7e);
1189
1190 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
1191
1192 /* Programming main loop */
1193 while (count > 0)
1194 {
1195 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1196 uint32_t wsm_error;
1197
1198 if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
1199 {
1200 goto cleanup;
1201 }
1202
1203 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1204 buf_set_u32(reg_params[1].value, 0, 32, address);
1205 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1206
1207 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1208 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1209 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1210
1211 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1212
1213 /* Execute algorithm, assume breakpoint for last instruction */
1214 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1215 cfi_info->write_algorithm->address,
1216 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1217 10000, /* 10s should be enough for max. 32k of data */
1218 &armv4_5_info);
1219
1220 /* On failure try a fall back to direct word writes */
1221 if (retval != ERROR_OK)
1222 {
1223 cfi_intel_clear_status_register(bank);
1224 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1225 retval = ERROR_FLASH_OPERATION_FAILED;
1226 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1227 /* FIXME To allow fall back or recovery, we must save the actual status
1228 somewhere, so that a higher level code can start recovery. */
1229 goto cleanup;
1230 }
1231
1232 /* Check return value from algo code */
1233 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1234 if (wsm_error)
1235 {
1236 /* read status register (outputs debug inforation) */
1237 cfi_intel_wait_status_busy(bank, 100);
1238 cfi_intel_clear_status_register(bank);
1239 retval = ERROR_FLASH_OPERATION_FAILED;
1240 goto cleanup;
1241 }
1242
1243 buffer += thisrun_count;
1244 address += thisrun_count;
1245 count -= thisrun_count;
1246 }
1247
1248 /* free up resources */
1249 cleanup:
1250 if (source)
1251 target_free_working_area(target, source);
1252
1253 if (cfi_info->write_algorithm)
1254 {
1255 target_free_working_area(target, cfi_info->write_algorithm);
1256 cfi_info->write_algorithm = NULL;
1257 }
1258
1259 destroy_reg_param(&reg_params[0]);
1260 destroy_reg_param(&reg_params[1]);
1261 destroy_reg_param(&reg_params[2]);
1262 destroy_reg_param(&reg_params[3]);
1263 destroy_reg_param(&reg_params[4]);
1264 destroy_reg_param(&reg_params[5]);
1265 destroy_reg_param(&reg_params[6]);
1266
1267 return retval;
1268 }
1269
1270 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1271 {
1272 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1273 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1274 struct target *target = bank->target;
1275 struct reg_param reg_params[10];
1276 struct arm_algorithm armv4_5_info;
1277 struct working_area *source;
1278 uint32_t buffer_size = 32768;
1279 uint32_t status;
1280 int retval, retvaltemp;
1281 int exit_code = ERROR_OK;
1282
1283 /* input parameters - */
1284 /* R0 = source address */
1285 /* R1 = destination address */
1286 /* R2 = number of writes */
1287 /* R3 = flash write command */
1288 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1289 /* output parameters - */
1290 /* R5 = 0x80 ok 0x00 bad */
1291 /* temp registers - */
1292 /* R6 = value read from flash to test status */
1293 /* R7 = holding register */
1294 /* unlock registers - */
1295 /* R8 = unlock1_addr */
1296 /* R9 = unlock1_cmd */
1297 /* R10 = unlock2_addr */
1298 /* R11 = unlock2_cmd */
1299
1300 static const uint32_t word_32_code[] = {
1301 /* 00008100 <sp_32_code>: */
1302 0xe4905004, /* ldr r5, [r0], #4 */
1303 0xe5889000, /* str r9, [r8] */
1304 0xe58ab000, /* str r11, [r10] */
1305 0xe5883000, /* str r3, [r8] */
1306 0xe5815000, /* str r5, [r1] */
1307 0xe1a00000, /* nop */
1308 /* */
1309 /* 00008110 <sp_32_busy>: */
1310 0xe5916000, /* ldr r6, [r1] */
1311 0xe0257006, /* eor r7, r5, r6 */
1312 0xe0147007, /* ands r7, r4, r7 */
1313 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1314 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1315 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1316 0xe5916000, /* ldr r6, [r1] */
1317 0xe0257006, /* eor r7, r5, r6 */
1318 0xe0147007, /* ands r7, r4, r7 */
1319 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1320 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1321 0x1a000004, /* bne 8154 <sp_32_done> */
1322 /* */
1323 /* 00008140 <sp_32_cont>: */
1324 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1325 0x03a05080, /* moveq r5, #128 ; 0x80 */
1326 0x0a000001, /* beq 8154 <sp_32_done> */
1327 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1328 0xeaffffe8, /* b 8100 <sp_32_code> */
1329 /* */
1330 /* 00008154 <sp_32_done>: */
1331 0xeafffffe /* b 8154 <sp_32_done> */
1332 };
1333
1334 static const uint32_t word_16_code[] = {
