stm32f2x.c: Add STM32F74x handling.
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* Regarding performance:
37 *
38 * Short story - it might be best to leave the performance at
39 * current levels.
40 *
41 * You may see a jump in speed if you change to using
42 * 32bit words for the block programming.
43 *
44 * Its a shame you cannot use the double word as its
45 * even faster - but you require external VPP for that mode.
46 *
47 * Having said all that 16bit writes give us the widest vdd
48 * operating range, so may be worth adding a note to that effect.
49 *
50 */
51
52 /* Danger!!!! The STM32F1x and STM32F2x series actually have
53 * quite different flash controllers.
54 *
55 * What's more scary is that the names of the registers and their
56 * addresses are the same, but the actual bits and what they do are
57 * can be very different.
58 *
59 * To reduce testing complexity and dangers of regressions,
60 * a seperate file is used for stm32fx2x.
61 *
62 * Sector sizes in kiBytes:
63 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
64 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
65 * 1 MiByte STM32F42x/43x part with DB1M Option set:
66 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
67 *
68 * STM32F7
69 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
70 *
71 * Protection size is sector size.
72 *
73 * Tested with STM3220F-EVAL board.
74 *
75 * STM32F4xx series for reference.
76 *
77 * RM0090
78 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
79 *
80 * PM0059
81 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
82 * PROGRAMMING_MANUAL/CD00233952.pdf
83 *
84 * STM32F7xx series for reference.
85 *
86 * RM0385
87 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
88 *
89 * STM32F1x series - notice that this code was copy, pasted and knocked
90 * into a stm32f2x driver, so in case something has been converted or
91 * bugs haven't been fixed, here are the original manuals:
92 *
93 * RM0008 - Reference manual
94 *
95 * RM0042, the Flash programming manual for low-, medium- high-density and
96 * connectivity line STM32F10x devices
97 *
98 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
99 *
100 */
101
102 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
103 #define FLASH_ERASE_TIMEOUT 10000
104 #define FLASH_WRITE_TIMEOUT 5
105
106 #define STM32_FLASH_BASE 0x40023c00
107 #define STM32_FLASH_ACR 0x40023c00
108 #define STM32_FLASH_KEYR 0x40023c04
109 #define STM32_FLASH_OPTKEYR 0x40023c08
110 #define STM32_FLASH_SR 0x40023c0C
111 #define STM32_FLASH_CR 0x40023c10
112 #define STM32_FLASH_OPTCR 0x40023c14
113 #define STM32_FLASH_OPTCR1 0x40023c18
114
115 /* FLASH_CR register bits */
116
117 #define FLASH_PG (1 << 0)
118 #define FLASH_SER (1 << 1)
119 #define FLASH_MER (1 << 2)
120 #define FLASH_MER1 (1 << 15)
121 #define FLASH_STRT (1 << 16)
122 #define FLASH_PSIZE_8 (0 << 8)
123 #define FLASH_PSIZE_16 (1 << 8)
124 #define FLASH_PSIZE_32 (2 << 8)
125 #define FLASH_PSIZE_64 (3 << 8)
126 /* The sector number encoding is not straight binary for dual bank flash.
