flash/stm32l4x: fix segmentation fault with HLA adapters and STM32WLx devices
[openocd.git] / src / flash / nor / stm32l4x.c
1 /***************************************************************************
2 * Copyright (C) 2015 by Uwe Bonnes *
3 * bon@elektron.ikp.physik.tu-darmstadt.de *
4 * *
5 * Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics *
6 * tarek.bouchkati@gmail.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "imp.h"
27 #include <helper/align.h>
28 #include <helper/binarybuffer.h>
29 #include <target/algorithm.h>
30 #include <target/cortex_m.h>
31 #include "bits.h"
32 #include "stm32l4x.h"
33
34 /* STM32L4xxx series for reference.
35 *
36 * RM0351 (STM32L4x5/STM32L4x6)
37 * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
38 *
39 * RM0394 (STM32L43x/44x/45x/46x)
40 * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
41 *
42 * RM0432 (STM32L4R/4Sxx)
43 * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
44 *
45 * STM32L476RG Datasheet (for erase timing)
46 * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
47 *
48 * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
49 * an option byte is available to map all sectors to the first bank.
50 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
51 * handlers do!
52 *
53 * RM0394 devices have a single bank only.
54 *
55 * RM0432 devices have single and dual bank operating modes.
56 * - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
57 * - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
58 * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
59 *
60 * Bank mode is controlled by two different bits in option bytes register.
61 * - for STM32L4R/Sxx
62 * In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
63 * In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
64 * - for STM32L4P5/Q5x
65 * In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
66 * In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
67 */
68
69 /* STM32WBxxx series for reference.
70 *
71 * RM0434 (STM32WB55/WB35x)
72 * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
73 *
74 * RM0471 (STM32WB50/WB30x)
75 * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
76 *
77 * RM0473 (STM32WB15x)
78 * http://www.st.com/resource/en/reference_manual/dm00649196.pdf
79 *
80 * RM0478 (STM32WB10x)
81 * http://www.st.com/resource/en/reference_manual/dm00689203.pdf
82 */
83
84 /* STM32WLxxx series for reference.
85 *
86 * RM0461 (STM32WLEx)
87 * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
88 *
89 * RM0453 (STM32WL5x)
90 * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
91 */
92
93 /* STM32G0xxx series for reference.
94 *
95 * RM0444 (STM32G0x1)
96 * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
97 *
98 * RM0454 (STM32G0x0)
99 * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
100 */
101
102 /* STM32G4xxx series for reference.
103 *
104 * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
105 * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
106 *
107 * Cat. 2 devices have single bank only, page size is 2kByte.
108 *
109 * Cat. 3 devices have single and dual bank operating modes,
110 * Page size is 2kByte (dual mode) or 4kByte (single mode).
111 *
112 * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
113 * Both banks are treated as a single OpenOCD bank.
114 *
115 * Cat. 4 devices have single bank only, page size is 2kByte.
116 */
117
118 /* STM32L5xxx series for reference.
119 *
120 * RM0428 (STM32L552xx/STM32L562xx)
121 * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
122 */
123
124 /* Erase time can be as high as 25ms, 10x this and assume it's toast... */
125
126 #define FLASH_ERASE_TIMEOUT 250
127 #define FLASH_WRITE_TIMEOUT 50
128
129
130 /* relevant STM32L4 flags ****************************************************/
131 #define F_NONE 0
132 /* this flag indicates if the device flash is with dual bank architecture */
133 #define F_HAS_DUAL_BANK BIT(0)
134 /* this flags is used for dual bank devices only, it indicates if the
135 * 4 WRPxx are usable if the device is configured in single-bank mode */
136 #define F_USE_ALL_WRPXX BIT(1)
137 /* this flag indicates if the device embeds a TrustZone security feature */
138 #define F_HAS_TZ BIT(2)
139 /* this flag indicates if the device has the same flash registers as STM32L5 */
140 #define F_HAS_L5_FLASH_REGS BIT(3)
141 /* this flag indicates that programming should be done in quad-word
142 * the default programming word size is double-word */
143 #define F_QUAD_WORD_PROG BIT(4)
144 /* end of STM32L4 flags ******************************************************/
145
146
147 enum stm32l4_flash_reg_index {
148 STM32_FLASH_ACR_INDEX,
149 STM32_FLASH_KEYR_INDEX,
150 STM32_FLASH_OPTKEYR_INDEX,
151 STM32_FLASH_SR_INDEX,
152 STM32_FLASH_CR_INDEX,
153 /* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
154 * so it uses the C2CR for flash operations and CR for checking locks and locking */
155 STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
156 STM32_FLASH_OPTR_INDEX,
157 STM32_FLASH_WRP1AR_INDEX,
158 STM32_FLASH_WRP1BR_INDEX,
159 STM32_FLASH_WRP2AR_INDEX,
160 STM32_FLASH_WRP2BR_INDEX,
161 STM32_FLASH_REG_INDEX_NUM,
162 };
163
164 enum stm32l4_rdp {
165 RDP_LEVEL_0 = 0xAA,
166 RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
167 RDP_LEVEL_1 = 0x00,
168 RDP_LEVEL_2 = 0xCC
169 };
170
171 static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
172 [STM32_FLASH_ACR_INDEX] = 0x000,
173 [STM32_FLASH_KEYR_INDEX] = 0x008,
174 [STM32_FLASH_OPTKEYR_INDEX] = 0x00C,
175 [STM32_FLASH_SR_INDEX] = 0x010,
176 [STM32_FLASH_CR_INDEX] = 0x014,
177 [STM32_FLASH_OPTR_INDEX] = 0x020,
178 [STM32_FLASH_WRP1AR_INDEX] = 0x02C,
179 [STM32_FLASH_WRP1BR_INDEX] = 0x030,
180 [STM32_FLASH_WRP2AR_INDEX] = 0x04C,
181 [STM32_FLASH_WRP2BR_INDEX] = 0x050,
182 };
183
184 static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
185 [STM32_FLASH_ACR_INDEX] = 0x000,
186 [STM32_FLASH_KEYR_INDEX] = 0x008,
187 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
188 [STM32_FLASH_SR_INDEX] = 0x060,
189 [STM32_FLASH_CR_INDEX] = 0x064,
190 [STM32_FLASH_CR_WLK_INDEX] = 0x014,
191 [STM32_FLASH_OPTR_INDEX] = 0x020,
192 [STM32_FLASH_WRP1AR_INDEX] = 0x02C,
193 [STM32_FLASH_WRP1BR_INDEX] = 0x030,
194 };
195
196 static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
197 [STM32_FLASH_ACR_INDEX] = 0x000,
198 [STM32_FLASH_KEYR_INDEX] = 0x008, /* NSKEYR */
199 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
200 [STM32_FLASH_SR_INDEX] = 0x020, /* NSSR */
201 [STM32_FLASH_CR_INDEX] = 0x028, /* NSCR */
202 [STM32_FLASH_OPTR_INDEX] = 0x040,
203 [STM32_FLASH_WRP1AR_INDEX] = 0x058,
204 [STM32_FLASH_WRP1BR_INDEX] = 0x05C,
205 [STM32_FLASH_WRP2AR_INDEX] = 0x068,
206 [STM32_FLASH_WRP2BR_INDEX] = 0x06C,
207 };
208
209 static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
210 [STM32_FLASH_ACR_INDEX] = 0x000,
211 [STM32_FLASH_KEYR_INDEX] = 0x00C, /* SECKEYR */
212 [STM32_FLASH_OPTKEYR_INDEX] = 0x010,
213 [STM32_FLASH_SR_INDEX] = 0x024, /* SECSR */
214 [STM32_FLASH_CR_INDEX] = 0x02C, /* SECCR */
215 [STM32_FLASH_OPTR_INDEX] = 0x040,
216 [STM32_FLASH_WRP1AR_INDEX] = 0x058,
217 [STM32_FLASH_WRP1BR_INDEX] = 0x05C,
218 [STM32_FLASH_WRP2AR_INDEX] = 0x068,
219 [STM32_FLASH_WRP2BR_INDEX] = 0x06C,
220 };
221
222 struct stm32l4_rev {
223 const uint16_t rev;
224 const char *str;
225 };
226
227 struct stm32l4_part_info {
228 uint16_t id;
229 const char *device_str;
230 const struct stm32l4_rev *revs;
231 const size_t num_revs;
232 const uint16_t max_flash_size_kb;
233 const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
234 const uint32_t flash_regs_base;
235 const uint32_t fsize_addr;
236 const uint32_t otp_base;
237 const uint32_t otp_size;
238 };
239
240 struct stm32l4_flash_bank {
241 bool probed;
242 uint32_t idcode;
243 unsigned int bank1_sectors;
244 bool dual_bank_mode;
245 int hole_sectors;
246 uint32_t user_bank_size;
247 uint32_t data_width;
248 uint32_t cr_bker_mask;
249 uint32_t sr_bsy_mask;
250 uint32_t wrpxxr_mask;
251 const struct stm32l4_part_info *part_info;
252 uint32_t flash_regs_base;
253 const uint32_t *flash_regs;
254 bool otp_enabled;
255 bool use_flashloader;
256 enum stm32l4_rdp rdp;
257 bool tzen;
258 uint32_t optr;
259 };
260
261 enum stm32_bank_id {
262 STM32_BANK1,
263 STM32_BANK2,
264 STM32_ALL_BANKS
265 };
266
267 struct stm32l4_wrp {
268 enum stm32l4_flash_reg_index reg_idx;
269 uint32_t value;
270 bool used;
271 int first;
272 int last;
273 int offset;
274 };
275
276 /* human readable list of families this drivers supports (sorted alphabetically) */
277 static const char *device_families = "STM32G0/G4/L4/L4+/L5/U5/WB/WL";
278
279 static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
280 { 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
281 };
282
283 static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
284 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
285 };
286
287 static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
288 { 0x1000, "A" },
289 };
290
291 static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
292 { 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
293 };
294
295 static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
296 { 0x1000, "A" }, { 0x2000, "B" },
297 };
298
299 static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
300 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
301 };
302
303 static const struct stm32l4_rev stm32l41_L42xx_revs[] = {
304 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
305 };
306
307 static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
308 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
309 };
310
311 static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
312 { 0x1000, "A" },
313 };
314
315 static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
316 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
317 };
318
319 static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
320 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
321 };
322
323 static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
324 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
325 };
326
327 static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
328 { 0x1001, "Z" },
329 };
330
331 static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
332 { 0x1000, "A" }, { 0x2000, "B" },
333 };
334
335 static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
336 { 0x1000, "A" },
