d3e7d709c8695e58a40645c91643a28bd4d2cac1
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/cortex_m.h>
33
34 /* Regarding performance:
35 *
36 * Short story - it might be best to leave the performance at
37 * current levels.
38 *
39 * You may see a jump in speed if you change to using
40 * 32bit words for the block programming.
41 *
42 * Its a shame you cannot use the double word as its
43 * even faster - but you require external VPP for that mode.
44 *
45 * Having said all that 16bit writes give us the widest vdd
46 * operating range, so may be worth adding a note to that effect.
47 *
48 */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51 * quite different flash controllers.
52 *
53 * What's more scary is that the names of the registers and their
54 * addresses are the same, but the actual bits and what they do are
55 * can be very different.
56 *
57 * To reduce testing complexity and dangers of regressions,
58 * a separate file is used for stm32fx2x.
59 *
60 * Sector sizes in kiBytes:
61 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62 * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64 * 1 MiByte STM32F42x/43x part with DB1M Option set:
65 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66 *
67 * STM32F7[2|3]
68 * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69 *
70 * STM32F7[4|5]
71 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72 *
73 * STM32F7[6|7]
74 * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75 * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76 * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77 * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78 *
79 * Protection size is sector size.
80 *
81 * Tested with STM3220F-EVAL board.
82 *
83 * STM32F4xx series for reference.
84 *
85 * RM0090
86 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87 *
88 * PM0059
89 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90 * PROGRAMMING_MANUAL/CD00233952.pdf
91 *
92 * STM32F7xx series for reference.
93 *
94 * RM0385
95 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96 *
97 * RM0410
98 * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99 *
100 * RM0430
101 * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102 *
103 * RM0431
104 * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105 *
106 * STM32F1x series - notice that this code was copy, pasted and knocked
107 * into a stm32f2x driver, so in case something has been converted or
108 * bugs haven't been fixed, here are the original manuals:
109 *
110 * RM0008 - Reference manual
111 *
112 * RM0042, the Flash programming manual for low-, medium- high-density and
113 * connectivity line STM32F10x devices
114 *
115 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116 *
117 */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE 0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE 0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE 0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE 0x40023c00
140 #define STM32_FLASH_ACR 0x40023c00
141 #define STM32_FLASH_KEYR 0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR 0x40023c0C
144 #define STM32_FLASH_CR 0x40023c10
145 #define STM32_FLASH_OPTCR 0x40023c14
146 #define STM32_FLASH_OPTCR1 0x40023c18
147 #define STM32_FLASH_OPTCR2 0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG (1 << 0)
151 #define FLASH_SER (1 << 1)
152 #define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT (1 << 16)
155 #define FLASH_PSIZE_8 (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a) ((a) << 3)
161 #define FLASH_LOCK (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY (1 << 16)
165 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR (1 << 4) /* Write protection error */
169 #define FLASH_OPERR (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK (1 << 0)
175 #define OPTCR_START (1 << 1)
176 #define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
177 #define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1 0x45670123
185 #define KEY2 0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1 0x08192A3B
189 #define OPTKEY2 0x4C5D6E7F
190
191 struct stm32x_options {
192 uint8_t RDP;
193 uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
194 uint32_t protection;
195 uint32_t boot_addr;
196 uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200 struct stm32x_options option_bytes;
201 bool probed;
202 bool otp_unlocked;
203 bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
204 bool has_extra_options; /* F42x/43x/469/479/7xx */
205 bool has_boot_addr; /* F7xx */
206 bool has_optcr2_pcrop; /* F72x/73x */
207 unsigned int protection_bits; /* F413/423 */
208 uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213 return bank->base == STM32F2_OTP_BANK_BASE ||
214 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219 return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226 return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233 LOG_INFO("OTP memory bank #%u is disabled for write commands.",
234 bank->bank_number);
235 stm32x_info->otp_unlocked = false;
236 return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243 if (!stm32x_info->otp_unlocked) {
244 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
245 bank->bank_number);
246 stm32x_info->otp_unlocked = true;
247 } else {
248 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
249 bank->bank_number);
250 }
251 return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255 */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258 struct stm32x_flash_bank *stm32x_info;
259
260 if (CMD_ARGC < 6)
261 return ERROR_COMMAND_SYNTAX_ERROR;
262
263 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264 bank->driver_priv = stm32x_info;
265
266 stm32x_info->probed = false;
267 stm32x_info->otp_unlocked = false;
268 stm32x_info->user_bank_size = bank->size;
269
270 return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275 return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280 struct target *target = bank->target;
281 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286 struct target *target = bank->target;
287 uint32_t status;
288 int retval = ERROR_OK;
289
290 /* wait for busy to clear */
291 for (;;) {
292 retval = stm32x_get_flash_status(bank, &status);
293 if (retval != ERROR_OK)
294 return retval;
295 LOG_DEBUG("status: 0x%" PRIx32, status);
296 if ((status & FLASH_BSY) == 0)
297 break;
298 if (timeout-- <= 0) {
299 LOG_ERROR("timed out waiting for flash");
300 return ERROR_FAIL;
301 }
302 alive_sleep(1);
303 }
304
305
306 if (status & FLASH_WRPERR) {
307 LOG_ERROR("stm32x device protected");
308 retval = ERROR_FAIL;
309 }
310
311 /* Clear but report errors */
312 if (status & FLASH_ERROR) {
313 if (retval == ERROR_OK)
314 retval = ERROR_FAIL;
315 /* If this operation fails, we ignore it and report the original
316 * retval
317 */
318 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319 status & FLASH_ERROR);
320 }
321 return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326 uint32_t ctrl;
327
328 /* first check if not already unlocked
329 * otherwise writing on STM32_FLASH_KEYR will fail
330 */
331 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332 if (retval != ERROR_OK)
333 return retval;
334
335 if ((ctrl & FLASH_LOCK) == 0)
336 return ERROR_OK;
337
338 /* unlock flash registers */
