flash: reduce code duplication in stm32 flash probe
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* Regarding performance:
37 *
38 * Short story - it might be best to leave the performance at
39 * current levels.
40 *
41 * You may see a jump in speed if you change to using
42 * 32bit words for the block programming.
43 *
44 * Its a shame you cannot use the double word as its
45 * even faster - but you require external VPP for that mode.
46 *
47 * Having said all that 16bit writes give us the widest vdd
48 * operating range, so may be worth adding a note to that effect.
49 *
50 */
51
52 /* Danger!!!! The STM32F1x and STM32F2x series actually have
53 * quite different flash controllers.
54 *
55 * What's more scary is that the names of the registers and their
56 * addresses are the same, but the actual bits and what they do are
57 * can be very different.
58 *
59 * To reduce testing complexity and dangers of regressions,
60 * a seperate file is used for stm32fx2x.
61 *
62 * 1mByte part with 4 x 16, 1 x 64, 7 x 128kBytes sectors
63 *
64 * What's the protection page size???
65 *
66 * Tested with STM3220F-EVAL board.
67 *
68 * STM32F21xx series for reference.
69 *
70 * RM0033
71 * http://www.st.com/internet/mcu/product/250192.jsp
72 *
73 * PM0059
74 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
75 * PROGRAMMING_MANUAL/CD00233952.pdf
76 *
77 * STM32F1x series - notice that this code was copy, pasted and knocked
78 * into a stm32f2x driver, so in case something has been converted or
79 * bugs haven't been fixed, here are the original manuals:
80 *
81 * RM0008 - Reference manual
82 *
83 * RM0042, the Flash programming manual for low-, medium- high-density and
84 * connectivity line STM32F10x devices
85 *
86 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
87 *
88 */
89
90 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
91 #define FLASH_ERASE_TIMEOUT 10000
92 #define FLASH_WRITE_TIMEOUT 5
93
94 #define STM32_FLASH_BASE 0x40023c00
95 #define STM32_FLASH_ACR 0x40023c00
96 #define STM32_FLASH_KEYR 0x40023c04
97 #define STM32_FLASH_OPTKEYR 0x40023c08
98 #define STM32_FLASH_SR 0x40023c0C
99 #define STM32_FLASH_CR 0x40023c10
100 #define STM32_FLASH_OPTCR 0x40023c14
101 #define STM32_FLASH_OBR 0x40023c1C
102
103 /* option byte location */
104
105 #define STM32_OB_RDP 0x1FFFF800
106 #define STM32_OB_USER 0x1FFFF802
107 #define STM32_OB_DATA0 0x1FFFF804
108 #define STM32_OB_DATA1 0x1FFFF806
109 #define STM32_OB_WRP0 0x1FFFF808
110 #define STM32_OB_WRP1 0x1FFFF80A
111 #define STM32_OB_WRP2 0x1FFFF80C
112 #define STM32_OB_WRP3 0x1FFFF80E
113
114 /* FLASH_CR register bits */
115
116 #define FLASH_PG (1 << 0)
117 #define FLASH_SER (1 << 1)
118 #define FLASH_MER (1 << 2)
119 #define FLASH_STRT (1 << 16)
120 #define FLASH_PSIZE_8 (0 << 8)
121 #define FLASH_PSIZE_16 (1 << 8)
122 #define FLASH_PSIZE_32 (2 << 8)
123 #define FLASH_PSIZE_64 (3 << 8)
124 #define FLASH_SNB(a) ((a) << 3)
125 #define FLASH_LOCK (1 << 31)
126
127 /* FLASH_SR register bits */
128
129 #define FLASH_BSY (1 << 16)
130 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
131 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
132 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
133 #define FLASH_WRPERR (1 << 4) /* Write protection error */
134 #define FLASH_OPERR (1 << 1) /* Operation error */
135
136 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
137
138 /* STM32_FLASH_OBR bit definitions (reading) */
139
140 #define OPT_ERROR 0
141 #define OPT_READOUT 1
142 #define OPT_RDWDGSW 2
143 #define OPT_RDRSTSTOP 3
144 #define OPT_RDRSTSTDBY 4
145 #define OPT_BFB2 5 /* dual flash bank only */
146
147 /* register unlock keys */
148
149 #define KEY1 0x45670123
150 #define KEY2 0xCDEF89AB
151
152 struct stm32x_flash_bank {
153 struct working_area *write_algorithm;
154 int probed;
155 };
156
157
158 /* flash bank stm32x <base> <size> 0 0 <target#>
159 */
160 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
