flash: stm32f1x: Pad odd byte writes early to avoid 16-bit writes
[openocd.git] / src / flash / nor / stm32f1x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Andreas Fritiofson *
9 * andreas.fritiofson@gmail.com *
10 *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32x register locations */
37
38 #define FLASH_REG_BASE_B0 0x40022000
39 #define FLASH_REG_BASE_B1 0x40022040
40
41 #define STM32_FLASH_ACR 0x00
42 #define STM32_FLASH_KEYR 0x04
43 #define STM32_FLASH_OPTKEYR 0x08
44 #define STM32_FLASH_SR 0x0C
45 #define STM32_FLASH_CR 0x10
46 #define STM32_FLASH_AR 0x14
47 #define STM32_FLASH_OBR 0x1C
48 #define STM32_FLASH_WRPR 0x20
49
50 /* TODO: Check if code using these really should be hard coded to bank 0.
51 * There are valid cases, on dual flash devices the protection of the
52 * second bank is done on the bank0 reg's. */
53 #define STM32_FLASH_ACR_B0 0x40022000
54 #define STM32_FLASH_KEYR_B0 0x40022004
55 #define STM32_FLASH_OPTKEYR_B0 0x40022008
56 #define STM32_FLASH_SR_B0 0x4002200C
57 #define STM32_FLASH_CR_B0 0x40022010
58 #define STM32_FLASH_AR_B0 0x40022014
59 #define STM32_FLASH_OBR_B0 0x4002201C
60 #define STM32_FLASH_WRPR_B0 0x40022020
61
62 /* option byte location */
63
64 #define STM32_OB_RDP 0x1FFFF800
65 #define STM32_OB_USER 0x1FFFF802
66 #define STM32_OB_DATA0 0x1FFFF804
67 #define STM32_OB_DATA1 0x1FFFF806
68 #define STM32_OB_WRP0 0x1FFFF808
69 #define STM32_OB_WRP1 0x1FFFF80A
70 #define STM32_OB_WRP2 0x1FFFF80C
71 #define STM32_OB_WRP3 0x1FFFF80E
72
73 /* FLASH_CR register bits */
74
75 #define FLASH_PG (1 << 0)
76 #define FLASH_PER (1 << 1)
77 #define FLASH_MER (1 << 2)
78 #define FLASH_OPTPG (1 << 4)
79 #define FLASH_OPTER (1 << 5)
80 #define FLASH_STRT (1 << 6)
81 #define FLASH_LOCK (1 << 7)
82 #define FLASH_OPTWRE (1 << 9)
83
84 /* FLASH_SR register bits */
85
86 #define FLASH_BSY (1 << 0)
87 #define FLASH_PGERR (1 << 2)
88 #define FLASH_WRPRTERR (1 << 4)
89 #define FLASH_EOP (1 << 5)
90
91 /* STM32_FLASH_OBR bit definitions (reading) */
92
93 #define OPT_ERROR 0
94 #define OPT_READOUT 1
95 #define OPT_RDWDGSW 2
96 #define OPT_RDRSTSTOP 3
97 #define OPT_RDRSTSTDBY 4
98 #define OPT_BFB2 5 /* dual flash bank only */
99
100 /* register unlock keys */
101
102 #define KEY1 0x45670123
103 #define KEY2 0xCDEF89AB
104
105 struct stm32x_options {
106 uint16_t RDP;
107 uint16_t user_options;
108 uint16_t protection[4];
109 };
110
111 struct stm32x_flash_bank {
112 struct stm32x_options option_bytes;
113 struct working_area *write_algorithm;
114 int ppage_size;
115 int probed;
116
117 bool has_dual_banks;
118 /* used to access dual flash bank stm32xl */
119 uint32_t register_base;
120 };
121
122 static int stm32x_mass_erase(struct flash_bank *bank);
123 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id);
124
125 /* flash bank stm32x <base> <size> 0 0 <target#>
126 */
127 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
128 {
129 struct stm32x_flash_bank *stm32x_info;
130
131 if (CMD_ARGC < 6)
132 return ERROR_COMMAND_SYNTAX_ERROR;
133
134 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
135
136 bank->driver_priv = stm32x_info;
137 stm32x_info->write_algorithm = NULL;
138 stm32x_info->probed = 0;
139 stm32x_info->has_dual_banks = false;
140 stm32x_info->register_base = FLASH_REG_BASE_B0;
141
142 return ERROR_OK;
143 }
144
145 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
146 {
147 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
148 return reg + stm32x_info->register_base;
149 }
150
151 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
152 {
153 struct target *target = bank->target;
154 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
155 }
156
157 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
158 {
159 struct target *target = bank->target;
160 uint32_t status;
161 int retval = ERROR_OK;
162
163 /* wait for busy to clear */
164 for (;;) {
165 retval = stm32x_get_flash_status(bank, &status);
166 if (retval != ERROR_OK)
167 return retval;
168 LOG_DEBUG("status: 0x%" PRIx32 "", status);
169 if ((status & FLASH_BSY) == 0)
170 break;
171 if (timeout-- <= 0) {
172 LOG_ERROR("timed out waiting for flash");
173 return ERROR_FAIL;
174 }
175 alive_sleep(1);
176 }
177
178 if (status & FLASH_WRPRTERR) {
179 LOG_ERROR("stm32x device protected");
180 retval = ERROR_FAIL;
181 }
182
183 if (status & FLASH_PGERR) {
184 LOG_ERROR("stm32x device programming failed");
185 retval = ERROR_FAIL;
186 }
187
188 /* Clear but report errors */
189 if (status & (FLASH_WRPRTERR | FLASH_PGERR)) {
190 /* If this operation fails, we ignore it and report the original
191 * retval
192 */
193 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
194 FLASH_WRPRTERR | FLASH_PGERR);
195 }
196 return retval;
197 }
198
199 int stm32x_check_operation_supported(struct flash_bank *bank)
200 {
201 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
202
203 /* if we have a dual flash bank device then
204 * we need to perform option byte stuff on bank0 only */
205 if (stm32x_info->register_base != FLASH_REG_BASE_B0) {
206 LOG_ERROR("Option Byte Operation's must use bank0");
207 return ERROR_FLASH_OPERATION_FAILED;
208 }
209
210 return ERROR_OK;
211 }
212
213 static int stm32x_read_options(struct flash_bank *bank)
214 {
215 uint32_t optiondata;
216 struct stm32x_flash_bank *stm32x_info = NULL;
217 struct target *target = bank->target;
218
219 stm32x_info = bank->driver_priv;
220
221 /* read current option bytes */
222 int retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optiondata);
223 if (retval != ERROR_OK)
224 return retval;
225