339 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340 if (retval != ERROR_OK)
341 return retval;
342
343 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344 if (retval != ERROR_OK)
345 return retval;
346
347 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348 if (retval != ERROR_OK)
349 return retval;
350
351 if (ctrl & FLASH_LOCK) {
352 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
353 return ERROR_TARGET_FAILURE;
354 }
355
356 return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361 uint32_t ctrl;
362
363 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if ((ctrl & OPTCR_LOCK) == 0)
368 return ERROR_OK;
369
370 /* unlock option registers */
371 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372 if (retval != ERROR_OK)
373 return retval;
374
375 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376 if (retval != ERROR_OK)
377 return retval;
378
379 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380 if (retval != ERROR_OK)
381 return retval;
382
383 if (ctrl & OPTCR_LOCK) {
384 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
385 return ERROR_TARGET_FAILURE;
386 }
387
388 return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393 uint32_t optiondata;
394 struct stm32x_flash_bank *stm32x_info = NULL;
395 struct target *target = bank->target;
396
397 stm32x_info = bank->driver_priv;
398
399 /* read current option bytes */
400 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401 if (retval != ERROR_OK)
402 return retval;
403
404 /* caution: F2 implements 5 bits (WDG_SW only)
405 * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406 stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408 stm32x_info->option_bytes.protection =
409 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411 if (stm32x_info->has_extra_options) {
412 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415 }
416
417 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419 if (retval != ERROR_OK)
420 return retval;
421
422 /* FLASH_OPTCR1 has quite different meanings ... */
423 if (stm32x_info->has_boot_addr) {
424 /* for F7xx it contains boot0 and boot1 */
425 stm32x_info->option_bytes.boot_addr = optiondata;
426 } else {
427 /* for F42x/43x/469/479 it contains 12 additional protection bits */
428 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429 }
430 }
431
432 if (stm32x_info->has_optcr2_pcrop) {
433 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434 if (retval != ERROR_OK)
435 return retval;
436
437 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438 if (stm32x_info->has_optcr2_pcrop &&
439 (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440 LOG_INFO("PCROP Engaged");
441 }
442 } else {
443 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444 }
445
446 if (stm32x_info->option_bytes.RDP != 0xAA)
447 LOG_INFO("Device Security Bit Set");
448
449 return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454 struct stm32x_flash_bank *stm32x_info = NULL;
455 struct target *target = bank->target;
456 uint32_t optiondata, optiondata2;
457
458 stm32x_info = bank->driver_priv;
459
460 int retval = stm32x_unlock_option_reg(target);
461 if (retval != ERROR_OK)
462 return retval;
463
464 /* rebuild option data */
465 optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466 optiondata |= stm32x_info->option_bytes.RDP << 8;
467 optiondata |= (stm32x_info->option_bytes.protection &
468 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470 if (stm32x_info->has_extra_options) {
471 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472 optiondata |= (stm32x_info->option_bytes.user_options &
473 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474 }
475
476 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477 if (stm32x_info->has_boot_addr) {
478 /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479 optiondata2 = stm32x_info->option_bytes.boot_addr;
480 } else {
481 /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482 optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483 }
484
485 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486 if (retval != ERROR_OK)
487 return retval;
488 }
489
490 /* program extra pcrop register */
491 if (stm32x_info->has_optcr2_pcrop) {
492 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493 stm32x_info->option_bytes.optcr2_pcrop);
494 if (retval != ERROR_OK)
495 return retval;
496 }
497
498 /* program options */
499 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500 if (retval != ERROR_OK)
501 return retval;
502
503 /* start programming cycle */
504 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505 if (retval != ERROR_OK)
506 return retval;
507
508 /* wait for completion, this might trigger a security erase and take a while */
509 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510 if (retval != ERROR_OK)
511 return retval;
512
513 /* relock registers */
514 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515 if (retval != ERROR_OK)
516 return retval;
517
518 return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523 struct target *target = bank->target;
524 uint32_t lock_base;
525 int retval;
526 uint8_t lock;
527
528 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529 : STM32F2_OTP_LOCK_BASE;
530
531 for (unsigned int i = 0; i < bank->num_sectors; i++) {
532 retval = target_read_u8(target, lock_base + i, &lock);
533 if (retval != ERROR_OK)
534 return retval;
535 bank->sectors[i].is_protected = !lock;
536 }
537
538 return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
542 unsigned int last)
543 {
544 struct target *target = bank->target;
545 uint32_t lock_base;
546 int i, retval;
547 uint8_t lock;
548
549 assert((first <= last) && (last < bank->num_sectors));
550
551 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
552 : STM32F2_OTP_LOCK_BASE;
553
554 for (i = first; first <= last; i++) {
555 retval = target_read_u8(target, lock_base + i, &lock);
556 if (retval != ERROR_OK)
557 return retval;
558 if (lock)
559 continue;
560
561 lock = 0xff;
562 retval = target_write_u8(target, lock_base + i, lock);
563 if (retval != ERROR_OK)
564 return retval;
565 }
566
567 return ERROR_OK;
568 }
569
570 static int stm32x_protect_check(struct flash_bank *bank)
571 {
572 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
573 struct flash_sector *prot_blocks;
574 unsigned int num_prot_blocks;
575 int retval;
576
577 /* if it's the OTP bank, look at the lock bits there */
578 if (stm32x_is_otp(bank))
579 return stm32x_otp_read_protect(bank);
580
581 /* read write protection settings */
582 retval = stm32x_read_options(bank);
583 if (retval != ERROR_OK) {
584 LOG_DEBUG("unable to read option bytes");
585 return retval;
586 }
587
588 if (bank->prot_blocks) {
589 num_prot_blocks = bank->num_prot_blocks;
590 prot_blocks = bank->prot_blocks;
591 } else {
592 num_prot_blocks = bank->num_sectors;
593 prot_blocks = bank->sectors;
594 }
595
596 for (unsigned int i = 0; i < num_prot_blocks; i++)
597 prot_blocks[i].is_protected =
598 ~(stm32x_info->option_bytes.protection >> i) & 1;
599
600 return ERROR_OK;
601 }
602
603 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
604 unsigned int last)
605 {
606 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607 struct target *target = bank->target;
608
609 if (stm32x_is_otp(bank)) {
610 LOG_ERROR("Cannot erase OTP memory");