161 {
162 struct stm32x_flash_bank *stm32x_info;
163
164 if (CMD_ARGC < 6)
165 return ERROR_COMMAND_SYNTAX_ERROR;
166
167 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
168 bank->driver_priv = stm32x_info;
169
170 stm32x_info->write_algorithm = NULL;
171 stm32x_info->probed = 0;
172
173 return ERROR_OK;
174 }
175
176 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
177 {
178 return reg;
179 }
180
181 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
182 {
183 struct target *target = bank->target;
184 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
185 }
186
187 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
188 {
189 struct target *target = bank->target;
190 uint32_t status;
191 int retval = ERROR_OK;
192
193 /* wait for busy to clear */
194 for (;;) {
195 retval = stm32x_get_flash_status(bank, &status);
196 if (retval != ERROR_OK)
197 return retval;
198 LOG_DEBUG("status: 0x%" PRIx32 "", status);
199 if ((status & FLASH_BSY) == 0)
200 break;
201 if (timeout-- <= 0) {
202 LOG_ERROR("timed out waiting for flash");
203 return ERROR_FAIL;
204 }
205 alive_sleep(1);
206 }
207
208
209 if (status & FLASH_WRPERR) {
210 LOG_ERROR("stm32x device protected");
211 retval = ERROR_FAIL;
212 }
213
214 /* Clear but report errors */
215 if (status & FLASH_ERROR) {
216 /* If this operation fails, we ignore it and report the original
217 * retval
218 */
219 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
220 status & FLASH_ERROR);
221 }
222 return retval;
223 }
224
225 static int stm32x_unlock_reg(struct target *target)
226 {
227 uint32_t ctrl;
228
229 /* first check if not already unlocked
230 * otherwise writing on STM32_FLASH_KEYR will fail
231 */
232 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
233 if (retval != ERROR_OK)
234 return retval;
235
236 if ((ctrl & FLASH_LOCK) == 0)
237 return ERROR_OK;
238
239 /* unlock flash registers */
240 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
241 if (retval != ERROR_OK)
242 return retval;
243
244 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
245 if (retval != ERROR_OK)
246 return retval;
247
248 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
249 if (retval != ERROR_OK)
250 return retval;
251
252 if (ctrl & FLASH_LOCK) {
253 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %x", ctrl);
254 return ERROR_TARGET_FAILURE;
255 }
256
257 return ERROR_OK;
258 }
259
260 static int stm32x_protect_check(struct flash_bank *bank)
261 {
262 return ERROR_OK;
263 }
264
265 static int stm32x_erase(struct flash_bank *bank, int first, int last)
266 {
267 struct target *target = bank->target;
268 int i;
269
270 if (bank->target->state != TARGET_HALTED) {
271 LOG_ERROR("Target not halted");
272 return ERROR_TARGET_NOT_HALTED;
273 }
274
275 int retval;
276 retval = stm32x_unlock_reg(target);
277 if (retval != ERROR_OK)
278 return retval;
279
280 /*
281 Sector Erase
282 To erase a sector, follow the procedure below:
283 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
284 FLASH_SR register
285 2. Set the SER bit and select the sector (out of the 12 sectors in the main memory block)
286 you wish to erase (SNB) in the FLASH_CR register
287 3. Set the STRT bit in the FLASH_CR register
288 4. Wait for the BSY bit to be cleared
289 */
290
291 for (i = first; i <= last; i++) {
292 retval = target_write_u32(target,
293 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
294 if (retval != ERROR_OK)
295 return retval;
296
297 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
298 if (retval != ERROR_OK)
299 return retval;
300
301 bank->sectors[i].is_erased = 1;
302 }
303
304 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
305 if (retval != ERROR_OK)
306 return retval;
307
308 return ERROR_OK;
309 }
310
311 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
312 {
313 return ERROR_OK;
314 }
315
316 static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer,