337 };
338
339 static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
340 { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
341 };
342
343 static const struct stm32l4_rev stm32wb1xx_revs[] = {
344 { 0x1000, "A" }, { 0x2000, "B" },
345 };
346
347 static const struct stm32l4_rev stm32wb5xx_revs[] = {
348 { 0x2001, "2.1" },
349 };
350
351 static const struct stm32l4_rev stm32wb3xx_revs[] = {
352 { 0x1000, "A" },
353 };
354
355 static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
356 { 0x1000, "1.0" },
357 };
358
359 static const struct stm32l4_part_info stm32l4_parts[] = {
360 {
361 .id = DEVID_STM32L47_L48XX,
362 .revs = stm32l47_l48xx_revs,
363 .num_revs = ARRAY_SIZE(stm32l47_l48xx_revs),
364 .device_str = "STM32L47/L48xx",
365 .max_flash_size_kb = 1024,
366 .flags = F_HAS_DUAL_BANK,
367 .flash_regs_base = 0x40022000,
368 .fsize_addr = 0x1FFF75E0,
369 .otp_base = 0x1FFF7000,
370 .otp_size = 1024,
371 },
372 {
373 .id = DEVID_STM32L43_L44XX,
374 .revs = stm32l43_l44xx_revs,
375 .num_revs = ARRAY_SIZE(stm32l43_l44xx_revs),
376 .device_str = "STM32L43/L44xx",
377 .max_flash_size_kb = 256,
378 .flags = F_NONE,
379 .flash_regs_base = 0x40022000,
380 .fsize_addr = 0x1FFF75E0,
381 .otp_base = 0x1FFF7000,
382 .otp_size = 1024,
383 },
384 {
385 .id = DEVID_STM32G05_G06XX,
386 .revs = stm32g05_g06xx_revs,
387 .num_revs = ARRAY_SIZE(stm32g05_g06xx_revs),
388 .device_str = "STM32G05/G06xx",
389 .max_flash_size_kb = 64,
390 .flags = F_NONE,
391 .flash_regs_base = 0x40022000,
392 .fsize_addr = 0x1FFF75E0,
393 .otp_base = 0x1FFF7000,
394 .otp_size = 1024,
395 },
396 {
397 .id = DEVID_STM32G07_G08XX,
398 .revs = stm32_g07_g08xx_revs,
399 .num_revs = ARRAY_SIZE(stm32_g07_g08xx_revs),
400 .device_str = "STM32G07/G08xx",
401 .max_flash_size_kb = 128,
402 .flags = F_NONE,
403 .flash_regs_base = 0x40022000,
404 .fsize_addr = 0x1FFF75E0,
405 .otp_base = 0x1FFF7000,
406 .otp_size = 1024,
407 },
408 {
409 .id = DEVID_STM32L49_L4AXX,
410 .revs = stm32l49_l4axx_revs,
411 .num_revs = ARRAY_SIZE(stm32l49_l4axx_revs),
412 .device_str = "STM32L49/L4Axx",
413 .max_flash_size_kb = 1024,
414 .flags = F_HAS_DUAL_BANK,
415 .flash_regs_base = 0x40022000,
416 .fsize_addr = 0x1FFF75E0,
417 .otp_base = 0x1FFF7000,
418 .otp_size = 1024,
419 },
420 {
421 .id = DEVID_STM32L45_L46XX,
422 .revs = stm32l45_l46xx_revs,
423 .num_revs = ARRAY_SIZE(stm32l45_l46xx_revs),
424 .device_str = "STM32L45/L46xx",
425 .max_flash_size_kb = 512,
426 .flags = F_NONE,
427 .flash_regs_base = 0x40022000,
428 .fsize_addr = 0x1FFF75E0,
429 .otp_base = 0x1FFF7000,
430 .otp_size = 1024,
431 },
432 {
433 .id = DEVID_STM32L41_L42XX,
434 .revs = stm32l41_L42xx_revs,
435 .num_revs = ARRAY_SIZE(stm32l41_L42xx_revs),
436 .device_str = "STM32L41/L42xx",
437 .max_flash_size_kb = 128,
438 .flags = F_NONE,
439 .flash_regs_base = 0x40022000,
440 .fsize_addr = 0x1FFF75E0,
441 .otp_base = 0x1FFF7000,
442 .otp_size = 1024,
443 },
444 {
445 .id = DEVID_STM32G03_G04XX,
446 .revs = stm32g03_g04xx_revs,
447 .num_revs = ARRAY_SIZE(stm32g03_g04xx_revs),
448 .device_str = "STM32G03x/G04xx",
449 .max_flash_size_kb = 64,
450 .flags = F_NONE,
451 .flash_regs_base = 0x40022000,
452 .fsize_addr = 0x1FFF75E0,
453 .otp_base = 0x1FFF7000,
454 .otp_size = 1024,
455 },
456 {
457 .id = DEVID_STM32G0B_G0CXX,
458 .revs = stm32g0b_g0cxx_revs,
459 .num_revs = ARRAY_SIZE(stm32g0b_g0cxx_revs),
460 .device_str = "STM32G0B/G0Cx",
461 .max_flash_size_kb = 512,
462 .flags = F_HAS_DUAL_BANK,
463 .flash_regs_base = 0x40022000,
464 .fsize_addr = 0x1FFF75E0,
465 .otp_base = 0x1FFF7000,
466 .otp_size = 1024,
467 },
468 {
469 .id = DEVID_STM32G43_G44XX,
470 .revs = stm32g43_g44xx_revs,
471 .num_revs = ARRAY_SIZE(stm32g43_g44xx_revs),
472 .device_str = "STM32G43/G44xx",
473 .max_flash_size_kb = 128,
474 .flags = F_NONE,
475 .flash_regs_base = 0x40022000,
476 .fsize_addr = 0x1FFF75E0,
477 .otp_base = 0x1FFF7000,
478 .otp_size = 1024,
479 },
480 {
481 .id = DEVID_STM32G47_G48XX,
482 .revs = stm32g47_g48xx_revs,
483 .num_revs = ARRAY_SIZE(stm32g47_g48xx_revs),
484 .device_str = "STM32G47/G48xx",
485 .max_flash_size_kb = 512,
486 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
487 .flash_regs_base = 0x40022000,
488 .fsize_addr = 0x1FFF75E0,
489 .otp_base = 0x1FFF7000,
490 .otp_size = 1024,
491 },
492 {
493 .id = DEVID_STM32L4R_L4SXX,
494 .revs = stm32l4r_l4sxx_revs,
495 .num_revs = ARRAY_SIZE(stm32l4r_l4sxx_revs),
496 .device_str = "STM32L4R/L4Sxx",
497 .max_flash_size_kb = 2048,
498 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
499 .flash_regs_base = 0x40022000,
500 .fsize_addr = 0x1FFF75E0,
501 .otp_base = 0x1FFF7000,
502 .otp_size = 1024,
503 },
504 {
505 .id = DEVID_STM32L4P_L4QXX,
506 .revs = stm32l4p_l4qxx_revs,
507 .num_revs = ARRAY_SIZE(stm32l4p_l4qxx_revs),
508 .device_str = "STM32L4P/L4Qxx",
509 .max_flash_size_kb = 1024,
510 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
511 .flash_regs_base = 0x40022000,
512 .fsize_addr = 0x1FFF75E0,
513 .otp_base = 0x1FFF7000,
514 .otp_size = 1024,
515 },
516 {
517 .id = DEVID_STM32L55_L56XX,
518 .revs = stm32l55_l56xx_revs,
519 .num_revs = ARRAY_SIZE(stm32l55_l56xx_revs),
520 .device_str = "STM32L55/L56xx",
521 .max_flash_size_kb = 512,
522 .flags = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
523 .flash_regs_base = 0x40022000,
524 .fsize_addr = 0x0BFA05E0,
525 .otp_base = 0x0BFA0000,
526 .otp_size = 512,
527 },
528 {
529 .id = DEVID_STM32G49_G4AXX,
530 .revs = stm32g49_g4axx_revs,
531 .num_revs = ARRAY_SIZE(stm32g49_g4axx_revs),
532 .device_str = "STM32G49/G4Axx",
533 .max_flash_size_kb = 512,
534 .flags = F_NONE,
535 .flash_regs_base = 0x40022000,
536 .fsize_addr = 0x1FFF75E0,
537 .otp_base = 0x1FFF7000,
538 .otp_size = 1024,
539 },
540 {
541 .id = DEVID_STM32U57_U58XX,
542 .revs = stm32u57_u58xx_revs,
543 .num_revs = ARRAY_SIZE(stm32u57_u58xx_revs),
544 .device_str = "STM32U57/U58xx",
545 .max_flash_size_kb = 2048,
546 .flags = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
547 .flash_regs_base = 0x40022000,
548 .fsize_addr = 0x0BFA07A0,
549 .otp_base = 0x0BFA0000,
550 .otp_size = 512,
551 },
552 {
553 .id = DEVID_STM32WB1XX,
554 .revs = stm32wb1xx_revs,
555 .num_revs = ARRAY_SIZE(stm32wb1xx_revs),
556 .device_str = "STM32WB1x",
557 .max_flash_size_kb = 320,
558 .flags = F_NONE,
559 .flash_regs_base = 0x58004000,
560 .fsize_addr = 0x1FFF75E0,
561 .otp_base = 0x1FFF7000,
562 .otp_size = 1024,
563 },
564 {
565 .id = DEVID_STM32WB5XX,
566 .revs = stm32wb5xx_revs,
567 .num_revs = ARRAY_SIZE(stm32wb5xx_revs),
568 .device_str = "STM32WB5x",
569 .max_flash_size_kb = 1024,
570 .flags = F_NONE,
571 .flash_regs_base = 0x58004000,
572 .fsize_addr = 0x1FFF75E0,
573 .otp_base = 0x1FFF7000,
574 .otp_size = 1024,
575 },
576 {
577 .id = DEVID_STM32WB3XX,
578 .revs = stm32wb3xx_revs,
579 .num_revs = ARRAY_SIZE(stm32wb3xx_revs),
580 .device_str = "STM32WB3x",
581 .max_flash_size_kb = 512,
582 .flags = F_NONE,
583 .flash_regs_base = 0x58004000,
584 .fsize_addr = 0x1FFF75E0,
585 .otp_base = 0x1FFF7000,
586 .otp_size = 1024,
587 },
588 {
589 .id = DEVID_STM32WLE_WL5XX,
590 .revs = stm32wle_wl5xx_revs,
591 .num_revs = ARRAY_SIZE(stm32wle_wl5xx_revs),
592 .device_str = "STM32WLE/WL5x",
593 .max_flash_size_kb = 256,
594 .flags = F_NONE,
595 .flash_regs_base = 0x58004000,
596 .fsize_addr = 0x1FFF75E0,
597 .otp_base = 0x1FFF7000,
598 .otp_size = 1024,
599 },
600 };
601
602 /* flash bank stm32l4x <base> <size> 0 0 <target#> */
603 FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
604 {
605 struct stm32l4_flash_bank *stm32l4_info;
606
607 if (CMD_ARGC < 6)
608 return ERROR_COMMAND_SYNTAX_ERROR;
609
610 /* fix-up bank base address: 0 is used for normal flash memory */
611 if (bank->base == 0)
612 bank->base = STM32_FLASH_BANK_BASE;
613
614 stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
615 if (!stm32l4_info)
616 return ERROR_FAIL; /* Checkme: What better error to use?*/
617 bank->driver_priv = stm32l4_info;
618
619 stm32l4_info->probed = false;
620 stm32l4_info->otp_enabled = false;
621 stm32l4_info->user_bank_size = bank->size;
622 stm32l4_info->use_flashloader = true;
623
624 return ERROR_OK;
625 }
626
627 /* bitmap helper extension */
628 struct range {
629 unsigned int start;
630 unsigned int end;
631 };
632
633 static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
634 struct range *ranges, unsigned int *ranges_count) {
635 *ranges_count = 0;
636 bool last_bit = 0, cur_bit;
637 for (unsigned int i = 0; i < nbits; i++) {
638 cur_bit = test_bit(i, bitmap);
639
640 if (cur_bit && !last_bit) {
641 (*ranges_count)++;
642 ranges[*ranges_count - 1].start = i;
643 ranges[*ranges_count - 1].end = i;
644 } else if (cur_bit && last_bit) {
645 /* update (increment) the end this range */
646 ranges[*ranges_count - 1].end = i;
647 }
648
649 last_bit = cur_bit;
650 }
651 }
652
653 static inline int range_print_one(struct range *range, char *str)
654 {
655 if (range->start == range->end)
656 return sprintf(str, "[%d]", range->start);
657
658 return sprintf(str, "[%d,%d]", range->start, range->end);
659 }
660
661 static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
662 {
663 /* each range will be printed like the following: [start,end]
664 * start and end, both are unsigned int, an unsigned int takes 10 characters max
665 * plus 3 characters for '[', ',' and ']'
666 * thus means each range can take maximum 23 character
667 * after each range we add a ' ' as separator and finally we need the '\0'
668 * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
669 char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
670 char *ptr = str;
671
672 for (unsigned int i = 0; i < ranges_count; i++) {
673 ptr += range_print_one(&(ranges[i]), ptr);
674
675 if (i < ranges_count - 1)
676 *(ptr++) = ' ';
677 }
678
679 return str;
680 }
681
682 /* end of bitmap helper extension */
683
684 static inline bool stm32l4_is_otp(struct flash_bank *bank)
685 {
686 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
687 return bank->base == stm32l4_info->part_info->otp_base;
688 }
689
690 static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
691 {
692 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
693
694 if (!stm32l4_is_otp(bank))
695 return ERROR_FAIL;
696
697 char *op_str = enable ? "enabled" : "disabled";
698
699 LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
700 bank->bank_number,
701 stm32l4_info->otp_enabled == enable ? "already " : "",
702 op_str);
703