611 return ERROR_FAIL;
612 }
613
614 assert((first <= last) && (last < bank->num_sectors));
615
616 if (bank->target->state != TARGET_HALTED) {
617 LOG_ERROR("Target not halted");
618 return ERROR_TARGET_NOT_HALTED;
619 }
620
621 int retval;
622 retval = stm32x_unlock_reg(target);
623 if (retval != ERROR_OK)
624 return retval;
625
626 /*
627 Sector Erase
628 To erase a sector, follow the procedure below:
629 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
630 FLASH_SR register
631 2. Set the SER bit and select the sector
632 you wish to erase (SNB) in the FLASH_CR register
633 3. Set the STRT bit in the FLASH_CR register
634 4. Wait for the BSY bit to be cleared
635 */
636
637 for (unsigned int i = first; i <= last; i++) {
638 unsigned int snb;
639 if (stm32x_info->has_large_mem && i >= 12)
640 snb = (i - 12) | 0x10;
641 else
642 snb = i;
643
644 retval = target_write_u32(target,
645 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
646 if (retval != ERROR_OK)
647 return retval;
648
649 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
650 if (retval != ERROR_OK)
651 return retval;
652 }
653
654 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
655 if (retval != ERROR_OK)
656 return retval;
657
658 return ERROR_OK;
659 }
660
661 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
662 unsigned int last)
663 {
664 struct target *target = bank->target;
665 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
666
667 if (target->state != TARGET_HALTED) {
668 LOG_ERROR("Target not halted");
669 return ERROR_TARGET_NOT_HALTED;
670 }
671
672 if (stm32x_is_otp(bank)) {
673 if (!set)
674 return ERROR_COMMAND_ARGUMENT_INVALID;
675
676 return stm32x_otp_protect(bank, first, last);
677 }
678
679 /* read protection settings */
680 int retval = stm32x_read_options(bank);
681 if (retval != ERROR_OK) {
682 LOG_DEBUG("unable to read option bytes");
683 return retval;
684 }
685
686 for (unsigned int i = first; i <= last; i++) {
687 if (set)
688 stm32x_info->option_bytes.protection &= ~(1 << i);
689 else
690 stm32x_info->option_bytes.protection |= (1 << i);
691 }
692
693 retval = stm32x_write_options(bank);
694 if (retval != ERROR_OK)
695 return retval;
696
697 return ERROR_OK;
698 }
699
700 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
701 uint32_t offset, uint32_t count)
702 {
703 struct target *target = bank->target;
704 uint32_t buffer_size = 16384;
705 struct working_area *write_algorithm;
706 struct working_area *source;
707 uint32_t address = bank->base + offset;
708 struct reg_param reg_params[5];
709 struct armv7m_algorithm armv7m_info;
710 int retval = ERROR_OK;
711
712 static const uint8_t stm32x_flash_write_code[] = {
713 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
714 };
715
716 if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
717 LOG_ERROR("OTP memory bank is disabled for write commands.");
718 return ERROR_FAIL;
719 }
720
721 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
722 &write_algorithm) != ERROR_OK) {
723 LOG_WARNING("no working area available, can't do block memory writes");
724 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
725 }
726
727 retval = target_write_buffer(target, write_algorithm->address,
728 sizeof(stm32x_flash_write_code),
729 stm32x_flash_write_code);
730 if (retval != ERROR_OK) {
731 target_free_working_area(target, write_algorithm);
732 return retval;
733 }
734
735 /* memory buffer */
736 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
737 buffer_size /= 2;
738 if (buffer_size <= 256) {
739 /* we already allocated the writing code, but failed to get a
740 * buffer, free the algorithm */
741 target_free_working_area(target, write_algorithm);
742
743 LOG_WARNING("no large enough working area available, can't do block memory writes");
744 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
745 }
746 }
747
748 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
749 armv7m_info.core_mode = ARM_MODE_THREAD;
750
751 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
752 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
753 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
754 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
755 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
756
757 buf_set_u32(reg_params[0].value, 0, 32, source->address);
758 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
759 buf_set_u32(reg_params[2].value, 0, 32, address);
760 buf_set_u32(reg_params[3].value, 0, 32, count);
761 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
762
763 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
764 0, NULL,
765 5, reg_params,
766 source->address, source->size,
767 write_algorithm->address, 0,
768 &armv7m_info);
769
770 if (retval == ERROR_FLASH_OPERATION_FAILED) {
771 LOG_ERROR("error executing stm32x flash write algorithm");
772
773 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
774
775 if (error & FLASH_WRPERR)
776 LOG_ERROR("flash memory write protected");
777
778 if (error != 0) {
779 LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
780 /* Clear but report errors */
781 target_write_u32(target, STM32_FLASH_SR, error);
782 retval = ERROR_FAIL;
783 }
784 }
785
786 target_free_working_area(target, source);
787 target_free_working_area(target, write_algorithm);
788
789 destroy_reg_param(&reg_params[0]);
790 destroy_reg_param(&reg_params[1]);
791 destroy_reg_param(&reg_params[2]);
792 destroy_reg_param(&reg_params[3]);
793 destroy_reg_param(&reg_params[4]);
794
795 return retval;
796 }
797
798 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
799 uint32_t offset, uint32_t count)
800 {
801 struct target *target = bank->target;
802 uint32_t words_remaining = (count / 2);
803 uint32_t bytes_remaining = (count & 0x00000001);
804 uint32_t address = bank->base + offset;
805 uint32_t bytes_written = 0;
806 int retval;
807
808 if (bank->target->state != TARGET_HALTED) {
809 LOG_ERROR("Target not halted");
810 return ERROR_TARGET_NOT_HALTED;
811 }
812
813 if (offset & 0x1) {
814 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
815 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
816 }
817
818 retval = stm32x_unlock_reg(target);
819 if (retval != ERROR_OK)
820 return retval;
821
822 /* multiple half words (2-byte) to be programmed? */
823 if (words_remaining > 0) {
824 /* try using a block write */
825 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
826 if (retval != ERROR_OK) {
827 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
828 /* if block write failed (no sufficient working area),
829 * we use normal (slow) single dword accesses */
830 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
831 }
832 } else {
833 buffer += words_remaining * 2;
834 address += words_remaining * 2;
835 words_remaining = 0;
836 }
837 }
838
839 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
840 return retval;
841
842 /*
843 Standard programming
844 The Flash memory programming sequence is as follows:
845 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
846 FLASH_SR register.
847 2. Set the PG bit in the FLASH_CR register
848 3. Perform the data write operation(s) to the desired memory address (inside main
849 memory block or OTP area):
850 – – Half-word access in case of x16 parallelism
851 – Word access in case of x32 parallelism
852 –
853 4.
