Fujitsu MBM29SL800TE flash support
[openocd.git] / src / flash / nor / cfi.c
1 /***************************************************************************
2 * Copyright (C) 2005, 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * Copyright (C) 2009 Michael Schwingen *
5 * michael@schwingen.org *
6 * Copyright (C) 2010 Øyvind Harboe <oyvind.harboe@zylin.com> *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "imp.h"
28 #include "cfi.h"
29 #include "non_cfi.h"
30 #include <target/arm.h>
31 #include <helper/binarybuffer.h>
32 #include <target/algorithm.h>
33
34
35 #define CFI_MAX_BUS_WIDTH 4
36 #define CFI_MAX_CHIP_WIDTH 4
37
38 /* defines internal maximum size for code fragment in cfi_intel_write_block() */
39 #define CFI_MAX_INTEL_CODESIZE 256
40
41 static struct cfi_unlock_addresses cfi_unlock_addresses[] =
42 {
43 [CFI_UNLOCK_555_2AA] = { .unlock1 = 0x555, .unlock2 = 0x2aa },
44 [CFI_UNLOCK_5555_2AAA] = { .unlock1 = 0x5555, .unlock2 = 0x2aaa },
45 };
46
47 /* CFI fixups foward declarations */
48 static void cfi_fixup_0002_erase_regions(struct flash_bank *flash, void *param);
49 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *flash, void *param);
50 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *flash, void *param);
51
52 /* fixup after reading cmdset 0002 primary query table */
53 static const struct cfi_fixup cfi_0002_fixups[] = {
54 {CFI_MFR_SST, 0x00D4, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
55 {CFI_MFR_SST, 0x00D5, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
56 {CFI_MFR_SST, 0x00D6, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
57 {CFI_MFR_SST, 0x00D7, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
58 {CFI_MFR_SST, 0x2780, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
59 {CFI_MFR_ATMEL, 0x00C8, cfi_fixup_atmel_reversed_erase_regions, NULL},
60 {CFI_MFR_FUJITSU, 0x22ea, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
61 {CFI_MFR_FUJITSU, 0x226b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_5555_2AAA]},
62 {CFI_MFR_AMIC, 0xb31a, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
63 {CFI_MFR_MX, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
64 {CFI_MFR_AMD, 0x225b, cfi_fixup_0002_unlock_addresses, &cfi_unlock_addresses[CFI_UNLOCK_555_2AA]},
65 {CFI_MFR_ANY, CFI_ID_ANY, cfi_fixup_0002_erase_regions, NULL},
66 {0, 0, NULL, NULL}
67 };
68
69 /* fixup after reading cmdset 0001 primary query table */
70 static const struct cfi_fixup cfi_0001_fixups[] = {
71 {0, 0, NULL, NULL}
72 };
73
74 static void cfi_fixup(struct flash_bank *bank, const struct cfi_fixup *fixups)
75 {
76 struct cfi_flash_bank *cfi_info = bank->driver_priv;
77 const struct cfi_fixup *f;
78
79 for (f = fixups; f->fixup; f++)
80 {
81 if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi_info->manufacturer)) &&
82 ((f->id == CFI_ID_ANY) || (f->id == cfi_info->device_id)))
83 {
84 f->fixup(bank, f->param);
85 }
86 }
87 }
88
89 /* inline uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset) */
90 static __inline__ uint32_t flash_address(struct flash_bank *bank, int sector, uint32_t offset)
91 {
92 struct cfi_flash_bank *cfi_info = bank->driver_priv;
93
94 if (cfi_info->x16_as_x8) offset *= 2;
95
96 /* while the sector list isn't built, only accesses to sector 0 work */
97 if (sector == 0)
98 return bank->base + offset * bank->bus_width;
99 else
100 {
101 if (!bank->sectors)
102 {
103 LOG_ERROR("BUG: sector list not yet built");
104 exit(-1);
105 }
106 return bank->base + bank->sectors[sector].offset + offset * bank->bus_width;
107 }
108 }
109
110 static void cfi_command(struct flash_bank *bank, uint8_t cmd, uint8_t *cmd_buf)
111 {
112 int i;
113
114 /* clear whole buffer, to ensure bits that exceed the bus_width
115 * are set to zero
116 */
117 for (i = 0; i < CFI_MAX_BUS_WIDTH; i++)
118 cmd_buf[i] = 0;
119
120 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
121 {
122 for (i = bank->bus_width; i > 0; i--)
123 {
124 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
125 }
126 }
127 else
128 {
129 for (i = 1; i <= bank->bus_width; i++)
130 {
131 *cmd_buf++ = (i & (bank->chip_width - 1)) ? 0x0 : cmd;
132 }
133 }
134 }
135
136 static int cfi_send_command(struct flash_bank *bank, uint8_t cmd, uint32_t address)
137 {
138 uint8_t command[CFI_MAX_BUS_WIDTH];
139
140 cfi_command(bank, cmd, command);
141 return target_write_memory(bank->target, address, bank->bus_width, 1, command);
142 }
143
144 /* read unsigned 8-bit value from the bank
145 * flash banks are expected to be made of similar chips
146 * the query result should be the same for all
147 */
148 static uint8_t cfi_query_u8(struct flash_bank *bank, int sector, uint32_t offset)
149 {
150 struct target *target = bank->target;
151 uint8_t data[CFI_MAX_BUS_WIDTH];
152
153 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
154
155 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
156 return data[0];
157 else
158 return data[bank->bus_width - 1];
159 }
160
161 /* read unsigned 8-bit value from the bank
162 * in case of a bank made of multiple chips,
163 * the individual values are ORed
164 */
165 static uint8_t cfi_get_u8(struct flash_bank *bank, int sector, uint32_t offset)
166 {
167 struct target *target = bank->target;
168 uint8_t data[CFI_MAX_BUS_WIDTH];
169 int i;
170
171 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 1, data);
172
173 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
174 {
175 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
176 data[0] |= data[i];
177
178 return data[0];
179 }
180 else
181 {
182 uint8_t value = 0;
183 for (i = 0; i < bank->bus_width / bank->chip_width; i++)
184 value |= data[bank->bus_width - 1 - i];
185
186 return value;
187 }
188 }
189
190 static uint16_t cfi_query_u16(struct flash_bank *bank, int sector, uint32_t offset)
191 {
192 struct target *target = bank->target;
193 struct cfi_flash_bank *cfi_info = bank->driver_priv;
194 uint8_t data[CFI_MAX_BUS_WIDTH * 2];
195
196 if (cfi_info->x16_as_x8)
197 {
198 uint8_t i;
199 for (i = 0;i < 2;i++)
200 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
201 &data[i*bank->bus_width]);
202 }
203 else
204 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 2, data);
205
206 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
207 return data[0] | data[bank->bus_width] << 8;
208 else
209 return data[bank->bus_width - 1] | data[(2 * bank->bus_width) - 1] << 8;
210 }
211
212 static uint32_t cfi_query_u32(struct flash_bank *bank, int sector, uint32_t offset)
213 {
214 struct target *target = bank->target;
215 struct cfi_flash_bank *cfi_info = bank->driver_priv;
216 uint8_t data[CFI_MAX_BUS_WIDTH * 4];
217
218 if (cfi_info->x16_as_x8)
219 {
220 uint8_t i;
221 for (i = 0;i < 4;i++)
222 target_read_memory(target, flash_address(bank, sector, offset + i), bank->bus_width, 1,
223 &data[i*bank->bus_width]);
224 }
225 else
226 target_read_memory(target, flash_address(bank, sector, offset), bank->bus_width, 4, data);
227
228 if (bank->target->endianness == TARGET_LITTLE_ENDIAN)
229 return data[0] | data[bank->bus_width] << 8 | data[bank->bus_width * 2] << 16 | data[bank->bus_width * 3] << 24;
230 else
231 return data[bank->bus_width - 1] | data[(2* bank->bus_width) - 1] << 8 |
232 data[(3 * bank->bus_width) - 1] << 16 | data[(4 * bank->bus_width) - 1] << 24;
233 }
234
235 static int cfi_reset(struct flash_bank *bank)
236 {
237 struct cfi_flash_bank *cfi_info = bank->driver_priv;
238 int retval = ERROR_OK;
239
240 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
241 {
242 return retval;
243 }
244
245 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
246 {
247 return retval;
248 }
249
250 if (cfi_info->manufacturer == 0x20 &&
251 (cfi_info->device_id == 0x227E || cfi_info->device_id == 0x7E))
252 {
253 /* Numonix M29W128G is cmd 0xFF intolerant - causes internal undefined state
254 * so we send an extra 0xF0 reset to fix the bug */
255 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x00))) != ERROR_OK)
256 {
257 return retval;
258 }
259 }
260
261 return retval;
262 }
263
264 static void cfi_intel_clear_status_register(struct flash_bank *bank)
265 {
266 struct target *target = bank->target;
267
268 if (target->state != TARGET_HALTED)
269 {
270 LOG_ERROR("BUG: attempted to clear status register while target wasn't halted");
271 exit(-1);
272 }
273
274 cfi_send_command(bank, 0x50, flash_address(bank, 0, 0x0));
275 }
276
277 static uint8_t cfi_intel_wait_status_busy(struct flash_bank *bank, int timeout)
278 {
279 uint8_t status;
280
281 while ((!((status = cfi_get_u8(bank, 0, 0x0)) & 0x80)) && (timeout-- > 0))
282 {
283 LOG_DEBUG("status: 0x%x", status);
284 alive_sleep(1);
285 }
286
287 /* mask out bit 0 (reserved) */
288 status = status & 0xfe;
289
290 LOG_DEBUG("status: 0x%x", status);
291
292 if ((status & 0x80) != 0x80)
293 {
294 LOG_ERROR("timeout while waiting for WSM to become ready");
295 }
296 else if (status != 0x80)
297 {
298 LOG_ERROR("status register: 0x%x", status);
299 if (status & 0x2)
300 LOG_ERROR("Block Lock-Bit Detected, Operation Abort");
301 if (status & 0x4)
302 LOG_ERROR("Program suspended");
303 if (status & 0x8)
304 LOG_ERROR("Low Programming Voltage Detected, Operation Aborted");
305 if (status & 0x10)
306 LOG_ERROR("Program Error / Error in Setting Lock-Bit");
307 if (status & 0x20)
308 LOG_ERROR("Error in Block Erasure or Clear Lock-Bits");
309 if (status & 0x40)
310 LOG_ERROR("Block Erase Suspended");
311
312 cfi_intel_clear_status_register(bank);
313 }
314
315 return status;
316 }
317
318 static int cfi_spansion_wait_status_busy(struct flash_bank *bank, int timeout)
319 {
320 uint8_t status, oldstatus;
321 struct cfi_flash_bank *cfi_info = bank->driver_priv;
322
323 oldstatus = cfi_get_u8(bank, 0, 0x0);
324
325 do {
326 status = cfi_get_u8(bank, 0, 0x0);
327 if ((status ^ oldstatus) & 0x40) {
328 if (status & cfi_info->status_poll_mask & 0x20) {
329 oldstatus = cfi_get_u8(bank, 0, 0x0);
330 status = cfi_get_u8(bank, 0, 0x0);
331 if ((status ^ oldstatus) & 0x40) {
332 LOG_ERROR("dq5 timeout, status: 0x%x", status);