1335 /* 00008158 <sp_16_code>: */
1336 0xe0d050b2, /* ldrh r5, [r0], #2 */
1337 0xe1c890b0, /* strh r9, [r8] */
1338 0xe1cab0b0, /* strh r11, [r10] */
1339 0xe1c830b0, /* strh r3, [r8] */
1340 0xe1c150b0, /* strh r5, [r1] */
1341 0xe1a00000, /* nop (mov r0,r0) */
1342 /* */
1343 /* 00008168 <sp_16_busy>: */
1344 0xe1d160b0, /* ldrh r6, [r1] */
1345 0xe0257006, /* eor r7, r5, r6 */
1346 0xe0147007, /* ands r7, r4, r7 */
1347 0x0a000007, /* beq 8198 <sp_16_cont> */
1348 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1349 0x0afffff9, /* beq 8168 <sp_16_busy> */
1350 0xe1d160b0, /* ldrh r6, [r1] */
1351 0xe0257006, /* eor r7, r5, r6 */
1352 0xe0147007, /* ands r7, r4, r7 */
1353 0x0a000001, /* beq 8198 <sp_16_cont> */
1354 0xe3a05000, /* mov r5, #0 ; 0x0 */
1355 0x1a000004, /* bne 81ac <sp_16_done> */
1356 /* */
1357 /* 00008198 <sp_16_cont>: */
1358 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1359 0x03a05080, /* moveq r5, #128 ; 0x80 */
1360 0x0a000001, /* beq 81ac <sp_16_done> */
1361 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1362 0xeaffffe8, /* b 8158 <sp_16_code> */
1363 /* */
1364 /* 000081ac <sp_16_done>: */
1365 0xeafffffe /* b 81ac <sp_16_done> */
1366 };
1367
1368 static const uint32_t word_16_code_dq7only[] = {
1369 /* <sp_16_code>: */
1370 0xe0d050b2, /* ldrh r5, [r0], #2 */
1371 0xe1c890b0, /* strh r9, [r8] */
1372 0xe1cab0b0, /* strh r11, [r10] */
1373 0xe1c830b0, /* strh r3, [r8] */
1374 0xe1c150b0, /* strh r5, [r1] */
1375 0xe1a00000, /* nop (mov r0,r0) */
1376 /* */
1377 /* <sp_16_busy>: */
1378 0xe1d160b0, /* ldrh r6, [r1] */
1379 0xe0257006, /* eor r7, r5, r6 */
1380 0xe2177080, /* ands r7, #0x80 */
1381 0x1afffffb, /* bne 8168 <sp_16_busy> */
1382 /* */
1383 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1384 0x03a05080, /* moveq r5, #128 ; 0x80 */
1385 0x0a000001, /* beq 81ac <sp_16_done> */
1386 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1387 0xeafffff0, /* b 8158 <sp_16_code> */
1388 /* */
1389 /* 000081ac <sp_16_done>: */
1390 0xeafffffe /* b 81ac <sp_16_done> */
1391 };
1392
1393 static const uint32_t word_8_code[] = {
1394 /* 000081b0 <sp_16_code_end>: */
1395 0xe4d05001, /* ldrb r5, [r0], #1 */
1396 0xe5c89000, /* strb r9, [r8] */
1397 0xe5cab000, /* strb r11, [r10] */
1398 0xe5c83000, /* strb r3, [r8] */
1399 0xe5c15000, /* strb r5, [r1] */
1400 0xe1a00000, /* nop (mov r0,r0) */
1401 /* */
1402 /* 000081c0 <sp_8_busy>: */
1403 0xe5d16000, /* ldrb r6, [r1] */
1404 0xe0257006, /* eor r7, r5, r6 */
1405 0xe0147007, /* ands r7, r4, r7 */
1406 0x0a000007, /* beq 81f0 <sp_8_cont> */
1407 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1408 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1409 0xe5d16000, /* ldrb r6, [r1] */
1410 0xe0257006, /* eor r7, r5, r6 */
1411 0xe0147007, /* ands r7, r4, r7 */
1412 0x0a000001, /* beq 81f0 <sp_8_cont> */
1413 0xe3a05000, /* mov r5, #0 ; 0x0 */
1414 0x1a000004, /* bne 8204 <sp_8_done> */
1415 /* */
1416 /* 000081f0 <sp_8_cont>: */
1417 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1418 0x03a05080, /* moveq r5, #128 ; 0x80 */
1419 0x0a000001, /* beq 8204 <sp_8_done> */
1420 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1421 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1422 /* */
1423 /* 00008204 <sp_8_done>: */
1424 0xeafffffe /* b 8204 <sp_8_done> */
1425 };
1426
1427 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1428 armv4_5_info.core_mode = ARM_MODE_SVC;
1429 armv4_5_info.core_state = ARM_STATE_ARM;
1430
1431 int target_code_size;
1432 const uint32_t *target_code_src;
1433
1434 switch (bank->bus_width)
1435 {
1436 case 1 :
1437 target_code_src = word_8_code;
1438 target_code_size = sizeof(word_8_code);
1439 break;
1440 case 2 :
1441 /* Check for DQ5 support */
1442 if( cfi_info->status_poll_mask & (1 << 5) )
1443 {
1444 target_code_src = word_16_code;
1445 target_code_size = sizeof(word_16_code);
1446 }
1447 else
1448 {
1449 /* No DQ5 support. Use DQ7 DATA# polling only. */
1450 target_code_src = word_16_code_dq7only;
1451 target_code_size = sizeof(word_16_code_dq7only);
1452 }
1453 break;
1454 case 4 :
1455 target_code_src = word_32_code;
1456 target_code_size = sizeof(word_32_code);
1457 break;
1458 default:
1459 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1460 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1461 }
1462
1463 /* flash write code */
1464 if (!cfi_info->write_algorithm)
1465 {
1466 uint8_t *target_code;
1467
1468 /* convert bus-width dependent algorithm code to correct endiannes */
1469 target_code = malloc(target_code_size);
1470 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1471
1472 /* allocate working area */
1473 retval = target_alloc_working_area(target, target_code_size,
1474 &cfi_info->write_algorithm);
1475 if (retval != ERROR_OK)
1476 {
1477 free(target_code);
1478 return retval;
1479 }
1480
1481 /* write algorithm code to working area */