854 Byte access in case of x8 parallelism
855 Double word access in case of x64 parallelism
856 Wait for the BSY bit to be cleared
857 */
858 while (words_remaining > 0) {
859 uint16_t value;
860 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
861
862 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
863 FLASH_PG | FLASH_PSIZE_16);
864 if (retval != ERROR_OK)
865 return retval;
866
867 retval = target_write_u16(target, address, value);
868 if (retval != ERROR_OK)
869 return retval;
870
871 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
872 if (retval != ERROR_OK)
873 return retval;
874
875 bytes_written += 2;
876 words_remaining--;
877 address += 2;
878 }
879
880 if (bytes_remaining) {
881 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
882 FLASH_PG | FLASH_PSIZE_8);
883 if (retval != ERROR_OK)
884 return retval;
885 retval = target_write_u8(target, address, buffer[bytes_written]);
886 if (retval != ERROR_OK)
887 return retval;
888
889 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
890 if (retval != ERROR_OK)
891 return retval;
892 }
893
894 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
895 }
896
897 static void setup_sector(struct flash_bank *bank, unsigned int i,
898 unsigned int size)
899 {
900 assert(i < bank->num_sectors);
901 bank->sectors[i].offset = bank->size;
902 bank->sectors[i].size = size;
903 bank->size += bank->sectors[i].size;
904 LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
905 }
906
907 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
908 {
909 if (i < 4)
910 return max_sector_size_in_kb / 8;
911 if (i == 4)
912 return max_sector_size_in_kb / 2;
913 return max_sector_size_in_kb;
914 }
915
916 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
917 uint16_t flash_size_in_kb,
918 uint16_t max_sector_size_in_kb)
919 {
920 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
921 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
922 unsigned int nr_sectors;
923
924 /* Dual Bank Flash has two identically-arranged banks of sectors. */
925 if (stm32x_info->has_large_mem)
926 remaining_flash_size_in_kb /= 2;
927
928 for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
929 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
930 if (size_in_kb > remaining_flash_size_in_kb) {
931 LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
932 stm32x_info->has_large_mem ? "Dual" : "Single",
933 flash_size_in_kb, remaining_flash_size_in_kb);
934 remaining_flash_size_in_kb = 0;
935 } else {
936 remaining_flash_size_in_kb -= size_in_kb;
937 }
938 }
939
940 return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
941 }
942
943 static void setup_bank(struct flash_bank *bank, unsigned int start,
944 uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
945 {
946 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
947 unsigned int sector_index = 0;
948 while (remaining_flash_size_in_kb > 0) {
949 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
950 if (size_in_kb > remaining_flash_size_in_kb) {
951 /* Clip last sector. Already warned in
952 * calculate_number_of_sectors. */
953 size_in_kb = remaining_flash_size_in_kb;
954 }
955 setup_sector(bank, start + sector_index, size_in_kb * 1024);
956 remaining_flash_size_in_kb -= size_in_kb;
957 sector_index++;
958 }
959 }
960
961 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
962 {
963 /* this checks for a stm32f4x errata issue where a
964 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
965 * If the issue is detected target is forced to stm32f4x Rev A.
966 * Only effects Rev A silicon */
967
968 struct target *target = bank->target;
969 struct cortex_m_common *cortex_m = target_to_cm(target);
970
971 /* read stm32 device id register */
972 int retval = target_read_u32(target, 0xE0042000, device_id);
973 if (retval != ERROR_OK)
974 return retval;
975
976 if ((*device_id & 0xfff) == 0x411 && cortex_m->core_info->partno == CORTEX_M4_PARTNO) {
977 *device_id &= ~((0xFFFF << 16) | 0xfff);
978 *device_id |= (0x1000 << 16) | 0x413;
979 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
980 }
981 return retval;
982 }
983
984 static int stm32x_probe(struct flash_bank *bank)
985 {
986 struct target *target = bank->target;
987 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
988 unsigned int num_prot_blocks, num_sectors;
989 uint16_t flash_size_in_kb;
990 uint16_t otp_size_in_b;
991 uint16_t otp_sector_size;
992 uint32_t flash_size_reg = 0x1FFF7A22;
993 uint16_t max_sector_size_in_kb = 128;
994 uint16_t max_flash_size_in_kb;
995 uint32_t device_id;
996 uint32_t base_address = 0x08000000;
997
998 stm32x_info->probed = false;
999 stm32x_info->has_large_mem = false;
1000 stm32x_info->has_boot_addr = false;
1001 stm32x_info->has_extra_options = false;
1002 stm32x_info->has_optcr2_pcrop = false;
1003 stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1004 num_prot_blocks = 0;
1005
1006 free(bank->sectors);
1007 bank->num_sectors = 0;
1008 bank->sectors = NULL;
1009
1010 free(bank->prot_blocks);
1011 bank->num_prot_blocks = 0;
1012 bank->prot_blocks = NULL;
1013
1014 /* if explicitly called out as OTP bank, short circuit probe */
1015 if (stm32x_is_otp(bank)) {
1016 if (stm32x_otp_is_f7(bank)) {
1017 otp_size_in_b = STM32F7_OTP_SIZE;
1018 otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1019 } else {
1020 otp_size_in_b = STM32F2_OTP_SIZE;
1021 otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1022 }
1023
1024 num_sectors = otp_size_in_b / otp_sector_size;