226 stm32x_info->option_bytes.user_options = (uint16_t)0xFFF8 | ((optiondata >> 2) & 0x07);
227 stm32x_info->option_bytes.RDP = (optiondata & (1 << OPT_READOUT)) ? 0xFFFF : 0x5AA5;
228
229 if (optiondata & (1 << OPT_READOUT))
230 LOG_INFO("Device Security Bit Set");
231
232 /* each bit refers to a 4bank protection */
233 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &optiondata);
234 if (retval != ERROR_OK)
235 return retval;
236
237 stm32x_info->option_bytes.protection[0] = (uint16_t)optiondata;
238 stm32x_info->option_bytes.protection[1] = (uint16_t)(optiondata >> 8);
239 stm32x_info->option_bytes.protection[2] = (uint16_t)(optiondata >> 16);
240 stm32x_info->option_bytes.protection[3] = (uint16_t)(optiondata >> 24);
241
242 return ERROR_OK;
243 }
244
245 static int stm32x_erase_options(struct flash_bank *bank)
246 {
247 struct stm32x_flash_bank *stm32x_info = NULL;
248 struct target *target = bank->target;
249
250 stm32x_info = bank->driver_priv;
251
252 /* read current options */
253 stm32x_read_options(bank);
254
255 /* unlock flash registers */
256 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
257 if (retval != ERROR_OK)
258 return retval;
259
260 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
261 if (retval != ERROR_OK)
262 return retval;
263
264 /* unlock option flash registers */
265 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
266 if (retval != ERROR_OK)
267 return retval;
268 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
269 if (retval != ERROR_OK)
270 return retval;
271
272 /* erase option bytes */
273 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_OPTWRE);
274 if (retval != ERROR_OK)
275 return retval;
276 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTER | FLASH_STRT | FLASH_OPTWRE);
277 if (retval != ERROR_OK)
278 return retval;
279
280 retval = stm32x_wait_status_busy(bank, 10);
281 if (retval != ERROR_OK)
282 return retval;
283
284 /* clear readout protection and complementary option bytes
285 * this will also force a device unlock if set */
286 stm32x_info->option_bytes.RDP = 0x5AA5;
287
288 return ERROR_OK;
289 }
290
291 static int stm32x_write_options(struct flash_bank *bank)
292 {
293 struct stm32x_flash_bank *stm32x_info = NULL;
294 struct target *target = bank->target;
295
296 stm32x_info = bank->driver_priv;
297
298 /* unlock flash registers */
299 int retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY1);
300 if (retval != ERROR_OK)
301 return retval;
302 retval = target_write_u32(target, STM32_FLASH_KEYR_B0, KEY2);
303 if (retval != ERROR_OK)
304 return retval;
305
306 /* unlock option flash registers */
307 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY1);
308 if (retval != ERROR_OK)
309 return retval;
310 retval = target_write_u32(target, STM32_FLASH_OPTKEYR_B0, KEY2);
311 if (retval != ERROR_OK)
312 return retval;
313
314 /* program option bytes */
315 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_OPTPG | FLASH_OPTWRE);
316 if (retval != ERROR_OK)
317 return retval;
318
319 /* write user option byte */
320 retval = target_write_u16(target, STM32_OB_USER, stm32x_info->option_bytes.user_options);
321 if (retval != ERROR_OK)
322 return retval;
323
324 retval = stm32x_wait_status_busy(bank, 10);
325 if (retval != ERROR_OK)
326 return retval;
327
328 /* write protection byte 1 */
329 retval = target_write_u16(target, STM32_OB_WRP0, stm32x_info->option_bytes.protection[0]);
330 if (retval != ERROR_OK)
331 return retval;
332
333 retval = stm32x_wait_status_busy(bank, 10);
334 if (retval != ERROR_OK)
335 return retval;
336
337 /* write protection byte 2 */
338 retval = target_write_u16(target, STM32_OB_WRP1, stm32x_info->option_bytes.protection[1]);
339 if (retval != ERROR_OK)
340 return retval;
341
342 retval = stm32x_wait_status_busy(bank, 10);
343 if (retval != ERROR_OK)
344 return retval;
345
346 /* write protection byte 3 */
347 retval = target_write_u16(target, STM32_OB_WRP2, stm32x_info->option_bytes.protection[2]);
348 if (retval != ERROR_OK)
349 return retval;
350
351 retval = stm32x_wait_status_busy(bank, 10);
352 if (retval != ERROR_OK)
353 return retval;
354
355 /* write protection byte 4 */
356 retval = target_write_u16(target, STM32_OB_WRP3, stm32x_info->option_bytes.protection[3]);
357 if (retval != ERROR_OK)
358 return retval;
359
360 retval = stm32x_wait_status_busy(bank, 10);
361 if (retval != ERROR_OK)
362 return retval;
363
364 /* write readout protection bit */
365 retval = target_write_u16(target, STM32_OB_RDP, stm32x_info->option_bytes.RDP);
366 if (retval != ERROR_OK)
367 return retval;
368
369 retval = stm32x_wait_status_busy(bank, 10);
370 if (retval != ERROR_OK)
371 return retval;
372
373 retval = target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK);
374 if (retval != ERROR_OK)
375 return retval;
376
377 return ERROR_OK;
378 }
379
380 static int stm32x_protect_check(struct flash_bank *bank)
381 {
382 struct target *target = bank->target;
383 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
384
385 uint32_t protection;
386 int i, s;
387 int num_bits;
388 int set;
389
390 if (target->state != TARGET_HALTED) {
391 LOG_ERROR("Target not halted");
392 return ERROR_TARGET_NOT_HALTED;
393 }
394
395 int retval = stm32x_check_operation_supported(bank);
396 if (ERROR_OK != retval)
397 return retval;
398
399 /* medium density - each bit refers to a 4bank protection
400 * high density - each bit refers to a 2bank protection */
401 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
402 if (retval != ERROR_OK)
403 return retval;
404
405 /* medium density - each protection bit is for 4 * 1K pages