1482 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1483 target_code_size, target_code)) != ERROR_OK)
1484 {
1485 free(target_code);
1486 return retval;
1487 }
1488
1489 free(target_code);
1490 }
1491 /* the following code still assumes target code is fixed 24*4 bytes */
1492
1493 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1494 {
1495 buffer_size /= 2;
1496 if (buffer_size <= 256)
1497 {
1498 /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
1499 if (cfi_info->write_algorithm)
1500 target_free_working_area(target, cfi_info->write_algorithm);
1501
1502 LOG_WARNING("not enough working area available, can't do block memory writes");
1503 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1504 }
1505 };
1506
1507 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1508 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1509 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1510 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1511 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1512 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1513 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1514 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1515 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1516 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1517
1518 while (count > 0)
1519 {
1520 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1521
1522 retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer);
1523
1524 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1525 buf_set_u32(reg_params[1].value, 0, 32, address);
1526 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1527 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1528 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1529 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1530 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1531 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1532 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1533
1534 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1535 cfi_info->write_algorithm->address,
1536 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1537 10000, &armv4_5_info);
1538
1539 status = buf_get_u32(reg_params[5].value, 0, 32);
1540
1541 if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80)
1542 {
1543 LOG_DEBUG("status: 0x%" PRIx32 , status);
1544 exit_code = ERROR_FLASH_OPERATION_FAILED;
1545 break;
1546 }
1547
1548 buffer += thisrun_count;
1549 address += thisrun_count;
1550 count -= thisrun_count;
1551 }
1552
1553 target_free_all_working_areas(target);
1554
1555 destroy_reg_param(&reg_params[0]);
1556 destroy_reg_param(&reg_params[1]);
1557 destroy_reg_param(&reg_params[2]);
1558 destroy_reg_param(&reg_params[3]);
1559 destroy_reg_param(&reg_params[4]);
1560 destroy_reg_param(&reg_params[5]);
1561 destroy_reg_param(&reg_params[6]);
1562 destroy_reg_param(&reg_params[7]);
1563 destroy_reg_param(&reg_params[8]);
1564 destroy_reg_param(&reg_params[9]);
1565
1566 return exit_code;
1567 }
1568
1569 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1570 {
1571 int retval;
1572 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1573 struct target *target = bank->target;
1574
1575 cfi_intel_clear_status_register(bank);
1576 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
1577 {
1578 return retval;
1579 }
1580
1581 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1582 {
1583 return retval;
1584 }
1585
1586 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
1587 {
1588 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1589 {
1590 return retval;
1591 }
1592
1593 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1594 return ERROR_FLASH_OPERATION_FAILED;
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1601 {
1602 int retval;
1603 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1604 struct target *target = bank->target;
1605
1606 /* Calculate buffer size and boundary mask */
1607 /* buffersize is (buffer size per chip) * (number of chips) */
1608 /* bufferwsize is buffersize in words */
1609 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1610 uint32_t buffermask = buffersize-1;
1611 uint32_t bufferwsize = buffersize / bank->bus_width;
1612
1613 /* Check for valid range */
1614 if (address & buffermask)
1615 {
1616 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
1617 bank->base, address, cfi_info->max_buf_write_size);
1618 return ERROR_FLASH_OPERATION_FAILED;
1619 }
1620
1621 /* Check for valid size */
1622 if (wordcount > bufferwsize)
1623 {
1624 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
1625 return ERROR_FLASH_OPERATION_FAILED;
1626 }
1627
1628 /* Write to flash buffer */
1629 cfi_intel_clear_status_register(bank);
1630
1631 /* Initiate buffer operation _*/
1632 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
1633 {
1634 return retval;
1635 }