704 stm32l4_info->otp_enabled = enable;
705
706 return ERROR_OK;
707 }
708
709 static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
710 {
711 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
712 return stm32l4_info->otp_enabled;
713 }
714
715 static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
716 {
717 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
718
719 bool tzen = false;
720
721 if (stm32l4_info->part_info->flags & F_HAS_TZ)
722 tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;
723
724 uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;
725
726 /* for devices without TrustZone:
727 * RDP level 0 and 2 values are to 0xAA and 0xCC
728 * Any other value corresponds to RDP level 1
729 * for devices with TrusZone:
730 * RDP level 0 and 2 values are 0xAA and 0xCC
731 * RDP level 0.5 value is 0x55 only if TZEN = 1
732 * Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
733 */
734
735 if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
736 if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
737 rdp = RDP_LEVEL_1;
738 }
739
740 stm32l4_info->tzen = tzen;
741 stm32l4_info->rdp = rdp;
742 }
743
744 static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
745 {
746 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
747 return stm32l4_info->flash_regs_base + reg_offset;
748 }
749
750 static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
751 enum stm32l4_flash_reg_index reg_index)
752 {
753 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
754 return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
755 }
756
757 static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
758 {
759 return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
760 }
761
762 static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
763 enum stm32l4_flash_reg_index reg_index, uint32_t *value)
764 {
765 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
766 return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
767 }
768
769 static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
770 {
771 return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
772 }
773
774 static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
775 enum stm32l4_flash_reg_index reg_index, uint32_t value)
776 {
777 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
778 return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
779 }
780
781 static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
782 {
783 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
784 uint32_t status;
785 int retval = ERROR_OK;
786
787 /* wait for busy to clear */
788 for (;;) {
789 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
790 if (retval != ERROR_OK)
791 return retval;
792 LOG_DEBUG("status: 0x%" PRIx32 "", status);
793 if ((status & stm32l4_info->sr_bsy_mask) == 0)
794 break;
795 if (timeout-- <= 0) {
796 LOG_ERROR("timed out waiting for flash");
797 return ERROR_FAIL;
798 }
799 alive_sleep(1);
800 }
801
802 if (status & FLASH_WRPERR) {
803 LOG_ERROR("stm32x device protected");
804 retval = ERROR_FAIL;
805 }
806
807 /* Clear but report errors */
808 if (status & FLASH_ERROR) {
809 if (retval == ERROR_OK)
810 retval = ERROR_FAIL;
811 /* If this operation fails, we ignore it and report the original
812 * retval
813 */
814 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
815 }
816
817 return retval;
818 }
819
820 /** set all FLASH_SECBB registers to the same value */
821 static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
822 {
823 /* This function should be used only with device with TrustZone, do just a security check */
824 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
825 assert(stm32l4_info->part_info->flags & F_HAS_TZ);
826
827 /* based on RM0438 Rev6 for STM32L5x devices:
828 * to modify a page block-based security attribution, it is recommended to
829 * 1- check that no flash operation is ongoing on the related page
830 * 2- add ISB instruction after modifying the page security attribute in SECBBxRy
831 * this step is not need in case of JTAG direct access
832 */
833 int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
834 if (retval != ERROR_OK)
835 return retval;
836
837 /* write SECBBxRy registers */
838 LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);
839
840 const uint8_t secbb_regs[] = {
841 FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
842 FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4) /* bank 2 SECBB register offsets */
843 };
844
845
846 unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);
847
848 /* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
849 * then consider only the first half of secbb_regs
850 */
851 if (!stm32l4_info->dual_bank_mode)
852 num_secbb_regs /= 2;
853
854 for (unsigned int i = 0; i < num_secbb_regs; i++) {
855 retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
856 if (retval != ERROR_OK)
857 return retval;
858 }
859
860 return ERROR_OK;
861 }
862
863 static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
864 {
865 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
866 return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
867 STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
868 }
869
870 static int stm32l4_unlock_reg(struct flash_bank *bank)
871 {
872 const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
873 uint32_t ctrl;
874
875 /* first check if not already unlocked
876 * otherwise writing on STM32_FLASH_KEYR will fail
877 */
878 int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
879 if (retval != ERROR_OK)
880 return retval;
881
882 if ((ctrl & FLASH_LOCK) == 0)
883 return ERROR_OK;
884
885 /* unlock flash registers */
886 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
887 if (retval != ERROR_OK)
888 return retval;
889
890 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
891 if (retval != ERROR_OK)
892 return retval;
893
894 retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
895 if (retval != ERROR_OK)
896 return retval;
897
898 if (ctrl & FLASH_LOCK) {
899 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
900 return ERROR_TARGET_FAILURE;
901 }
902
903 return ERROR_OK;
904 }
905
906 static int stm32l4_unlock_option_reg(struct flash_bank *bank)
907 {
908 const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
909 uint32_t ctrl;
910
911 int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
912 if (retval != ERROR_OK)
913 return retval;
914
915 if ((ctrl & FLASH_OPTLOCK) == 0)
916 return ERROR_OK;
917
918 /* unlock option registers */
919 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
920 if (retval != ERROR_OK)
921 return retval;
922
923 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
924 if (retval != ERROR_OK)
925 return retval;
926
927 retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
928 if (retval != ERROR_OK)
929 return retval;
930
931 if (ctrl & FLASH_OPTLOCK) {
932 LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
933 return ERROR_TARGET_FAILURE;
934 }
935
936 return ERROR_OK;
937 }
938
939 static int stm32l4_perform_obl_launch(struct flash_bank *bank)
940 {
941 int retval, retval2;
942
943 retval = stm32l4_unlock_reg(bank);
944 if (retval != ERROR_OK)
945 goto err_lock;
946
947 retval = stm32l4_unlock_option_reg(bank);
948 if (retval != ERROR_OK)
949 goto err_lock;
950
951 /* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
952 * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
953 * "Note: If the read protection is set while the debugger is still
954 * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
955 */
956
957 /* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
958 /* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
959 * then just ignore the returned value */
960 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);
961
962 /* Need to re-probe after change */
963 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
964 stm32l4_info->probed = false;
965
966 err_lock:
967 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
968 FLASH_LOCK | FLASH_OPTLOCK);
969
970 if (retval != ERROR_OK)
971 return retval;
972
973 return retval2;
974 }
975
976 static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
977 uint32_t value, uint32_t mask)
978 {
979 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
980 uint32_t optiondata;
981 int retval, retval2;
982
983 retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
984 if (retval != ERROR_OK)
985 return retval;
986
987 /* for STM32L5 and similar devices, use always non-secure
988 * registers for option bytes programming */
989 const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
990 if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
991 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
992
993 retval = stm32l4_unlock_reg(bank);
994 if (retval != ERROR_OK)
995 goto err_lock;
996
997 retval = stm32l4_unlock_option_reg(bank);
998 if (retval != ERROR_OK)
999 goto err_lock;
1000
1001 optiondata = (optiondata & ~mask) | (value & mask);
1002
1003 retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
1004 if (retval != ERROR_OK)
1005 goto err_lock;
1006
1007 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
1008 if (retval != ERROR_OK)
1009 goto err_lock;
1010
1011 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1012
1013 err_lock:
1014 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
1015 FLASH_LOCK | FLASH_OPTLOCK);
1016 stm32l4_info->flash_regs = saved_flash_regs;
1017
1018 if (retval != ERROR_OK)
1019 return retval;
1020
1021 return retval2;
1022 }
1023
1024 static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
1025 enum stm32l4_flash_reg_index reg_idx, int offset)
1026 {
1027 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1028 int ret;
1029
1030 wrpxy->reg_idx = reg_idx;
1031 wrpxy->offset = offset;
1032
1033 ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
1034 if (ret != ERROR_OK)
1035 return ret;
1036
1037 wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1038 wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
1039 wrpxy->used = wrpxy->first <= wrpxy->last;
1040
1041 return ERROR_OK;
1042 }
1043
1044 static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
1045 struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
1046 {
1047 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1048 int ret;
1049
1050 *n_wrp = 0;
1051
1052 /* for single bank devices there is 2 WRP regions.