333 return(ERROR_FLASH_OPERATION_FAILED);
334 } else {
335 LOG_DEBUG("status: 0x%x", status);
336 return(ERROR_OK);
337 }
338 }
339 } else { /* no toggle: finished, OK */
340 LOG_DEBUG("status: 0x%x", status);
341 return(ERROR_OK);
342 }
343
344 oldstatus = status;
345 alive_sleep(1);
346 } while (timeout-- > 0);
347
348 LOG_ERROR("timeout, status: 0x%x", status);
349
350 return(ERROR_FLASH_BUSY);
351 }
352
353 static int cfi_read_intel_pri_ext(struct flash_bank *bank)
354 {
355 int retval;
356 struct cfi_flash_bank *cfi_info = bank->driver_priv;
357 struct cfi_intel_pri_ext *pri_ext = malloc(sizeof(struct cfi_intel_pri_ext));
358
359 cfi_info->pri_ext = pri_ext;
360
361 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
362 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
363 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
364
365 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
366 {
367 if ((retval = cfi_reset(bank)) != ERROR_OK)
368 {
369 return retval;
370 }
371 LOG_ERROR("Could not read bank flash bank information");
372 return ERROR_FLASH_BANK_INVALID;
373 }
374
375 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
376 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
377
378 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
379
380 pri_ext->feature_support = cfi_query_u32(bank, 0, cfi_info->pri_addr + 5);
381 pri_ext->suspend_cmd_support = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
382 pri_ext->blk_status_reg_mask = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xa);
383
384 LOG_DEBUG("feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x",
385 pri_ext->feature_support,
386 pri_ext->suspend_cmd_support,
387 pri_ext->blk_status_reg_mask);
388
389 pri_ext->vcc_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xc);
390 pri_ext->vpp_optimal = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xd);
391
392 LOG_DEBUG("Vcc opt: %x.%x, Vpp opt: %u.%x",
393 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
394 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
395
396 pri_ext->num_protection_fields = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0xe);
397 if (pri_ext->num_protection_fields != 1)
398 {
399 LOG_WARNING("expected one protection register field, but found %i", pri_ext->num_protection_fields);
400 }
401
402 pri_ext->prot_reg_addr = cfi_query_u16(bank, 0, cfi_info->pri_addr + 0xf);
403 pri_ext->fact_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x11);
404 pri_ext->user_prot_reg_size = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0x12);
405
406 LOG_DEBUG("protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
407
408 return ERROR_OK;
409 }
410
411 static int cfi_read_spansion_pri_ext(struct flash_bank *bank)
412 {
413 int retval;
414 struct cfi_flash_bank *cfi_info = bank->driver_priv;
415 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
416
417 cfi_info->pri_ext = pri_ext;
418
419 pri_ext->pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
420 pri_ext->pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
421 pri_ext->pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
422
423 if ((pri_ext->pri[0] != 'P') || (pri_ext->pri[1] != 'R') || (pri_ext->pri[2] != 'I'))
424 {
425 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
426 {
427 return retval;
428 }
429 LOG_ERROR("Could not read spansion bank information");
430 return ERROR_FLASH_BANK_INVALID;
431 }
432
433 pri_ext->major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
434 pri_ext->minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
435
436 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
437
438 pri_ext->SiliconRevision = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
439 pri_ext->EraseSuspend = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
440 pri_ext->BlkProt = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
441 pri_ext->TmpBlkUnprotect = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
442 pri_ext->BlkProtUnprot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 9);
443 pri_ext->SimultaneousOps = cfi_query_u8(bank, 0, cfi_info->pri_addr + 10);
444 pri_ext->BurstMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 11);
445 pri_ext->PageMode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 12);
446 pri_ext->VppMin = cfi_query_u8(bank, 0, cfi_info->pri_addr + 13);
447 pri_ext->VppMax = cfi_query_u8(bank, 0, cfi_info->pri_addr + 14);
448 pri_ext->TopBottom = cfi_query_u8(bank, 0, cfi_info->pri_addr + 15);
449
450 LOG_DEBUG("Silicon Revision: 0x%x, Erase Suspend: 0x%x, Block protect: 0x%x", pri_ext->SiliconRevision,
451 pri_ext->EraseSuspend, pri_ext->BlkProt);
452
453 LOG_DEBUG("Temporary Unprotect: 0x%x, Block Protect Scheme: 0x%x, Simultaneous Ops: 0x%x", pri_ext->TmpBlkUnprotect,
454 pri_ext->BlkProtUnprot, pri_ext->SimultaneousOps);
455
456 LOG_DEBUG("Burst Mode: 0x%x, Page Mode: 0x%x, ", pri_ext->BurstMode, pri_ext->PageMode);
457
458
459 LOG_DEBUG("Vpp min: %u.%x, Vpp max: %u.%x",
460 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
461 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
462
463 LOG_DEBUG("WP# protection 0x%x", pri_ext->TopBottom);
464
465 /* default values for implementation specific workarounds */
466 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
467 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
468 pri_ext->_reversed_geometry = 0;
469
470 return ERROR_OK;
471 }
472
473 static int cfi_read_atmel_pri_ext(struct flash_bank *bank)
474 {
475 int retval;
476 struct cfi_atmel_pri_ext atmel_pri_ext;
477 struct cfi_flash_bank *cfi_info = bank->driver_priv;
478 struct cfi_spansion_pri_ext *pri_ext = malloc(sizeof(struct cfi_spansion_pri_ext));
479
480 /* ATMEL devices use the same CFI primary command set (0x2) as AMD/Spansion,
481 * but a different primary extended query table.
482 * We read the atmel table, and prepare a valid AMD/Spansion query table.
483 */
484
485 memset(pri_ext, 0, sizeof(struct cfi_spansion_pri_ext));
486
487 cfi_info->pri_ext = pri_ext;
488
489 atmel_pri_ext.pri[0] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 0);
490 atmel_pri_ext.pri[1] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 1);
491 atmel_pri_ext.pri[2] = cfi_query_u8(bank, 0, cfi_info->pri_addr + 2);
492
493 if ((atmel_pri_ext.pri[0] != 'P') || (atmel_pri_ext.pri[1] != 'R') || (atmel_pri_ext.pri[2] != 'I'))
494 {
495 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
496 {
497 return retval;
498 }
499 LOG_ERROR("Could not read atmel bank information");
500 return ERROR_FLASH_BANK_INVALID;
501 }
502
503 pri_ext->pri[0] = atmel_pri_ext.pri[0];
504 pri_ext->pri[1] = atmel_pri_ext.pri[1];
505 pri_ext->pri[2] = atmel_pri_ext.pri[2];
506
507 atmel_pri_ext.major_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 3);
508 atmel_pri_ext.minor_version = cfi_query_u8(bank, 0, cfi_info->pri_addr + 4);
509
510 LOG_DEBUG("pri: '%c%c%c', version: %c.%c", atmel_pri_ext.pri[0], atmel_pri_ext.pri[1], atmel_pri_ext.pri[2], atmel_pri_ext.major_version, atmel_pri_ext.minor_version);
511
512 pri_ext->major_version = atmel_pri_ext.major_version;
513 pri_ext->minor_version = atmel_pri_ext.minor_version;
514
515 atmel_pri_ext.features = cfi_query_u8(bank, 0, cfi_info->pri_addr + 5);
516 atmel_pri_ext.bottom_boot = cfi_query_u8(bank, 0, cfi_info->pri_addr + 6);
517 atmel_pri_ext.burst_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 7);
518 atmel_pri_ext.page_mode = cfi_query_u8(bank, 0, cfi_info->pri_addr + 8);
519
520 LOG_DEBUG("features: 0x%2.2x, bottom_boot: 0x%2.2x, burst_mode: 0x%2.2x, page_mode: 0x%2.2x",
521 atmel_pri_ext.features, atmel_pri_ext.bottom_boot, atmel_pri_ext.burst_mode, atmel_pri_ext.page_mode);
522
523 if (atmel_pri_ext.features & 0x02)
524 pri_ext->EraseSuspend = 2;
525
526 if (atmel_pri_ext.bottom_boot)
527 pri_ext->TopBottom = 2;
528 else
529 pri_ext->TopBottom = 3;
530
531 pri_ext->_unlock1 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock1;
532 pri_ext->_unlock2 = cfi_unlock_addresses[CFI_UNLOCK_555_2AA].unlock2;
533
534 return ERROR_OK;
535 }
536
537 static int cfi_read_0002_pri_ext(struct flash_bank *bank)
538 {
539 struct cfi_flash_bank *cfi_info = bank->driver_priv;
540
541 if (cfi_info->manufacturer == CFI_MFR_ATMEL)
542 {
543 return cfi_read_atmel_pri_ext(bank);
544 }
545 else
546 {
547 return cfi_read_spansion_pri_ext(bank);
548 }
549 }
550
551 static int cfi_spansion_info(struct flash_bank *bank, char *buf, int buf_size)
552 {
553 int printed;
554 struct cfi_flash_bank *cfi_info = bank->driver_priv;
555 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
556
557 printed = snprintf(buf, buf_size, "\nSpansion primary algorithm extend information:\n");
558 buf += printed;
559 buf_size -= printed;
560
561 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0],
562 pri_ext->pri[1], pri_ext->pri[2],
563 pri_ext->major_version, pri_ext->minor_version);
564 buf += printed;
565 buf_size -= printed;
566
567 printed = snprintf(buf, buf_size, "Silicon Rev.: 0x%x, Address Sensitive unlock: 0x%x\n",
568 (pri_ext->SiliconRevision) >> 2,
569 (pri_ext->SiliconRevision) & 0x03);
570 buf += printed;
571 buf_size -= printed;
572
573 printed = snprintf(buf, buf_size, "Erase Suspend: 0x%x, Sector Protect: 0x%x\n",
574 pri_ext->EraseSuspend,
575 pri_ext->BlkProt);
576 buf += printed;
577 buf_size -= printed;
578
579 printed = snprintf(buf, buf_size, "VppMin: %u.%x, VppMax: %u.%x\n",
580 (pri_ext->VppMin & 0xf0) >> 4, pri_ext->VppMin & 0x0f,
581 (pri_ext->VppMax & 0xf0) >> 4, pri_ext->VppMax & 0x0f);
582
583 return ERROR_OK;
584 }
585
586 static int cfi_intel_info(struct flash_bank *bank, char *buf, int buf_size)
587 {
588 int printed;
589 struct cfi_flash_bank *cfi_info = bank->driver_priv;
590 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
591
592 printed = snprintf(buf, buf_size, "\nintel primary algorithm extend information:\n");
593 buf += printed;
594 buf_size -= printed;
595
596 printed = snprintf(buf, buf_size, "pri: '%c%c%c', version: %c.%c\n", pri_ext->pri[0], pri_ext->pri[1], pri_ext->pri[2], pri_ext->major_version, pri_ext->minor_version);