406 * high density - each protection bit is for 2 * 2K pages */
407 num_bits = (bank->num_sectors / stm32x_info->ppage_size);
408
409 if (stm32x_info->ppage_size == 2) {
410 /* high density flash/connectivity line protection */
411
412 set = 1;
413
414 if (protection & (1 << 31))
415 set = 0;
416
417 /* bit 31 controls sector 62 - 255 protection for high density
418 * bit 31 controls sector 62 - 127 protection for connectivity line */
419 for (s = 62; s < bank->num_sectors; s++)
420 bank->sectors[s].is_protected = set;
421
422 if (bank->num_sectors > 61)
423 num_bits = 31;
424
425 for (i = 0; i < num_bits; i++) {
426 set = 1;
427
428 if (protection & (1 << i))
429 set = 0;
430
431 for (s = 0; s < stm32x_info->ppage_size; s++)
432 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
433 }
434 } else {
435 /* low/medium density flash protection */
436 for (i = 0; i < num_bits; i++) {
437 set = 1;
438
439 if (protection & (1 << i))
440 set = 0;
441
442 for (s = 0; s < stm32x_info->ppage_size; s++)
443 bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set;
444 }
445 }
446
447 return ERROR_OK;
448 }
449
450 static int stm32x_erase(struct flash_bank *bank, int first, int last)
451 {
452 struct target *target = bank->target;
453 int i;
454
455 if (bank->target->state != TARGET_HALTED) {
456 LOG_ERROR("Target not halted");
457 return ERROR_TARGET_NOT_HALTED;
458 }
459
460 if ((first == 0) && (last == (bank->num_sectors - 1)))
461 return stm32x_mass_erase(bank);
462
463 /* unlock flash registers */
464 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
465 if (retval != ERROR_OK)
466 return retval;
467 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
468 if (retval != ERROR_OK)
469 return retval;
470
471 for (i = first; i <= last; i++) {
472 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER);
473 if (retval != ERROR_OK)
474 return retval;
475 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_AR),
476 bank->base + bank->sectors[i].offset);
477 if (retval != ERROR_OK)
478 return retval;
479 retval = target_write_u32(target,
480 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER | FLASH_STRT);
481 if (retval != ERROR_OK)
482 return retval;
483
484 retval = stm32x_wait_status_busy(bank, 100);
485 if (retval != ERROR_OK)
486 return retval;
487
488 bank->sectors[i].is_erased = 1;
489 }
490
491 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
492 if (retval != ERROR_OK)
493 return retval;
494
495 return ERROR_OK;
496 }
497
498 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
499 {
500 struct stm32x_flash_bank *stm32x_info = NULL;
501 struct target *target = bank->target;
502 uint16_t prot_reg[4] = {0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF};
503 int i, reg, bit;
504 int status;
505 uint32_t protection;
506
507 stm32x_info = bank->driver_priv;
508
509 if (target->state != TARGET_HALTED) {
510 LOG_ERROR("Target not halted");
511 return ERROR_TARGET_NOT_HALTED;
512 }
513
514 int retval = stm32x_check_operation_supported(bank);
515 if (ERROR_OK != retval)
516 return retval;
517
518 if ((first % stm32x_info->ppage_size) != 0) {
519 LOG_WARNING("aligned start protect sector to a %d sector boundary",
520 stm32x_info->ppage_size);
521 first = first - (first % stm32x_info->ppage_size);
522 }
523 if (((last + 1) % stm32x_info->ppage_size) != 0) {
524 LOG_WARNING("aligned end protect sector to a %d sector boundary",
525 stm32x_info->ppage_size);
526 last++;
527 last = last - (last % stm32x_info->ppage_size);
528 last--;
529 }
530
531 /* medium density - each bit refers to a 4bank protection
532 * high density - each bit refers to a 2bank protection */
533 retval = target_read_u32(target, STM32_FLASH_WRPR_B0, &protection);
534 if (retval != ERROR_OK)
535 return retval;
536
537 prot_reg[0] = (uint16_t)protection;
538 prot_reg[1] = (uint16_t)(protection >> 8);
539 prot_reg[2] = (uint16_t)(protection >> 16);
540 prot_reg[3] = (uint16_t)(protection >> 24);
541
542 if (stm32x_info->ppage_size == 2) {
543 /* high density flash */
544
545 /* bit 7 controls sector 62 - 255 protection */
546 if (last > 61) {
547 if (set)
548 prot_reg[3] &= ~(1 << 7);
549 else
550 prot_reg[3] |= (1 << 7);
551 }
552
553 if (first > 61)
554 first = 62;
555 if (last > 61)
556 last = 61;
557
558 for (i = first; i <= last; i++) {
559 reg = (i / stm32x_info->ppage_size) / 8;
560 bit = (i / stm32x_info->ppage_size) - (reg * 8);
561
562 if (set)
563 prot_reg[reg] &= ~(1 << bit);
564 else
565 prot_reg[reg] |= (1 << bit);
566 }
567 } else {
568 /* medium density flash */
569 for (i = first; i <= last; i++) {
570 reg = (i / stm32x_info->ppage_size) / 8;
571 bit = (i / stm32x_info->ppage_size) - (reg * 8);
572
573 if (set)
574 prot_reg[reg] &= ~(1 << bit);
575 else
576 prot_reg[reg] |= (1 << bit);
577 }
578 }
579
580 status = stm32x_erase_options(bank);
581 if (status != ERROR_OK)
582 return status;
583
584 stm32x_info->option_bytes.protection[0] = prot_reg[0];
585 stm32x_info->option_bytes.protection[1] = prot_reg[1];
586 stm32x_info->option_bytes.protection[2] = prot_reg[2];
587 stm32x_info->option_bytes.protection[3] = prot_reg[3];
588
589 return stm32x_write_options(bank);
590 }
591
592 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
593 uint32_t offset, uint32_t count)
594 {
595 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
596 struct target *target = bank->target;
597 uint32_t buffer_size = 16384;
598 struct working_area *source;
599 uint32_t address = bank->base + offset;
600 struct reg_param reg_params[5];
601 struct armv7m_algorithm armv7m_info;