1053 * for dual bank devices there is 2 WRP regions per bank,
1054 * if configured as single bank only 2 WRP are usable
1055 * except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
1056 * note: this should be revised, if a device will have the SWAP banks option
1057 */
1058
1059 int wrp2y_sectors_offset = -1; /* -1 : unused */
1060
1061 /* if bank_id is BANK1 or ALL_BANKS */
1062 if (dev_bank_id != STM32_BANK2) {
1063 /* get FLASH_WRP1AR */
1064 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
1065 if (ret != ERROR_OK)
1066 return ret;
1067
1068 /* get WRP1BR */
1069 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
1070 if (ret != ERROR_OK)
1071 return ret;
1072
1073 /* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
1074 if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
1075 wrp2y_sectors_offset = 0;
1076 }
1077
1078 /* if bank_id is BANK2 or ALL_BANKS */
1079 if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
1080 wrp2y_sectors_offset = stm32l4_info->bank1_sectors;
1081
1082 if (wrp2y_sectors_offset > -1) {
1083 /* get WRP2AR */
1084 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
1085 if (ret != ERROR_OK)
1086 return ret;
1087
1088 /* get WRP2BR */
1089 ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
1090 if (ret != ERROR_OK)
1091 return ret;
1092 }
1093
1094 return ERROR_OK;
1095 }
1096
1097 static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
1098 {
1099 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1100
1101 int wrp_start = wrpxy->first - wrpxy->offset;
1102 int wrp_end = wrpxy->last - wrpxy->offset;
1103
1104 uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);
1105
1106 return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
1107 }
1108
1109 static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
1110 {
1111 int ret;
1112
1113 for (unsigned int i = 0; i < n_wrp; i++) {
1114 ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
1115 if (ret != ERROR_OK)
1116 return ret;
1117 }
1118
1119 return ERROR_OK;
1120 }
1121
1122 static int stm32l4_protect_check(struct flash_bank *bank)
1123 {
1124 unsigned int n_wrp;
1125 struct stm32l4_wrp wrpxy[4];
1126
1127 int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
1128 if (ret != ERROR_OK)
1129 return ret;
1130
1131 /* initialize all sectors as unprotected */
1132 for (unsigned int i = 0; i < bank->num_sectors; i++)
1133 bank->sectors[i].is_protected = 0;
1134
1135 /* now check WRPxy and mark the protected sectors */
1136 for (unsigned int i = 0; i < n_wrp; i++) {
1137 if (wrpxy[i].used) {
1138 for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
1139 bank->sectors[s].is_protected = 1;
1140 }
1141 }
1142
1143 return ERROR_OK;
1144 }
1145
1146 static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
1147 unsigned int last)
1148 {
1149 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1150 int retval, retval2;
1151
1152 assert((first <= last) && (last < bank->num_sectors));
1153
1154 if (stm32l4_is_otp(bank)) {
1155 LOG_ERROR("cannot erase OTP memory");
1156 return ERROR_FLASH_OPER_UNSUPPORTED;
1157 }
1158
1159 if (bank->target->state != TARGET_HALTED) {
1160 LOG_ERROR("Target not halted");
1161 return ERROR_TARGET_NOT_HALTED;
1162 }
1163
1164 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1165 /* set all FLASH pages as secure */
1166 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1167 if (retval != ERROR_OK) {
1168 /* restore all FLASH pages as non-secure */
1169 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1170 return retval;
1171 }
1172 }
1173
1174 retval = stm32l4_unlock_reg(bank);
1175 if (retval != ERROR_OK)
1176 goto err_lock;
1177
1178 /*
1179 Sector Erase
1180 To erase a sector, follow the procedure below:
1181 1. Check that no Flash memory operation is ongoing by
1182 checking the BSY bit in the FLASH_SR register
1183 2. Set the PER bit and select the page and bank
1184 you wish to erase in the FLASH_CR register
1185 3. Set the STRT bit in the FLASH_CR register
1186 4. Wait for the BSY bit to be cleared
1187 */
1188
1189 for (unsigned int i = first; i <= last; i++) {
1190 uint32_t erase_flags;
1191 erase_flags = FLASH_PER | FLASH_STRT;
1192
1193 if (i >= stm32l4_info->bank1_sectors) {
1194 uint8_t snb;
1195 snb = i - stm32l4_info->bank1_sectors;
1196 erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
1197 } else
1198 erase_flags |= i << FLASH_PAGE_SHIFT;
1199 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
1200 if (retval != ERROR_OK)
1201 break;
1202
1203 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
1204 if (retval != ERROR_OK)
1205 break;
1206 }
1207
1208 err_lock:
1209 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1210
1211 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1212 /* restore all FLASH pages as non-secure */
1213 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1214 if (retval3 != ERROR_OK)
1215 return retval3;
1216 }
1217
1218 if (retval != ERROR_OK)
1219 return retval;
1220
1221 return retval2;
1222 }
1223
1224 static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
1225 {
1226 struct target *target = bank->target;
1227 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1228 int ret = ERROR_OK;
1229 unsigned int i;
1230
1231 if (stm32l4_is_otp(bank)) {
1232 LOG_ERROR("cannot protect/unprotect OTP memory");
1233 return ERROR_FLASH_OPER_UNSUPPORTED;
1234 }
1235
1236 if (target->state != TARGET_HALTED) {
1237 LOG_ERROR("Target not halted");
1238 return ERROR_TARGET_NOT_HALTED;
1239 }
1240
1241 /* the requested sectors could be located into bank1 and/or bank2 */
1242 bool use_bank2 = false;
1243 if (last >= stm32l4_info->bank1_sectors) {
1244 if (first < stm32l4_info->bank1_sectors) {
1245 /* the requested sectors for (un)protection are shared between
1246 * bank 1 and 2, then split the operation */
1247
1248 /* 1- deal with bank 1 sectors */
1249 LOG_DEBUG("The requested sectors for %s are shared between bank 1 and 2",
1250 set ? "protection" : "unprotection");
1251 ret = stm32l4_protect(bank, set, first, stm32l4_info->bank1_sectors - 1);
1252 if (ret != ERROR_OK)
1253 return ret;
1254
1255 /* 2- then continue with bank 2 sectors */
1256 first = stm32l4_info->bank1_sectors;
1257 }
1258
1259 use_bank2 = true;
1260 }
1261
1262 /* refresh the sectors' protection */
1263 ret = stm32l4_protect_check(bank);
1264 if (ret != ERROR_OK)
1265 return ret;
1266
1267 /* check if the desired protection is already configured */
1268 for (i = first; i <= last; i++) {
1269 if (bank->sectors[i].is_protected != set)
1270 break;
1271 else if (i == last) {
1272 LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
1273 return ERROR_OK;
1274 }
1275 }
1276
1277 /* all sectors from first to last (or part of them) could have different
1278 * protection other than the requested */
1279 unsigned int n_wrp;
1280 struct stm32l4_wrp wrpxy[4];
1281
1282 ret = stm32l4_get_all_wrpxy(bank, use_bank2 ? STM32_BANK2 : STM32_BANK1, wrpxy, &n_wrp);
1283 if (ret != ERROR_OK)
1284 return ret;
1285
1286 /* use bitmap and range helpers to optimize the WRP usage */
1287 DECLARE_BITMAP(pages, bank->num_sectors);
1288 bitmap_zero(pages, bank->num_sectors);
1289
1290 for (i = 0; i < n_wrp; i++) {
1291 if (wrpxy[i].used) {
1292 for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
1293 set_bit(p, pages);
1294 }
1295 }
1296
1297 /* we have at most 'n_wrp' WRP areas
1298 * add one range if the user is trying to protect a fifth range */
1299 struct range ranges[n_wrp + 1];
1300 unsigned int ranges_count = 0;
1301
1302 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1303
1304 /* pretty-print the currently protected ranges */
1305 if (ranges_count > 0) {
1306 char *ranges_str = range_print_alloc(ranges, ranges_count);
1307 LOG_DEBUG("current protected areas: %s", ranges_str);
1308 free(ranges_str);
1309 } else
1310 LOG_DEBUG("current protected areas: none");
1311
1312 if (set) { /* flash protect */
1313 for (i = first; i <= last; i++)
1314 set_bit(i, pages);
1315 } else { /* flash unprotect */
1316 for (i = first; i <= last; i++)
1317 clear_bit(i, pages);
1318 }
1319
1320 /* check the ranges_count after the user request */
1321 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
1322
1323 /* pretty-print the requested areas for protection */
1324 if (ranges_count > 0) {
1325 char *ranges_str = range_print_alloc(ranges, ranges_count);
1326 LOG_DEBUG("requested areas for protection: %s", ranges_str);
1327 free(ranges_str);
1328 } else
1329 LOG_DEBUG("requested areas for protection: none");
1330
1331 if (ranges_count > n_wrp) {
1332 LOG_ERROR("cannot set the requested protection "
1333 "(only %u write protection areas are available)" , n_wrp);
1334 return ERROR_FAIL;
1335 }
1336
1337 /* re-init all WRPxy as disabled (first > last)*/
1338 for (i = 0; i < n_wrp; i++) {
1339 wrpxy[i].first = wrpxy[i].offset + 1;
1340 wrpxy[i].last = wrpxy[i].offset;
1341 }
1342
1343 /* then configure WRPxy areas */
1344 for (i = 0; i < ranges_count; i++) {
1345 wrpxy[i].first = ranges[i].start;