127 * Warning: evaluates the argument multiple times */
128 #define FLASH_SNB(a) ((((a) >= 12) ? 0x10 | ((a) - 12) : (a)) << 3)
129 #define FLASH_LOCK (1 << 31)
130
131 /* FLASH_SR register bits */
132
133 #define FLASH_BSY (1 << 16)
134 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
135 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
136 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
137 #define FLASH_WRPERR (1 << 4) /* Write protection error */
138 #define FLASH_OPERR (1 << 1) /* Operation error */
139
140 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
141
142 /* STM32_FLASH_OPTCR register bits */
143
144 #define OPT_LOCK (1 << 0)
145 #define OPT_START (1 << 1)
146
147 /* STM32_FLASH_OBR bit definitions (reading) */
148
149 #define OPT_ERROR 0
150 #define OPT_READOUT 1
151 #define OPT_RDWDGSW 2
152 #define OPT_RDRSTSTOP 3
153 #define OPT_RDRSTSTDBY 4
154 #define OPT_BFB2 5 /* dual flash bank only */
155 #define OPT_DB1M 14 /* 1 MiB devices dual flash bank option */
156
157 /* register unlock keys */
158
159 #define KEY1 0x45670123
160 #define KEY2 0xCDEF89AB
161
162 /* option register unlock key */
163 #define OPTKEY1 0x08192A3B
164 #define OPTKEY2 0x4C5D6E7F
165
166 struct stm32x_options {
167 uint8_t RDP;
168 uint8_t user_options;
169 uint32_t protection;
170 };
171
172 struct stm32x_flash_bank {
173 struct stm32x_options option_bytes;
174 int probed;
175 bool has_large_mem; /* stm32f42x/stm32f43x family */
176 uint32_t user_bank_size;
177 };
178
179 /* flash bank stm32x <base> <size> 0 0 <target#>
180 */
181 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
182 {
183 struct stm32x_flash_bank *stm32x_info;
184
185 if (CMD_ARGC < 6)
186 return ERROR_COMMAND_SYNTAX_ERROR;
187
188 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
189 bank->driver_priv = stm32x_info;
190
191 stm32x_info->probed = 0;
192 stm32x_info->user_bank_size = bank->size;
193
194 return ERROR_OK;
195 }
196
197 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
198 {
199 return reg;
200 }
201
202 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
203 {
204 struct target *target = bank->target;
205 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
206 }
207
208 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
209 {
210 struct target *target = bank->target;
211 uint32_t status;
212 int retval = ERROR_OK;
213
214 /* wait for busy to clear */
215 for (;;) {
216 retval = stm32x_get_flash_status(bank, &status);
217 if (retval != ERROR_OK)
218 return retval;
219 LOG_DEBUG("status: 0x%" PRIx32 "", status);
220 if ((status & FLASH_BSY) == 0)
221 break;
222 if (timeout-- <= 0) {
223 LOG_ERROR("timed out waiting for flash");
224 return ERROR_FAIL;
225 }
226 alive_sleep(1);
227 }
228
229
230 if (status & FLASH_WRPERR) {
231 LOG_ERROR("stm32x device protected");
232 retval = ERROR_FAIL;
233 }
234
235 /* Clear but report errors */
236 if (status & FLASH_ERROR) {
237 /* If this operation fails, we ignore it and report the original
238 * retval
239 */
240 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
241 status & FLASH_ERROR);
242 }
243 return retval;
244 }
245
246 static int stm32x_unlock_reg(struct target *target)
247 {
248 uint32_t ctrl;
249
250 /* first check if not already unlocked
251 * otherwise writing on STM32_FLASH_KEYR will fail
252 */
253 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
254 if (retval != ERROR_OK)
255 return retval;
256
257 if ((ctrl & FLASH_LOCK) == 0)
258 return ERROR_OK;
259
260 /* unlock flash registers */
261 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
262 if (retval != ERROR_OK)
263 return retval;
264
265 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
266 if (retval != ERROR_OK)
267 return retval;
268
269 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
270 if (retval != ERROR_OK)
271 return retval;
272
273 if (ctrl & FLASH_LOCK) {
274 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
275 return ERROR_TARGET_FAILURE;
276 }
277
278 return ERROR_OK;
279 }
280
281 static int stm32x_unlock_option_reg(struct target *target)
282 {
283 uint32_t ctrl;
284
285 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
286 if (retval != ERROR_OK)
287 return retval;
288
289 if ((ctrl & OPT_LOCK) == 0)
290 return ERROR_OK;
291
292 /* unlock option registers */
293 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
294 if (retval != ERROR_OK)