602 int retval = ERROR_OK;
603
604 /* see contrib/loaders/flash/stm32f1x.S for src */
605
606 static const uint8_t stm32x_flash_write_code[] = {
607 /* #define STM32_FLASH_SR_OFFSET 0x0C */
608 /* wait_fifo: */
609 0x16, 0x68, /* ldr r6, [r2, #0] */
610 0x00, 0x2e, /* cmp r6, #0 */
611 0x18, 0xd0, /* beq exit */
612 0x55, 0x68, /* ldr r5, [r2, #4] */
613 0xb5, 0x42, /* cmp r5, r6 */
614 0xf9, 0xd0, /* beq wait_fifo */
615 0x2e, 0x88, /* ldrh r6, [r5, #0] */
616 0x26, 0x80, /* strh r6, [r4, #0] */
617 0x02, 0x35, /* adds r5, #2 */
618 0x02, 0x34, /* adds r4, #2 */
619 /* busy: */
620 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */
621 0x01, 0x27, /* movs r7, #1 */
622 0x3e, 0x42, /* tst r6, r7 */
623 0xfb, 0xd1, /* bne busy */
624 0x14, 0x27, /* movs r7, #0x14 */
625 0x3e, 0x42, /* tst r6, r7 */
626 0x08, 0xd1, /* bne error */
627 0x9d, 0x42, /* cmp r5, r3 */
628 0x01, 0xd3, /* bcc no_wrap */
629 0x15, 0x46, /* mov r5, r2 */
630 0x08, 0x35, /* adds r5, #8 */
631 /* no_wrap: */
632 0x55, 0x60, /* str r5, [r2, #4] */
633 0x01, 0x39, /* subs r1, r1, #1 */
634 0x00, 0x29, /* cmp r1, #0 */
635 0x02, 0xd0, /* beq exit */
636 0xe5, 0xe7, /* b wait_fifo */
637 /* error: */
638 0x00, 0x20, /* movs r0, #0 */
639 0x50, 0x60, /* str r0, [r2, #4] */
640 /* exit: */
641 0x30, 0x46, /* mov r0, r6 */
642 0x00, 0xbe, /* bkpt #0 */
643 };
644
645 /* flash write code */
646 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
647 &stm32x_info->write_algorithm) != ERROR_OK) {
648 LOG_WARNING("no working area available, can't do block memory writes");
649 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
650 };
651
652 retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
653 sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code);
654 if (retval != ERROR_OK)
655 return retval;
656
657 /* memory buffer */
658 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
659 buffer_size /= 2;
660 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
661 if (buffer_size <= 256) {
662 /* if we already allocated the writing code, but failed to get a
663 * buffer, free the algorithm */
664 if (stm32x_info->write_algorithm)
665 target_free_working_area(target, stm32x_info->write_algorithm);
666
667 LOG_WARNING("no large enough working area available, can't do block memory writes");
668 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
669 }
670 };
671
672 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */
673 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */
674 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer start */
675 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* buffer end */
676 init_reg_param(&reg_params[4], "r4", 32, PARAM_IN_OUT); /* target address */
677
678 buf_set_u32(reg_params[0].value, 0, 32, stm32x_info->register_base);
679 buf_set_u32(reg_params[1].value, 0, 32, count);
680 buf_set_u32(reg_params[2].value, 0, 32, source->address);
681 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
682 buf_set_u32(reg_params[4].value, 0, 32, address);
683
684 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
685 armv7m_info.core_mode = ARMV7M_MODE_ANY;
686
687 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
688 0, NULL,
689 5, reg_params,
690 source->address, source->size,
691 stm32x_info->write_algorithm->address, 0,
692 &armv7m_info);
693
694 if (retval == ERROR_FLASH_OPERATION_FAILED) {
695 LOG_ERROR("flash write failed at address 0x%"PRIx32,
696 buf_get_u32(reg_params[4].value, 0, 32));
697
698 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) {
699 LOG_ERROR("flash memory not erased before writing");
700 /* Clear but report errors */
701 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR);
702 }
703
704 if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) {
705 LOG_ERROR("flash memory write protected");
706 /* Clear but report errors */
707 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR);
708 }
709 }
710
711 target_free_working_area(target, source);
712 target_free_working_area(target, stm32x_info->write_algorithm);
713
714 destroy_reg_param(&reg_params[0]);
715 destroy_reg_param(&reg_params[1]);
716 destroy_reg_param(&reg_params[2]);
717 destroy_reg_param(&reg_params[3]);
718 destroy_reg_param(&reg_params[4]);
719
720 return retval;
721 }
722
723 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
724 uint32_t offset, uint32_t count)
725 {
726 struct target *target = bank->target;
727 uint8_t *new_buffer = NULL;
728
729 if (bank->target->state != TARGET_HALTED) {
730 LOG_ERROR("Target not halted");
731 return ERROR_TARGET_NOT_HALTED;
732 }
733
734 if (offset & 0x1) {
735 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
736 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
737 }
738
739 /* If there's an odd number of bytes, the data has to be padded. Duplicate
740 * the buffer and use the normal code path with a single block write since
741 * it's probably cheaper than to special case the last odd write using
742 * discrete accesses. */
743 if (count & 1) {
744 new_buffer = malloc(count + 1);
745 if (new_buffer == NULL) {
746 LOG_ERROR("odd number of bytes to write and no memory for padding buffer");
747 return ERROR_FAIL;
748 }
749 LOG_INFO("odd number of bytes to write, padding with 0xff");
750 buffer = memcpy(new_buffer, buffer, count);
751 buffer[count++] = 0xff;
752 }
753
754 uint32_t words_remaining = count / 2;
755 int retval, retval2;
756
757 /* unlock flash registers */
758 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
759 if (retval != ERROR_OK)
760 goto cleanup;