1346 wrpxy[i].last = ranges[i].end;
1347 }
1348
1349 /* finally write WRPxy registers */
1350 return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
1351 }
1352
1353 /* count is the size divided by stm32l4_info->data_width */
1354 static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
1355 uint32_t offset, uint32_t count)
1356 {
1357 struct target *target = bank->target;
1358 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1359 struct working_area *write_algorithm;
1360 struct working_area *source;
1361 uint32_t address = bank->base + offset;
1362 struct reg_param reg_params[5];
1363 struct armv7m_algorithm armv7m_info;
1364 int retval = ERROR_OK;
1365
1366 static const uint8_t stm32l4_flash_write_code[] = {
1367 #include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
1368 };
1369
1370 if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
1371 &write_algorithm) != ERROR_OK) {
1372 LOG_WARNING("no working area available, can't do block memory writes");
1373 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1374 }
1375
1376 retval = target_write_buffer(target, write_algorithm->address,
1377 sizeof(stm32l4_flash_write_code),
1378 stm32l4_flash_write_code);
1379 if (retval != ERROR_OK) {
1380 target_free_working_area(target, write_algorithm);
1381 return retval;
1382 }
1383
1384 /* data_width should be multiple of double-word */
1385 assert(stm32l4_info->data_width % 8 == 0);
1386 const size_t extra_size = sizeof(struct stm32l4_work_area);
1387 uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
1388 /* buffer_size should be multiple of stm32l4_info->data_width */
1389 buffer_size &= ~(stm32l4_info->data_width - 1);
1390
1391 if (buffer_size < 256) {
1392 LOG_WARNING("large enough working area not available, can't do block memory writes");
1393 target_free_working_area(target, write_algorithm);
1394 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1395 } else if (buffer_size > 16384) {
1396 /* probably won't benefit from more than 16k ... */
1397 buffer_size = 16384;
1398 }
1399
1400 if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
1401 LOG_ERROR("allocating working area failed");
1402 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1403 }
1404
1405 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1406 armv7m_info.core_mode = ARM_MODE_THREAD;
1407
1408 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
1409 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
1410 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
1411 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (of stm32l4_info->data_width) */
1412 init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT); /* write algo stack pointer */
1413
1414 buf_set_u32(reg_params[0].value, 0, 32, source->address);
1415 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
1416 buf_set_u32(reg_params[2].value, 0, 32, address);
1417 buf_set_u32(reg_params[3].value, 0, 32, count);
1418 buf_set_u32(reg_params[4].value, 0, 32, source->address +
1419 offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);
1420
1421 struct stm32l4_loader_params loader_extra_params;
1422
1423 target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
1424 stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
1425 target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
1426 stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
1427 target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
1428 stm32l4_info->data_width);
1429 target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
1430 stm32l4_info->sr_bsy_mask);
1431
1432 retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
1433 (uint8_t *) &loader_extra_params);
1434 if (retval != ERROR_OK)
1435 return retval;
1436
1437 retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
1438 0, NULL,
1439 ARRAY_SIZE(reg_params), reg_params,
1440 source->address + offsetof(struct stm32l4_work_area, fifo),
1441 source->size - offsetof(struct stm32l4_work_area, fifo),
1442 write_algorithm->address, 0,
1443 &armv7m_info);
1444
1445 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1446 LOG_ERROR("error executing stm32l4 flash write algorithm");
1447
1448 uint32_t error;
1449 stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
1450 error &= FLASH_ERROR;
1451
1452 if (error & FLASH_WRPERR)
1453 LOG_ERROR("flash memory write protected");
1454
1455 if (error != 0) {
1456 LOG_ERROR("flash write failed = %08" PRIx32, error);
1457 /* Clear but report errors */
1458 stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
1459 retval = ERROR_FAIL;
1460 }
1461 }
1462
1463 target_free_working_area(target, source);
1464 target_free_working_area(target, write_algorithm);
1465
1466 destroy_reg_param(&reg_params[0]);
1467 destroy_reg_param(&reg_params[1]);
1468 destroy_reg_param(&reg_params[2]);
1469 destroy_reg_param(&reg_params[3]);
1470 destroy_reg_param(&reg_params[4]);
1471
1472 return retval;
1473 }
1474
1475 /* count is the size divided by stm32l4_info->data_width */
1476 static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
1477 uint32_t offset, uint32_t count)
1478 {
1479 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1480 struct target *target = bank->target;
1481 uint32_t address = bank->base + offset;
1482 int retval = ERROR_OK;
1483
1484 /* wait for BSY bit */
1485 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1486 if (retval != ERROR_OK)
1487 return retval;
1488
1489 /* set PG in FLASH_CR */
1490 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
1491 if (retval != ERROR_OK)
1492 return retval;
1493
1494
1495 /* write directly to flash memory */
1496 const uint8_t *src = buffer;
1497 const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
1498 while (count--) {
1499 retval = target_write_memory(target, address, 4, data_width_in_words, src);
1500 if (retval != ERROR_OK)
1501 return retval;
1502
1503 /* wait for BSY bit */
1504 retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
1505 if (retval != ERROR_OK)
1506 return retval;
1507
1508 src += stm32l4_info->data_width;
1509 address += stm32l4_info->data_width;
1510 }
1511
1512 /* reset PG in FLASH_CR */
1513 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
1514 if (retval != ERROR_OK)
1515 return retval;
1516
1517 return retval;
1518 }
1519
1520 static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
1521 uint32_t offset, uint32_t count)
1522 {
1523 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1524 int retval = ERROR_OK, retval2;
1525
1526 if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
1527 LOG_ERROR("OTP memory is disabled for write commands");
1528 return ERROR_FAIL;
1529 }
1530
1531 if (bank->target->state != TARGET_HALTED) {
1532 LOG_ERROR("Target not halted");
1533 return ERROR_TARGET_NOT_HALTED;
1534 }
1535
1536 /* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
1537 assert(stm32l4_info->data_width % 8 == 0);
1538
1539 /* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
1540 * The flash infrastructure ensures it, do just a security check */
1541 assert(offset % stm32l4_info->data_width == 0);
1542 assert(count % stm32l4_info->data_width == 0);
1543
1544 /* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
1545 * data to be written does not go into a gap:
1546 * suppose buffer is fully contained in bank from sector 0 to sector
1547 * num->sectors - 1 and sectors are ordered according to offset
1548 */
1549 struct flash_sector *head = &bank->sectors[0];
1550 struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];
1551
1552 while ((head < tail) && (offset >= (head + 1)->offset)) {
1553 /* buffer does not intersect head nor gap behind head */
1554 head++;
1555 }
1556
1557 while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
1558 /* buffer does not intersect tail nor gap before tail */
1559 --tail;
1560 }
1561
1562 LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
1563 offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);
1564
1565 /* Now check that there is no gap from head to tail, this should work
1566 * even for multiple or non-symmetric gaps
1567 */
1568 while (head < tail) {
1569 if (head->offset + head->size != (head + 1)->offset) {
1570 LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
1571 bank->base + head->offset + head->size,
1572 bank->base + (head + 1)->offset - 1);
1573 retval = ERROR_FLASH_DST_OUT_OF_BANK;
1574 }
1575 head++;
1576 }
1577
1578 if (retval != ERROR_OK)
1579 return retval;
1580
1581 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1582 /* set all FLASH pages as secure */
1583 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
1584 if (retval != ERROR_OK) {
1585 /* restore all FLASH pages as non-secure */
1586 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
1587 return retval;
1588 }
1589 }
1590
1591 retval = stm32l4_unlock_reg(bank);
1592 if (retval != ERROR_OK)
1593 goto err_lock;
1594
1595 if (stm32l4_info->use_flashloader) {
1596 /* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
1597 * the debug is possible only in non-secure state.