1025 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1026
1027 assert(num_sectors > 0);
1028
1029 bank->num_sectors = num_sectors;
1030 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1031
1032 if (stm32x_otp_is_f7(bank))
1033 bank->size = STM32F7_OTP_SIZE;
1034 else
1035 bank->size = STM32F2_OTP_SIZE;
1036
1037 for (unsigned int i = 0; i < num_sectors; i++) {
1038 bank->sectors[i].offset = i * otp_sector_size;
1039 bank->sectors[i].size = otp_sector_size;
1040 bank->sectors[i].is_erased = 1;
1041 bank->sectors[i].is_protected = 0;
1042 }
1043
1044 stm32x_info->probed = true;
1045 return ERROR_OK;
1046 }
1047
1048 /* read stm32 device id register */
1049 int retval = stm32x_get_device_id(bank, &device_id);
1050 if (retval != ERROR_OK)
1051 return retval;
1052 LOG_INFO("device id = 0x%08" PRIx32, device_id);
1053 device_id &= 0xfff; /* only bits 0-11 are used further on */
1054
1055 /* set max flash size depending on family, id taken from AN2606 */
1056 switch (device_id) {
1057 case 0x411: /* F20x/21x */
1058 case 0x413: /* F40x/41x */
1059 max_flash_size_in_kb = 1024;
1060 break;
1061
1062 case 0x419: /* F42x/43x */
1063 case 0x434: /* F469/479 */
1064 stm32x_info->has_extra_options = true;
1065 max_flash_size_in_kb = 2048;
1066 break;
1067
1068 case 0x423: /* F401xB/C */
1069 max_flash_size_in_kb = 256;
1070 break;
1071
1072 case 0x421: /* F446 */
1073 case 0x431: /* F411 */
1074 case 0x433: /* F401xD/E */
1075 case 0x441: /* F412 */
1076 max_flash_size_in_kb = 512;
1077 break;
1078
1079 case 0x458: /* F410 */
1080 max_flash_size_in_kb = 128;
1081 break;
1082
1083 case 0x449: /* F74x/75x */
1084 max_flash_size_in_kb = 1024;
1085 max_sector_size_in_kb = 256;
1086 flash_size_reg = 0x1FF0F442;
1087 stm32x_info->has_extra_options = true;
1088 stm32x_info->has_boot_addr = true;
1089 break;
1090
1091 case 0x451: /* F76x/77x */
1092 max_flash_size_in_kb = 2048;
1093 max_sector_size_in_kb = 256;
1094 flash_size_reg = 0x1FF0F442;
1095 stm32x_info->has_extra_options = true;
1096 stm32x_info->has_boot_addr = true;
1097 break;
1098
1099 case 0x452: /* F72x/73x */
1100 max_flash_size_in_kb = 512;
1101 flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1102 stm32x_info->has_extra_options = true;
1103 stm32x_info->has_boot_addr = true;
1104 stm32x_info->has_optcr2_pcrop = true;
1105 break;
1106
1107 case 0x463: /* F413x/423x */
1108 max_flash_size_in_kb = 1536;
1109 stm32x_info->has_extra_options = true;
1110 stm32x_info->protection_bits = 15;
1111 num_prot_blocks = 15;
1112 break;
1113
1114 default:
1115 LOG_WARNING("Cannot identify target as a STM32 family.");
1116 return ERROR_FAIL;
1117 }
1118
1119 /* get flash size from target. */
1120 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1121
1122 /* failed reading flash size or flash size invalid (early silicon),
1123 * default to max target family */
1124 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1125 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1126 max_flash_size_in_kb);
1127 flash_size_in_kb = max_flash_size_in_kb;
1128 }
1129
1130 /* if the user sets the size manually then ignore the probed value
1131 * this allows us to work around devices that have a invalid flash size register value */
1132 if (stm32x_info->user_bank_size) {
1133 LOG_INFO("ignoring flash probed value, using configured bank size");
1134 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1135 }
1136
1137 LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
1138
1139 /* did we assign flash size? */
1140 assert(flash_size_in_kb != 0xffff);
1141
1142 /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1143 if ((device_id == 0x419) || (device_id == 0x434)) {
1144 uint32_t optiondata;
1145 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1146 if (retval != ERROR_OK) {
1147 LOG_DEBUG("unable to read option bytes");
1148 return retval;
1149 }
1150 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1151 stm32x_info->has_large_mem = true;
1152 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1153 } else {
1154 stm32x_info->has_large_mem = false;
1155 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1156 }
1157 }
1158
1159 /* F76x/77x devices have a dual bank option */
1160 if (device_id == 0x451) {
1161 uint32_t optiondata;
1162 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1163 if (retval != ERROR_OK) {
1164 LOG_DEBUG("unable to read option bytes");
1165 return retval;
1166 }
1167 if (optiondata & OPTCR_NDBANK) {
1168 stm32x_info->has_large_mem = false;
1169 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1170 } else {
1171 stm32x_info->has_large_mem = true;
1172 max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1173 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1174 }
1175 }
1176
1177 /* calculate numbers of pages */
1178 unsigned int num_pages = calculate_number_of_sectors(
1179 bank, flash_size_in_kb, max_sector_size_in_kb);
1180
1181 bank->base = base_address;
1182 bank->num_sectors = num_pages;
1183 bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1184 for (unsigned int i = 0; i < num_pages; i++) {
1185 bank->sectors[i].is_erased = -1;
1186 bank->sectors[i].is_protected = 0;
1187 }
1188 bank->size = 0;
1189 LOG_DEBUG("allocated %u sectors", num_pages);
1190
1191 /* F76x/77x in dual bank mode */
1192 if ((device_id == 0x451) && stm32x_info->has_large_mem)
1193 num_prot_blocks = num_pages >> 1;
1194
1195 if (num_prot_blocks) {
1196 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1197 for (unsigned int i = 0; i < num_prot_blocks; i++)