317 uint32_t offset, uint32_t count)
318 {
319 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
320 struct target *target = bank->target;
321 uint32_t buffer_size = 16384;
322 struct working_area *source;
323 uint32_t address = bank->base + offset;
324 struct reg_param reg_params[5];
325 struct armv7m_algorithm armv7m_info;
326 int retval = ERROR_OK;
327
328 /* see contrib/loaders/flash/stm32f2x.S for src */
329
330 static const uint8_t stm32x_flash_write_code[] = {
331 /* wait_fifo: */
332 0xD0, 0xF8, 0x00, 0x80, /* ldr r8, [r0, #0] */
333 0xB8, 0xF1, 0x00, 0x0F, /* cmp r8, #0 */
334 0x1A, 0xD0, /* beq exit */
335 0x47, 0x68, /* ldr r7, [r0, #4] */
336 0x47, 0x45, /* cmp r7, r8 */
337 0xF7, 0xD0, /* beq wait_fifo */
338
339 0xDF, 0xF8, 0x30, 0x60, /* ldr r6, STM32_PROG16 */
340 0x26, 0x61, /* str r6, [r4, #STM32_FLASH_CR_OFFSET] */
341 0x37, 0xF8, 0x02, 0x6B, /* ldrh r6, [r7], #0x02 */
342 0x22, 0xF8, 0x02, 0x6B, /* strh r6, [r2], #0x02 */
343 /* busy: */
344 0xE6, 0x68, /* ldr r6, [r4, #STM32_FLASH_SR_OFFSET] */
345 0x16, 0xF4, 0x80, 0x3F, /* tst r6, #0x10000 */
346 0xFB, 0xD1, /* bne busy */
347 0x16, 0xF0, 0xF0, 0x0F, /* tst r6, #0xf0 */
348 0x07, 0xD1, /* bne error */
349
350 0x8F, 0x42, /* cmp r7, r1 */
351 0x28, 0xBF, /* it cs */
352 0x00, 0xF1, 0x08, 0x07, /* addcs r7, r0, #8 */
353 0x47, 0x60, /* str r7, [r0, #4] */
354 0x01, 0x3B, /* subs r3, r3, #1 */
355 0x13, 0xB1, /* cbz r3, exit */
356 0xE1, 0xE7, /* b wait_fifo */
357 /* error: */
358 0x00, 0x21, /* movs r1, #0 */
359 0x41, 0x60, /* str r1, [r0, #4] */
360 /* exit: */
361 0x30, 0x46, /* mov r0, r6 */
362 0x00, 0xBE, /* bkpt #0x00 */
363
364 /* <STM32_PROG16>: */
365 0x01, 0x01, 0x00, 0x00, /* .word 0x00000101 */
366 };
367
368 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
369 &stm32x_info->write_algorithm) != ERROR_OK) {
370 LOG_WARNING("no working area available, can't do block memory writes");
371 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
372 };
373
374 retval = target_write_buffer(target, stm32x_info->write_algorithm->address,
375 sizeof(stm32x_flash_write_code),
376 (uint8_t *)stm32x_flash_write_code);
377 if (retval != ERROR_OK)
378 return retval;
379
380 /* memory buffer */
381 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
382 buffer_size /= 2;
383 if (buffer_size <= 256) {
384 /* if we already allocated the writing code, but failed to get a
385 * buffer, free the algorithm */
386 if (stm32x_info->write_algorithm)
387 target_free_working_area(target, stm32x_info->write_algorithm);
388
389 LOG_WARNING("no large enough working area available, can't do block memory writes");
390 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
391 }
392 };
393
394 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
395 armv7m_info.core_mode = ARMV7M_MODE_ANY;
396
397 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
398 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
399 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
400 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
401 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
402
403 buf_set_u32(reg_params[0].value, 0, 32, source->address);
404 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
405 buf_set_u32(reg_params[2].value, 0, 32, address);
406 buf_set_u32(reg_params[3].value, 0, 32, count);
407 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
408
409 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
410 0, NULL,
411 5, reg_params,
412 source->address, source->size,
413 stm32x_info->write_algorithm->address, 0,
414 &armv7m_info);
415
416 if (retval == ERROR_FLASH_OPERATION_FAILED) {
417 LOG_ERROR("error executing stm32x flash write algorithm");
418
419 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
420
421 if (error & FLASH_WRPERR)
422 LOG_ERROR("flash memory write protected");
423
424 if (error != 0) {
425 LOG_ERROR("flash write failed = %08x", error);
426 /* Clear but report errors */