1598 * Thus means the flashloader will run in non-secure mode,
1599 * and the workarea need to be in non-secure RAM */
1600 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
1601 LOG_INFO("RDP level is 0.5, the work-area should reside in non-secure RAM");
1602
1603 retval = stm32l4_write_block(bank, buffer, offset,
1604 count / stm32l4_info->data_width);
1605 }
1606
1607 if (!stm32l4_info->use_flashloader || retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1608 LOG_INFO("falling back to single memory accesses");
1609 retval = stm32l4_write_block_without_loader(bank, buffer, offset,
1610 count / stm32l4_info->data_width);
1611 }
1612
1613 err_lock:
1614 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
1615
1616 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1617 /* restore all FLASH pages as non-secure */
1618 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
1619 if (retval3 != ERROR_OK)
1620 return retval3;
1621 }
1622
1623 if (retval != ERROR_OK) {
1624 LOG_ERROR("block write failed");
1625 return retval;
1626 }
1627 return retval2;
1628 }
1629
1630 static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
1631 {
1632 int retval;
1633
1634 /* try reading possible IDCODE registers, in the following order */
1635 uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};
1636
1637 for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
1638 retval = target_read_u32(bank->target, dbgmcu_idcode[i], id);
1639 if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
1640 return ERROR_OK;
1641 }
1642
1643 /* Workaround for STM32WL5x devices:
1644 * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
1645 * to solve this read the UID64 (IEEE 64-bit unique device ID register) */
1646
1647 struct cortex_m_common *cortex_m = target_to_cm(bank->target);
1648
1649 /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1650 * Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
1651 if (cortex_m->core_info->partno == CORTEX_M0P_PARTNO &&
1652 cortex_m->armv7m.debug_ap && cortex_m->armv7m.debug_ap->ap_num == 1) {
1653 uint32_t uid64_ids;
1654
1655 /* UID64 is contains
1656 * - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
1657 * - Bits 31:08 : STID (company ID) = 0x0080E1
1658 * - Bits 07:00 : DEVID (device ID) = 0x15
1659 *
1660 * read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
1661 */
1662 retval = target_read_u32(bank->target, UID64_IDS, &uid64_ids);
1663 if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
1664 /* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
1665 *id = DEVID_STM32WLE_WL5XX;
1666 return ERROR_OK;
1667 }
1668 }
1669
1670 LOG_ERROR("can't get the device id");
1671 return (retval == ERROR_OK) ? ERROR_FAIL : retval;
1672 }
1673
1674 static const char *get_stm32l4_rev_str(struct flash_bank *bank)
1675 {
1676 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1677 const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
1678 assert(part_info);
1679
1680 const uint16_t rev_id = stm32l4_info->idcode >> 16;
1681 for (unsigned int i = 0; i < part_info->num_revs; i++) {
1682 if (rev_id == part_info->revs[i].rev)
1683 return part_info->revs[i].str;
1684 }
1685 return "'unknown'";
1686 }
1687
1688 static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
1689 {
1690 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1691 assert(stm32l4_info->part_info);
1692 return stm32l4_is_otp(bank) ? "OTP" :
1693 stm32l4_info->dual_bank_mode ? "Flash dual" :
1694 "Flash single";
1695 }
1696
1697 static int stm32l4_probe(struct flash_bank *bank)
1698 {
1699 struct target *target = bank->target;
1700 struct armv7m_common *armv7m = target_to_armv7m(target);
1701 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
1702 const struct stm32l4_part_info *part_info;
1703 uint16_t flash_size_kb = 0xffff;
1704
1705 stm32l4_info->probed = false;
1706
1707 /* read stm32 device id registers */
1708 int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
1709 if (retval != ERROR_OK)
1710 return retval;
1711
1712 const uint32_t device_id = stm32l4_info->idcode & 0xFFF;
1713
1714 for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
1715 if (device_id == stm32l4_parts[n].id) {
1716 stm32l4_info->part_info = &stm32l4_parts[n];
1717 break;
1718 }
1719 }
1720
1721 if (!stm32l4_info->part_info) {
1722 LOG_WARNING("Cannot identify target as an %s family device.", device_families);
1723 return ERROR_FAIL;
1724 }
1725
1726 part_info = stm32l4_info->part_info;
1727 const char *rev_str = get_stm32l4_rev_str(bank);
1728 const uint16_t rev_id = stm32l4_info->idcode >> 16;
1729
1730 LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
1731 stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);
1732
1733 stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
1734 stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
1735 stm32l4_info->cr_bker_mask = FLASH_BKER;
1736 stm32l4_info->sr_bsy_mask = FLASH_BSY;
1737
1738 /* Set flash write alignment boundaries.
1739 * Ask the flash infrastructure to ensure required alignment */
1740 bank->write_start_alignment = bank->write_end_alignment = stm32l4_info->data_width;
1741
1742 /* initialise the flash registers layout */
1743 if (part_info->flags & F_HAS_L5_FLASH_REGS)
1744 stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
1745 else
1746 stm32l4_info->flash_regs = stm32l4_flash_regs;
1747
1748 /* read flash option register */
1749 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
1750 if (retval != ERROR_OK)
1751 return retval;
1752
1753 stm32l4_sync_rdp_tzen(bank);
1754
1755 /* for devices with trustzone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
1756 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
1757 if (part_info->flags & F_HAS_L5_FLASH_REGS) {
1758 stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
1759 stm32l4_info->flash_regs = stm32l5_s_flash_regs;
1760 } else {
1761 LOG_ERROR("BUG: device supported incomplete");
1762 return ERROR_NOT_IMPLEMENTED;
1763 }
1764 }
1765
1766 if (part_info->flags & F_HAS_TZ)
1767 LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
1768 stm32l4_info->tzen,
1769 stm32l4_info->tzen ? "enabled" : "disabled");
1770
1771 LOG_INFO("RDP level %s (0x%02X)",
1772 stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
1773 stm32l4_info->rdp);
1774
1775 if (stm32l4_is_otp(bank)) {
1776 bank->size = part_info->otp_size;
1777
1778 LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);
1779
1780 /* OTP memory is considered as one sector */
1781 free(bank->sectors);
1782 bank->num_sectors = 1;
1783 bank->sectors = alloc_block_array(0, part_info->otp_size, 1);
1784
1785 if (!bank->sectors) {
1786 LOG_ERROR("failed to allocate bank sectors");
1787 return ERROR_FAIL;
1788 }
1789
1790 stm32l4_info->probed = true;
1791 return ERROR_OK;
1792 } else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
1793 LOG_ERROR("invalid bank base address");
1794 return ERROR_FAIL;
1795 }
1796
1797 /* get flash size from target. */
1798 retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);
1799
1800 /* failed reading flash size or flash size invalid (early silicon),
1801 * default to max target family */
1802 if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
1803 || flash_size_kb > part_info->max_flash_size_kb) {
1804 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1805 part_info->max_flash_size_kb);
1806 flash_size_kb = part_info->max_flash_size_kb;
1807 }
1808
1809 /* if the user sets the size manually then ignore the probed value
1810 * this allows us to work around devices that have a invalid flash size register value */
1811 if (stm32l4_info->user_bank_size) {
1812 LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
1813 flash_size_kb = stm32l4_info->user_bank_size / 1024;
1814 }
1815
1816 LOG_INFO("flash size = %dkbytes", flash_size_kb);
1817
1818 /* did we assign a flash size? */
1819 assert((flash_size_kb != 0xffff) && flash_size_kb);
1820
1821 stm32l4_info->bank1_sectors = 0;
1822 stm32l4_info->hole_sectors = 0;
1823
1824 int num_pages = 0;
1825 int page_size_kb = 0;
1826
1827 stm32l4_info->dual_bank_mode = false;
1828 bool use_dbank_bit = false;
1829
1830 switch (device_id) {
1831 case DEVID_STM32L47_L48XX:
1832 case DEVID_STM32L49_L4AXX:
1833 /* if flash size is max (1M) the device is always dual bank
1834 * STM32L47/L48xx: has variants with 512K
1835 * STM32L49/L4Axx: has variants with 512 and 256
1836 * for these variants:
1837 * if DUAL_BANK = 0 -> single bank
1838 * else -> dual bank without gap
1839 * note: the page size is invariant
1840 */
1841 page_size_kb = 2;
1842 num_pages = flash_size_kb / page_size_kb;
1843 stm32l4_info->bank1_sectors = num_pages;
1844
1845 /* check DUAL_BANK bit[21] if the flash is less than 1M */
1846 if (flash_size_kb == 1024 || (stm32l4_info->optr & BIT(21))) {
1847 stm32l4_info->dual_bank_mode = true;
1848 stm32l4_info->bank1_sectors = num_pages / 2;
1849 }
1850 break;
1851 case DEVID_STM32L43_L44XX:
1852 case DEVID_STM32G05_G06XX:
1853 case DEVID_STM32G07_G08XX:
1854 case DEVID_STM32L45_L46XX:
1855 case DEVID_STM32L41_L42XX:
1856 case DEVID_STM32G03_G04XX:
1857 case DEVID_STM32G43_G44XX:
1858 case DEVID_STM32G49_G4AXX:
1859 case DEVID_STM32WB1XX:
1860 /* single bank flash */
1861 page_size_kb = 2;
1862 num_pages = flash_size_kb / page_size_kb;
1863 stm32l4_info->bank1_sectors = num_pages;
1864 break;
1865 case DEVID_STM32G0B_G0CXX:
1866 /* single/dual bank depending on bit(21) */
1867 page_size_kb = 2;
1868 num_pages = flash_size_kb / page_size_kb;
1869 stm32l4_info->bank1_sectors = num_pages;
1870 stm32l4_info->cr_bker_mask = FLASH_BKER_G0;
1871
1872 /* check DUAL_BANK bit */
1873 if (stm32l4_info->optr & BIT(21)) {
1874 stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
1875 stm32l4_info->dual_bank_mode = true;
1876 stm32l4_info->bank1_sectors = num_pages / 2;
1877 }
1878 break;
1879 case DEVID_STM32G47_G48XX:
1880 /* STM32G47/8 can be single/dual bank:
1881 * if DUAL_BANK = 0 -> single bank
1882 * else -> dual bank WITH gap
1883 */
1884 page_size_kb = 4;
1885 num_pages = flash_size_kb / page_size_kb;
1886 stm32l4_info->bank1_sectors = num_pages;
1887 if (stm32l4_info->optr & BIT(22)) {
1888 stm32l4_info->dual_bank_mode = true;
1889 page_size_kb = 2;
1890 num_pages = flash_size_kb / page_size_kb;
1891 stm32l4_info->bank1_sectors = num_pages / 2;
1892
1893 /* for devices with trimmed flash, there is a gap between both banks */
1894 stm32l4_info->hole_sectors =
1895 (part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
1896 }
1897 break;
1898 case DEVID_STM32L4R_L4SXX:
1899 case DEVID_STM32L4P_L4QXX:
1900 /* STM32L4R/S can be single/dual bank:
1901 * if size = 2M check DBANK bit(22)
1902 * if size = 1M check DB1M bit(21)
1903 * STM32L4P/Q can be single/dual bank
1904 * if size = 1M check DBANK bit(22)
1905 * if size = 512K check DB512K bit(21)
1906 */
1907 page_size_kb = 8;
1908 num_pages = flash_size_kb / page_size_kb;
1909 stm32l4_info->bank1_sectors = num_pages;
1910 use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
1911 if ((use_dbank_bit && (stm32l4_info->optr & BIT(22))) ||
1912 (!use_dbank_bit && (stm32l4_info->optr & BIT(21)))) {
1913 stm32l4_info->dual_bank_mode = true;
1914 page_size_kb = 4;
1915 num_pages = flash_size_kb / page_size_kb;
1916 stm32l4_info->bank1_sectors = num_pages / 2;
1917 }
1918 break;
1919 case DEVID_STM32L55_L56XX:
1920 /* STM32L55/L56xx can be single/dual bank:
1921 * if size = 512K check DBANK bit(22)
1922 * if size = 256K check DB256K bit(21)
1923 */
1924 page_size_kb = 4;
1925 num_pages = flash_size_kb / page_size_kb;
1926 stm32l4_info->bank1_sectors = num_pages;
1927 use_dbank_bit = flash_size_kb == part_info->max_flash_size_kb;
1928 if ((use_dbank_bit && (stm32l4_info->optr & BIT(22))) ||
1929 (!use_dbank_bit && (stm32l4_info->optr & BIT(21)))) {
1930 stm32l4_info->dual_bank_mode = true;
1931 page_size_kb = 2;
1932 num_pages = flash_size_kb / page_size_kb;
1933 stm32l4_info->bank1_sectors = num_pages / 2;
1934 }
1935 break;
1936 case DEVID_STM32U57_U58XX:
1937 /* if flash size is max (2M) the device is always dual bank
1938 * otherwise check DUALBANK bit(21)
1939 */
1940 page_size_kb = 8;
1941 num_pages = flash_size_kb / page_size_kb;
1942 stm32l4_info->bank1_sectors = num_pages;
1943 if ((flash_size_kb == part_info->max_flash_size_kb) || (stm32l4_info->optr & BIT(21))) {
1944 stm32l4_info->dual_bank_mode = true;
1945 stm32l4_info->bank1_sectors = num_pages / 2;
1946 }
1947 break;
1948 case DEVID_STM32WB5XX:
1949 case DEVID_STM32WB3XX:
1950 /* single bank flash */
1951 page_size_kb = 4;
1952 num_pages = flash_size_kb / page_size_kb;
1953 stm32l4_info->bank1_sectors = num_pages;
1954 break;
1955 case DEVID_STM32WLE_WL5XX:
1956 /* single bank flash */
1957 page_size_kb = 2;
1958 num_pages = flash_size_kb / page_size_kb;
1959 stm32l4_info->bank1_sectors = num_pages;
1960
1961 /* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
1962 * Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
1963 if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
1964 stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
1965 break;
1966 default:
1967 LOG_ERROR("unsupported device");
1968 return ERROR_FAIL;
1969 }
1970
1971 LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");
1972
1973 const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;
1974
1975 if (gap_size_kb != 0) {
1976 LOG_INFO("gap detected from 0x%08x to 0x%08x",
1977 STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
1978 * page_size_kb * 1024,
1979 STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
1980 * page_size_kb + gap_size_kb) * 1024 - 1);
1981 }
1982
1983 /* number of significant bits in WRPxxR differs per device,
1984 * always right adjusted, on some devices non-implemented
1985 * bits read as '0', on others as '1' ...