1198 bank->prot_blocks[i].is_protected = 0;
1199 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1200 }
1201
1202 if (stm32x_info->has_large_mem) {
1203 /* dual-bank */
1204 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1205 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1206 max_sector_size_in_kb);
1207
1208 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1209 if (device_id == 0x451) {
1210 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1211 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1212 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1213 + bank->sectors[(i << 1) + 1].size;
1214 }
1215 }
1216 } else {
1217 /* single-bank */
1218 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1219
1220 /* F413/F423, sectors 14 and 15 share one common protection bit */
1221 if (device_id == 0x463) {
1222 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1223 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1224 bank->prot_blocks[i].size = bank->sectors[i].size;
1225 }
1226 bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1227 }
1228 }
1229 bank->num_prot_blocks = num_prot_blocks;
1230 assert((bank->size >> 10) == flash_size_in_kb);
1231
1232 stm32x_info->probed = true;
1233 return ERROR_OK;
1234 }
1235
1236 static int stm32x_auto_probe(struct flash_bank *bank)
1237 {
1238 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1239 if (stm32x_info->probed)
1240 return ERROR_OK;
1241 return stm32x_probe(bank);
1242 }
1243
1244 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1245 {
1246 uint32_t dbgmcu_idcode;
1247
1248 /* read stm32 device id register */
1249 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1250 if (retval != ERROR_OK)
1251 return retval;
1252
1253 uint16_t device_id = dbgmcu_idcode & 0xfff;
1254 uint16_t rev_id = dbgmcu_idcode >> 16;
1255 const char *device_str;
1256 const char *rev_str = NULL;
1257
1258 switch (device_id) {
1259 case 0x411:
1260 device_str = "STM32F2xx";
1261
1262 switch (rev_id) {
1263 case 0x1000:
1264 rev_str = "A";
1265 break;
1266
1267 case 0x2000:
1268 rev_str = "B";
1269 break;
1270
1271 case 0x1001:
1272 rev_str = "Z";
1273 break;
1274
1275 case 0x2001:
1276 rev_str = "Y";
1277 break;
1278
1279 case 0x2003:
1280 rev_str = "X";
1281 break;
1282
1283 case 0x2007:
1284 rev_str = "1";
1285 break;
1286
1287 case 0x200F:
1288 rev_str = "V";
1289 break;
1290
1291 case 0x201F:
1292 rev_str = "2";
1293 break;
1294 }
1295 break;
1296
1297 case 0x413:
1298 case 0x419:
1299 case 0x434:
1300 device_str = "STM32F4xx";
1301
1302 switch (rev_id) {
1303 case 0x1000:
1304 rev_str = "A";
1305 break;
1306
1307 case 0x1001:
1308 rev_str = "Z";
1309 break;
1310
1311 case 0x1003:
1312 rev_str = "Y";
1313 break;
1314
1315 case 0x1007:
1316 rev_str = "1";
1317 break;
1318
1319 case 0x2001:
1320 rev_str = "3";
1321 break;
1322 }
1323 break;
1324
1325 case 0x421:
1326 device_str = "STM32F446";
1327
1328 switch (rev_id) {
1329 case 0x1000:
1330 rev_str = "A";
1331 break;
1332 }
1333 break;
1334
1335 case 0x423:
1336 case 0x431:
1337 case 0x433:
1338 case 0x458:
1339 case 0x441:
1340 device_str = "STM32F4xx (Low Power)";
1341
1342 switch (rev_id) {
1343 case 0x1000:
1344 rev_str = "A";
1345 break;
1346
1347 case 0x1001:
1348 rev_str = "Z";
1349 break;
1350
1351 case 0x2000:
1352 rev_str = "B";
1353 break;
1354
1355 case 0x3000:
1356 rev_str = "C";
1357 break;
1358 }
1359 break;
1360
1361 case 0x449:
1362 device_str = "STM32F7[4|5]x";
1363
1364 switch (rev_id) {
1365 case 0x1000:
1366 rev_str = "A";
1367 break;
1368
1369 case 0x1001:
1370 rev_str = "Z";
1371 break;
1372 }
1373 break;
1374
1375 case 0x451:
1376 device_str = "STM32F7[6|7]x";
1377
1378 switch (rev_id) {
1379 case 0x1000:
1380 rev_str = "A";
1381 break;
1382 case 0x1001:
1383 rev_str = "Z";
1384 break;
1385 }
1386 break;
1387
1388 case 0x452:
1389 device_str = "STM32F7[2|3]x";
1390
1391 switch (rev_id) {
1392 case 0x1000:
1393 rev_str = "A";
1394 break;
1395 }
1396 break;
1397
1398 case 0x463:
1399 device_str = "STM32F4[1|2]3";
1400
1401 switch (rev_id) {
1402 case 0x1000:
1403 rev_str = "A";
1404 break;
1405 }
1406 break;
1407
1408 default:
1409 command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
1410 return ERROR_FAIL;
1411 }
1412
1413 if (rev_str)
1414 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1415 else
1416 command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1417
1418 return ERROR_OK;
1419 }
1420
1421 COMMAND_HANDLER(stm32x_handle_lock_command)
1422 {
1423 struct target *target = NULL;
1424 struct stm32x_flash_bank *stm32x_info = NULL;
1425
1426 if (CMD_ARGC < 1)
1427 return ERROR_COMMAND_SYNTAX_ERROR;
1428
1429 struct flash_bank *bank;
1430 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1431 if (retval != ERROR_OK)
1432 return retval;
1433
1434 stm32x_info = bank->driver_priv;
1435 target = bank->target;
1436
1437 if (target->state != TARGET_HALTED) {
1438 LOG_INFO("Target not halted");
1439 /* return ERROR_TARGET_NOT_HALTED; */
1440 }
1441
1442 if (stm32x_read_options(bank) != ERROR_OK) {
1443 command_print(CMD, "%s failed to read options", bank->driver->name);
1444 return ERROR_OK;
1445 }
1446
1447 /* set readout protection */
1448 stm32x_info->option_bytes.RDP = 0;
1449
1450 if (stm32x_write_options(bank) != ERROR_OK) {
1451 command_print(CMD, "%s failed to lock device", bank->driver->name);
1452 return ERROR_OK;
1453 }
1454
1455 command_print(CMD, "%s locked", bank->driver->name);
1456
1457 return ERROR_OK;
1458 }
1459
1460 COMMAND_HANDLER(stm32x_handle_unlock_command)