597 buf += printed;
598 buf_size -= printed;
599
600 printed = snprintf(buf, buf_size, "feature_support: 0x%" PRIx32 ", suspend_cmd_support: 0x%x, blk_status_reg_mask: 0x%x\n", pri_ext->feature_support, pri_ext->suspend_cmd_support, pri_ext->blk_status_reg_mask);
601 buf += printed;
602 buf_size -= printed;
603
604 printed = snprintf(buf, buf_size, "Vcc opt: %x.%x, Vpp opt: %u.%x\n",
605 (pri_ext->vcc_optimal & 0xf0) >> 4, pri_ext->vcc_optimal & 0x0f,
606 (pri_ext->vpp_optimal & 0xf0) >> 4, pri_ext->vpp_optimal & 0x0f);
607 buf += printed;
608 buf_size -= printed;
609
610 printed = snprintf(buf, buf_size, "protection_fields: %i, prot_reg_addr: 0x%x, factory pre-programmed: %i, user programmable: %i\n", pri_ext->num_protection_fields, pri_ext->prot_reg_addr, 1 << pri_ext->fact_prot_reg_size, 1 << pri_ext->user_prot_reg_size);
611
612 return ERROR_OK;
613 }
614
615 /* flash_bank cfi <base> <size> <chip_width> <bus_width> <target#> [options]
616 */
617 FLASH_BANK_COMMAND_HANDLER(cfi_flash_bank_command)
618 {
619 struct cfi_flash_bank *cfi_info;
620
621 if (CMD_ARGC < 6)
622 {
623 LOG_WARNING("incomplete flash_bank cfi configuration");
624 return ERROR_FLASH_BANK_INVALID;
625 }
626
627 if ((bank->chip_width > CFI_MAX_CHIP_WIDTH)
628 || (bank->bus_width > CFI_MAX_BUS_WIDTH))
629 {
630 LOG_ERROR("chip and bus width have to specified in bytes");
631 return ERROR_FLASH_BANK_INVALID;
632 }
633
634 cfi_info = malloc(sizeof(struct cfi_flash_bank));
635 cfi_info->probed = 0;
636 bank->driver_priv = cfi_info;
637
638 cfi_info->write_algorithm = NULL;
639
640 cfi_info->x16_as_x8 = 0;
641 cfi_info->jedec_probe = 0;
642 cfi_info->not_cfi = 0;
643
644 for (unsigned i = 6; i < CMD_ARGC; i++)
645 {
646 if (strcmp(CMD_ARGV[i], "x16_as_x8") == 0)
647 {
648 cfi_info->x16_as_x8 = 1;
649 }
650 else if (strcmp(CMD_ARGV[i], "jedec_probe") == 0)
651 {
652 cfi_info->jedec_probe = 1;
653 }
654 }
655
656 cfi_info->write_algorithm = NULL;
657
658 /* bank wasn't probed yet */
659 cfi_info->qry[0] = -1;
660
661 return ERROR_OK;
662 }
663
664 static int cfi_intel_erase(struct flash_bank *bank, int first, int last)
665 {
666 int retval;
667 struct cfi_flash_bank *cfi_info = bank->driver_priv;
668 int i;
669
670 cfi_intel_clear_status_register(bank);
671
672 for (i = first; i <= last; i++)
673 {
674 if ((retval = cfi_send_command(bank, 0x20, flash_address(bank, i, 0x0))) != ERROR_OK)
675 {
676 return retval;
677 }
678
679 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
680 {
681 return retval;
682 }
683
684 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == 0x80)
685 bank->sectors[i].is_erased = 1;
686 else
687 {
688 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
689 {
690 return retval;
691 }
692
693 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32 , i, bank->base);
694 return ERROR_FLASH_OPERATION_FAILED;
695 }
696 }
697
698 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
699 }
700
701 static int cfi_spansion_erase(struct flash_bank *bank, int first, int last)
702 {
703 int retval;
704 struct cfi_flash_bank *cfi_info = bank->driver_priv;
705 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
706 int i;
707
708 for (i = first; i <= last; i++)
709 {
710 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
711 {
712 return retval;
713 }
714
715 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
716 {
717 return retval;
718 }
719
720 if ((retval = cfi_send_command(bank, 0x80, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
721 {
722 return retval;
723 }
724
725 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
726 {
727 return retval;
728 }
729
730 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
731 {
732 return retval;
733 }
734
735 if ((retval = cfi_send_command(bank, 0x30, flash_address(bank, i, 0x0))) != ERROR_OK)
736 {
737 return retval;
738 }
739
740 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->block_erase_timeout_typ)) == ERROR_OK)
741 bank->sectors[i].is_erased = 1;
742 else
743 {
744 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
745 {
746 return retval;
747 }
748
749 LOG_ERROR("couldn't erase block %i of flash bank at base 0x%" PRIx32, i, bank->base);
750 return ERROR_FLASH_OPERATION_FAILED;
751 }
752 }
753
754 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
755 }
756
757 static int cfi_erase(struct flash_bank *bank, int first, int last)
758 {
759 struct cfi_flash_bank *cfi_info = bank->driver_priv;
760
761 if (bank->target->state != TARGET_HALTED)
762 {
763 LOG_ERROR("Target not halted");
764 return ERROR_TARGET_NOT_HALTED;
765 }
766
767 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
768 {
769 return ERROR_FLASH_SECTOR_INVALID;
770 }
771
772 if (cfi_info->qry[0] != 'Q')
773 return ERROR_FLASH_BANK_NOT_PROBED;
774
775 switch (cfi_info->pri_id)
776 {
777 case 1:
778 case 3:
779 return cfi_intel_erase(bank, first, last);
780 break;
781 case 2:
782 return cfi_spansion_erase(bank, first, last);
783 break;
784 default:
785 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
786 break;
787 }
788
789 return ERROR_OK;
790 }
791
792 static int cfi_intel_protect(struct flash_bank *bank, int set, int first, int last)
793 {
794 int retval;
795 struct cfi_flash_bank *cfi_info = bank->driver_priv;
796 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
797 struct target *target = bank->target; /* FIXME: to be removed */
798 uint8_t command[CFI_MAX_BUS_WIDTH]; /* FIXME: to be removed */
799 int retry = 0;
800 int i;
801
802 /* if the device supports neither legacy lock/unlock (bit 3) nor
803 * instant individual block locking (bit 5).
804 */
805 if (!(pri_ext->feature_support & 0x28))
806 return ERROR_FLASH_OPERATION_FAILED;
807
808 cfi_intel_clear_status_register(bank);
809
810 for (i = first; i <= last; i++)
811 {
812 cfi_command(bank, 0x60, command); /* FIXME: to be removed */
813 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
814 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
815 {
816 return retval;
817 }
818 if (set)
819 {
820 cfi_command(bank, 0x01, command); /* FIXME: to be removed */
821 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32 , flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
822 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
823 {
824 return retval;
825 }
826 bank->sectors[i].is_protected = 1;
827 }
828 else
829 {
830 cfi_command(bank, 0xd0, command); /* FIXME: to be removed */
831 LOG_DEBUG("address: 0x%4.4" PRIx32 ", command: 0x%4.4" PRIx32, flash_address(bank, i, 0x0), target_buffer_get_u32(target, command));
832 if ((retval = cfi_send_command(bank, 0xd0, flash_address(bank, i, 0x0))) != ERROR_OK)
833 {
834 return retval;
835 }
836 bank->sectors[i].is_protected = 0;
837 }
838
839 /* instant individual block locking doesn't require reading of the status register */
840 if (!(pri_ext->feature_support & 0x20))
841 {
842 /* Clear lock bits operation may take up to 1.4s */
843 cfi_intel_wait_status_busy(bank, 1400);
844 }
845 else
846 {
847 uint8_t block_status;
848 /* read block lock bit, to verify status */
849 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
850 {
851 return retval;
852 }
853 block_status = cfi_get_u8(bank, i, 0x2);
854
855 if ((block_status & 0x1) != set)
856 {
857 LOG_ERROR("couldn't change block lock status (set = %i, block_status = 0x%2.2x)", set, block_status);
858 if ((retval = cfi_send_command(bank, 0x70, flash_address(bank, 0, 0x55))) != ERROR_OK)
859 {
860 return retval;
861 }
862 cfi_intel_wait_status_busy(bank, 10);
863
864 if (retry > 10)
865 return ERROR_FLASH_OPERATION_FAILED;
866 else
867 {
868 i--;
869 retry++;
870 }
871 }
872 }
873 }
874
875 /* if the device doesn't support individual block lock bits set/clear,
876 * all blocks have been unlocked in parallel, so we set those that should be protected
877 */
878 if ((!set) && (!(pri_ext->feature_support & 0x20)))
879 {
880 /* FIX!!! this code path is broken!!!
881 *
882 * The correct approach is:
883 *
884 * 1. read out current protection status
885 *
886 * 2. override read out protection status w/unprotected.
887 *
888 * 3. re-protect what should be protected.
889 *
890 */
891 for (i = 0; i < bank->num_sectors; i++)
892 {
893 if (bank->sectors[i].is_protected == 1)
894 {
895 cfi_intel_clear_status_register(bank);
896
897 if ((retval = cfi_send_command(bank, 0x60, flash_address(bank, i, 0x0))) != ERROR_OK)
898 {
899 return retval;
900 }
901
902 if ((retval = cfi_send_command(bank, 0x01, flash_address(bank, i, 0x0))) != ERROR_OK)
903 {
904 return retval;
905 }
906
907 cfi_intel_wait_status_busy(bank, 100);
908 }
909 }
910 }
911
912 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
913 }
914
915 static int cfi_protect(struct flash_bank *bank, int set, int first, int last)
916 {
917 struct cfi_flash_bank *cfi_info = bank->driver_priv;
918
919 if (bank->target->state != TARGET_HALTED)
920 {
921 LOG_ERROR("Target not halted");
922 return ERROR_TARGET_NOT_HALTED;
923 }
924
925 if ((first < 0) || (last < first) || (last >= bank->num_sectors))
926 {
927 LOG_ERROR("Invalid sector range");
928 return ERROR_FLASH_SECTOR_INVALID;
929 }
930
931 if (cfi_info->qry[0] != 'Q')
932 return ERROR_FLASH_BANK_NOT_PROBED;
933
934 switch (cfi_info->pri_id)
935 {
936 case 1:
937 case 3:
938 return cfi_intel_protect(bank, set, first, last);
939 break;
940 default:
941 LOG_ERROR("protect: cfi primary command set %i unsupported", cfi_info->pri_id);
942 return ERROR_FAIL;
943 }
944 }
945
946 /* FIXME Replace this by a simple memcpy() - still unsure about sideeffects */
947 static void cfi_add_byte(struct flash_bank *bank, uint8_t *word, uint8_t byte)
948 {
949 /* struct target *target = bank->target; */
950
951 int i;
952
953 /* NOTE:
954 * The data to flash must not be changed in endian! We write a bytestrem in
955 * target byte order already. Only the control and status byte lane of the flash
956 * WSM is interpreted by the CPU in different ways, when read a uint16_t or uint32_t
957 * word (data seems to be in the upper or lower byte lane for uint16_t accesses).