1636 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1637 {
1638 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1639 {
1640 return retval;
1641 }
1642
1643 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1644 return ERROR_FLASH_OPERATION_FAILED;
1645 }
1646
1647 /* Write buffer wordcount-1 and data words */
1648 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1649 {
1650 return retval;
1651 }
1652
1653 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1654 {
1655 return retval;
1656 }
1657
1658 /* Commit write operation */
1659 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
1660 {
1661 return retval;
1662 }
1663 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1664 {
1665 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1666 {
1667 return retval;
1668 }
1669
1670 LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
1671 return ERROR_FLASH_OPERATION_FAILED;
1672 }
1673
1674 return ERROR_OK;
1675 }
1676
1677 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1678 {
1679 int retval;
1680 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1681 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1682 struct target *target = bank->target;
1683
1684 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1685 {
1686 return retval;
1687 }
1688
1689 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1690 {
1691 return retval;
1692 }
1693
1694 if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1695 {
1696 return retval;
1697 }
1698
1699 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1700 {
1701 return retval;
1702 }
1703
1704 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1705 {
1706 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1707 {
1708 return retval;
1709 }
1710
1711 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1712 return ERROR_FLASH_OPERATION_FAILED;
1713 }
1714
1715 return ERROR_OK;
1716 }
1717
1718 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1719 {
1720 int retval;
1721 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1722 struct target *target = bank->target;
1723 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1724
1725 /* Calculate buffer size and boundary mask */
1726 /* buffersize is (buffer size per chip) * (number of chips) */
1727 /* bufferwsize is buffersize in words */
1728 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1729 uint32_t buffermask = buffersize-1;
1730 uint32_t bufferwsize = buffersize / bank->bus_width;
1731
1732 /* Check for valid range */
1733 if (address & buffermask)
1734 {
1735 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
1736 return ERROR_FLASH_OPERATION_FAILED;
1737 }
1738
1739 /* Check for valid size */
1740 if (wordcount > bufferwsize)
1741 {
1742 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
1743 return ERROR_FLASH_OPERATION_FAILED;
1744 }
1745
1746 // Unlock
1747 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1748 {
1749 return retval;
1750 }
1751
1752 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1753 {
1754 return retval;
1755 }
1756
1757 // Buffer load command
1758 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
1759 {
1760 return retval;
1761 }
1762
1763 /* Write buffer wordcount-1 and data words */
1764 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1765 {
1766 return retval;
1767 }
1768
1769 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1770 {
1771 return retval;
1772 }
1773
1774 /* Commit write operation */
1775 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
1776 {
1777 return retval;
1778 }
1779
1780 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1781 {
1782 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1783 {
1784 return retval;
1785 }
1786
1787 LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
1788 return ERROR_FLASH_OPERATION_FAILED;
1789 }
1790
1791 return ERROR_OK;
1792 }
1793
1794 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1795 {
1796 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1797
1798 switch (cfi_info->pri_id)
1799 {
1800 case 1:
1801 case 3:
1802 return cfi_intel_write_word(bank, word, address);
1803 break;
1804 case 2:
1805 return cfi_spansion_write_word(bank, word, address);
1806 break;
1807 default:
1808 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1809 break;
1810 }
1811
1812 return ERROR_FLASH_OPERATION_FAILED;
1813 }
1814
1815 static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1816 {
1817 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1818
1819 switch (cfi_info->pri_id)
1820 {
1821 case 1:
1822 case 3:
1823 return cfi_intel_write_words(bank, word, wordcount, address);
1824 break;
1825 case 2:
1826 return cfi_spansion_write_words(bank, word, wordcount, address);
1827 break;
1828 default:
1829 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1830 break;
1831 }
1832
1833 return ERROR_FLASH_OPERATION_FAILED;
1834 }
1835
1836 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