761 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
762 if (retval != ERROR_OK)
763 goto cleanup;
764
765 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PG);
766 if (retval != ERROR_OK)
767 goto cleanup;
768
769 /* try using a block write */
770 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
771
772 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
773 /* if block write failed (no sufficient working area),
774 * we use normal (slow) single halfword accesses */
775 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
776
777 while (words_remaining > 0) {
778 uint16_t value;
779 memcpy(&value, buffer, sizeof(uint16_t));
780
781 retval = target_write_u16(target, bank->base + offset, value);
782 if (retval != ERROR_OK)
783 goto reset_pg_and_lock;
784
785 retval = stm32x_wait_status_busy(bank, 5);
786 if (retval != ERROR_OK)
787 goto reset_pg_and_lock;
788
789 words_remaining--;
790 buffer += 2;
791 offset += 2;
792 }
793 }
794
795 reset_pg_and_lock:
796 retval2 = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
797 if (retval == ERROR_OK)
798 retval = retval2;
799
800 cleanup:
801 if (new_buffer)
802 free(new_buffer);
803
804 return retval;
805 }
806
807 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
808 {
809 /* This check the device CPUID core register to detect
810 * the M0 from the M3 devices. */
811
812 struct target *target = bank->target;
813 uint32_t cpuid, device_id_register = 0;
814
815 /* Get the CPUID from the ARM Core
816 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */
817 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
818 if (retval != ERROR_OK)
819 return retval;
820
821 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
822 /* 0xC20 is M0 devices */
823 device_id_register = 0x40015800;
824 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
825 /* 0xC23 is M3 devices */
826 device_id_register = 0xE0042000;
827 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
828 /* 0xC24 is M4 devices */
829 device_id_register = 0xE0042000;
830 } else {
831 LOG_ERROR("Cannot identify target as a stm32x");
832 return ERROR_FAIL;
833 }
834
835 /* read stm32 device id register */
836 retval = target_read_u32(target, device_id_register, device_id);
837 if (retval != ERROR_OK)
838 return retval;
839
840 return retval;
841 }
842
843 static int stm32x_get_flash_size(struct flash_bank *bank, uint16_t *flash_size_in_kb)
844 {
845 struct target *target = bank->target;
846 uint32_t cpuid, flash_size_reg;
847
848 int retval = target_read_u32(target, 0xE000ED00, &cpuid);
849 if (retval != ERROR_OK)
850 return retval;
851
852 if (((cpuid >> 4) & 0xFFF) == 0xC20) {
853 /* 0xC20 is M0 devices */
854 flash_size_reg = 0x1FFFF7CC;
855 } else if (((cpuid >> 4) & 0xFFF) == 0xC23) {
856 /* 0xC23 is M3 devices */
857 flash_size_reg = 0x1FFFF7E0;
858 } else if (((cpuid >> 4) & 0xFFF) == 0xC24) {
859 /* 0xC24 is M4 devices */
860 flash_size_reg = 0x1FFFF7CC;
861 } else {
862 LOG_ERROR("Cannot identify target as a stm32x");
863 return ERROR_FAIL;
864 }
865
866 retval = target_read_u16(target, flash_size_reg, flash_size_in_kb);
867 if (retval != ERROR_OK)
868 return retval;
869
870 return retval;
871 }
872
873 static int stm32x_probe(struct flash_bank *bank)
874 {
875 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
876 int i;
877 uint16_t flash_size_in_kb;
878 uint16_t max_flash_size_in_kb;
879 uint32_t device_id;
880 int page_size;
881 uint32_t base_address = 0x08000000;
882
883 stm32x_info->probed = 0;
884 stm32x_info->register_base = FLASH_REG_BASE_B0;
885
886 /* read stm32 device id register */
887 int retval = stm32x_get_device_id(bank, &device_id);
888 if (retval != ERROR_OK)
889 return retval;
890
891 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
892
893 /* set page size, protection granularity and max flash size depending on family */
894 switch (device_id & 0xfff) {
895 case 0x410: /* medium density */
896 page_size = 1024;
897 stm32x_info->ppage_size = 4;
898 max_flash_size_in_kb = 128;
899 break;
900 case 0x412: /* low density */
901 page_size = 1024;
902 stm32x_info->ppage_size = 4;
903 max_flash_size_in_kb = 32;
904 break;
905 case 0x414: /* high density */
906 page_size = 2048;
907 stm32x_info->ppage_size = 2;
908 max_flash_size_in_kb = 512;
909 break;
910 case 0x418: /* connectivity line density */
911 page_size = 2048;
912 stm32x_info->ppage_size = 2;
913 max_flash_size_in_kb = 256;
914 break;
915 case 0x420: /* value line density */
916 page_size = 1024;
917 stm32x_info->ppage_size = 4;
918 max_flash_size_in_kb = 128;
919 break;
920 case 0x422: /* stm32f30x */
921 page_size = 2048;
922 stm32x_info->ppage_size = 2;
923 max_flash_size_in_kb = 256;
924 break;
925 case 0x428: /* value line High density */
926 page_size = 2048;
927 stm32x_info->ppage_size = 4;
928 max_flash_size_in_kb = 128;
929 break;
930 case 0x430: /* xl line density (dual flash banks) */
931 page_size = 2048;
932 stm32x_info->ppage_size = 2;
933 max_flash_size_in_kb = 1024;
934 stm32x_info->has_dual_banks = true;
935 break;
936 case 0x432: /* stm32f37x */
937 page_size = 2048;
938 stm32x_info->ppage_size = 2;
939 max_flash_size_in_kb = 256;
940 break;
941 case 0x440: /* stm32f0x */
942 page_size = 1024;
943 stm32x_info->ppage_size = 4;
944 max_flash_size_in_kb = 64;
945 break;
946 default:
947 LOG_WARNING("Cannot identify target as a STM32 family.");
948 return ERROR_FAIL;
949 }
950
951 /* get flash size from target. */
952 retval = stm32x_get_flash_size(bank, &flash_size_in_kb);
953
954 /* failed reading flash size or flash size invalid (early silicon),
955 * default to max target family */