427 target_write_u32(target, STM32_FLASH_SR, error);
428 retval = ERROR_FAIL;
429 }
430 }
431
432 target_free_working_area(target, source);
433 target_free_working_area(target, stm32x_info->write_algorithm);
434
435 destroy_reg_param(&reg_params[0]);
436 destroy_reg_param(&reg_params[1]);
437 destroy_reg_param(&reg_params[2]);
438 destroy_reg_param(&reg_params[3]);
439 destroy_reg_param(&reg_params[4]);
440
441 return retval;
442 }
443
444 static int stm32x_write(struct flash_bank *bank, uint8_t *buffer,
445 uint32_t offset, uint32_t count)
446 {
447 struct target *target = bank->target;
448 uint32_t words_remaining = (count / 2);
449 uint32_t bytes_remaining = (count & 0x00000001);
450 uint32_t address = bank->base + offset;
451 uint32_t bytes_written = 0;
452 int retval;
453
454 if (bank->target->state != TARGET_HALTED) {
455 LOG_ERROR("Target not halted");
456 return ERROR_TARGET_NOT_HALTED;
457 }
458
459 if (offset & 0x1) {
460 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
461 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
462 }
463
464 retval = stm32x_unlock_reg(target);
465 if (retval != ERROR_OK)
466 return retval;
467
468 /* multiple half words (2-byte) to be programmed? */
469 if (words_remaining > 0) {
470 /* try using a block write */
471 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
472 if (retval != ERROR_OK) {
473 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
474 /* if block write failed (no sufficient working area),
475 * we use normal (slow) single dword accesses */
476 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
477 }
478 } else {
479 buffer += words_remaining * 2;
480 address += words_remaining * 2;
481 words_remaining = 0;
482 }
483 }
484
485 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
486 return retval;
487
488 /*
489 Standard programming
490 The Flash memory programming sequence is as follows:
491 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
492 FLASH_SR register.
493 2. Set the PG bit in the FLASH_CR register
494 3. Perform the data write operation(s) to the desired memory address (inside main
495 memory block or OTP area):
496 – – Half-word access in case of x16 parallelism
497 – Word access in case of x32 parallelism
498 –
499 4.
500 Byte access in case of x8 parallelism
501 Double word access in case of x64 parallelism
502 Wait for the BSY bit to be cleared
503 */
504 while (words_remaining > 0) {
505 uint16_t value;
506 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
507
508 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
509 FLASH_PG | FLASH_PSIZE_16);
510 if (retval != ERROR_OK)
511 return retval;
512
513 retval = target_write_u16(target, address, value);
514 if (retval != ERROR_OK)
515 return retval;
516
517 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
518 if (retval != ERROR_OK)
519 return retval;
520
521 bytes_written += 2;
522 words_remaining--;
523 address += 2;
524 }
525
526 if (bytes_remaining) {
527 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
528 FLASH_PG | FLASH_PSIZE_8);
529 if (retval != ERROR_OK)
530 return retval;
531 retval = target_write_u8(target, address, buffer[bytes_written]);
532 if (retval != ERROR_OK)
533 return retval;
534
535 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
536 if (retval != ERROR_OK)
537 return retval;
538 }
539
540 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
541 }
542
543 static void setup_sector(struct flash_bank *bank, int start, int num, int size)
544 {
545 for (int i = start; i < (start + num) ; i++) {
546 bank->sectors[i].offset = bank->size;
547 bank->sectors[i].size = size;
548 bank->size += bank->sectors[i].size;
549 }
550 }
551
552 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
553 {
554 /* this checks for a stm32f4x errata issue where a
555 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
556 * If the issue is detected target is forced to stm32f4x Rev A.