1837 {
1838 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1839 struct target *target = bank->target;
1840 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
1841 uint32_t write_p, copy_p;
1842 int align; /* number of unaligned bytes */
1843 int blk_count; /* number of bus_width bytes for block copy */
1844 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
1845 int i;
1846 int retval;
1847
1848 if (bank->target->state != TARGET_HALTED)
1849 {
1850 LOG_ERROR("Target not halted");
1851 return ERROR_TARGET_NOT_HALTED;
1852 }
1853
1854 if (offset + count > bank->size)
1855 return ERROR_FLASH_DST_OUT_OF_BANK;
1856
1857 if (cfi_info->qry[0] != 'Q')
1858 return ERROR_FLASH_BANK_NOT_PROBED;
1859
1860 /* start at the first byte of the first word (bus_width size) */
1861 write_p = address & ~(bank->bus_width - 1);
1862 if ((align = address - write_p) != 0)
1863 {
1864 LOG_INFO("Fixup %d unaligned head bytes", align);
1865
1866 for (i = 0; i < bank->bus_width; i++)
1867 current_word[i] = 0;
1868 copy_p = write_p;
1869
1870 /* copy bytes before the first write address */
1871 for (i = 0; i < align; ++i, ++copy_p)
1872 {
1873 uint8_t byte;
1874 /* FIXME: access flash at bus_width size */
1875 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1876 {
1877 return retval;
1878 }
1879 cfi_add_byte(bank, current_word, byte);
1880 }
1881
1882 /* add bytes from the buffer */
1883 for (; (i < bank->bus_width) && (count > 0); i++)
1884 {
1885 cfi_add_byte(bank, current_word, *buffer++);
1886 count--;
1887 copy_p++;
1888 }
1889
1890 /* if the buffer is already finished, copy bytes after the last write address */
1891 for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
1892 {
1893 uint8_t byte;
1894 /* FIXME: access flash at bus_width size */
1895 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1896 {
1897 return retval;
1898 }
1899 cfi_add_byte(bank, current_word, byte);
1900 }
1901
1902 retval = cfi_write_word(bank, current_word, write_p);
1903 if (retval != ERROR_OK)
1904 return retval;
1905 write_p = copy_p;
1906 }
1907
1908 /* handle blocks of bus_size aligned bytes */
1909 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
1910 switch (cfi_info->pri_id)
1911 {
1912 /* try block writes (fails without working area) */
1913 case 1:
1914 case 3:
1915 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
1916 break;
1917 case 2:
1918 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
1919 break;
1920 default:
1921 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1922 retval = ERROR_FLASH_OPERATION_FAILED;
1923 break;
1924 }
1925 if (retval == ERROR_OK)
1926 {
1927 /* Increment pointers and decrease count on succesful block write */
1928 buffer += blk_count;
1929 write_p += blk_count;
1930 count -= blk_count;
1931 }
1932 else
1933 {
1934 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1935 {
1936 /* Calculate buffer size and boundary mask */
1937 /* buffersize is (buffer size per chip) * (number of chips) */
1938 /* bufferwsize is buffersize in words */
1939 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1940 uint32_t buffermask = buffersize-1;
1941 uint32_t bufferwsize = buffersize / bank->bus_width;
1942
1943 /* fall back to memory writes */
1944 while (count >= (uint32_t)bank->bus_width)
1945 {
1946 int fallback;
1947 if ((write_p & 0xff) == 0)
1948 {
1949 LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
1950 }
1951 fallback = 1;
1952 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
1953 {
1954 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
1955 if (retval == ERROR_OK)
1956 {
1957 buffer += buffersize;
1958 write_p += buffersize;
1959 count -= buffersize;
1960 fallback = 0;
1961 }
1962 }
1963 /* try the slow way? */
1964 if (fallback)
1965 {
1966 for (i = 0; i < bank->bus_width; i++)
1967 current_word[i] = 0;
1968
1969 for (i = 0; i < bank->bus_width; i++)
1970 {
1971 cfi_add_byte(bank, current_word, *buffer++);
1972 }
1973
1974 retval = cfi_write_word(bank, current_word, write_p);
1975 if (retval != ERROR_OK)
1976 return retval;
1977
1978 write_p += bank->bus_width;
1979 count -= bank->bus_width;
1980 }
1981 }
1982 }
1983 else
1984 return retval;
1985 }
1986
1987 /* return to read array mode, so we can read from flash again for padding */
1988 if ((retval = cfi_reset(bank)) != ERROR_OK)
1989 {
1990 return retval;
1991 }
1992
1993 /* handle unaligned tail bytes */
1994 if (count > 0)
1995 {
1996 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
1997
1998 copy_p = write_p;
1999 for (i = 0; i < bank->bus_width; i++)
2000 current_word[i] = 0;
2001
2002 for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
2003 {
2004 cfi_add_byte(bank, current_word, *buffer++);
2005 count--;
2006 }
2007 for (; i < bank->bus_width; ++i, ++copy_p)
2008 {
2009 uint8_t byte;
2010 /* FIXME: access flash at bus_width size */
2011 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