295 return retval;
296
297 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
298 if (retval != ERROR_OK)
299 return retval;
300
301 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
302 if (retval != ERROR_OK)
303 return retval;
304
305 if (ctrl & OPT_LOCK) {
306 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
307 return ERROR_TARGET_FAILURE;
308 }
309
310 return ERROR_OK;
311 }
312
313 static int stm32x_read_options(struct flash_bank *bank)
314 {
315 uint32_t optiondata;
316 struct stm32x_flash_bank *stm32x_info = NULL;
317 struct target *target = bank->target;
318
319 stm32x_info = bank->driver_priv;
320
321 /* read current option bytes */
322 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
323 if (retval != ERROR_OK)
324 return retval;
325
326 stm32x_info->option_bytes.user_options = optiondata & 0xec;
327 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
328 stm32x_info->option_bytes.protection = (optiondata >> 16) & 0xfff;
329
330 if (stm32x_info->has_large_mem) {
331
332 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
333 if (retval != ERROR_OK)
334 return retval;
335
336 /* append protection bits */
337 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
338 }
339
340 if (stm32x_info->option_bytes.RDP != 0xAA)
341 LOG_INFO("Device Security Bit Set");
342
343 return ERROR_OK;
344 }
345
346 static int stm32x_write_options(struct flash_bank *bank)
347 {
348 struct stm32x_flash_bank *stm32x_info = NULL;
349 struct target *target = bank->target;
350 uint32_t optiondata;
351
352 stm32x_info = bank->driver_priv;
353
354 int retval = stm32x_unlock_option_reg(target);
355 if (retval != ERROR_OK)
356 return retval;
357
358 /* rebuild option data */
359 optiondata = stm32x_info->option_bytes.user_options;
360 optiondata |= stm32x_info->option_bytes.RDP << 8;
361 optiondata |= (stm32x_info->option_bytes.protection & 0x0fff) << 16;
362
363 /* program options */
364 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
365 if (retval != ERROR_OK)
366 return retval;
367
368 if (stm32x_info->has_large_mem) {
369
370 uint32_t optiondata2 = 0;
371 optiondata2 |= (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
372 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
373 if (retval != ERROR_OK)
374 return retval;
375 }
376
377 /* start programming cycle */
378 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_START);
379 if (retval != ERROR_OK)
380 return retval;
381
382 /* wait for completion */
383 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
384 if (retval != ERROR_OK)
385 return retval;
386
387 /* relock registers */
388 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPT_LOCK);
389 if (retval != ERROR_OK)
390 return retval;
391
392 return ERROR_OK;
393 }
394
395 static int stm32x_protect_check(struct flash_bank *bank)
396 {
397 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
398
399 /* read write protection settings */
400 int retval = stm32x_read_options(bank);
401 if (retval != ERROR_OK) {
402 LOG_DEBUG("unable to read option bytes");
403 return retval;
404 }
405
406 for (int i = 0; i < bank->num_sectors; i++) {
407 if (stm32x_info->option_bytes.protection & (1 << i))
408 bank->sectors[i].is_protected = 0;
409 else
410 bank->sectors[i].is_protected = 1;
411 }
412
413 return ERROR_OK;
414 }
415
416 static int stm32x_erase(struct flash_bank *bank, int first, int last)
417 {
418 struct target *target = bank->target;
419 int i;
420
421 assert(first < bank->num_sectors);
422 assert(last < bank->num_sectors);
423
424 if (bank->target->state != TARGET_HALTED) {
425 LOG_ERROR("Target not halted");
426 return ERROR_TARGET_NOT_HALTED;
427 }
428
429 int retval;
430 retval = stm32x_unlock_reg(target);
431 if (retval != ERROR_OK)
432 return retval;
433
434 /*
435 Sector Erase
436 To erase a sector, follow the procedure below:
437 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
438 FLASH_SR register
439 2. Set the SER bit and select the sector
440 you wish to erase (SNB) in the FLASH_CR register
441 3. Set the STRT bit in the FLASH_CR register
442 4. Wait for the BSY bit to be cleared
443 */
444
445 for (i = first; i <= last; i++) {
446 retval = target_write_u32(target,
447 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_STRT);
448 if (retval != ERROR_OK)
449 return retval;
450
451 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