958 */
959
960 #if 0
961 if (target->endianness == TARGET_LITTLE_ENDIAN)
962 {
963 #endif
964 /* shift bytes */
965 for (i = 0; i < bank->bus_width - 1; i++)
966 word[i] = word[i + 1];
967 word[bank->bus_width - 1] = byte;
968 #if 0
969 }
970 else
971 {
972 /* shift bytes */
973 for (i = bank->bus_width - 1; i > 0; i--)
974 word[i] = word[i - 1];
975 word[0] = byte;
976 }
977 #endif
978 }
979
980 /* Convert code image to target endian */
981 /* FIXME create general block conversion fcts in target.c?) */
982 static void cfi_fix_code_endian(struct target *target, uint8_t *dest, const uint32_t *src, uint32_t count)
983 {
984 uint32_t i;
985 for (i = 0; i< count; i++)
986 {
987 target_buffer_set_u32(target, dest, *src);
988 dest += 4;
989 src++;
990 }
991 }
992
993 static uint32_t cfi_command_val(struct flash_bank *bank, uint8_t cmd)
994 {
995 struct target *target = bank->target;
996
997 uint8_t buf[CFI_MAX_BUS_WIDTH];
998 cfi_command(bank, cmd, buf);
999 switch (bank->bus_width)
1000 {
1001 case 1 :
1002 return buf[0];
1003 break;
1004 case 2 :
1005 return target_buffer_get_u16(target, buf);
1006 break;
1007 case 4 :
1008 return target_buffer_get_u32(target, buf);
1009 break;
1010 default :
1011 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1012 return 0;
1013 }
1014 }
1015
1016 static int cfi_intel_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1017 {
1018 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1019 struct target *target = bank->target;
1020 struct reg_param reg_params[7];
1021 struct arm_algorithm armv4_5_info;
1022 struct working_area *source;
1023 uint32_t buffer_size = 32768;
1024 uint32_t write_command_val, busy_pattern_val, error_pattern_val;
1025
1026 /* algorithm register usage:
1027 * r0: source address (in RAM)
1028 * r1: target address (in Flash)
1029 * r2: count
1030 * r3: flash write command
1031 * r4: status byte (returned to host)
1032 * r5: busy test pattern
1033 * r6: error test pattern
1034 */
1035
1036 static const uint32_t word_32_code[] = {
1037 0xe4904004, /* loop: ldr r4, [r0], #4 */
1038 0xe5813000, /* str r3, [r1] */
1039 0xe5814000, /* str r4, [r1] */
1040 0xe5914000, /* busy: ldr r4, [r1] */
1041 0xe0047005, /* and r7, r4, r5 */
1042 0xe1570005, /* cmp r7, r5 */
1043 0x1afffffb, /* bne busy */
1044 0xe1140006, /* tst r4, r6 */
1045 0x1a000003, /* bne done */
1046 0xe2522001, /* subs r2, r2, #1 */
1047 0x0a000001, /* beq done */
1048 0xe2811004, /* add r1, r1 #4 */
1049 0xeafffff2, /* b loop */
1050 0xeafffffe /* done: b -2 */
1051 };
1052
1053 static const uint32_t word_16_code[] = {
1054 0xe0d040b2, /* loop: ldrh r4, [r0], #2 */
1055 0xe1c130b0, /* strh r3, [r1] */
1056 0xe1c140b0, /* strh r4, [r1] */
1057 0xe1d140b0, /* busy ldrh r4, [r1] */
1058 0xe0047005, /* and r7, r4, r5 */
1059 0xe1570005, /* cmp r7, r5 */
1060 0x1afffffb, /* bne busy */
1061 0xe1140006, /* tst r4, r6 */
1062 0x1a000003, /* bne done */
1063 0xe2522001, /* subs r2, r2, #1 */
1064 0x0a000001, /* beq done */
1065 0xe2811002, /* add r1, r1 #2 */
1066 0xeafffff2, /* b loop */
1067 0xeafffffe /* done: b -2 */
1068 };
1069
1070 static const uint32_t word_8_code[] = {
1071 0xe4d04001, /* loop: ldrb r4, [r0], #1 */
1072 0xe5c13000, /* strb r3, [r1] */
1073 0xe5c14000, /* strb r4, [r1] */
1074 0xe5d14000, /* busy ldrb r4, [r1] */
1075 0xe0047005, /* and r7, r4, r5 */
1076 0xe1570005, /* cmp r7, r5 */
1077 0x1afffffb, /* bne busy */
1078 0xe1140006, /* tst r4, r6 */
1079 0x1a000003, /* bne done */
1080 0xe2522001, /* subs r2, r2, #1 */
1081 0x0a000001, /* beq done */
1082 0xe2811001, /* add r1, r1 #1 */
1083 0xeafffff2, /* b loop */
1084 0xeafffffe /* done: b -2 */
1085 };
1086 uint8_t target_code[4*CFI_MAX_INTEL_CODESIZE];
1087 const uint32_t *target_code_src;
1088 uint32_t target_code_size;
1089 int retval = ERROR_OK;
1090
1091
1092 cfi_intel_clear_status_register(bank);
1093
1094 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1095 armv4_5_info.core_mode = ARM_MODE_SVC;
1096 armv4_5_info.core_state = ARM_STATE_ARM;
1097
1098 /* If we are setting up the write_algorith, we need target_code_src */
1099 /* if not we only need target_code_size. */
1100
1101 /* However, we don't want to create multiple code paths, so we */
1102 /* do the unecessary evaluation of target_code_src, which the */
1103 /* compiler will probably nicely optimize away if not needed */
1104
1105 /* prepare algorithm code for target endian */
1106 switch (bank->bus_width)
1107 {
1108 case 1 :
1109 target_code_src = word_8_code;
1110 target_code_size = sizeof(word_8_code);
1111 break;
1112 case 2 :
1113 target_code_src = word_16_code;
1114 target_code_size = sizeof(word_16_code);
1115 break;
1116 case 4 :
1117 target_code_src = word_32_code;
1118 target_code_size = sizeof(word_32_code);
1119 break;
1120 default:
1121 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1122 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1123 }
1124
1125 /* flash write code */
1126 if (!cfi_info->write_algorithm)
1127 {
1128 if (target_code_size > sizeof(target_code))
1129 {
1130 LOG_WARNING("Internal error - target code buffer to small. Increase CFI_MAX_INTEL_CODESIZE and recompile.");
1131 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1132 }
1133 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1134
1135 /* Get memory for block write handler */
1136 retval = target_alloc_working_area(target, target_code_size, &cfi_info->write_algorithm);
1137 if (retval != ERROR_OK)
1138 {
1139 LOG_WARNING("No working area available, can't do block memory writes");
1140 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1141 };
1142
1143 /* write algorithm code to working area */
1144 retval = target_write_buffer(target, cfi_info->write_algorithm->address, target_code_size, target_code);
1145 if (retval != ERROR_OK)
1146 {
1147 LOG_ERROR("Unable to write block write code to target");
1148 goto cleanup;
1149 }
1150 }
1151
1152 /* Get a workspace buffer for the data to flash starting with 32k size.
1153 Half size until buffer would be smaller 256 Bytem then fail back */
1154 /* FIXME Why 256 bytes, why not 32 bytes (smallest flash write page */
1155 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1156 {
1157 buffer_size /= 2;
1158 if (buffer_size <= 256)
1159 {
1160 LOG_WARNING("no large enough working area available, can't do block memory writes");
1161 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1162 goto cleanup;
1163 }
1164 };
1165
1166 /* setup algo registers */
1167 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1168 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1169 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1170 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1171 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN);
1172 init_reg_param(&reg_params[5], "r5", 32, PARAM_OUT);
1173 init_reg_param(&reg_params[6], "r6", 32, PARAM_OUT);
1174
1175 /* prepare command and status register patterns */
1176 write_command_val = cfi_command_val(bank, 0x40);
1177 busy_pattern_val = cfi_command_val(bank, 0x80);
1178 error_pattern_val = cfi_command_val(bank, 0x7e);
1179
1180 LOG_DEBUG("Using target buffer at 0x%08" PRIx32 " and of size 0x%04" PRIx32, source->address, buffer_size);
1181
1182 /* Programming main loop */
1183 while (count > 0)
1184 {
1185 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1186 uint32_t wsm_error;
1187
1188 if ((retval = target_write_buffer(target, source->address, thisrun_count, buffer)) != ERROR_OK)
1189 {
1190 goto cleanup;
1191 }
1192
1193 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1194 buf_set_u32(reg_params[1].value, 0, 32, address);
1195 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1196
1197 buf_set_u32(reg_params[3].value, 0, 32, write_command_val);
1198 buf_set_u32(reg_params[5].value, 0, 32, busy_pattern_val);
1199 buf_set_u32(reg_params[6].value, 0, 32, error_pattern_val);
1200
1201 LOG_DEBUG("Write 0x%04" PRIx32 " bytes to flash at 0x%08" PRIx32 , thisrun_count, address);
1202
1203 /* Execute algorithm, assume breakpoint for last instruction */
1204 retval = target_run_algorithm(target, 0, NULL, 7, reg_params,
1205 cfi_info->write_algorithm->address,
1206 cfi_info->write_algorithm->address + target_code_size - sizeof(uint32_t),
1207 10000, /* 10s should be enough for max. 32k of data */
1208 &armv4_5_info);
1209
1210 /* On failure try a fall back to direct word writes */
1211 if (retval != ERROR_OK)
1212 {
1213 cfi_intel_clear_status_register(bank);
1214 LOG_ERROR("Execution of flash algorythm failed. Can't fall back. Please report.");
1215 retval = ERROR_FLASH_OPERATION_FAILED;
1216 /* retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE; */
1217 /* FIXME To allow fall back or recovery, we must save the actual status
1218 somewhere, so that a higher level code can start recovery. */
1219 goto cleanup;
1220 }
1221
1222 /* Check return value from algo code */
1223 wsm_error = buf_get_u32(reg_params[4].value, 0, 32) & error_pattern_val;
1224 if (wsm_error)
1225 {
1226 /* read status register (outputs debug inforation) */
1227 cfi_intel_wait_status_busy(bank, 100);
1228 cfi_intel_clear_status_register(bank);
1229 retval = ERROR_FLASH_OPERATION_FAILED;
1230 goto cleanup;
1231 }
1232
1233 buffer += thisrun_count;
1234 address += thisrun_count;
1235 count -= thisrun_count;
1236 }
1237
1238 /* free up resources */
1239 cleanup:
1240 if (source)
1241 target_free_working_area(target, source);
1242
1243 if (cfi_info->write_algorithm)
1244 {
1245 target_free_working_area(target, cfi_info->write_algorithm);
1246 cfi_info->write_algorithm = NULL;
1247 }
1248
1249 destroy_reg_param(&reg_params[0]);
1250 destroy_reg_param(&reg_params[1]);
1251 destroy_reg_param(&reg_params[2]);
1252 destroy_reg_param(&reg_params[3]);
1253 destroy_reg_param(&reg_params[4]);
1254 destroy_reg_param(&reg_params[5]);
1255 destroy_reg_param(&reg_params[6]);
1256
1257 return retval;
1258 }
1259
1260 static int cfi_spansion_write_block(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t count)
1261 {
1262 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1263 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1264 struct target *target = bank->target;
1265 struct reg_param reg_params[10];
1266 struct arm_algorithm armv4_5_info;
1267 struct working_area *source;
1268 uint32_t buffer_size = 32768;
1269 uint32_t status;
1270 int retval, retvaltemp;