2012 {
2013 return retval;
2014 }
2015 cfi_add_byte(bank, current_word, byte);
2016 }
2017 retval = cfi_write_word(bank, current_word, write_p);
2018 if (retval != ERROR_OK)
2019 return retval;
2020 }
2021
2022 /* return to read array mode */
2023 return cfi_reset(bank);
2024 }
2025
2026 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
2027 {
2028 (void) param;
2029 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2030 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2031
2032 pri_ext->_reversed_geometry = 1;
2033 }
2034
2035 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2036 {
2037 int i;
2038 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2039 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2040 (void) param;
2041
2042 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2043 {
2044 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2045
2046 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2047 {
2048 int j = (cfi_info->num_erase_regions - 1) - i;
2049 uint32_t swap;
2050
2051 swap = cfi_info->erase_region_info[i];
2052 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2053 cfi_info->erase_region_info[j] = swap;
2054 }
2055 }
2056 }
2057
2058 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2059 {
2060 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2061 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2062 struct cfi_unlock_addresses *unlock_addresses = param;
2063
2064 pri_ext->_unlock1 = unlock_addresses->unlock1;
2065 pri_ext->_unlock2 = unlock_addresses->unlock2;
2066 }
2067
2068
2069 static int cfi_query_string(struct flash_bank *bank, int address)
2070 {
2071 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2072 int retval;
2073
2074 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2075 {
2076 return retval;
2077 }
2078
2079 cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
2080 cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
2081 cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
2082
2083 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2084
2085 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2086 {
2087 if ((retval = cfi_reset(bank)) != ERROR_OK)
2088 {
2089 return retval;
2090 }
2091 LOG_ERROR("Could not probe bank: no QRY");
2092 return ERROR_FLASH_BANK_INVALID;
2093 }
2094
2095 return ERROR_OK;
2096 }
2097
2098 static int cfi_probe(struct flash_bank *bank)
2099 {
2100 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2101 struct target *target = bank->target;
2102 int num_sectors = 0;
2103 int i;
2104 int sector = 0;
2105 uint32_t unlock1 = 0x555;
2106 uint32_t unlock2 = 0x2aa;
2107 int retval;
2108
2109 if (bank->target->state != TARGET_HALTED)
2110 {
2111 LOG_ERROR("Target not halted");
2112 return ERROR_TARGET_NOT_HALTED;
2113 }
2114
2115 cfi_info->probed = 0;
2116
2117 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2118 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2119 */
2120 if (cfi_info->jedec_probe)
2121 {
2122 unlock1 = 0x5555;
2123 unlock2 = 0x2aaa;
2124 }
2125
2126 /* switch to read identifier codes mode ("AUTOSELECT") */
2127 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2128 {
2129 return retval;
2130 }
2131 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2132 {
2133 return retval;
2134 }
2135 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2136 {
2137 return retval;
2138 }
2139
2140 if (bank->chip_width == 1)
2141 {
2142 uint8_t manufacturer, device_id;
2143 /* FIXME: access flash at bus_width size */
2144 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK)
2145 {
2146 return retval;
2147 }
2148 /* FIXME: access flash at bus_width size */
2149 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK)
2150 {
2151 return retval;
2152 }
2153 cfi_info->manufacturer = manufacturer;
2154 cfi_info->device_id = device_id;
2155 }
2156 else if (bank->chip_width == 2)
2157 {
2158 /* FIXME: access flash at bus_width size */
2159 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK)
2160 {
2161 return retval;
2162 }
2163 /* FIXME: access flash at bus_width size */
2164 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x01), &cfi_info->device_id)) != ERROR_OK)
2165 {
2166 return retval;
2167 }
2168 }
2169
2170 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
2171 /* switch back to read array mode */
2172 if ((retval = cfi_reset(bank)) != ERROR_OK)
2173 {
2174 return retval;
2175 }
2176
2177 /* check device/manufacturer ID for known non-CFI flashes. */
2178 cfi_fixup_non_cfi(bank);
2179
2180 /* query only if this is a CFI compatible flash,
2181 * otherwise the relevant info has already been filled in
2182 */
2183 if (cfi_info->not_cfi == 0)
2184 {
2185 int retval;
2186
2187 /* enter CFI query mode
2188 * according to JEDEC Standard No. 68.01,
2189 * a single bus sequence with address = 0x55, data = 0x98 should put
2190 * the device into CFI query mode.