452 if (retval != ERROR_OK)
453 return retval;
454
455 bank->sectors[i].is_erased = 1;
456 }
457
458 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
459 if (retval != ERROR_OK)
460 return retval;
461
462 return ERROR_OK;
463 }
464
465 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
466 {
467 struct target *target = bank->target;
468 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
469
470 if (target->state != TARGET_HALTED) {
471 LOG_ERROR("Target not halted");
472 return ERROR_TARGET_NOT_HALTED;
473 }
474
475 /* read protection settings */
476 int retval = stm32x_read_options(bank);
477 if (retval != ERROR_OK) {
478 LOG_DEBUG("unable to read option bytes");
479 return retval;
480 }
481
482 for (int i = first; i <= last; i++) {
483
484 if (set)
485 stm32x_info->option_bytes.protection &= ~(1 << i);
486 else
487 stm32x_info->option_bytes.protection |= (1 << i);
488 }
489
490 retval = stm32x_write_options(bank);
491 if (retval != ERROR_OK)
492 return retval;
493
494 return ERROR_OK;
495 }
496
497 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
498 uint32_t offset, uint32_t count)
499 {
500 struct target *target = bank->target;
501 uint32_t buffer_size = 16384;
502 struct working_area *write_algorithm;
503 struct working_area *source;
504 uint32_t address = bank->base + offset;
505 struct reg_param reg_params[5];
506 struct armv7m_algorithm armv7m_info;
507 int retval = ERROR_OK;
508
509 /* see contrib/loaders/flash/stm32f2x.S for src */
510
511 static const uint8_t stm32x_flash_write_code[] = {
512 /* wait_fifo: */
513 0xD0, 0xF8, 0x00, 0x80, /* ldr r8, [r0, #0] */
514 0xB8, 0xF1, 0x00, 0x0F, /* cmp r8, #0 */
515 0x1A, 0xD0, /* beq exit */
516 0x47, 0x68, /* ldr r7, [r0, #4] */
517 0x47, 0x45, /* cmp r7, r8 */
518 0xF7, 0xD0, /* beq wait_fifo */
519
520 0xDF, 0xF8, 0x30, 0x60, /* ldr r6, STM32_PROG16 */
521 0x26, 0x61, /* str r6, [r4, #STM32_FLASH_CR_OFFSET] */
522 0x37, 0xF8, 0x02, 0x6B, /* ldrh r6, [r7], #0x02 */
523 0x22, 0xF8, 0x02, 0x6B, /* strh r6, [r2], #0x02 */
524 /* busy: */
525 0xE6, 0x68, /* ldr r6, [r4, #STM32_FLASH_SR_OFFSET] */
526 0x16, 0xF4, 0x80, 0x3F, /* tst r6, #0x10000 */
527 0xFB, 0xD1, /* bne busy */
528 0x16, 0xF0, 0xF0, 0x0F, /* tst r6, #0xf0 */
529 0x07, 0xD1, /* bne error */
530
531 0x8F, 0x42, /* cmp r7, r1 */
532 0x28, 0xBF, /* it cs */
533 0x00, 0xF1, 0x08, 0x07, /* addcs r7, r0, #8 */
534 0x47, 0x60, /* str r7, [r0, #4] */
535 0x01, 0x3B, /* subs r3, r3, #1 */
536 0x13, 0xB1, /* cbz r3, exit */
537 0xE1, 0xE7, /* b wait_fifo */
538 /* error: */
539 0x00, 0x21, /* movs r1, #0 */
540 0x41, 0x60, /* str r1, [r0, #4] */
541 /* exit: */
542 0x30, 0x46, /* mov r0, r6 */
543 0x00, 0xBE, /* bkpt #0x00 */
544
545 /* <STM32_PROG16>: */
546 0x01, 0x01, 0x00, 0x00, /* .word 0x00000101 */
547 };
548
549 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
550 &write_algorithm) != ERROR_OK) {
551 LOG_WARNING("no working area available, can't do block memory writes");
552 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
553 };
554
555 retval = target_write_buffer(target, write_algorithm->address,
556 sizeof(stm32x_flash_write_code),
557 stm32x_flash_write_code);
558 if (retval != ERROR_OK)
559 return retval;
560
561 /* memory buffer */
562 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
563 buffer_size /= 2;
564 if (buffer_size <= 256) {
565 /* we already allocated the writing code, but failed to get a
566 * buffer, free the algorithm */
567 target_free_working_area(target, write_algorithm);
568
569 LOG_WARNING("no large enough working area available, can't do block memory writes");
570 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
571 }
572 };
573
574 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
575 armv7m_info.core_mode = ARM_MODE_THREAD;
576
577 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
578 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
579 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
580 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
581 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
582
583 buf_set_u32(reg_params[0].value, 0, 32, source->address);
584 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
585 buf_set_u32(reg_params[2].value, 0, 32, address);
586 buf_set_u32(reg_params[3].value, 0, 32, count);
587 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
588
589 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