557 * Only effects Rev A silicon */
558
559 struct target *target = bank->target;
560 uint32_t cpuid;
561
562 /* read stm32 device id register */
563 int retval = target_read_u32(target, 0xE0042000, device_id);
564 if (retval != ERROR_OK)
565 return retval;
566
567 if ((*device_id & 0xfff) == 0x411) {
568 /* read CPUID reg to check core type */
569 retval = target_read_u32(target, 0xE000ED00, &cpuid);
570 if (retval != ERROR_OK)
571 return retval;
572
573 /* check for cortex_m4 */
574 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
575 *device_id &= ~((0xFFFF << 16) | 0xfff);
576 *device_id |= (0x1000 << 16) | 0x413;
577 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
578 }
579 }
580 return retval;
581 }
582
583 static int stm32x_probe(struct flash_bank *bank)
584 {
585 struct target *target = bank->target;
586 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
587 int i;
588 uint16_t flash_size_in_kb;
589 uint16_t max_flash_size_in_kb;
590 uint32_t device_id;
591 uint32_t base_address = 0x08000000;
592
593 stm32x_info->probed = 0;
594
595 /* read stm32 device id register */
596 int retval = stm32x_get_device_id(bank, &device_id);
597 if (retval != ERROR_OK)
598 return retval;
599 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
600
601 /* set max flash size depending on family */
602 switch (device_id & 0xfff) {
603 case 0x411:
604 case 0x413:
605 max_flash_size_in_kb = 1024;
606 break;
607 default:
608 LOG_WARNING("Cannot identify target as a STM32 family.");
609 return ERROR_FAIL;
610 }
611
612 /* get flash size from target. */
613 retval = target_read_u16(target, 0x1FFF7A22, &flash_size_in_kb);
614
615 /* failed reading flash size or flash size invalid (early silicon),
616 * default to max target family */
617 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
618 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
619 max_flash_size_in_kb);
620 flash_size_in_kb = max_flash_size_in_kb;
621 }
622
623 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
624
625 /* did we assign flash size? */
626 assert(flash_size_in_kb != 0xffff);
627
628 /* calculate numbers of pages */
629 int num_pages = (flash_size_in_kb / 128) + 4;
630
631 /* check that calculation result makes sense */
632 assert(num_pages > 0);
633
634 if (bank->sectors) {
635 free(bank->sectors);
636 bank->sectors = NULL;
637 }
638
639 bank->base = base_address;
640 bank->num_sectors = num_pages;
641 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
642 bank->size = 0;
643
644 /* fixed memory */
645 setup_sector(bank, 0, 4, 16 * 1024);
646 setup_sector(bank, 4, 1, 64 * 1024);
647
648 /* dynamic memory */
649 setup_sector(bank, 4 + 1, num_pages - 5, 128 * 1024);
650
651 for (i = 0; i < num_pages; i++) {
652 bank->sectors[i].is_erased = -1;
653 bank->sectors[i].is_protected = 0;
654 }
655
656 stm32x_info->probed = 1;
657
658 return ERROR_OK;
659 }
660
661 static int stm32x_auto_probe(struct flash_bank *bank)
662 {
663 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
664 if (stm32x_info->probed)
665 return ERROR_OK;
666 return stm32x_probe(bank);
667 }
668
669 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
670 {
671 uint32_t device_id;
672 int printed;
673
674 /* read stm32 device id register */
675 int retval = stm32x_get_device_id(bank, &device_id);
676 if (retval != ERROR_OK)
677 return retval;
678
679 if ((device_id & 0xfff) == 0x411) {
680 printed = snprintf(buf, buf_size, "stm32f2x - Rev: ");
681 buf += printed;
682 buf_size -= printed;
683
684 switch (device_id >> 16) {