1271 int exit_code = ERROR_OK;
1272
1273 /* input parameters - */
1274 /* R0 = source address */
1275 /* R1 = destination address */
1276 /* R2 = number of writes */
1277 /* R3 = flash write command */
1278 /* R4 = constant to mask DQ7 bits (also used for Dq5 with shift) */
1279 /* output parameters - */
1280 /* R5 = 0x80 ok 0x00 bad */
1281 /* temp registers - */
1282 /* R6 = value read from flash to test status */
1283 /* R7 = holding register */
1284 /* unlock registers - */
1285 /* R8 = unlock1_addr */
1286 /* R9 = unlock1_cmd */
1287 /* R10 = unlock2_addr */
1288 /* R11 = unlock2_cmd */
1289
1290 static const uint32_t word_32_code[] = {
1291 /* 00008100 <sp_32_code>: */
1292 0xe4905004, /* ldr r5, [r0], #4 */
1293 0xe5889000, /* str r9, [r8] */
1294 0xe58ab000, /* str r11, [r10] */
1295 0xe5883000, /* str r3, [r8] */
1296 0xe5815000, /* str r5, [r1] */
1297 0xe1a00000, /* nop */
1298 /* */
1299 /* 00008110 <sp_32_busy>: */
1300 0xe5916000, /* ldr r6, [r1] */
1301 0xe0257006, /* eor r7, r5, r6 */
1302 0xe0147007, /* ands r7, r4, r7 */
1303 0x0a000007, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1304 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1305 0x0afffff9, /* beq 8110 <sp_32_busy> ; b if DQ5 low */
1306 0xe5916000, /* ldr r6, [r1] */
1307 0xe0257006, /* eor r7, r5, r6 */
1308 0xe0147007, /* ands r7, r4, r7 */
1309 0x0a000001, /* beq 8140 <sp_32_cont> ; b if DQ7 == Data7 */
1310 0xe3a05000, /* mov r5, #0 ; 0x0 - return 0x00, error */
1311 0x1a000004, /* bne 8154 <sp_32_done> */
1312 /* */
1313 /* 00008140 <sp_32_cont>: */
1314 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1315 0x03a05080, /* moveq r5, #128 ; 0x80 */
1316 0x0a000001, /* beq 8154 <sp_32_done> */
1317 0xe2811004, /* add r1, r1, #4 ; 0x4 */
1318 0xeaffffe8, /* b 8100 <sp_32_code> */
1319 /* */
1320 /* 00008154 <sp_32_done>: */
1321 0xeafffffe /* b 8154 <sp_32_done> */
1322 };
1323
1324 static const uint32_t word_16_code[] = {
1325 /* 00008158 <sp_16_code>: */
1326 0xe0d050b2, /* ldrh r5, [r0], #2 */
1327 0xe1c890b0, /* strh r9, [r8] */
1328 0xe1cab0b0, /* strh r11, [r10] */
1329 0xe1c830b0, /* strh r3, [r8] */
1330 0xe1c150b0, /* strh r5, [r1] */
1331 0xe1a00000, /* nop (mov r0,r0) */
1332 /* */
1333 /* 00008168 <sp_16_busy>: */
1334 0xe1d160b0, /* ldrh r6, [r1] */
1335 0xe0257006, /* eor r7, r5, r6 */
1336 0xe0147007, /* ands r7, r4, r7 */
1337 0x0a000007, /* beq 8198 <sp_16_cont> */
1338 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1339 0x0afffff9, /* beq 8168 <sp_16_busy> */
1340 0xe1d160b0, /* ldrh r6, [r1] */
1341 0xe0257006, /* eor r7, r5, r6 */
1342 0xe0147007, /* ands r7, r4, r7 */
1343 0x0a000001, /* beq 8198 <sp_16_cont> */
1344 0xe3a05000, /* mov r5, #0 ; 0x0 */
1345 0x1a000004, /* bne 81ac <sp_16_done> */
1346 /* */
1347 /* 00008198 <sp_16_cont>: */
1348 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1349 0x03a05080, /* moveq r5, #128 ; 0x80 */
1350 0x0a000001, /* beq 81ac <sp_16_done> */
1351 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1352 0xeaffffe8, /* b 8158 <sp_16_code> */
1353 /* */
1354 /* 000081ac <sp_16_done>: */
1355 0xeafffffe /* b 81ac <sp_16_done> */
1356 };
1357
1358 static const uint32_t word_16_code_dq7only[] = {
1359 /* <sp_16_code>: */
1360 0xe0d050b2, /* ldrh r5, [r0], #2 */
1361 0xe1c890b0, /* strh r9, [r8] */
1362 0xe1cab0b0, /* strh r11, [r10] */
1363 0xe1c830b0, /* strh r3, [r8] */
1364 0xe1c150b0, /* strh r5, [r1] */
1365 0xe1a00000, /* nop (mov r0,r0) */
1366 /* */
1367 /* <sp_16_busy>: */
1368 0xe1d160b0, /* ldrh r6, [r1] */
1369 0xe0257006, /* eor r7, r5, r6 */
1370 0xe2177080, /* ands r7, #0x80 */
1371 0x1afffffb, /* bne 8168 <sp_16_busy> */
1372 /* */
1373 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1374 0x03a05080, /* moveq r5, #128 ; 0x80 */
1375 0x0a000001, /* beq 81ac <sp_16_done> */
1376 0xe2811002, /* add r1, r1, #2 ; 0x2 */
1377 0xeafffff0, /* b 8158 <sp_16_code> */
1378 /* */
1379 /* 000081ac <sp_16_done>: */
1380 0xeafffffe /* b 81ac <sp_16_done> */
1381 };
1382
1383 static const uint32_t word_8_code[] = {
1384 /* 000081b0 <sp_16_code_end>: */
1385 0xe4d05001, /* ldrb r5, [r0], #1 */
1386 0xe5c89000, /* strb r9, [r8] */
1387 0xe5cab000, /* strb r11, [r10] */
1388 0xe5c83000, /* strb r3, [r8] */
1389 0xe5c15000, /* strb r5, [r1] */
1390 0xe1a00000, /* nop (mov r0,r0) */
1391 /* */
1392 /* 000081c0 <sp_8_busy>: */
1393 0xe5d16000, /* ldrb r6, [r1] */
1394 0xe0257006, /* eor r7, r5, r6 */
1395 0xe0147007, /* ands r7, r4, r7 */
1396 0x0a000007, /* beq 81f0 <sp_8_cont> */
1397 0xe0166124, /* ands r6, r6, r4, lsr #2 */
1398 0x0afffff9, /* beq 81c0 <sp_8_busy> */
1399 0xe5d16000, /* ldrb r6, [r1] */
1400 0xe0257006, /* eor r7, r5, r6 */
1401 0xe0147007, /* ands r7, r4, r7 */
1402 0x0a000001, /* beq 81f0 <sp_8_cont> */
1403 0xe3a05000, /* mov r5, #0 ; 0x0 */
1404 0x1a000004, /* bne 8204 <sp_8_done> */
1405 /* */
1406 /* 000081f0 <sp_8_cont>: */
1407 0xe2522001, /* subs r2, r2, #1 ; 0x1 */
1408 0x03a05080, /* moveq r5, #128 ; 0x80 */
1409 0x0a000001, /* beq 8204 <sp_8_done> */
1410 0xe2811001, /* add r1, r1, #1 ; 0x1 */
1411 0xeaffffe8, /* b 81b0 <sp_16_code_end> */
1412 /* */
1413 /* 00008204 <sp_8_done>: */
1414 0xeafffffe /* b 8204 <sp_8_done> */
1415 };
1416
1417 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
1418 armv4_5_info.core_mode = ARM_MODE_SVC;
1419 armv4_5_info.core_state = ARM_STATE_ARM;
1420
1421 int target_code_size;
1422 const uint32_t *target_code_src;
1423
1424 switch (bank->bus_width)
1425 {
1426 case 1 :
1427 target_code_src = word_8_code;
1428 target_code_size = sizeof(word_8_code);
1429 break;
1430 case 2 :
1431 /* Check for DQ5 support */
1432 if( cfi_info->status_poll_mask & (1 << 5) )
1433 {
1434 target_code_src = word_16_code;
1435 target_code_size = sizeof(word_16_code);
1436 }
1437 else
1438 {
1439 /* No DQ5 support. Use DQ7 DATA# polling only. */
1440 target_code_src = word_16_code_dq7only;
1441 target_code_size = sizeof(word_16_code_dq7only);
1442 }
1443 break;
1444 case 4 :
1445 target_code_src = word_32_code;
1446 target_code_size = sizeof(word_32_code);
1447 break;
1448 default:
1449 LOG_ERROR("Unsupported bank buswidth %d, can't do block memory writes", bank->bus_width);
1450 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1451 }
1452
1453 /* flash write code */
1454 if (!cfi_info->write_algorithm)
1455 {
1456 uint8_t *target_code;
1457
1458 /* convert bus-width dependent algorithm code to correct endiannes */
1459 target_code = malloc(target_code_size);
1460 cfi_fix_code_endian(target, target_code, target_code_src, target_code_size / 4);
1461
1462 /* allocate working area */
1463 retval = target_alloc_working_area(target, target_code_size,
1464 &cfi_info->write_algorithm);
1465 if (retval != ERROR_OK)
1466 {
1467 free(target_code);
1468 return retval;
1469 }
1470
1471 /* write algorithm code to working area */
1472 if ((retval = target_write_buffer(target, cfi_info->write_algorithm->address,
1473 target_code_size, target_code)) != ERROR_OK)
1474 {
1475 free(target_code);
1476 return retval;
1477 }
1478
1479 free(target_code);
1480 }
1481 /* the following code still assumes target code is fixed 24*4 bytes */
1482
1483 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK)
1484 {
1485 buffer_size /= 2;
1486 if (buffer_size <= 256)
1487 {
1488 /* if we already allocated the writing code, but failed to get a buffer, free the algorithm */
1489 if (cfi_info->write_algorithm)
1490 target_free_working_area(target, cfi_info->write_algorithm);
1491
1492 LOG_WARNING("not enough working area available, can't do block memory writes");
1493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1494 }
1495 };
1496
1497 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1498 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1499 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1500 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1501 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1502 init_reg_param(&reg_params[5], "r5", 32, PARAM_IN);
1503 init_reg_param(&reg_params[6], "r8", 32, PARAM_OUT);
1504 init_reg_param(&reg_params[7], "r9", 32, PARAM_OUT);
1505 init_reg_param(&reg_params[8], "r10", 32, PARAM_OUT);
1506 init_reg_param(&reg_params[9], "r11", 32, PARAM_OUT);
1507
1508 while (count > 0)
1509 {
1510 uint32_t thisrun_count = (count > buffer_size) ? buffer_size : count;
1511
1512 retvaltemp = target_write_buffer(target, source->address, thisrun_count, buffer);
1513
1514 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1515 buf_set_u32(reg_params[1].value, 0, 32, address);
1516 buf_set_u32(reg_params[2].value, 0, 32, thisrun_count / bank->bus_width);
1517 buf_set_u32(reg_params[3].value, 0, 32, cfi_command_val(bank, 0xA0));
1518 buf_set_u32(reg_params[4].value, 0, 32, cfi_command_val(bank, 0x80));
1519 buf_set_u32(reg_params[6].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock1));
1520 buf_set_u32(reg_params[7].value, 0, 32, 0xaaaaaaaa);
1521 buf_set_u32(reg_params[8].value, 0, 32, flash_address(bank, 0, pri_ext->_unlock2));
1522 buf_set_u32(reg_params[9].value, 0, 32, 0x55555555);
1523
1524 retval = target_run_algorithm(target, 0, NULL, 10, reg_params,
1525 cfi_info->write_algorithm->address,
1526 cfi_info->write_algorithm->address + ((target_code_size) - 4),
1527 10000, &armv4_5_info);
1528
1529 status = buf_get_u32(reg_params[5].value, 0, 32);
1530
1531 if ((retval != ERROR_OK) || (retvaltemp != ERROR_OK) || status != 0x80)
1532 {
1533 LOG_DEBUG("status: 0x%" PRIx32 , status);
1534 exit_code = ERROR_FLASH_OPERATION_FAILED;
1535 break;
1536 }
1537
1538 buffer += thisrun_count;
1539 address += thisrun_count;
1540 count -= thisrun_count;
1541 }
1542
1543 target_free_all_working_areas(target);
1544
1545 destroy_reg_param(&reg_params[0]);
1546 destroy_reg_param(&reg_params[1]);
1547 destroy_reg_param(&reg_params[2]);
1548 destroy_reg_param(&reg_params[3]);
1549 destroy_reg_param(&reg_params[4]);
1550 destroy_reg_param(&reg_params[5]);
1551 destroy_reg_param(&reg_params[6]);
1552 destroy_reg_param(&reg_params[7]);
1553 destroy_reg_param(&reg_params[8]);
1554 destroy_reg_param(&reg_params[9]);
1555
1556 return exit_code;
1557 }
1558
1559 static int cfi_intel_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1560 {
1561 int retval;
1562 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1563 struct target *target = bank->target;
1564
1565 cfi_intel_clear_status_register(bank);