590 0, NULL,
591 5, reg_params,
592 source->address, source->size,
593 write_algorithm->address, 0,
594 &armv7m_info);
595
596 if (retval == ERROR_FLASH_OPERATION_FAILED) {
597 LOG_ERROR("error executing stm32x flash write algorithm");
598
599 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
600
601 if (error & FLASH_WRPERR)
602 LOG_ERROR("flash memory write protected");
603
604 if (error != 0) {
605 LOG_ERROR("flash write failed = %08" PRIx32, error);
606 /* Clear but report errors */
607 target_write_u32(target, STM32_FLASH_SR, error);
608 retval = ERROR_FAIL;
609 }
610 }
611
612 target_free_working_area(target, source);
613 target_free_working_area(target, write_algorithm);
614
615 destroy_reg_param(&reg_params[0]);
616 destroy_reg_param(&reg_params[1]);
617 destroy_reg_param(&reg_params[2]);
618 destroy_reg_param(&reg_params[3]);
619 destroy_reg_param(&reg_params[4]);
620
621 return retval;
622 }
623
624 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
625 uint32_t offset, uint32_t count)
626 {
627 struct target *target = bank->target;
628 uint32_t words_remaining = (count / 2);
629 uint32_t bytes_remaining = (count & 0x00000001);
630 uint32_t address = bank->base + offset;
631 uint32_t bytes_written = 0;
632 int retval;
633
634 if (bank->target->state != TARGET_HALTED) {
635 LOG_ERROR("Target not halted");
636 return ERROR_TARGET_NOT_HALTED;
637 }
638
639 if (offset & 0x1) {
640 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
641 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
642 }
643
644 retval = stm32x_unlock_reg(target);
645 if (retval != ERROR_OK)
646 return retval;
647
648 /* multiple half words (2-byte) to be programmed? */
649 if (words_remaining > 0) {
650 /* try using a block write */
651 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
652 if (retval != ERROR_OK) {
653 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
654 /* if block write failed (no sufficient working area),
655 * we use normal (slow) single dword accesses */
656 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
657 }
658 } else {
659 buffer += words_remaining * 2;
660 address += words_remaining * 2;
661 words_remaining = 0;
662 }
663 }
664
665 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
666 return retval;
667
668 /*
669 Standard programming
670 The Flash memory programming sequence is as follows:
671 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
672 FLASH_SR register.
673 2. Set the PG bit in the FLASH_CR register
674 3. Perform the data write operation(s) to the desired memory address (inside main
675 memory block or OTP area):
676 – – Half-word access in case of x16 parallelism
677 – Word access in case of x32 parallelism
678 –
679 4.
680 Byte access in case of x8 parallelism
681 Double word access in case of x64 parallelism
682 Wait for the BSY bit to be cleared
683 */
684 while (words_remaining > 0) {
685 uint16_t value;
686 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
687
688 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
689 FLASH_PG | FLASH_PSIZE_16);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = target_write_u16(target, address, value);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
698 if (retval != ERROR_OK)
699 return retval;
700
701 bytes_written += 2;
702 words_remaining--;
703 address += 2;
704 }
705
706 if (bytes_remaining) {
707 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
708 FLASH_PG | FLASH_PSIZE_8);
709 if (retval != ERROR_OK)
710 return retval;
711 retval = target_write_u8(target, address, buffer[bytes_written]);
712 if (retval != ERROR_OK)
713 return retval;
714
715 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
716 if (retval != ERROR_OK)
717 return retval;
718 }
719
720 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
721 }
722
723 static void setup_sector(struct flash_bank *bank, int start, int num, int size)
724 {
725 for (int i = start; i < (start + num) ; i++) {
726 assert(i < bank->num_sectors);
727 bank->sectors[i].offset = bank->size;
728 bank->sectors[i].size = size;
729 bank->size += bank->sectors[i].size;
730 }
731 }
732
733 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
734 {
735 /* this checks for a stm32f4x errata issue where a
736 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
737 * If the issue is detected target is forced to stm32f4x Rev A.