1461 {
1462 struct target *target = NULL;
1463 struct stm32x_flash_bank *stm32x_info = NULL;
1464
1465 if (CMD_ARGC < 1)
1466 return ERROR_COMMAND_SYNTAX_ERROR;
1467
1468 struct flash_bank *bank;
1469 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1470 if (retval != ERROR_OK)
1471 return retval;
1472
1473 stm32x_info = bank->driver_priv;
1474 target = bank->target;
1475
1476 if (target->state != TARGET_HALTED) {
1477 LOG_INFO("Target not halted");
1478 /* return ERROR_TARGET_NOT_HALTED; */
1479 }
1480
1481 if (stm32x_read_options(bank) != ERROR_OK) {
1482 command_print(CMD, "%s failed to read options", bank->driver->name);
1483 return ERROR_OK;
1484 }
1485
1486 /* clear readout protection and complementary option bytes
1487 * this will also force a device unlock if set */
1488 stm32x_info->option_bytes.RDP = 0xAA;
1489 if (stm32x_info->has_optcr2_pcrop) {
1490 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1491 }
1492
1493 if (stm32x_write_options(bank) != ERROR_OK) {
1494 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1495 return ERROR_OK;
1496 }
1497
1498 command_print(CMD, "%s unlocked.\n"
1499 "INFO: a reset or power cycle is required "
1500 "for the new settings to take effect.", bank->driver->name);
1501
1502 return ERROR_OK;
1503 }
1504
1505 static int stm32x_mass_erase(struct flash_bank *bank)
1506 {
1507 int retval;
1508 uint32_t flash_mer;
1509 struct target *target = bank->target;
1510 struct stm32x_flash_bank *stm32x_info = NULL;
1511
1512 if (target->state != TARGET_HALTED) {
1513 LOG_ERROR("Target not halted");
1514 return ERROR_TARGET_NOT_HALTED;
1515 }
1516
1517 stm32x_info = bank->driver_priv;
1518
1519 retval = stm32x_unlock_reg(target);
1520 if (retval != ERROR_OK)
1521 return retval;
1522
1523 /* mass erase flash memory */
1524 if (stm32x_info->has_large_mem)
1525 flash_mer = FLASH_MER | FLASH_MER1;
1526 else
1527 flash_mer = FLASH_MER;
1528
1529 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1530 if (retval != ERROR_OK)
1531 return retval;
1532 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1533 flash_mer | FLASH_STRT);
1534 if (retval != ERROR_OK)
1535 return retval;
1536
1537 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1538 if (retval != ERROR_OK)
1539 return retval;
1540
1541 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1542 if (retval != ERROR_OK)
1543 return retval;
1544
1545 return ERROR_OK;
1546 }
1547
1548 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1549 {
1550 if (CMD_ARGC < 1) {
1551 command_print(CMD, "stm32x mass_erase <bank>");
1552 return ERROR_COMMAND_SYNTAX_ERROR;
1553 }
1554
1555 struct flash_bank *bank;
1556 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1557 if (retval != ERROR_OK)
1558 return retval;
1559
1560 retval = stm32x_mass_erase(bank);
1561 if (retval == ERROR_OK) {
1562 command_print(CMD, "stm32x mass erase complete");
1563 } else {
1564 command_print(CMD, "stm32x mass erase failed");
1565 }
1566
1567 return retval;
1568 }
1569
1570 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1571 {
1572 int retval;
1573 struct flash_bank *bank;
1574 struct stm32x_flash_bank *stm32x_info = NULL;
1575
1576 if (CMD_ARGC != 1) {
1577 command_print(CMD, "stm32f2x options_read <bank>");
1578 return ERROR_COMMAND_SYNTAX_ERROR;
1579 }
1580
1581 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1582 if (retval != ERROR_OK)
1583 return retval;
1584
1585 retval = stm32x_read_options(bank);
1586 if (retval != ERROR_OK)
1587 return retval;
1588
1589 stm32x_info = bank->driver_priv;
1590 if (stm32x_info->has_extra_options) {
1591 if (stm32x_info->has_boot_addr) {
1592 uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1593
1594 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1595 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1596 stm32x_info->option_bytes.user_options,
1597 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1598 if (stm32x_info->has_optcr2_pcrop) {
1599 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1600 stm32x_info->option_bytes.optcr2_pcrop);
1601 }
1602 } else {
1603 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1604 stm32x_info->option_bytes.user_options);
1605 }
1606 } else {
1607 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1608 stm32x_info->option_bytes.user_options);
1609
1610 }
1611
1612 return retval;
1613 }
1614
1615 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1616 {
1617 int retval;
1618 struct flash_bank *bank;
1619 struct stm32x_flash_bank *stm32x_info = NULL;
1620 uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1621
1622 if (CMD_ARGC < 1) {
1623 command_print(CMD, "stm32f2x options_write <bank> ...");
1624 return ERROR_COMMAND_SYNTAX_ERROR;
1625 }
1626
1627 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1628 if (retval != ERROR_OK)
1629 return retval;
1630
1631 retval = stm32x_read_options(bank);
1632 if (retval != ERROR_OK)
1633 return retval;
1634
1635 stm32x_info = bank->driver_priv;
1636 if (stm32x_info->has_boot_addr) {
1637 if (CMD_ARGC != 4) {
1638 command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1639 " <boot_addr0> <boot_addr1>");
1640 return ERROR_COMMAND_SYNTAX_ERROR;
1641 }
1642 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1643 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1644 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1645 } else {
1646 if (CMD_ARGC != 2) {
1647 command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1648 return ERROR_COMMAND_SYNTAX_ERROR;