2191 *
2192 * SST flashes clearly violate this, and we will consider them incompatbile for now
2193 */
2194
2195 retval = cfi_query_string(bank, 0x55);
2196 if (retval != ERROR_OK)
2197 {
2198 /*
2199 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2200 * be harmless enough:
2201 *
2202 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2203 */
2204 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2205 retval = cfi_query_string(bank, 0x555);
2206 }
2207 if (retval != ERROR_OK)
2208 return retval;
2209
2210 cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
2211 cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
2212 cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
2213 cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
2214
2215 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2216
2217 cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
2218 cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
2219 cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
2220 cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
2221 cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
2222 cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
2223 cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
2224 cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
2225 cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
2226 cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
2227 cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
2228 cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
2229
2230 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2231 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2232 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2233 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2234 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2235 LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2236 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2237 LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2238 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2239 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2240 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2241
2242 cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27);
2243 cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
2244 cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
2245 cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
2246
2247 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2248
2249 if (cfi_info->num_erase_regions)
2250 {
2251 cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
2252 for (i = 0; i < cfi_info->num_erase_regions; i++)
2253 {
2254 cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
2255 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2256 i,
2257 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2258 (cfi_info->erase_region_info[i] >> 16) * 256);
2259 }
2260 }
2261 else
2262 {
2263 cfi_info->erase_region_info = NULL;
2264 }
2265
2266 /* We need to read the primary algorithm extended query table before calculating
2267 * the sector layout to be able to apply fixups
2268 */
2269 switch (cfi_info->pri_id)
2270 {
2271 /* Intel command set (standard and extended) */
2272 case 0x0001:
2273 case 0x0003:
2274 cfi_read_intel_pri_ext(bank);
2275 break;
2276 /* AMD/Spansion, Atmel, ... command set */
2277 case 0x0002:
2278 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2279 cfi_read_0002_pri_ext(bank);
2280 break;
2281 default:
2282 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2283 break;
2284 }
2285
2286 /* return to read array mode
2287 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2288 */
2289 if ((retval = cfi_reset(bank)) != ERROR_OK)
2290 {
2291 return retval;
2292 }
2293 } /* end CFI case */
2294
2295 /* apply fixups depending on the primary command set */
2296 switch (cfi_info->pri_id)
2297 {
2298 /* Intel command set (standard and extended) */
2299 case 0x0001:
2300 case 0x0003:
2301 cfi_fixup(bank, cfi_0001_fixups);
2302 break;
2303 /* AMD/Spansion, Atmel, ... command set */
2304 case 0x0002:
2305 cfi_fixup(bank, cfi_0002_fixups);
2306 break;
2307 default:
2308 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2309 break;
2310 }
2311
2312 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2313 {
2314 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
2315 }
2316
2317 if (cfi_info->num_erase_regions == 0)
2318 {
2319 /* a device might have only one erase block, spanning the whole device */
2320 bank->num_sectors = 1;
2321 bank->sectors = malloc(sizeof(struct flash_sector));
2322
2323 bank->sectors[sector].offset = 0x0;
2324 bank->sectors[sector].size = bank->size;
2325 bank->sectors[sector].is_erased = -1;
2326 bank->sectors[sector].is_protected = -1;
2327 }
2328 else
2329 {
2330 uint32_t offset = 0;
2331
2332 for (i = 0; i < cfi_info->num_erase_regions; i++)
2333 {
2334 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2335 }
2336
2337 bank->num_sectors = num_sectors;
2338 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2339
2340 for (i = 0; i < cfi_info->num_erase_regions; i++)
2341 {
2342 uint32_t j;
2343 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2344 {
2345 bank->sectors[sector].offset = offset;
2346 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
2347 offset += bank->sectors[sector].size;
2348 bank->sectors[sector].is_erased = -1;
2349 bank->sectors[sector].is_protected = -1;
2350 sector++;
2351 }
2352 }
2353 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