1566 if ((retval = cfi_send_command(bank, 0x40, address)) != ERROR_OK)
1567 {
1568 return retval;
1569 }
1570
1571 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1572 {
1573 return retval;
1574 }
1575
1576 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != 0x80)
1577 {
1578 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1579 {
1580 return retval;
1581 }
1582
1583 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1584 return ERROR_FLASH_OPERATION_FAILED;
1585 }
1586
1587 return ERROR_OK;
1588 }
1589
1590 static int cfi_intel_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1591 {
1592 int retval;
1593 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1594 struct target *target = bank->target;
1595
1596 /* Calculate buffer size and boundary mask */
1597 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1598 uint32_t buffermask = buffersize-1;
1599 uint32_t bufferwsize;
1600
1601 /* Check for valid range */
1602 if (address & buffermask)
1603 {
1604 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary",
1605 bank->base, address, cfi_info->max_buf_write_size);
1606 return ERROR_FLASH_OPERATION_FAILED;
1607 }
1608 switch (bank->chip_width)
1609 {
1610 case 4 : bufferwsize = buffersize / 4; break;
1611 case 2 : bufferwsize = buffersize / 2; break;
1612 case 1 : bufferwsize = buffersize; break;
1613 default:
1614 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1615 return ERROR_FLASH_OPERATION_FAILED;
1616 }
1617
1618 bufferwsize/=(bank->bus_width / bank->chip_width);
1619
1620
1621 /* Check for valid size */
1622 if (wordcount > bufferwsize)
1623 {
1624 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32 , wordcount, buffersize);
1625 return ERROR_FLASH_OPERATION_FAILED;
1626 }
1627
1628 /* Write to flash buffer */
1629 cfi_intel_clear_status_register(bank);
1630
1631 /* Initiate buffer operation _*/
1632 if ((retval = cfi_send_command(bank, 0xe8, address)) != ERROR_OK)
1633 {
1634 return retval;
1635 }
1636 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1637 {
1638 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1639 {
1640 return retval;
1641 }
1642
1643 LOG_ERROR("couldn't start buffer write operation at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1644 return ERROR_FLASH_OPERATION_FAILED;
1645 }
1646
1647 /* Write buffer wordcount-1 and data words */
1648 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1649 {
1650 return retval;
1651 }
1652
1653 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1654 {
1655 return retval;
1656 }
1657
1658 /* Commit write operation */
1659 if ((retval = cfi_send_command(bank, 0xd0, address)) != ERROR_OK)
1660 {
1661 return retval;
1662 }
1663 if (cfi_intel_wait_status_busy(bank, 1000 * (1 << cfi_info->buf_write_timeout_max)) != 0x80)
1664 {
1665 if ((retval = cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0))) != ERROR_OK)
1666 {
1667 return retval;
1668 }
1669
1670 LOG_ERROR("Buffer write at base 0x%" PRIx32 ", address %" PRIx32 " failed.", bank->base, address);
1671 return ERROR_FLASH_OPERATION_FAILED;
1672 }
1673
1674 return ERROR_OK;
1675 }
1676
1677 static int cfi_spansion_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1678 {
1679 int retval;
1680 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1681 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1682 struct target *target = bank->target;
1683
1684 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1685 {
1686 return retval;
1687 }
1688
1689 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1690 {
1691 return retval;
1692 }
1693
1694 if ((retval = cfi_send_command(bank, 0xa0, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1695 {
1696 return retval;
1697 }
1698
1699 if ((retval = target_write_memory(target, address, bank->bus_width, 1, word)) != ERROR_OK)
1700 {
1701 return retval;
1702 }
1703
1704 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1705 {
1706 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1707 {
1708 return retval;
1709 }
1710
1711 LOG_ERROR("couldn't write word at base 0x%" PRIx32 ", address %" PRIx32 , bank->base, address);
1712 return ERROR_FLASH_OPERATION_FAILED;
1713 }
1714
1715 return ERROR_OK;
1716 }
1717
1718 static int cfi_spansion_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1719 {
1720 int retval;
1721 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1722 struct target *target = bank->target;
1723 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
1724
1725 /* Calculate buffer size and boundary mask */
1726 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1727 uint32_t buffermask = buffersize-1;
1728 uint32_t bufferwsize;
1729
1730 /* Check for valid range */
1731 if (address & buffermask)
1732 {
1733 LOG_ERROR("Write address at base 0x%" PRIx32 ", address %" PRIx32 " not aligned to 2^%d boundary", bank->base, address, cfi_info->max_buf_write_size);
1734 return ERROR_FLASH_OPERATION_FAILED;
1735 }
1736 switch (bank->chip_width)
1737 {
1738 case 4 : bufferwsize = buffersize / 4; break;
1739 case 2 : bufferwsize = buffersize / 2; break;
1740 case 1 : bufferwsize = buffersize; break;
1741 default:
1742 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1743 return ERROR_FLASH_OPERATION_FAILED;
1744 }
1745
1746 bufferwsize/=(bank->bus_width / bank->chip_width);
1747
1748 /* Check for valid size */
1749 if (wordcount > bufferwsize)
1750 {
1751 LOG_ERROR("Number of data words %" PRId32 " exceeds available buffersize %" PRId32, wordcount, buffersize);
1752 return ERROR_FLASH_OPERATION_FAILED;
1753 }
1754
1755 // Unlock
1756 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
1757 {
1758 return retval;
1759 }
1760
1761 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
1762 {
1763 return retval;
1764 }
1765
1766 // Buffer load command
1767 if ((retval = cfi_send_command(bank, 0x25, address)) != ERROR_OK)
1768 {
1769 return retval;
1770 }
1771
1772 /* Write buffer wordcount-1 and data words */
1773 if ((retval = cfi_send_command(bank, bufferwsize-1, address)) != ERROR_OK)
1774 {
1775 return retval;
1776 }
1777
1778 if ((retval = target_write_memory(target, address, bank->bus_width, bufferwsize, word)) != ERROR_OK)
1779 {
1780 return retval;
1781 }
1782
1783 /* Commit write operation */
1784 if ((retval = cfi_send_command(bank, 0x29, address)) != ERROR_OK)
1785 {
1786 return retval;
1787 }
1788
1789 if (cfi_spansion_wait_status_busy(bank, 1000 * (1 << cfi_info->word_write_timeout_max)) != ERROR_OK)
1790 {
1791 if ((retval = cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0))) != ERROR_OK)
1792 {
1793 return retval;
1794 }
1795
1796 LOG_ERROR("couldn't write block at base 0x%" PRIx32 ", address %" PRIx32 ", size %" PRIx32 , bank->base, address, bufferwsize);
1797 return ERROR_FLASH_OPERATION_FAILED;
1798 }
1799
1800 return ERROR_OK;
1801 }
1802
1803 static int cfi_write_word(struct flash_bank *bank, uint8_t *word, uint32_t address)
1804 {
1805 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1806
1807 switch (cfi_info->pri_id)
1808 {
1809 case 1:
1810 case 3:
1811 return cfi_intel_write_word(bank, word, address);
1812 break;
1813 case 2:
1814 return cfi_spansion_write_word(bank, word, address);
1815 break;
1816 default:
1817 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1818 break;
1819 }
1820
1821 return ERROR_FLASH_OPERATION_FAILED;
1822 }
1823
1824 static int cfi_write_words(struct flash_bank *bank, uint8_t *word, uint32_t wordcount, uint32_t address)
1825 {
1826 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1827
1828 switch (cfi_info->pri_id)
1829 {
1830 case 1:
1831 case 3:
1832 return cfi_intel_write_words(bank, word, wordcount, address);
1833 break;
1834 case 2:
1835 return cfi_spansion_write_words(bank, word, wordcount, address);
1836 break;
1837 default:
1838 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1839 break;
1840 }
1841
1842 return ERROR_FLASH_OPERATION_FAILED;
1843 }
1844
1845 static int cfi_write(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count)
1846 {
1847 struct cfi_flash_bank *cfi_info = bank->driver_priv;
1848 struct target *target = bank->target;
1849 uint32_t address = bank->base + offset; /* address of first byte to be programmed */
1850 uint32_t write_p, copy_p;
1851 int align; /* number of unaligned bytes */
1852 int blk_count; /* number of bus_width bytes for block copy */
1853 uint8_t current_word[CFI_MAX_BUS_WIDTH * 4]; /* word (bus_width size) currently being programmed */
1854 int i;
1855 int retval;
1856
1857 if (bank->target->state != TARGET_HALTED)
1858 {
1859 LOG_ERROR("Target not halted");
1860 return ERROR_TARGET_NOT_HALTED;
1861 }
1862
1863 if (offset + count > bank->size)
1864 return ERROR_FLASH_DST_OUT_OF_BANK;
1865
1866 if (cfi_info->qry[0] != 'Q')
1867 return ERROR_FLASH_BANK_NOT_PROBED;
1868
1869 /* start at the first byte of the first word (bus_width size) */
1870 write_p = address & ~(bank->bus_width - 1);
1871 if ((align = address - write_p) != 0)
1872 {
1873 LOG_INFO("Fixup %d unaligned head bytes", align);
1874
1875 for (i = 0; i < bank->bus_width; i++)
1876 current_word[i] = 0;
1877 copy_p = write_p;
1878
1879 /* copy bytes before the first write address */
1880 for (i = 0; i < align; ++i, ++copy_p)
1881 {
1882 uint8_t byte;
1883 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1884 {
1885 return retval;
1886 }
1887 cfi_add_byte(bank, current_word, byte);
1888 }
1889
1890 /* add bytes from the buffer */
1891 for (; (i < bank->bus_width) && (count > 0); i++)
1892 {
1893 cfi_add_byte(bank, current_word, *buffer++);
1894 count--;
1895 copy_p++;
1896 }
1897
1898 /* if the buffer is already finished, copy bytes after the last write address */
1899 for (; (count == 0) && (i < bank->bus_width); ++i, ++copy_p)
1900 {
1901 uint8_t byte;
1902 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
1903 {
1904 return retval;
1905 }
1906 cfi_add_byte(bank, current_word, byte);
1907 }
1908
1909 retval = cfi_write_word(bank, current_word, write_p);
1910 if (retval != ERROR_OK)
1911 return retval;
1912 write_p = copy_p;
1913 }
1914
1915 /* handle blocks of bus_size aligned bytes */
1916 blk_count = count & ~(bank->bus_width - 1); /* round down, leave tail bytes */
1917 switch (cfi_info->pri_id)
1918 {
1919 /* try block writes (fails without working area) */
1920 case 1:
1921 case 3:
1922 retval = cfi_intel_write_block(bank, buffer, write_p, blk_count);