1986 * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
1987 */
1988
1989 /* use *max_flash_size* instead of actual size as the trimmed versions
1990 * certainly use the same number of bits
1991 */
1992 uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;
1993
1994 /* in dual bank mode number of pages is doubled, but extra bit is bank selection */
1995 stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
1996 assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
1997 LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);
1998
1999 free(bank->sectors);
2000
2001 bank->size = (flash_size_kb + gap_size_kb) * 1024;
2002 bank->num_sectors = num_pages;
2003 bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
2004 if (!bank->sectors) {
2005 LOG_ERROR("failed to allocate bank sectors");
2006 return ERROR_FAIL;
2007 }
2008
2009 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2010 bank->sectors[i].offset = i * page_size_kb * 1024;
2011 /* in dual bank configuration, if there is a gap between banks
2012 * we fix up the sector offset to consider this gap */
2013 if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
2014 bank->sectors[i].offset += gap_size_kb * 1024;
2015 bank->sectors[i].size = page_size_kb * 1024;
2016 bank->sectors[i].is_erased = -1;
2017 bank->sectors[i].is_protected = 1;
2018 }
2019
2020 stm32l4_info->probed = true;
2021 return ERROR_OK;
2022 }
2023
2024 static int stm32l4_auto_probe(struct flash_bank *bank)
2025 {
2026 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2027 if (stm32l4_info->probed) {
2028 uint32_t optr_cur;
2029
2030 /* read flash option register and re-probe if optr value is changed */
2031 int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);
2032 if (retval != ERROR_OK)
2033 return retval;
2034
2035 if (stm32l4_info->optr == optr_cur)
2036 return ERROR_OK;
2037 }
2038
2039 return stm32l4_probe(bank);
2040 }
2041
2042 static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
2043 {
2044 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2045 const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
2046
2047 if (part_info) {
2048 const uint16_t rev_id = stm32l4_info->idcode >> 16;
2049 command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
2050 get_stm32l4_rev_str(bank), rev_id);
2051 if (stm32l4_info->probed)
2052 command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
2053 } else {
2054 command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
2055 }
2056
2057 return ERROR_OK;
2058 }
2059
2060 static int stm32l4_mass_erase(struct flash_bank *bank)
2061 {
2062 int retval, retval2;
2063 struct target *target = bank->target;
2064 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2065
2066 if (stm32l4_is_otp(bank)) {
2067 LOG_ERROR("cannot erase OTP memory");
2068 return ERROR_FLASH_OPER_UNSUPPORTED;
2069 }
2070
2071 uint32_t action = FLASH_MER1;
2072
2073 if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
2074 action |= FLASH_MER2;
2075
2076 if (target->state != TARGET_HALTED) {
2077 LOG_ERROR("Target not halted");
2078 return ERROR_TARGET_NOT_HALTED;
2079 }
2080
2081 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2082 /* set all FLASH pages as secure */
2083 retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
2084 if (retval != ERROR_OK) {
2085 /* restore all FLASH pages as non-secure */
2086 stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
2087 return retval;
2088 }
2089 }
2090
2091 retval = stm32l4_unlock_reg(bank);
2092 if (retval != ERROR_OK)
2093 goto err_lock;
2094
2095 /* mass erase flash memory */
2096 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
2097 if (retval != ERROR_OK)
2098 goto err_lock;
2099
2100 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
2101 if (retval != ERROR_OK)
2102 goto err_lock;
2103
2104 retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
2105 if (retval != ERROR_OK)
2106 goto err_lock;
2107
2108 retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
2109
2110 err_lock:
2111 retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);
2112
2113 if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
2114 /* restore all FLASH pages as non-secure */
2115 int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
2116 if (retval3 != ERROR_OK)
2117 return retval3;
2118 }
2119
2120 if (retval != ERROR_OK)
2121 return retval;
2122
2123 return retval2;
2124 }
2125
2126 COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
2127 {
2128 if (CMD_ARGC < 1) {
2129 command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
2130 return ERROR_COMMAND_SYNTAX_ERROR;
2131 }
2132
2133 struct flash_bank *bank;
2134 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2135 if (retval != ERROR_OK)
2136 return retval;
2137
2138 retval = stm32l4_mass_erase(bank);
2139 if (retval == ERROR_OK)
2140 command_print(CMD, "stm32l4x mass erase complete");
2141 else
2142 command_print(CMD, "stm32l4x mass erase failed");
2143
2144 return retval;
2145 }
2146
2147 COMMAND_HANDLER(stm32l4_handle_option_read_command)
2148 {
2149 if (CMD_ARGC < 2) {
2150 command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
2151 return ERROR_COMMAND_SYNTAX_ERROR;
2152 }
2153
2154 struct flash_bank *bank;
2155 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2156 if (retval != ERROR_OK)
2157 return retval;
2158
2159 uint32_t reg_offset, reg_addr;
2160 uint32_t value = 0;
2161
2162 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2163 reg_addr = stm32l4_get_flash_reg(bank, reg_offset);
2164
2165 retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
2166 if (retval != ERROR_OK)
2167 return retval;
2168
2169 command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);
2170
2171 return retval;
2172 }
2173
2174 COMMAND_HANDLER(stm32l4_handle_option_write_command)
2175 {
2176 if (CMD_ARGC < 3) {
2177 command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
2178 return ERROR_COMMAND_SYNTAX_ERROR;
2179 }
2180
2181 struct flash_bank *bank;
2182 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2183 if (retval != ERROR_OK)
2184 return retval;
2185
2186 uint32_t reg_offset;
2187 uint32_t value = 0;
2188 uint32_t mask = 0xFFFFFFFF;
2189
2190 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
2191 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2192
2193 if (CMD_ARGC > 3)
2194 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);
2195
2196 command_print(CMD, "%s Option written.\n"
2197 "INFO: a reset or power cycle is required "
2198 "for the new settings to take effect.", bank->driver->name);
2199
2200 retval = stm32l4_write_option(bank, reg_offset, value, mask);
2201 return retval;
2202 }
2203
2204 COMMAND_HANDLER(stm32l4_handle_trustzone_command)
2205 {
2206 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2207 return ERROR_COMMAND_SYNTAX_ERROR;
2208
2209 struct flash_bank *bank;
2210 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2211 if (retval != ERROR_OK)
2212 return retval;
2213
2214 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2215 if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
2216 LOG_ERROR("This device does not have a TrustZone");
2217 return ERROR_FAIL;
2218 }
2219
2220 retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
2221 if (retval != ERROR_OK)
2222 return retval;
2223
2224 stm32l4_sync_rdp_tzen(bank);
2225
2226 if (CMD_ARGC == 1) {
2227 /* only display the TZEN value */
2228 LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
2229 return ERROR_OK;
2230 }
2231
2232 bool new_tzen;
2233 COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);
2234
2235 if (new_tzen == stm32l4_info->tzen) {
2236 LOG_INFO("The requested TZEN is already programmed");
2237 return ERROR_OK;
2238 }
2239
2240 if (new_tzen) {
2241 if (stm32l4_info->rdp != RDP_LEVEL_0) {
2242 LOG_ERROR("TZEN can be set only when RDP level is 0");
2243 return ERROR_FAIL;
2244 }
2245 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2246 FLASH_TZEN, FLASH_TZEN);
2247 } else {
2248 /* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
2249 * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
2250 if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
2251 LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
2252 return ERROR_FAIL;
2253 }
2254
2255 retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2256 RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
2257 }
2258
2259 if (retval != ERROR_OK)
2260 return retval;
2261
2262 return stm32l4_perform_obl_launch(bank);
2263 }
2264
2265 COMMAND_HANDLER(stm32l4_handle_flashloader_command)
2266 {
2267 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2268 return ERROR_COMMAND_SYNTAX_ERROR;
2269
2270 struct flash_bank *bank;
2271 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2272 if (retval != ERROR_OK)
2273 return retval;
2274
2275 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2276