738 * Only effects Rev A silicon */
739
740 struct target *target = bank->target;
741 uint32_t cpuid;
742
743 /* read stm32 device id register */
744 int retval = target_read_u32(target, 0xE0042000, device_id);
745 if (retval != ERROR_OK)
746 return retval;
747
748 if ((*device_id & 0xfff) == 0x411) {
749 /* read CPUID reg to check core type */
750 retval = target_read_u32(target, 0xE000ED00, &cpuid);
751 if (retval != ERROR_OK)
752 return retval;
753
754 /* check for cortex_m4 */
755 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
756 *device_id &= ~((0xFFFF << 16) | 0xfff);
757 *device_id |= (0x1000 << 16) | 0x413;
758 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
759 }
760 }
761 return retval;
762 }
763
764 static int stm32x_probe(struct flash_bank *bank)
765 {
766 struct target *target = bank->target;
767 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
768 int i;
769 uint16_t flash_size_in_kb;
770 uint32_t flash_size_reg = 0x1FFF7A22;
771 uint16_t max_sector_size_in_kb = 128;
772 uint16_t max_flash_size_in_kb;
773 uint32_t device_id;
774 uint32_t base_address = 0x08000000;
775
776 stm32x_info->probed = 0;
777 stm32x_info->has_large_mem = false;
778
779 /* read stm32 device id register */
780 int retval = stm32x_get_device_id(bank, &device_id);
781 if (retval != ERROR_OK)
782 return retval;
783 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
784
785 /* set max flash size depending on family */
786 switch (device_id & 0xfff) {
787 case 0x411:
788 case 0x413:
789 max_flash_size_in_kb = 1024;
790 break;
791 case 0x419:
792 max_flash_size_in_kb = 2048;
793 break;
794 case 0x423:
795 max_flash_size_in_kb = 256;
796 break;
797 case 0x431:
798 case 0x433:
799 case 0x421:
800 max_flash_size_in_kb = 512;
801 break;
802 case 0x449:
803 max_flash_size_in_kb = 1024;
804 max_sector_size_in_kb = 256;
805 flash_size_reg = 0x1FF0F442;
806 break;
807 default:
808 LOG_WARNING("Cannot identify target as a STM32 family.");
809 return ERROR_FAIL;
810 }
811
812 /* get flash size from target. */
813 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
814
815 /* failed reading flash size or flash size invalid (early silicon),
816 * default to max target family */
817 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
818 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
819 max_flash_size_in_kb);
820 flash_size_in_kb = max_flash_size_in_kb;
821 }
822
823 /* if the user sets the size manually then ignore the probed value
824 * this allows us to work around devices that have a invalid flash size register value */
825 if (stm32x_info->user_bank_size) {
826 LOG_INFO("ignoring flash probed value, using configured bank size");
827 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
828 }
829
830 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
831
832 /* did we assign flash size? */
833 assert(flash_size_in_kb != 0xffff);
834
835 /* calculate numbers of pages */
836 int num_pages = (flash_size_in_kb / max_sector_size_in_kb) + 4;
837
838 /* Devices with > 1024 kiByte always are dual-banked */
839 if (flash_size_in_kb > 1024)
840 stm32x_info->has_large_mem = true;
841
842 /* F42x/43x 1024 kiByte devices have a dual bank option */
843 if ((device_id & 0xfff) == 0x419 && (flash_size_in_kb == 1024)) {
844 uint32_t optiondata;
845 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
846 if (retval != ERROR_OK) {
847 LOG_DEBUG("unable to read option bytes");
848 return retval;
849 }
850 if (optiondata & (1 << OPT_DB1M)) {
851 stm32x_info->has_large_mem = true;
852 LOG_INFO("Dual Bank 1024 kiB STM32F42x/43x found");
853 }
854 }
855
856 /* check for dual-banked devices */
857 if (stm32x_info->has_large_mem)
858 num_pages += 4;
859
860 /* check that calculation result makes sense */
861 assert(num_pages > 0);
862
863 if (bank->sectors) {
864 free(bank->sectors);
865 bank->sectors = NULL;
866 }
867
868 bank->base = base_address;
869 bank->num_sectors = num_pages;
870 bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
871 bank->size = 0;
872
873 /* fixed memory */
874 setup_sector(bank, 0, 4, (max_sector_size_in_kb / 8) * 1024);
875 setup_sector(bank, 4, 1, (max_sector_size_in_kb / 2) * 1024);
876
877 if (stm32x_info->has_large_mem) {
878 if (flash_size_in_kb == 1024) {