1923 break;
1924 case 2:
1925 retval = cfi_spansion_write_block(bank, buffer, write_p, blk_count);
1926 break;
1927 default:
1928 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
1929 retval = ERROR_FLASH_OPERATION_FAILED;
1930 break;
1931 }
1932 if (retval == ERROR_OK)
1933 {
1934 /* Increment pointers and decrease count on succesful block write */
1935 buffer += blk_count;
1936 write_p += blk_count;
1937 count -= blk_count;
1938 }
1939 else
1940 {
1941 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1942 {
1943 //adjust buffersize for chip width
1944 uint32_t buffersize = (1UL << cfi_info->max_buf_write_size) * (bank->bus_width / bank->chip_width);
1945 uint32_t buffermask = buffersize-1;
1946 uint32_t bufferwsize;
1947
1948 switch (bank->chip_width)
1949 {
1950 case 4 : bufferwsize = buffersize / 4; break;
1951 case 2 : bufferwsize = buffersize / 2; break;
1952 case 1 : bufferwsize = buffersize; break;
1953 default:
1954 LOG_ERROR("Unsupported chip width %d", bank->chip_width);
1955 return ERROR_FLASH_OPERATION_FAILED;
1956 }
1957
1958 bufferwsize/=(bank->bus_width / bank->chip_width);
1959
1960 /* fall back to memory writes */
1961 while (count >= (uint32_t)bank->bus_width)
1962 {
1963 int fallback;
1964 if ((write_p & 0xff) == 0)
1965 {
1966 LOG_INFO("Programming at %08" PRIx32 ", count %08" PRIx32 " bytes remaining", write_p, count);
1967 }
1968 fallback = 1;
1969 if ((bufferwsize > 0) && (count >= buffersize) && !(write_p & buffermask))
1970 {
1971 retval = cfi_write_words(bank, buffer, bufferwsize, write_p);
1972 if (retval == ERROR_OK)
1973 {
1974 buffer += buffersize;
1975 write_p += buffersize;
1976 count -= buffersize;
1977 fallback = 0;
1978 }
1979 }
1980 /* try the slow way? */
1981 if (fallback)
1982 {
1983 for (i = 0; i < bank->bus_width; i++)
1984 current_word[i] = 0;
1985
1986 for (i = 0; i < bank->bus_width; i++)
1987 {
1988 cfi_add_byte(bank, current_word, *buffer++);
1989 }
1990
1991 retval = cfi_write_word(bank, current_word, write_p);
1992 if (retval != ERROR_OK)
1993 return retval;
1994
1995 write_p += bank->bus_width;
1996 count -= bank->bus_width;
1997 }
1998 }
1999 }
2000 else
2001 return retval;
2002 }
2003
2004 /* return to read array mode, so we can read from flash again for padding */
2005 if ((retval = cfi_reset(bank)) != ERROR_OK)
2006 {
2007 return retval;
2008 }
2009
2010 /* handle unaligned tail bytes */
2011 if (count > 0)
2012 {
2013 LOG_INFO("Fixup %" PRId32 " unaligned tail bytes", count);
2014
2015 copy_p = write_p;
2016 for (i = 0; i < bank->bus_width; i++)
2017 current_word[i] = 0;
2018
2019 for (i = 0; (i < bank->bus_width) && (count > 0); ++i, ++copy_p)
2020 {
2021 cfi_add_byte(bank, current_word, *buffer++);
2022 count--;
2023 }
2024 for (; i < bank->bus_width; ++i, ++copy_p)
2025 {
2026 uint8_t byte;
2027 if ((retval = target_read_memory(target, copy_p, 1, 1, &byte)) != ERROR_OK)
2028 {
2029 return retval;
2030 }
2031 cfi_add_byte(bank, current_word, byte);
2032 }
2033 retval = cfi_write_word(bank, current_word, write_p);
2034 if (retval != ERROR_OK)
2035 return retval;
2036 }
2037
2038 /* return to read array mode */
2039 return cfi_reset(bank);
2040 }
2041
2042 static void cfi_fixup_atmel_reversed_erase_regions(struct flash_bank *bank, void *param)
2043 {
2044 (void) param;
2045 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2046 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2047
2048 pri_ext->_reversed_geometry = 1;
2049 }
2050
2051 static void cfi_fixup_0002_erase_regions(struct flash_bank *bank, void *param)
2052 {
2053 int i;
2054 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2055 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2056 (void) param;
2057
2058 if ((pri_ext->_reversed_geometry) || (pri_ext->TopBottom == 3))
2059 {
2060 LOG_DEBUG("swapping reversed erase region information on cmdset 0002 device");
2061
2062 for (i = 0; i < cfi_info->num_erase_regions / 2; i++)
2063 {
2064 int j = (cfi_info->num_erase_regions - 1) - i;
2065 uint32_t swap;
2066
2067 swap = cfi_info->erase_region_info[i];
2068 cfi_info->erase_region_info[i] = cfi_info->erase_region_info[j];
2069 cfi_info->erase_region_info[j] = swap;
2070 }
2071 }
2072 }
2073
2074 static void cfi_fixup_0002_unlock_addresses(struct flash_bank *bank, void *param)
2075 {
2076 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2077 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2078 struct cfi_unlock_addresses *unlock_addresses = param;
2079
2080 pri_ext->_unlock1 = unlock_addresses->unlock1;
2081 pri_ext->_unlock2 = unlock_addresses->unlock2;
2082 }
2083
2084
2085 static int cfi_query_string(struct flash_bank *bank, int address)
2086 {
2087 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2088 int retval;
2089
2090 if ((retval = cfi_send_command(bank, 0x98, flash_address(bank, 0, address))) != ERROR_OK)
2091 {
2092 return retval;
2093 }
2094
2095 cfi_info->qry[0] = cfi_query_u8(bank, 0, 0x10);
2096 cfi_info->qry[1] = cfi_query_u8(bank, 0, 0x11);
2097 cfi_info->qry[2] = cfi_query_u8(bank, 0, 0x12);
2098
2099 LOG_DEBUG("CFI qry returned: 0x%2.2x 0x%2.2x 0x%2.2x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2]);
2100
2101 if ((cfi_info->qry[0] != 'Q') || (cfi_info->qry[1] != 'R') || (cfi_info->qry[2] != 'Y'))
2102 {
2103 if ((retval = cfi_reset(bank)) != ERROR_OK)
2104 {
2105 return retval;
2106 }
2107 LOG_ERROR("Could not probe bank: no QRY");
2108 return ERROR_FLASH_BANK_INVALID;
2109 }
2110
2111 return ERROR_OK;
2112 }
2113
2114 static int cfi_probe(struct flash_bank *bank)
2115 {
2116 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2117 struct target *target = bank->target;
2118 int num_sectors = 0;
2119 int i;
2120 int sector = 0;
2121 uint32_t unlock1 = 0x555;
2122 uint32_t unlock2 = 0x2aa;
2123 int retval;
2124
2125 if (bank->target->state != TARGET_HALTED)
2126 {
2127 LOG_ERROR("Target not halted");
2128 return ERROR_TARGET_NOT_HALTED;
2129 }
2130
2131 cfi_info->probed = 0;
2132
2133 /* JEDEC standard JESD21C uses 0x5555 and 0x2aaa as unlock addresses,
2134 * while CFI compatible AMD/Spansion flashes use 0x555 and 0x2aa
2135 */
2136 if (cfi_info->jedec_probe)
2137 {
2138 unlock1 = 0x5555;
2139 unlock2 = 0x2aaa;
2140 }
2141
2142 /* switch to read identifier codes mode ("AUTOSELECT") */
2143 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, unlock1))) != ERROR_OK)
2144 {
2145 return retval;
2146 }
2147 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, unlock2))) != ERROR_OK)
2148 {
2149 return retval;
2150 }
2151 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, unlock1))) != ERROR_OK)
2152 {
2153 return retval;
2154 }
2155
2156 if (bank->chip_width == 1)
2157 {
2158 uint8_t manufacturer, device_id;
2159 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x00), &manufacturer)) != ERROR_OK)
2160 {
2161 return retval;
2162 }
2163 if ((retval = target_read_u8(target, flash_address(bank, 0, 0x01), &device_id)) != ERROR_OK)
2164 {
2165 return retval;
2166 }
2167 cfi_info->manufacturer = manufacturer;
2168 cfi_info->device_id = device_id;
2169 }
2170 else if (bank->chip_width == 2)
2171 {
2172 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x00), &cfi_info->manufacturer)) != ERROR_OK)
2173 {
2174 return retval;
2175 }
2176 if ((retval = target_read_u16(target, flash_address(bank, 0, 0x01), &cfi_info->device_id)) != ERROR_OK)
2177 {
2178 return retval;
2179 }
2180 }
2181
2182 LOG_INFO("Flash Manufacturer/Device: 0x%04x 0x%04x", cfi_info->manufacturer, cfi_info->device_id);
2183 /* switch back to read array mode */
2184 if ((retval = cfi_reset(bank)) != ERROR_OK)
2185 {
2186 return retval;
2187 }
2188
2189 /* check device/manufacturer ID for known non-CFI flashes. */
2190 cfi_fixup_non_cfi(bank);
2191
2192 /* query only if this is a CFI compatible flash,
2193 * otherwise the relevant info has already been filled in
2194 */
2195 if (cfi_info->not_cfi == 0)
2196 {
2197 int retval;
2198
2199 /* enter CFI query mode
2200 * according to JEDEC Standard No. 68.01,
2201 * a single bus sequence with address = 0x55, data = 0x98 should put
2202 * the device into CFI query mode.
2203 *
2204 * SST flashes clearly violate this, and we will consider them incompatbile for now
2205 */
2206
2207 retval = cfi_query_string(bank, 0x55);
2208 if (retval != ERROR_OK)
2209 {
2210 /*
2211 * Spansion S29WS-N CFI query fix is to try 0x555 if 0x55 fails. Should
2212 * be harmless enough:
2213 *
2214 * http://www.infradead.org/pipermail/linux-mtd/2005-September/013618.html
2215 */
2216 LOG_USER("Try workaround w/0x555 instead of 0x55 to get QRY.");
2217 retval = cfi_query_string(bank, 0x555);
2218 }
2219 if (retval != ERROR_OK)
2220 return retval;
2221
2222 cfi_info->pri_id = cfi_query_u16(bank, 0, 0x13);
2223 cfi_info->pri_addr = cfi_query_u16(bank, 0, 0x15);
2224 cfi_info->alt_id = cfi_query_u16(bank, 0, 0x17);
2225 cfi_info->alt_addr = cfi_query_u16(bank, 0, 0x19);
2226
2227 LOG_DEBUG("qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2228
2229 cfi_info->vcc_min = cfi_query_u8(bank, 0, 0x1b);
2230 cfi_info->vcc_max = cfi_query_u8(bank, 0, 0x1c);
2231 cfi_info->vpp_min = cfi_query_u8(bank, 0, 0x1d);
2232 cfi_info->vpp_max = cfi_query_u8(bank, 0, 0x1e);
2233 cfi_info->word_write_timeout_typ = cfi_query_u8(bank, 0, 0x1f);
2234 cfi_info->buf_write_timeout_typ = cfi_query_u8(bank, 0, 0x20);
2235 cfi_info->block_erase_timeout_typ = cfi_query_u8(bank, 0, 0x21);
2236 cfi_info->chip_erase_timeout_typ = cfi_query_u8(bank, 0, 0x22);
2237 cfi_info->word_write_timeout_max = cfi_query_u8(bank, 0, 0x23);
2238 cfi_info->buf_write_timeout_max = cfi_query_u8(bank, 0, 0x24);
2239 cfi_info->block_erase_timeout_max = cfi_query_u8(bank, 0, 0x25);
2240 cfi_info->chip_erase_timeout_max = cfi_query_u8(bank, 0, 0x26);
2241
2242 LOG_DEBUG("Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x",
2243 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2244 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2245 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2246 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2247 LOG_DEBUG("typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u", 1 << cfi_info->word_write_timeout_typ, 1 << cfi_info->buf_write_timeout_typ,
2248 1 << cfi_info->block_erase_timeout_typ, 1 << cfi_info->chip_erase_timeout_typ);