1649 }
1650 }
1651
1652 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1653 options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1654 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1655 if (user_options & options_mask) {
1656 command_print(CMD, "stm32f2x invalid user_options");
1657 return ERROR_COMMAND_ARGUMENT_INVALID;
1658 }
1659
1660 stm32x_info->option_bytes.user_options = user_options;
1661
1662 if (stm32x_write_options(bank) != ERROR_OK) {
1663 command_print(CMD, "stm32f2x failed to write options");
1664 return ERROR_OK;
1665 }
1666
1667 /* switching between single- and dual-bank modes requires re-probe */
1668 /* ... and reprogramming of whole flash */
1669 stm32x_info->probed = false;
1670
1671 command_print(CMD, "stm32f2x write options complete.\n"
1672 "INFO: a reset or power cycle is required "
1673 "for the new settings to take effect.");
1674 return retval;
1675 }
1676
1677 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1678 {
1679 int retval;
1680 struct flash_bank *bank;
1681 struct stm32x_flash_bank *stm32x_info = NULL;
1682 uint32_t optcr2_pcrop;
1683
1684 if (CMD_ARGC != 2) {
1685 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1686 return ERROR_COMMAND_SYNTAX_ERROR;
1687 }
1688
1689 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1690 if (retval != ERROR_OK)
1691 return retval;
1692
1693 stm32x_info = bank->driver_priv;
1694 if (!stm32x_info->has_optcr2_pcrop) {
1695 command_print(CMD, "no optcr2 register");
1696 return ERROR_COMMAND_ARGUMENT_INVALID;
1697 }
1698
1699 command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1700 " with PCROPi bits STILL SET, then\nlock device and"
1701 " finally unlock it. Clears PCROP and mass erases flash.");
1702
1703 retval = stm32x_read_options(bank);
1704 if (retval != ERROR_OK)
1705 return retval;
1706
1707 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1708 stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1709
1710 if (stm32x_write_options(bank) != ERROR_OK) {
1711 command_print(CMD, "stm32f2x failed to write options");
1712 return ERROR_OK;
1713 }
1714
1715 command_print(CMD, "stm32f2x optcr2_write complete.");
1716 return retval;
1717 }
1718
1719 COMMAND_HANDLER(stm32x_handle_otp_command)
1720 {
1721 if (CMD_ARGC < 2) {
1722 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1723 return ERROR_COMMAND_SYNTAX_ERROR;
1724 }
1725
1726 struct flash_bank *bank;
1727 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1728 if (retval != ERROR_OK)
1729 return retval;
1730 if (stm32x_is_otp(bank)) {
1731 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1732 stm32x_otp_enable(bank);
1733 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1734 stm32x_otp_disable(bank);
1735 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1736 command_print(CMD,
1737 "OTP memory bank #%u is %s for write commands.",
1738 bank->bank_number,
1739 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1740 } else {
1741 return ERROR_COMMAND_SYNTAX_ERROR;
1742 }
1743 } else {
1744 command_print(CMD, "Failed: not an OTP bank.");
1745 }
1746
1747 return retval;
1748 }
1749
1750 static const struct command_registration stm32f2x_exec_command_handlers[] = {
1751 {
1752 .name = "lock",
1753 .handler = stm32x_handle_lock_command,
1754 .mode = COMMAND_EXEC,
1755 .usage = "bank_id",
1756 .help = "Lock entire flash device.",
1757 },
1758 {
1759 .name = "unlock",
1760 .handler = stm32x_handle_unlock_command,
1761 .mode = COMMAND_EXEC,
1762 .usage = "bank_id",
1763 .help = "Unlock entire protected flash device.",
1764 },
1765 {
1766 .name = "mass_erase",
1767 .handler = stm32x_handle_mass_erase_command,
1768 .mode = COMMAND_EXEC,
1769 .usage = "bank_id",
1770 .help = "Erase entire flash device.",
1771 },
1772 {
1773 .name = "options_read",
1774 .handler = stm32f2x_handle_options_read_command,
1775 .mode = COMMAND_EXEC,
1776 .usage = "bank_id",
1777 .help = "Read and display device option bytes.",
1778 },
1779 {
1780 .name = "options_write",
1781 .handler = stm32f2x_handle_options_write_command,
1782 .mode = COMMAND_EXEC,
1783 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1784 .help = "Write option bytes",
1785 },
1786 {
1787 .name = "optcr2_write",
1788 .handler = stm32f2x_handle_optcr2_write_command,
1789 .mode = COMMAND_EXEC,
1790 .usage = "bank_id optcr2",
1791 .help = "Write optcr2 word",
1792 },
1793 {
1794 .name = "otp",
1795 .handler = stm32x_handle_otp_command,
1796 .mode = COMMAND_EXEC,
1797 .usage = "bank_id",
1798 .help = "OTP (One Time Programmable) memory write enable/disable.",
1799 },
1800 COMMAND_REGISTRATION_DONE
1801 };
1802
1803 static const struct command_registration stm32f2x_command_handlers[] = {
1804 {
1805 .name = "stm32f2x",
1806 .mode = COMMAND_ANY,
1807 .help = "stm32f2x flash command group",
1808 .usage = "",
1809 .chain = stm32f2x_exec_command_handlers,
1810 },
1811 COMMAND_REGISTRATION_DONE
1812 };
1813
1814 const struct flash_driver stm32f2x_flash = {
1815 .name = "stm32f2x",
1816 .commands = stm32f2x_command_handlers,
1817 .flash_bank_command = stm32x_flash_bank_command,
1818 .erase = stm32x_erase,
1819 .protect = stm32x_protect,
1820 .write = stm32x_write,
1821 .read = default_flash_read,
1822 .probe = stm32x_probe,
1823 .auto_probe = stm32x_auto_probe,
1824 .erase_check = default_flash_blank_check,
1825 .protect_check = stm32x_protect_check,
1826 .info = get_stm32x_info,
1827 .free_driver_priv = default_flash_free_driver_priv,
1828 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)