879 setup_sector(bank, 5, 3, 128 * 1024);
880 setup_sector(bank, 12, 4, 16 * 1024);
881 setup_sector(bank, 16, 1, 64 * 1024);
882 setup_sector(bank, 17, 3, 128 * 1024);
883 } else {
884 setup_sector(bank, 5, 7, 128 * 1024);
885 setup_sector(bank, 12, 4, 16 * 1024);
886 setup_sector(bank, 16, 1, 64 * 1024);
887 setup_sector(bank, 17, 7, 128 * 1024);
888 }
889 } else {
890 setup_sector(bank, 4 + 1, MIN(12, num_pages) - 5,
891 max_sector_size_in_kb * 1024);
892 }
893 for (i = 0; i < num_pages; i++) {
894 bank->sectors[i].is_erased = -1;
895 bank->sectors[i].is_protected = 0;
896 }
897
898 stm32x_info->probed = 1;
899
900 return ERROR_OK;
901 }
902
903 static int stm32x_auto_probe(struct flash_bank *bank)
904 {
905 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
906 if (stm32x_info->probed)
907 return ERROR_OK;
908 return stm32x_probe(bank);
909 }
910
911 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
912 {
913 uint32_t dbgmcu_idcode;
914
915 /* read stm32 device id register */
916 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
917 if (retval != ERROR_OK)
918 return retval;
919
920 uint16_t device_id = dbgmcu_idcode & 0xfff;
921 uint16_t rev_id = dbgmcu_idcode >> 16;
922 const char *device_str;
923 const char *rev_str = NULL;
924
925 switch (device_id) {
926 case 0x411:
927 device_str = "STM32F2xx";
928
929 switch (rev_id) {
930 case 0x1000:
931 rev_str = "A";
932 break;
933
934 case 0x2000:
935 rev_str = "B";
936 break;
937
938 case 0x1001:
939 rev_str = "Z";
940 break;
941
942 case 0x2001:
943 rev_str = "Y";
944 break;
945
946 case 0x2003:
947 rev_str = "X";
948 break;
949 }
950 break;
951
952 case 0x413:
953 case 0x419:
954 device_str = "STM32F4xx";
955
956 switch (rev_id) {
957 case 0x1000:
958 rev_str = "A";
959 break;
960
961 case 0x1001:
962 rev_str = "Z";
963 break;
964
965 case 0x1003:
966 rev_str = "Y";
967 break;
968
969 case 0x1007:
970 rev_str = "1";
971 break;
972
973 case 0x2001:
974 rev_str = "3";
975 break;
976 }
977 break;
978 case 0x421:
979 device_str = "STM32F446";
980
981 switch (rev_id) {
982 case 0x1000:
983 rev_str = "A";
984 break;
985 }
986 break;
987 case 0x423:
988 case 0x431:
989 case 0x433:
990 device_str = "STM32F4xx (Low Power)";
991
992 switch (rev_id) {
993 case 0x1000:
994 rev_str = "A";
995 break;
996
997 case 0x1001:
998 rev_str = "Z";
999 break;
1000 }
1001 break;
1002
1003 case 0x449:
1004 device_str = "STM32F7[4|5]x";
1005
1006 switch (rev_id) {
1007 case 0x1000:
1008 rev_str = "A";
1009 break;
1010
1011 case 0x1001:
1012 rev_str = "Z";
1013 break;
1014 }
1015 break;
1016
1017 default:
1018 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1019 return ERROR_FAIL;
1020 }
1021
1022 if (rev_str != NULL)
1023 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1024 else
1025 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1026
1027 return ERROR_OK;
1028 }
1029
1030 COMMAND_HANDLER(stm32x_handle_lock_command)
1031 {
1032 struct target *target = NULL;
1033 struct stm32x_flash_bank *stm32x_info = NULL;
1034
1035 if (CMD_ARGC < 1)
1036 return ERROR_COMMAND_SYNTAX_ERROR;
1037
1038 struct flash_bank *bank;
1039 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1040 if (ERROR_OK != retval)
1041 return retval;
1042
1043 stm32x_info = bank->driver_priv;
1044 target = bank->target;
1045
1046 if (target->state != TARGET_HALTED) {
1047 LOG_ERROR("Target not halted");
1048 return ERROR_TARGET_NOT_HALTED;
1049 }
1050
1051 if (stm32x_read_options(bank) != ERROR_OK) {
1052 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1053 return ERROR_OK;
1054 }
1055
1056 /* set readout protection */
1057 stm32x_info->option_bytes.RDP = 0;
1058
1059 if (stm32x_write_options(bank) != ERROR_OK) {
1060 command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
1061 return ERROR_OK;
1062 }
1063
1064 command_print(CMD_CTX, "%s locked", bank->driver->name);
1065
1066 return ERROR_OK;
1067 }
1068
1069 COMMAND_HANDLER(stm32x_handle_unlock_command)
1070 {
1071 struct target *target = NULL;
1072 struct stm32x_flash_bank *stm32x_info = NULL;
1073
1074 if (CMD_ARGC < 1)
1075 return ERROR_COMMAND_SYNTAX_ERROR;
1076
1077 struct flash_bank *bank;
1078 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1079 if (ERROR_OK != retval)