956 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
957 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
958 max_flash_size_in_kb);
959 flash_size_in_kb = max_flash_size_in_kb;
960 }
961
962 if (stm32x_info->has_dual_banks) {
963 /* split reported size into matching bank */
964 if (bank->base != 0x08080000) {
965 /* bank 0 will be fixed 512k */
966 flash_size_in_kb = 512;
967 } else {
968 flash_size_in_kb -= 512;
969 /* bank1 also uses a register offset */
970 stm32x_info->register_base = FLASH_REG_BASE_B1;
971 base_address = 0x08080000;
972 }
973 }
974
975 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
976
977 /* did we assign flash size? */
978 assert(flash_size_in_kb != 0xffff);
979
980 /* calculate numbers of pages */
981 int num_pages = flash_size_in_kb * 1024 / page_size;
982
983 /* check that calculation result makes sense */
984 assert(num_pages > 0);
985
986 if (bank->sectors) {
987 free(bank->sectors);
988 bank->sectors = NULL;
989 }
990
991 bank->base = base_address;
992 bank->size = (num_pages * page_size);
993 bank->num_sectors = num_pages;
994 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
995
996 for (i = 0; i < num_pages; i++) {
997 bank->sectors[i].offset = i * page_size;
998 bank->sectors[i].size = page_size;
999 bank->sectors[i].is_erased = -1;
1000 bank->sectors[i].is_protected = 1;
1001 }
1002
1003 stm32x_info->probed = 1;
1004
1005 return ERROR_OK;
1006 }
1007
1008 static int stm32x_auto_probe(struct flash_bank *bank)
1009 {
1010 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1011 if (stm32x_info->probed)
1012 return ERROR_OK;
1013 return stm32x_probe(bank);
1014 }
1015
1016 #if 0
1017 COMMAND_HANDLER(stm32x_handle_part_id_command)
1018 {
1019 return ERROR_OK;
1020 }
1021 #endif
1022
1023 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1024 {
1025 uint32_t device_id;
1026 int printed;
1027
1028 /* read stm32 device id register */
1029 int retval = stm32x_get_device_id(bank, &device_id);
1030 if (retval != ERROR_OK)
1031 return retval;
1032
1033 if ((device_id & 0xfff) == 0x410) {
1034 printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: ");
1035 buf += printed;
1036 buf_size -= printed;
1037
1038 switch (device_id >> 16) {
1039 case 0x0000:
1040 snprintf(buf, buf_size, "A");
1041 break;
1042
1043 case 0x2000:
1044 snprintf(buf, buf_size, "B");
1045 break;
1046
1047 case 0x2001:
1048 snprintf(buf, buf_size, "Z");
1049 break;
1050
1051 case 0x2003:
1052 snprintf(buf, buf_size, "Y");
1053 break;
1054
1055 default:
1056 snprintf(buf, buf_size, "unknown");
1057 break;
1058 }
1059 } else if ((device_id & 0xfff) == 0x412) {
1060 printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: ");
1061 buf += printed;
1062 buf_size -= printed;
1063
1064 switch (device_id >> 16) {
1065 case 0x1000:
1066 snprintf(buf, buf_size, "A");
1067 break;
1068
1069 default:
1070 snprintf(buf, buf_size, "unknown");
1071 break;
1072 }
1073 } else if ((device_id & 0xfff) == 0x414) {
1074 printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: ");
1075 buf += printed;
1076 buf_size -= printed;
1077
1078 switch (device_id >> 16) {
1079 case 0x1000:
1080 snprintf(buf, buf_size, "A");
1081 break;
1082
1083 case 0x1001:
1084 snprintf(buf, buf_size, "Z");
1085 break;
1086
1087 default:
1088 snprintf(buf, buf_size, "unknown");
1089 break;
1090 }
1091 } else if ((device_id & 0xfff) == 0x418) {
1092 printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: ");
1093 buf += printed;
1094 buf_size -= printed;
1095
1096 switch (device_id >> 16) {
1097 case 0x1000:
1098 snprintf(buf, buf_size, "A");
1099 break;
1100
1101 case 0x1001:
1102 snprintf(buf, buf_size, "Z");
1103 break;
1104
1105 default:
1106 snprintf(buf, buf_size, "unknown");
1107 break;
1108 }
1109 } else if ((device_id & 0xfff) == 0x420) {
1110 printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: ");
1111 buf += printed;
1112 buf_size -= printed;
1113
1114 switch (device_id >> 16) {
1115 case 0x1000:
1116 snprintf(buf, buf_size, "A");
1117 break;
1118
1119 case 0x1001:
1120 snprintf(buf, buf_size, "Z");
1121 break;
1122
1123 default:
1124 snprintf(buf, buf_size, "unknown");
1125 break;
1126 }
1127 } else if ((device_id & 0xfff) == 0x422) {
1128 printed = snprintf(buf, buf_size, "stm32f30x - Rev: ");
1129 buf += printed;
1130 buf_size -= printed;
1131
1132 switch (device_id >> 16) {
1133 case 0x1000:
1134 snprintf(buf, buf_size, "1.0");
1135 break;
1136
1137 default:
1138 snprintf(buf, buf_size, "unknown");
1139 break;
1140 }
1141 } else if ((device_id & 0xfff) == 0x428) {
1142 printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: ");
1143 buf += printed;
1144 buf_size -= printed;
1145
1146 switch (device_id >> 16) {
1147 case 0x1000:
1148 snprintf(buf, buf_size, "A");
1149 break;
1150
1151 case 0x1001:
1152 snprintf(buf, buf_size, "Z");
1153 break;
1154
1155 default:
1156 snprintf(buf, buf_size, "unknown");
1157 break;
1158 }
1159 } else if ((device_id & 0xfff) == 0x430) {
1160 printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: ");
1161 buf += printed;
1162 buf_size -= printed;
1163
1164 switch (device_id >> 16) {
1165 case 0x1000:
1166 snprintf(buf, buf_size, "A");
1167 break;
1168
1169 default:
1170 snprintf(buf, buf_size, "unknown");
1171 break;
1172 }
1173 } else if ((device_id & 0xfff) == 0x432) {
1174 printed = snprintf(buf, buf_size, "stm32f37x - Rev: ");
1175 buf += printed;
1176 buf_size -= printed;
1177
1178 switch (device_id >> 16) {
1179 case 0x1000:
1180 snprintf(buf, buf_size, "1.0");
1181 break;
1182
1183 default:
1184 snprintf(buf, buf_size, "unknown");
1185 break;
1186 }
1187 } else if ((device_id & 0xfff) == 0x440) {
1188 printed = snprintf(buf, buf_size, "stm32f0x - Rev: ");
1189 buf += printed;
1190 buf_size -= printed;
1191
1192 switch (device_id >> 16) {
1193 case 0x1000:
1194 snprintf(buf, buf_size, "1.0");
1195 break;
1196
1197 case 0x2000:
1198 snprintf(buf, buf_size, "2.0");
1199 break;
1200
1201 default:
1202 snprintf(buf, buf_size, "unknown");
1203 break;
1204 }
1205 } else {
1206 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
1207 return ERROR_FAIL;
1208 }
1209
1210 return ERROR_OK;
1211 }
1212
1213 COMMAND_HANDLER(stm32x_handle_lock_command)
1214 {
1215 struct target *target = NULL;
1216 struct stm32x_flash_bank *stm32x_info = NULL;
1217
1218 if (CMD_ARGC < 1)
1219 return ERROR_COMMAND_SYNTAX_ERROR;
1220
1221 struct flash_bank *bank;
1222 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1223 if (ERROR_OK != retval)
1224 return retval;
1225
1226 stm32x_info = bank->driver_priv;
1227
1228 target = bank->target;
1229
1230 if (target->state != TARGET_HALTED) {
1231 LOG_ERROR("Target not halted");
1232 return ERROR_TARGET_NOT_HALTED;
1233 }
1234
1235 retval = stm32x_check_operation_supported(bank);
1236 if (ERROR_OK != retval)
1237 return retval;
1238
1239 if (stm32x_erase_options(bank) != ERROR_OK) {
1240 command_print(CMD_CTX, "stm32x failed to erase options");
1241 return ERROR_OK;
1242 }
1243
1244 /* set readout protection */
1245 stm32x_info->option_bytes.RDP = 0;
1246
1247 if (stm32x_write_options(bank) != ERROR_OK) {
1248 command_print(CMD_CTX, "stm32x failed to lock device");
1249 return ERROR_OK;
1250 }
1251
1252 command_print(CMD_CTX, "stm32x locked");
1253
1254 return ERROR_OK;
1255 }
1256
1257 COMMAND_HANDLER(stm32x_handle_unlock_command)
1258 {
1259 struct target *target = NULL;
1260
1261 if (CMD_ARGC < 1)
1262 return ERROR_COMMAND_SYNTAX_ERROR;
1263
1264 struct flash_bank *bank;
1265 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1266 if (ERROR_OK != retval)
1267 return retval;
1268
1269 target = bank->target;
1270
1271 if (target->state != TARGET_HALTED) {
1272 LOG_ERROR("Target not halted");
1273 return ERROR_TARGET_NOT_HALTED;
1274 }
1275
1276 retval = stm32x_check_operation_supported(bank);
1277 if (ERROR_OK != retval)
1278 return retval;
1279
1280 if (stm32x_erase_options(bank) != ERROR_OK) {
1281 command_print(CMD_CTX, "stm32x failed to unlock device");
1282 return ERROR_OK;
1283 }
1284
1285 if (stm32x_write_options(bank) != ERROR_OK) {
1286 command_print(CMD_CTX, "stm32x failed to lock device");
1287 return ERROR_OK;
1288 }
1289
1290 command_print(CMD_CTX, "stm32x unlocked.\n"
1291 "INFO: a reset or power cycle is required "
1292 "for the new settings to take effect.");
1293
1294 return ERROR_OK;
1295 }
1296
1297 COMMAND_HANDLER(stm32x_handle_options_read_command)
1298 {
1299 uint32_t optionbyte;
1300 struct target *target = NULL;
1301 struct stm32x_flash_bank *stm32x_info = NULL;
1302
1303 if (CMD_ARGC < 1)
1304 return ERROR_COMMAND_SYNTAX_ERROR;
1305
1306 struct flash_bank *bank;
1307 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1308 if (ERROR_OK != retval)
1309 return retval;
1310
1311 stm32x_info = bank->driver_priv;
1312
1313 target = bank->target;
1314
1315 if (target->state != TARGET_HALTED) {
1316 LOG_ERROR("Target not halted");
1317 return ERROR_TARGET_NOT_HALTED;
1318 }
1319
1320 retval = stm32x_check_operation_supported(bank);
1321 if (ERROR_OK != retval)
1322 return retval;
1323
1324 retval = target_read_u32(target, STM32_FLASH_OBR_B0, &optionbyte);
1325 if (retval != ERROR_OK)
1326 return retval;
1327 command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte);
1328
1329 if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1))
1330 command_print(CMD_CTX, "Option Byte Complement Error");
1331
1332 if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1))
1333 command_print(CMD_CTX, "Readout Protection On");
1334 else
1335 command_print(CMD_CTX, "Readout Protection Off");
1336
1337 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1))
1338 command_print(CMD_CTX, "Software Watchdog");
1339 else
1340 command_print(CMD_CTX, "Hardware Watchdog");
1341
1342 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1))
1343 command_print(CMD_CTX, "Stop: No reset generated");
1344 else
1345 command_print(CMD_CTX, "Stop: Reset generated");
1346
1347 if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1))
1348 command_print(CMD_CTX, "Standby: No reset generated");
1349 else
1350 command_print(CMD_CTX, "Standby: Reset generated");
1351
1352 if (stm32x_info->has_dual_banks) {
1353 if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1))
1354 command_print(CMD_CTX, "Boot: Bank 0");
1355 else
1356 command_print(CMD_CTX, "Boot: Bank 1");
1357 }
1358
1359 return ERROR_OK;
1360 }
1361
1362 COMMAND_HANDLER(stm32x_handle_options_write_command)
1363 {
1364 struct target *target = NULL;
1365 struct stm32x_flash_bank *stm32x_info = NULL;
1366 uint16_t optionbyte = 0xF8;
1367
1368 if (CMD_ARGC < 4)
1369 return ERROR_COMMAND_SYNTAX_ERROR;
1370
1371 struct flash_bank *bank;
1372 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1373 if (ERROR_OK != retval)
1374 return retval;
1375
1376 stm32x_info = bank->driver_priv;
1377
1378 target = bank->target;
1379
1380 if (target->state != TARGET_HALTED) {
1381 LOG_ERROR("Target not halted");
1382 return ERROR_TARGET_NOT_HALTED;
1383 }
1384
1385 retval = stm32x_check_operation_supported(bank);
1386 if (ERROR_OK != retval)
1387 return retval;
1388
1389 /* REVISIT: ignores some options which we will display...