2277 if (CMD_ARGC == 2)
2278 COMMAND_PARSE_ENABLE(CMD_ARGV[1], stm32l4_info->use_flashloader);
2279
2280 command_print(CMD, "FlashLoader usage is %s", stm32l4_info->use_flashloader ? "enabled" : "disabled");
2281
2282 return ERROR_OK;
2283 }
2284
2285 COMMAND_HANDLER(stm32l4_handle_option_load_command)
2286 {
2287 if (CMD_ARGC != 1)
2288 return ERROR_COMMAND_SYNTAX_ERROR;
2289
2290 struct flash_bank *bank;
2291 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2292 if (retval != ERROR_OK)
2293 return retval;
2294
2295 retval = stm32l4_perform_obl_launch(bank);
2296 if (retval != ERROR_OK) {
2297 command_print(CMD, "stm32l4x option load failed");
2298 return retval;
2299 }
2300
2301
2302 command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");
2303
2304 return ERROR_OK;
2305 }
2306
2307 COMMAND_HANDLER(stm32l4_handle_lock_command)
2308 {
2309 struct target *target = NULL;
2310
2311 if (CMD_ARGC < 1)
2312 return ERROR_COMMAND_SYNTAX_ERROR;
2313
2314 struct flash_bank *bank;
2315 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2316 if (retval != ERROR_OK)
2317 return retval;
2318
2319 if (stm32l4_is_otp(bank)) {
2320 LOG_ERROR("cannot lock/unlock OTP memory");
2321 return ERROR_FLASH_OPER_UNSUPPORTED;
2322 }
2323
2324 target = bank->target;
2325
2326 if (target->state != TARGET_HALTED) {
2327 LOG_ERROR("Target not halted");
2328 return ERROR_TARGET_NOT_HALTED;
2329 }
2330
2331 /* set readout protection level 1 by erasing the RDP option byte */
2332 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2333 if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2334 RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
2335 command_print(CMD, "%s failed to lock device", bank->driver->name);
2336 return ERROR_OK;
2337 }
2338
2339 return ERROR_OK;
2340 }
2341
2342 COMMAND_HANDLER(stm32l4_handle_unlock_command)
2343 {
2344 struct target *target = NULL;
2345
2346 if (CMD_ARGC < 1)
2347 return ERROR_COMMAND_SYNTAX_ERROR;
2348
2349 struct flash_bank *bank;
2350 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2351 if (retval != ERROR_OK)
2352 return retval;
2353
2354 if (stm32l4_is_otp(bank)) {
2355 LOG_ERROR("cannot lock/unlock OTP memory");
2356 return ERROR_FLASH_OPER_UNSUPPORTED;
2357 }
2358
2359 target = bank->target;
2360
2361 if (target->state != TARGET_HALTED) {
2362 LOG_ERROR("Target not halted");
2363 return ERROR_TARGET_NOT_HALTED;
2364 }
2365
2366 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2367 if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
2368 RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
2369 command_print(CMD, "%s failed to unlock device", bank->driver->name);
2370 return ERROR_OK;
2371 }
2372
2373 return ERROR_OK;
2374 }
2375
2376 COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
2377 {
2378 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2379 return ERROR_COMMAND_SYNTAX_ERROR;
2380
2381 struct flash_bank *bank;
2382 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2383 if (retval != ERROR_OK)
2384 return retval;
2385
2386 if (stm32l4_is_otp(bank)) {
2387 LOG_ERROR("OTP memory does not have write protection areas");
2388 return ERROR_FLASH_OPER_UNSUPPORTED;
2389 }
2390
2391 struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
2392 enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
2393 if (CMD_ARGC == 2) {
2394 if (strcmp(CMD_ARGV[1], "bank1") == 0)
2395 dev_bank_id = STM32_BANK1;
2396 else if (strcmp(CMD_ARGV[1], "bank2") == 0)
2397 dev_bank_id = STM32_BANK2;
2398 else
2399 return ERROR_COMMAND_ARGUMENT_INVALID;
2400 }
2401
2402 if (dev_bank_id == STM32_BANK2) {
2403 if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
2404 LOG_ERROR("this device has no second bank");
2405 return ERROR_FAIL;
2406 } else if (!stm32l4_info->dual_bank_mode) {
2407 LOG_ERROR("this device is configured in single bank mode");
2408 return ERROR_FAIL;
2409 }
2410 }
2411
2412 int ret;
2413 unsigned int n_wrp, i;
2414 struct stm32l4_wrp wrpxy[4];
2415
2416 ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
2417 if (ret != ERROR_OK)
2418 return ret;
2419
2420 /* use bitmap and range helpers to better describe protected areas */
2421 DECLARE_BITMAP(pages, bank->num_sectors);
2422 bitmap_zero(pages, bank->num_sectors);
2423
2424 for (i = 0; i < n_wrp; i++) {
2425 if (wrpxy[i].used) {
2426 for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
2427 set_bit(p, pages);
2428 }
2429 }
2430
2431 /* we have at most 'n_wrp' WRP areas */
2432 struct range ranges[n_wrp];
2433 unsigned int ranges_count = 0;
2434
2435 bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);
2436
2437 if (ranges_count > 0) {
2438 /* pretty-print the protected ranges */
2439 char *ranges_str = range_print_alloc(ranges, ranges_count);
2440 command_print(CMD, "protected areas: %s", ranges_str);
2441 free(ranges_str);
2442 } else
2443 command_print(CMD, "no protected areas");
2444
2445 return ERROR_OK;
2446 }
2447
2448 COMMAND_HANDLER(stm32l4_handle_otp_command)
2449 {
2450 if (CMD_ARGC < 2)
2451 return ERROR_COMMAND_SYNTAX_ERROR;
2452
2453 struct flash_bank *bank;
2454 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
2455 if (retval != ERROR_OK)
2456 return retval;
2457
2458 if (!stm32l4_is_otp(bank)) {
2459 command_print(CMD, "the specified bank is not an OTP memory");
2460 return ERROR_FAIL;
2461 }
2462 if (strcmp(CMD_ARGV[1], "enable") == 0)
2463 stm32l4_otp_enable(bank, true);
2464 else if (strcmp(CMD_ARGV[1], "disable") == 0)
2465 stm32l4_otp_enable(bank, false);
2466 else if (strcmp(CMD_ARGV[1], "show") == 0)
2467 command_print(CMD, "OTP memory bank #%d is %s for write commands.",
2468 bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
2469 else
2470 return ERROR_COMMAND_SYNTAX_ERROR;
2471
2472 return ERROR_OK;
2473 }
2474
2475 static const struct command_registration stm32l4_exec_command_handlers[] = {
2476 {
2477 .name = "lock",
2478 .handler = stm32l4_handle_lock_command,
2479 .mode = COMMAND_EXEC,
2480 .usage = "bank_id",
2481 .help = "Lock entire flash device.",
2482 },
2483 {
2484 .name = "unlock",
2485 .handler = stm32l4_handle_unlock_command,
2486 .mode = COMMAND_EXEC,
2487 .usage = "bank_id",
2488 .help = "Unlock entire protected flash device.",
2489 },
2490 {
2491 .name = "flashloader",
2492 .handler = stm32l4_handle_flashloader_command,
2493 .mode = COMMAND_EXEC,
2494 .usage = "<bank_id> [enable|disable]",
2495 .help = "Configure the flashloader usage",
2496 },
2497 {
2498 .name = "mass_erase",
2499 .handler = stm32l4_handle_mass_erase_command,
2500 .mode = COMMAND_EXEC,
2501 .usage = "bank_id",
2502 .help = "Erase entire flash device.",
2503 },
2504 {
2505 .name = "option_read",
2506 .handler = stm32l4_handle_option_read_command,
2507 .mode = COMMAND_EXEC,
2508 .usage = "bank_id reg_offset",
2509 .help = "Read & Display device option bytes.",
2510 },
2511 {
2512 .name = "option_write",
2513 .handler = stm32l4_handle_option_write_command,
2514 .mode = COMMAND_EXEC,
2515 .usage = "bank_id reg_offset value mask",
2516 .help = "Write device option bit fields with provided value.",
2517 },
2518 {
2519 .name = "trustzone",
2520 .handler = stm32l4_handle_trustzone_command,
2521 .mode = COMMAND_EXEC,
2522 .usage = "<bank_id> [enable|disable]",
2523 .help = "Configure TrustZone security",
2524 },
2525 {
2526 .name = "wrp_info",
2527 .handler = stm32l4_handle_wrp_info_command,
2528 .mode = COMMAND_EXEC,
2529 .usage = "bank_id [bank1|bank2]",
2530 .help = "list the protected areas using WRP",
2531 },
2532 {
2533 .name = "option_load",
2534 .handler = stm32l4_handle_option_load_command,
2535 .mode = COMMAND_EXEC,
2536 .usage = "bank_id",
2537 .help = "Force re-load of device options (will cause device reset).",
2538 },
2539 {
2540 .name = "otp",
2541 .handler = stm32l4_handle_otp_command,
2542 .mode = COMMAND_EXEC,
2543 .usage = "<bank_id> <enable|disable|show>",
2544 .help = "OTP (One Time Programmable) memory write enable/disable",
2545 },
2546 COMMAND_REGISTRATION_DONE
2547 };
2548
2549 static const struct command_registration stm32l4_command_handlers[] = {
2550 {
2551 .name = "stm32l4x",
2552 .mode = COMMAND_ANY,
2553 .help = "stm32l4x flash command group",
2554 .usage = "",
2555 .chain = stm32l4_exec_command_handlers,
2556 },
2557 COMMAND_REGISTRATION_DONE
2558 };
2559
2560 const struct flash_driver stm32l4x_flash = {
2561 .name = "stm32l4x",
2562 .commands = stm32l4_command_handlers,
2563 .flash_bank_command = stm32l4_flash_bank_command,
2564 .erase = stm32l4_erase,
2565 .protect = stm32l4_protect,
2566 .write = stm32l4_write,
2567 .read = default_flash_read,
2568 .probe = stm32l4_probe,
2569 .auto_probe = stm32l4_auto_probe,
2570 .erase_check = default_flash_blank_check,
2571 .protect_check = stm32l4_protect_check,
2572 .info = get_stm32l4_info,
2573 .free_driver_priv = default_flash_free_driver_priv,
2574 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)