2354 {
2355 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2356 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
2357 }
2358 }
2359
2360 cfi_info->probed = 1;
2361
2362 return ERROR_OK;
2363 }
2364
2365 static int cfi_auto_probe(struct flash_bank *bank)
2366 {
2367 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2368 if (cfi_info->probed)
2369 return ERROR_OK;
2370 return cfi_probe(bank);
2371 }
2372
2373 static int cfi_intel_protect_check(struct flash_bank *bank)
2374 {
2375 int retval;
2376 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2377 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2378 int i;
2379
2380 /* check if block lock bits are supported on this device */
2381 if (!(pri_ext->blk_status_reg_mask & 0x1))
2382 return ERROR_FLASH_OPERATION_FAILED;
2383
2384 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
2385 {
2386 return retval;
2387 }
2388
2389 for (i = 0; i < bank->num_sectors; i++)
2390 {
2391 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2392
2393 if (block_status & 1)
2394 bank->sectors[i].is_protected = 1;
2395 else
2396 bank->sectors[i].is_protected = 0;
2397 }
2398
2399 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2400 }
2401
2402 static int cfi_spansion_protect_check(struct flash_bank *bank)
2403 {
2404 int retval;
2405 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2406 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2407 int i;
2408
2409 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2410 {
2411 return retval;
2412 }
2413
2414 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2415 {
2416 return retval;
2417 }
2418
2419 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2420 {
2421 return retval;
2422 }
2423
2424 for (i = 0; i < bank->num_sectors; i++)
2425 {
2426 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2427
2428 if (block_status & 1)
2429 bank->sectors[i].is_protected = 1;
2430 else
2431 bank->sectors[i].is_protected = 0;
2432 }
2433
2434 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2435 }
2436
2437 static int cfi_protect_check(struct flash_bank *bank)
2438 {
2439 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2440
2441 if (bank->target->state != TARGET_HALTED)
2442 {
2443 LOG_ERROR("Target not halted");
2444 return ERROR_TARGET_NOT_HALTED;
2445 }
2446
2447 if (cfi_info->qry[0] != 'Q')
2448 return ERROR_FLASH_BANK_NOT_PROBED;
2449
2450 switch (cfi_info->pri_id)
2451 {
2452 case 1:
2453 case 3:
2454 return cfi_intel_protect_check(bank);
2455 break;
2456 case 2:
2457 return cfi_spansion_protect_check(bank);
2458 break;
2459 default:
2460 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2461 break;
2462 }
2463
2464 return ERROR_OK;
2465 }
2466
2467 static int cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2468 {
2469 int printed;
2470 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2471
2472 if (cfi_info->qry[0] == (char)-1)
2473 {
2474 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2475 return ERROR_OK;
2476 }
2477
2478 if (cfi_info->not_cfi == 0)
2479 printed = snprintf(buf, buf_size, "\ncfi information:\n");
2480 else
2481 printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
2482 buf += printed;
2483 buf_size -= printed;
2484
2485 printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
2486 cfi_info->manufacturer, cfi_info->device_id);
2487 buf += printed;
2488 buf_size -= printed;
2489
2490 if (cfi_info->not_cfi == 0)
2491 {
2492 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2493 buf += printed;
2494 buf_size -= printed;
2495
2496 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
2497 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2498 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2499 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2500 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2501 buf += printed;
2502 buf_size -= printed;
2503
2504 printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
2505 1 << cfi_info->word_write_timeout_typ,
2506 1 << cfi_info->buf_write_timeout_typ,
2507 1 << cfi_info->block_erase_timeout_typ,
2508 1 << cfi_info->chip_erase_timeout_typ);
2509 buf += printed;
2510 buf_size -= printed;
2511
2512 printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
2513 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2514 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2515 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2516 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2517 buf += printed;
2518 buf_size -= printed;
2519
2520 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
2521 cfi_info->dev_size,
2522 cfi_info->interface_desc,
2523 1 << cfi_info->max_buf_write_size);
2524 buf += printed;
2525 buf_size -= printed;
2526
2527 switch (cfi_info->pri_id)
2528 {
2529 case 1:
2530 case 3:
2531 cfi_intel_info(bank, buf, buf_size);
2532 break;
2533 case 2:
2534 cfi_spansion_info(bank, buf, buf_size);
2535 break;
2536 default:
2537 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2538 break;
2539 }
2540 }
2541
2542 return ERROR_OK;
2543 }
2544
2545 struct flash_driver cfi_flash = {
2546 .name = "cfi",
2547 .flash_bank_command = cfi_flash_bank_command,
2548 .erase = cfi_erase,
2549 .protect = cfi_protect,
2550 .write = cfi_write,
2551 .probe = cfi_probe,
2552 .auto_probe = cfi_auto_probe,
2553 /* FIXME: access flash at bus_width size */
2554 .erase_check = default_flash_blank_check,
2555 .protect_check = cfi_protect_check,
2556 .info = cfi_info,
2557 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)