1390 * and doesn't insist on the specified syntax.
1391 */
1392
1393 /* OPT_RDWDGSW */
1394 if (strcmp(CMD_ARGV[1], "SWWDG") == 0)
1395 optionbyte |= (1 << 0);
1396 else /* REVISIT must be "HWWDG" then ... */
1397 optionbyte &= ~(1 << 0);
1398
1399 /* OPT_RDRSTSTOP */
1400 if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0)
1401 optionbyte |= (1 << 1);
1402 else /* REVISIT must be "RSTSTNDBY" then ... */
1403 optionbyte &= ~(1 << 1);
1404
1405 /* OPT_RDRSTSTDBY */
1406 if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0)
1407 optionbyte |= (1 << 2);
1408 else /* REVISIT must be "RSTSTOP" then ... */
1409 optionbyte &= ~(1 << 2);
1410
1411 if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) {
1412 /* OPT_BFB2 */
1413 if (strcmp(CMD_ARGV[4], "BOOT0") == 0)
1414 optionbyte |= (1 << 3);
1415 else
1416 optionbyte &= ~(1 << 3);
1417 }
1418
1419 if (stm32x_erase_options(bank) != ERROR_OK) {
1420 command_print(CMD_CTX, "stm32x failed to erase options");
1421 return ERROR_OK;
1422 }
1423
1424 stm32x_info->option_bytes.user_options = optionbyte;
1425
1426 if (stm32x_write_options(bank) != ERROR_OK) {
1427 command_print(CMD_CTX, "stm32x failed to write options");
1428 return ERROR_OK;
1429 }
1430
1431 command_print(CMD_CTX, "stm32x write options complete.\n"
1432 "INFO: a reset or power cycle is required "
1433 "for the new settings to take effect.");
1434
1435 return ERROR_OK;
1436 }
1437
1438 static int stm32x_mass_erase(struct flash_bank *bank)
1439 {
1440 struct target *target = bank->target;
1441
1442 if (target->state != TARGET_HALTED) {
1443 LOG_ERROR("Target not halted");
1444 return ERROR_TARGET_NOT_HALTED;
1445 }
1446
1447 /* unlock option flash registers */
1448 int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1);
1449 if (retval != ERROR_OK)
1450 return retval;
1451 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY2);
1452 if (retval != ERROR_OK)
1453 return retval;
1454
1455 /* mass erase flash memory */
1456 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1457 if (retval != ERROR_OK)
1458 return retval;
1459 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1460 FLASH_MER | FLASH_STRT);
1461 if (retval != ERROR_OK)
1462 return retval;
1463
1464 retval = stm32x_wait_status_busy(bank, 100);
1465 if (retval != ERROR_OK)
1466 return retval;
1467
1468 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1469 if (retval != ERROR_OK)
1470 return retval;
1471
1472 return ERROR_OK;
1473 }
1474
1475 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1476 {
1477 int i;
1478
1479 if (CMD_ARGC < 1)
1480 return ERROR_COMMAND_SYNTAX_ERROR;
1481
1482 struct flash_bank *bank;
1483 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1484 if (ERROR_OK != retval)
1485 return retval;
1486
1487 retval = stm32x_mass_erase(bank);
1488 if (retval == ERROR_OK) {
1489 /* set all sectors as erased */
1490 for (i = 0; i < bank->num_sectors; i++)
1491 bank->sectors[i].is_erased = 1;
1492
1493 command_print(CMD_CTX, "stm32x mass erase complete");
1494 } else
1495 command_print(CMD_CTX, "stm32x mass erase failed");
1496
1497 return retval;
1498 }
1499
1500 static const struct command_registration stm32x_exec_command_handlers[] = {
1501 {
1502 .name = "lock",
1503 .handler = stm32x_handle_lock_command,
1504 .mode = COMMAND_EXEC,
1505 .usage = "bank_id",
1506 .help = "Lock entire flash device.",
1507 },
1508 {
1509 .name = "unlock",
1510 .handler = stm32x_handle_unlock_command,
1511 .mode = COMMAND_EXEC,
1512 .usage = "bank_id",
1513 .help = "Unlock entire protected flash device.",
1514 },
1515 {
1516 .name = "mass_erase",
1517 .handler = stm32x_handle_mass_erase_command,
1518 .mode = COMMAND_EXEC,
1519 .usage = "bank_id",
1520 .help = "Erase entire flash device.",
1521 },
1522 {
1523 .name = "options_read",
1524 .handler = stm32x_handle_options_read_command,
1525 .mode = COMMAND_EXEC,
1526 .usage = "bank_id",
1527 .help = "Read and display device option byte.",
1528 },
1529 {
1530 .name = "options_write",
1531 .handler = stm32x_handle_options_write_command,
1532 .mode = COMMAND_EXEC,
1533 .usage = "bank_id ('SWWDG'|'HWWDG') "
1534 "('RSTSTNDBY'|'NORSTSTNDBY') "
1535 "('RSTSTOP'|'NORSTSTOP')",
1536 .help = "Replace bits in device option byte.",
1537 },
1538 COMMAND_REGISTRATION_DONE
1539 };
1540
1541 static const struct command_registration stm32x_command_handlers[] = {
1542 {
1543 .name = "stm32f1x",
1544 .mode = COMMAND_ANY,
1545 .help = "stm32f1x flash command group",
1546 .usage = "",
1547 .chain = stm32x_exec_command_handlers,
1548 },
1549 COMMAND_REGISTRATION_DONE
1550 };
1551
1552 struct flash_driver stm32f1x_flash = {
1553 .name = "stm32f1x",
1554 .commands = stm32x_command_handlers,
1555 .flash_bank_command = stm32x_flash_bank_command,
1556 .erase = stm32x_erase,
1557 .protect = stm32x_protect,
1558 .write = stm32x_write,
1559 .read = default_flash_read,
1560 .probe = stm32x_probe,
1561 .auto_probe = stm32x_auto_probe,
1562 .erase_check = default_flash_blank_check,
1563 .protect_check = stm32x_protect_check,
1564 .info = get_stm32x_info,
1565 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)