1080 return retval;
1081
1082 stm32x_info = bank->driver_priv;
1083 target = bank->target;
1084
1085 if (target->state != TARGET_HALTED) {
1086 LOG_ERROR("Target not halted");
1087 return ERROR_TARGET_NOT_HALTED;
1088 }
1089
1090 if (stm32x_read_options(bank) != ERROR_OK) {
1091 command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
1092 return ERROR_OK;
1093 }
1094
1095 /* clear readout protection and complementary option bytes
1096 * this will also force a device unlock if set */
1097 stm32x_info->option_bytes.RDP = 0xAA;
1098
1099 if (stm32x_write_options(bank) != ERROR_OK) {
1100 command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name);
1101 return ERROR_OK;
1102 }
1103
1104 command_print(CMD_CTX, "%s unlocked.\n"
1105 "INFO: a reset or power cycle is required "
1106 "for the new settings to take effect.", bank->driver->name);
1107
1108 return ERROR_OK;
1109 }
1110
1111 static int stm32x_mass_erase(struct flash_bank *bank)
1112 {
1113 int retval;
1114 struct target *target = bank->target;
1115 struct stm32x_flash_bank *stm32x_info = NULL;
1116
1117 if (target->state != TARGET_HALTED) {
1118 LOG_ERROR("Target not halted");
1119 return ERROR_TARGET_NOT_HALTED;
1120 }
1121
1122 stm32x_info = bank->driver_priv;
1123
1124 retval = stm32x_unlock_reg(target);
1125 if (retval != ERROR_OK)
1126 return retval;
1127
1128 /* mass erase flash memory */
1129 if (stm32x_info->has_large_mem)
1130 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_MER1);
1131 else
1132 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER);
1133 if (retval != ERROR_OK)
1134 return retval;
1135 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1136 FLASH_MER | FLASH_STRT);
1137 if (retval != ERROR_OK)
1138 return retval;
1139
1140 retval = stm32x_wait_status_busy(bank, 30000);
1141 if (retval != ERROR_OK)
1142 return retval;
1143
1144 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1145 if (retval != ERROR_OK)
1146 return retval;
1147
1148 return ERROR_OK;
1149 }
1150
1151 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1152 {
1153 int i;
1154
1155 if (CMD_ARGC < 1) {
1156 command_print(CMD_CTX, "stm32x mass_erase <bank>");
1157 return ERROR_COMMAND_SYNTAX_ERROR;
1158 }
1159
1160 struct flash_bank *bank;
1161 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1162 if (ERROR_OK != retval)
1163 return retval;
1164
1165 retval = stm32x_mass_erase(bank);
1166 if (retval == ERROR_OK) {
1167 /* set all sectors as erased */
1168 for (i = 0; i < bank->num_sectors; i++)
1169 bank->sectors[i].is_erased = 1;
1170
1171 command_print(CMD_CTX, "stm32x mass erase complete");
1172 } else {
1173 command_print(CMD_CTX, "stm32x mass erase failed");
1174 }
1175
1176 return retval;
1177 }
1178
1179 static const struct command_registration stm32x_exec_command_handlers[] = {
1180 {
1181 .name = "lock",
1182 .handler = stm32x_handle_lock_command,
1183 .mode = COMMAND_EXEC,
1184 .usage = "bank_id",
1185 .help = "Lock entire flash device.",
1186 },
1187 {
1188 .name = "unlock",
1189 .handler = stm32x_handle_unlock_command,
1190 .mode = COMMAND_EXEC,
1191 .usage = "bank_id",
1192 .help = "Unlock entire protected flash device.",
1193 },
1194 {
1195 .name = "mass_erase",
1196 .handler = stm32x_handle_mass_erase_command,
1197 .mode = COMMAND_EXEC,
1198 .usage = "bank_id",
1199 .help = "Erase entire flash device.",
1200 },
1201 COMMAND_REGISTRATION_DONE
1202 };
1203
1204 static const struct command_registration stm32x_command_handlers[] = {
1205 {
1206 .name = "stm32f2x",
1207 .mode = COMMAND_ANY,
1208 .help = "stm32f2x flash command group",
1209 .usage = "",
1210 .chain = stm32x_exec_command_handlers,
1211 },
1212 COMMAND_REGISTRATION_DONE
1213 };
1214
1215 struct flash_driver stm32f2x_flash = {
1216 .name = "stm32f2x",
1217 .commands = stm32x_command_handlers,
1218 .flash_bank_command = stm32x_flash_bank_command,
1219 .erase = stm32x_erase,
1220 .protect = stm32x_protect,
1221 .write = stm32x_write,
1222 .read = default_flash_read,
1223 .probe = stm32x_probe,
1224 .auto_probe = stm32x_auto_probe,
1225 .erase_check = default_flash_blank_check,
1226 .protect_check = stm32x_protect_check,
1227 .info = get_stm32x_info,
1228 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)