2249 LOG_DEBUG("max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u", (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2250 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2251 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2252 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2253
2254 cfi_info->dev_size = 1 << cfi_query_u8(bank, 0, 0x27);
2255 cfi_info->interface_desc = cfi_query_u16(bank, 0, 0x28);
2256 cfi_info->max_buf_write_size = cfi_query_u16(bank, 0, 0x2a);
2257 cfi_info->num_erase_regions = cfi_query_u8(bank, 0, 0x2c);
2258
2259 LOG_DEBUG("size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x", cfi_info->dev_size, cfi_info->interface_desc, (1 << cfi_info->max_buf_write_size));
2260
2261 if (cfi_info->num_erase_regions)
2262 {
2263 cfi_info->erase_region_info = malloc(4 * cfi_info->num_erase_regions);
2264 for (i = 0; i < cfi_info->num_erase_regions; i++)
2265 {
2266 cfi_info->erase_region_info[i] = cfi_query_u32(bank, 0, 0x2d + (4 * i));
2267 LOG_DEBUG("erase region[%i]: %" PRIu32 " blocks of size 0x%" PRIx32 "",
2268 i,
2269 (cfi_info->erase_region_info[i] & 0xffff) + 1,
2270 (cfi_info->erase_region_info[i] >> 16) * 256);
2271 }
2272 }
2273 else
2274 {
2275 cfi_info->erase_region_info = NULL;
2276 }
2277
2278 /* We need to read the primary algorithm extended query table before calculating
2279 * the sector layout to be able to apply fixups
2280 */
2281 switch (cfi_info->pri_id)
2282 {
2283 /* Intel command set (standard and extended) */
2284 case 0x0001:
2285 case 0x0003:
2286 cfi_read_intel_pri_ext(bank);
2287 break;
2288 /* AMD/Spansion, Atmel, ... command set */
2289 case 0x0002:
2290 cfi_info->status_poll_mask = CFI_STATUS_POLL_MASK_DQ5_DQ6_DQ7; /* default for all CFI flashs */
2291 cfi_read_0002_pri_ext(bank);
2292 break;
2293 default:
2294 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2295 break;
2296 }
2297
2298 /* return to read array mode
2299 * we use both reset commands, as some Intel flashes fail to recognize the 0xF0 command
2300 */
2301 if ((retval = cfi_reset(bank)) != ERROR_OK)
2302 {
2303 return retval;
2304 }
2305 } /* end CFI case */
2306
2307 /* apply fixups depending on the primary command set */
2308 switch (cfi_info->pri_id)
2309 {
2310 /* Intel command set (standard and extended) */
2311 case 0x0001:
2312 case 0x0003:
2313 cfi_fixup(bank, cfi_0001_fixups);
2314 break;
2315 /* AMD/Spansion, Atmel, ... command set */
2316 case 0x0002:
2317 cfi_fixup(bank, cfi_0002_fixups);
2318 break;
2319 default:
2320 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2321 break;
2322 }
2323
2324 if ((cfi_info->dev_size * bank->bus_width / bank->chip_width) != bank->size)
2325 {
2326 LOG_WARNING("configuration specifies 0x%" PRIx32 " size, but a 0x%" PRIx32 " size flash was found", bank->size, cfi_info->dev_size);
2327 }
2328
2329 if (cfi_info->num_erase_regions == 0)
2330 {
2331 /* a device might have only one erase block, spanning the whole device */
2332 bank->num_sectors = 1;
2333 bank->sectors = malloc(sizeof(struct flash_sector));
2334
2335 bank->sectors[sector].offset = 0x0;
2336 bank->sectors[sector].size = bank->size;
2337 bank->sectors[sector].is_erased = -1;
2338 bank->sectors[sector].is_protected = -1;
2339 }
2340 else
2341 {
2342 uint32_t offset = 0;
2343
2344 for (i = 0; i < cfi_info->num_erase_regions; i++)
2345 {
2346 num_sectors += (cfi_info->erase_region_info[i] & 0xffff) + 1;
2347 }
2348
2349 bank->num_sectors = num_sectors;
2350 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
2351
2352 for (i = 0; i < cfi_info->num_erase_regions; i++)
2353 {
2354 uint32_t j;
2355 for (j = 0; j < (cfi_info->erase_region_info[i] & 0xffff) + 1; j++)
2356 {
2357 bank->sectors[sector].offset = offset;
2358 bank->sectors[sector].size = ((cfi_info->erase_region_info[i] >> 16) * 256) * bank->bus_width / bank->chip_width;
2359 offset += bank->sectors[sector].size;
2360 bank->sectors[sector].is_erased = -1;
2361 bank->sectors[sector].is_protected = -1;
2362 sector++;
2363 }
2364 }
2365 if (offset != (cfi_info->dev_size * bank->bus_width / bank->chip_width))
2366 {
2367 LOG_WARNING("CFI size is 0x%" PRIx32 ", but total sector size is 0x%" PRIx32 "", \
2368 (cfi_info->dev_size * bank->bus_width / bank->chip_width), offset);
2369 }
2370 }
2371
2372 cfi_info->probed = 1;
2373
2374 return ERROR_OK;
2375 }
2376
2377 static int cfi_auto_probe(struct flash_bank *bank)
2378 {
2379 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2380 if (cfi_info->probed)
2381 return ERROR_OK;
2382 return cfi_probe(bank);
2383 }
2384
2385 static int cfi_intel_protect_check(struct flash_bank *bank)
2386 {
2387 int retval;
2388 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2389 struct cfi_intel_pri_ext *pri_ext = cfi_info->pri_ext;
2390 int i;
2391
2392 /* check if block lock bits are supported on this device */
2393 if (!(pri_ext->blk_status_reg_mask & 0x1))
2394 return ERROR_FLASH_OPERATION_FAILED;
2395
2396 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, 0x55))) != ERROR_OK)
2397 {
2398 return retval;
2399 }
2400
2401 for (i = 0; i < bank->num_sectors; i++)
2402 {
2403 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2404
2405 if (block_status & 1)
2406 bank->sectors[i].is_protected = 1;
2407 else
2408 bank->sectors[i].is_protected = 0;
2409 }
2410
2411 return cfi_send_command(bank, 0xff, flash_address(bank, 0, 0x0));
2412 }
2413
2414 static int cfi_spansion_protect_check(struct flash_bank *bank)
2415 {
2416 int retval;
2417 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2418 struct cfi_spansion_pri_ext *pri_ext = cfi_info->pri_ext;
2419 int i;
2420
2421 if ((retval = cfi_send_command(bank, 0xaa, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2422 {
2423 return retval;
2424 }
2425
2426 if ((retval = cfi_send_command(bank, 0x55, flash_address(bank, 0, pri_ext->_unlock2))) != ERROR_OK)
2427 {
2428 return retval;
2429 }
2430
2431 if ((retval = cfi_send_command(bank, 0x90, flash_address(bank, 0, pri_ext->_unlock1))) != ERROR_OK)
2432 {
2433 return retval;
2434 }
2435
2436 for (i = 0; i < bank->num_sectors; i++)
2437 {
2438 uint8_t block_status = cfi_get_u8(bank, i, 0x2);
2439
2440 if (block_status & 1)
2441 bank->sectors[i].is_protected = 1;
2442 else
2443 bank->sectors[i].is_protected = 0;
2444 }
2445
2446 return cfi_send_command(bank, 0xf0, flash_address(bank, 0, 0x0));
2447 }
2448
2449 static int cfi_protect_check(struct flash_bank *bank)
2450 {
2451 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2452
2453 if (bank->target->state != TARGET_HALTED)
2454 {
2455 LOG_ERROR("Target not halted");
2456 return ERROR_TARGET_NOT_HALTED;
2457 }
2458
2459 if (cfi_info->qry[0] != 'Q')
2460 return ERROR_FLASH_BANK_NOT_PROBED;
2461
2462 switch (cfi_info->pri_id)
2463 {
2464 case 1:
2465 case 3:
2466 return cfi_intel_protect_check(bank);
2467 break;
2468 case 2:
2469 return cfi_spansion_protect_check(bank);
2470 break;
2471 default:
2472 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2473 break;
2474 }
2475
2476 return ERROR_OK;
2477 }
2478
2479 static int cfi_info(struct flash_bank *bank, char *buf, int buf_size)
2480 {
2481 int printed;
2482 struct cfi_flash_bank *cfi_info = bank->driver_priv;
2483
2484 if (cfi_info->qry[0] == (char)-1)
2485 {
2486 printed = snprintf(buf, buf_size, "\ncfi flash bank not probed yet\n");
2487 return ERROR_OK;
2488 }
2489
2490 if (cfi_info->not_cfi == 0)
2491 printed = snprintf(buf, buf_size, "\ncfi information:\n");
2492 else
2493 printed = snprintf(buf, buf_size, "\nnon-cfi flash:\n");
2494 buf += printed;
2495 buf_size -= printed;
2496
2497 printed = snprintf(buf, buf_size, "\nmfr: 0x%4.4x, id:0x%4.4x\n",
2498 cfi_info->manufacturer, cfi_info->device_id);
2499 buf += printed;
2500 buf_size -= printed;
2501
2502 if (cfi_info->not_cfi == 0)
2503 {
2504 printed = snprintf(buf, buf_size, "qry: '%c%c%c', pri_id: 0x%4.4x, pri_addr: 0x%4.4x, alt_id: 0x%4.4x, alt_addr: 0x%4.4x\n", cfi_info->qry[0], cfi_info->qry[1], cfi_info->qry[2], cfi_info->pri_id, cfi_info->pri_addr, cfi_info->alt_id, cfi_info->alt_addr);
2505 buf += printed;
2506 buf_size -= printed;
2507
2508 printed = snprintf(buf, buf_size, "Vcc min: %x.%x, Vcc max: %x.%x, Vpp min: %u.%x, Vpp max: %u.%x\n",
2509 (cfi_info->vcc_min & 0xf0) >> 4, cfi_info->vcc_min & 0x0f,
2510 (cfi_info->vcc_max & 0xf0) >> 4, cfi_info->vcc_max & 0x0f,
2511 (cfi_info->vpp_min & 0xf0) >> 4, cfi_info->vpp_min & 0x0f,
2512 (cfi_info->vpp_max & 0xf0) >> 4, cfi_info->vpp_max & 0x0f);
2513 buf += printed;
2514 buf_size -= printed;
2515
2516 printed = snprintf(buf, buf_size, "typ. word write timeout: %u, typ. buf write timeout: %u, typ. block erase timeout: %u, typ. chip erase timeout: %u\n",
2517 1 << cfi_info->word_write_timeout_typ,
2518 1 << cfi_info->buf_write_timeout_typ,
2519 1 << cfi_info->block_erase_timeout_typ,
2520 1 << cfi_info->chip_erase_timeout_typ);
2521 buf += printed;
2522 buf_size -= printed;
2523
2524 printed = snprintf(buf, buf_size, "max. word write timeout: %u, max. buf write timeout: %u, max. block erase timeout: %u, max. chip erase timeout: %u\n",
2525 (1 << cfi_info->word_write_timeout_max) * (1 << cfi_info->word_write_timeout_typ),
2526 (1 << cfi_info->buf_write_timeout_max) * (1 << cfi_info->buf_write_timeout_typ),
2527 (1 << cfi_info->block_erase_timeout_max) * (1 << cfi_info->block_erase_timeout_typ),
2528 (1 << cfi_info->chip_erase_timeout_max) * (1 << cfi_info->chip_erase_timeout_typ));
2529 buf += printed;
2530 buf_size -= printed;
2531
2532 printed = snprintf(buf, buf_size, "size: 0x%" PRIx32 ", interface desc: %i, max buffer write size: %x\n",
2533 cfi_info->dev_size,
2534 cfi_info->interface_desc,
2535 1 << cfi_info->max_buf_write_size);
2536 buf += printed;
2537 buf_size -= printed;
2538
2539 switch (cfi_info->pri_id)
2540 {
2541 case 1:
2542 case 3:
2543 cfi_intel_info(bank, buf, buf_size);
2544 break;
2545 case 2:
2546 cfi_spansion_info(bank, buf, buf_size);
2547 break;
2548 default:
2549 LOG_ERROR("cfi primary command set %i unsupported", cfi_info->pri_id);
2550 break;
2551 }
2552 }
2553
2554 return ERROR_OK;
2555 }
2556
2557 struct flash_driver cfi_flash = {
2558 .name = "cfi",
2559 .flash_bank_command = cfi_flash_bank_command,
2560 .erase = cfi_erase,
2561 .protect = cfi_protect,
2562 .write = cfi_write,
2563 .probe = cfi_probe,
2564 .auto_probe = cfi_auto_probe,
2565 .erase_check = default_flash_blank_check,
2566 .protect_check = cfi_protect_check,
2567 .info = cfi_info,
2568 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)