685 case 0x1000:
686 snprintf(buf, buf_size, "A");
687 break;
688
689 case 0x2000:
690 snprintf(buf, buf_size, "B");
691 break;
692
693 case 0x1001:
694 snprintf(buf, buf_size, "Z");
695 break;
696
697 case 0x2001:
698 snprintf(buf, buf_size, "Y");
699 break;
700
701 default:
702 snprintf(buf, buf_size, "unknown");
703 break;
704 }
705 } else if ((device_id & 0xfff) == 0x413) {
706 printed = snprintf(buf, buf_size, "stm32f4x - Rev: ");
707 buf += printed;
708 buf_size -= printed;
709
710 switch (device_id >> 16) {
711 case 0x1000:
712 snprintf(buf, buf_size, "A");
713 break;
714
715 case 0x1001:
716 snprintf(buf, buf_size, "Z");
717 break;
718
719 default:
720 snprintf(buf, buf_size, "unknown");
721 break;
722 }
723 } else {
724 snprintf(buf, buf_size, "Cannot identify target as a stm32x\n");
725 return ERROR_FAIL;
726 }
727
728 return ERROR_OK;
729 }
730
731 static int stm32x_mass_erase(struct flash_bank *bank)
732 {
733 int retval;
734 struct target *target = bank->target;
735
736 if (target->state != TARGET_HALTED) {
737 LOG_ERROR("Target not halted");
738 return ERROR_TARGET_NOT_HALTED;
739 }
740
741 retval = stm32x_unlock_reg(target);
742 if (retval != ERROR_OK)
743 return retval;
744
745 /* mass erase flash memory */
746 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
747 if (retval != ERROR_OK)
748 return retval;
749 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
750 FLASH_MER | FLASH_STRT);
751 if (retval != ERROR_OK)
752 return retval;
753
754 retval = stm32x_wait_status_busy(bank, 30000);
755 if (retval != ERROR_OK)
756 return retval;
757
758 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
759 if (retval != ERROR_OK)
760 return retval;
761
762 return ERROR_OK;
763 }
764
765 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
766 {
767 int i;
768
769 if (CMD_ARGC < 1) {
770 command_print(CMD_CTX, "stm32x mass_erase <bank>");
771 return ERROR_COMMAND_SYNTAX_ERROR;
772 }
773
774 struct flash_bank *bank;
775 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
776 if (ERROR_OK != retval)
777 return retval;
778
779 retval = stm32x_mass_erase(bank);
780 if (retval == ERROR_OK) {
781 /* set all sectors as erased */
782 for (i = 0; i < bank->num_sectors; i++)
783 bank->sectors[i].is_erased = 1;
784
785 command_print(CMD_CTX, "stm32x mass erase complete");
786 } else {
787 command_print(CMD_CTX, "stm32x mass erase failed");
788 }
789
790 return retval;
791 }
792
793 static const struct command_registration stm32x_exec_command_handlers[] = {
794 {
795 .name = "mass_erase",
796 .handler = stm32x_handle_mass_erase_command,
797 .mode = COMMAND_EXEC,
798 .usage = "bank_id",
799 .help = "Erase entire flash device.",
800 },
801 COMMAND_REGISTRATION_DONE
802 };
803
804 static const struct command_registration stm32x_command_handlers[] = {
805 {
806 .name = "stm32f2x",
807 .mode = COMMAND_ANY,
808 .help = "stm32f2x flash command group",
809 .usage = "",
810 .chain = stm32x_exec_command_handlers,
811 },
812 COMMAND_REGISTRATION_DONE
813 };
814
815 struct flash_driver stm32f2x_flash = {
816 .name = "stm32f2x",
817 .commands = stm32x_command_handlers,
818 .flash_bank_command = stm32x_flash_bank_command,
819 .erase = stm32x_erase,
820 .protect = stm32x_protect,
821 .write = stm32x_write,
822 .read = default_flash_read,
823 .probe = stm32x_probe,
824 .auto_probe = stm32x_auto_probe,
825 .erase_check = default_flash_blank_check,
826 .protect_check = stm32x_protect_check,
827 .info = get_stm32x_info,
828 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)