ca29e1c3bd298438253edccd97556831c455d88b
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
25 ***************************************************************************/
26
27 #ifdef HAVE_CONFIG_H
28 #include "config.h"
29 #endif
30
31 #include "imp.h"
32 #include <helper/binarybuffer.h>
33 #include <target/algorithm.h>
34 #include <target/armv7m.h>
35
36 /* stm32lx flash register locations */
37
38 #define FLASH_BASE 0x40023C00
39 #define FLASH_ACR 0x40023C00
40 #define FLASH_PECR 0x40023C04
41 #define FLASH_PDKEYR 0x40023C08
42 #define FLASH_PEKEYR 0x40023C0C
43 #define FLASH_PRGKEYR 0x40023C10
44 #define FLASH_OPTKEYR 0x40023C14
45 #define FLASH_SR 0x40023C18
46 #define FLASH_OBR 0x40023C1C
47 #define FLASH_WRPR 0x40023C20
48
49 /* FLASH_ACR bites */
50 #define FLASH_ACR__LATENCY (1<<0)
51 #define FLASH_ACR__PRFTEN (1<<1)
52 #define FLASH_ACR__ACC64 (1<<2)
53 #define FLASH_ACR__SLEEP_PD (1<<3)
54 #define FLASH_ACR__RUN_PD (1<<4)
55
56 /* FLASH_PECR bits */
57 #define FLASH_PECR__PELOCK (1<<0)
58 #define FLASH_PECR__PRGLOCK (1<<1)
59 #define FLASH_PECR__OPTLOCK (1<<2)
60 #define FLASH_PECR__PROG (1<<3)
61 #define FLASH_PECR__DATA (1<<4)
62 #define FLASH_PECR__FTDW (1<<8)
63 #define FLASH_PECR__ERASE (1<<9)
64 #define FLASH_PECR__FPRG (1<<10)
65 #define FLASH_PECR__EOPIE (1<<16)
66 #define FLASH_PECR__ERRIE (1<<17)
67 #define FLASH_PECR__OBL_LAUNCH (1<<18)
68
69 /* FLASH_SR bits */
70 #define FLASH_SR__BSY (1<<0)
71 #define FLASH_SR__EOP (1<<1)
72 #define FLASH_SR__ENDHV (1<<2)
73 #define FLASH_SR__READY (1<<3)
74 #define FLASH_SR__WRPERR (1<<8)
75 #define FLASH_SR__PGAERR (1<<9)
76 #define FLASH_SR__SIZERR (1<<10)
77 #define FLASH_SR__OPTVERR (1<<11)
78
79 /* Unlock keys */
80 #define PEKEY1 0x89ABCDEF
81 #define PEKEY2 0x02030405
82 #define PRGKEY1 0x8C9DAEBF
83 #define PRGKEY2 0x13141516
84 #define OPTKEY1 0xFBEAD9C8
85 #define OPTKEY2 0x24252627
86
87 /* other registers */
88 #define DBGMCU_IDCODE 0xE0042000
89 #define F_SIZE 0x1FF8004C
90
91 /* Constants */
92 #define FLASH_PAGE_SIZE 256
93 #define FLASH_SECTOR_SIZE 4096
94 #define FLASH_PAGES_PER_SECTOR 16
95 #define FLASH_BANK0_ADDRESS 0x08000000
96
97 /* stm32lx option byte register location */
98 #define OB_RDP 0x1FF80000
99 #define OB_USER 0x1FF80004
100 #define OB_WRP0_1 0x1FF80008
101 #define OB_WRP2_3 0x1FF8000C
102
103 /* OB_RDP values */
104 #define OB_RDP__LEVEL0 0xFF5500AA
105 #define OB_RDP__LEVEL1 0xFFFF0000
106
107 /* stm32lx RCC register locations */
108 #define RCC_CR 0x40023800
109 #define RCC_ICSCR 0x40023804
110 #define RCC_CFGR 0x40023808
111
112 /* RCC_ICSCR bits */
113 #define RCC_ICSCR__MSIRANGE_MASK (7<<13)
114
115 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
116 static int stm32lx_lock_program_memory(struct flash_bank *bank);
117 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
118 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
119 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
120
121 struct stm32lx_flash_bank {
122 struct working_area *write_algorithm;
123 int probed;
124 };
125
126 /* flash bank stm32lx <base> <size> 0 0 <target#>
127 */
128 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
129 {
130 struct stm32lx_flash_bank *stm32lx_info;
131 if (CMD_ARGC < 6)
132 return ERROR_COMMAND_SYNTAX_ERROR;
133
134 /* Create the bank structure */
135 stm32lx_info = malloc(sizeof(struct stm32lx_flash_bank));
136
137 /* Check allocation */
138 if (stm32lx_info == NULL) {
139 LOG_ERROR("failed to allocate bank structure");
140 return ERROR_FAIL;
141 }
142
143 bank->driver_priv = stm32lx_info;
144
145 stm32lx_info->write_algorithm = NULL;
146 stm32lx_info->probed = 0;
147
148 return ERROR_OK;
149 }
150
151 static int stm32lx_protect_check(struct flash_bank *bank)
152 {
153 int retval;
154 struct target *target = bank->target;
155
156 uint32_t wrpr;
157
158 if (target->state != TARGET_HALTED) {
159 LOG_ERROR("Target not halted");
160 return ERROR_TARGET_NOT_HALTED;
161 }
162
163 /*
164 * Read the WRPR word, and check each bit (corresponding to each
165 * flash sector
166 */
167 retval = target_read_u32(target, FLASH_WRPR, &wrpr);
168 if (retval != ERROR_OK)
169 return retval;
170
171 for (int i = 0; i < 32; i++) {
172 if (wrpr & (1 << i))
173 bank->sectors[i].is_protected = 1;
174 else
175 bank->sectors[i].is_protected = 0;
176 }
177 return ERROR_OK;
178 }
179
180 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
181 {
182 int retval;
183
184 /*
185 * It could be possible to do a mass erase if all sectors must be
186 * erased, but it is not implemented yet.
187 */
188
189 if (bank->target->state != TARGET_HALTED) {
190 LOG_ERROR("Target not halted");
191 return ERROR_TARGET_NOT_HALTED;
192 }
193
194 /*
195 * Loop over the selected sectors and erase them
196 */
197 for (int i = first; i <= last; i++) {
198 retval = stm32lx_erase_sector(bank, i);
199 if (retval != ERROR_OK)
200 return retval;
201 bank->sectors[i].is_erased = 1;
202 }
203 return ERROR_OK;
204 }
205
206 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
207 int last)
208 {
209 LOG_WARNING("protection of the STM32L flash is not implemented");
210 return ERROR_OK;
211 }
212
213 static int stm32lx_write_half_pages(struct flash_bank *bank, uint8_t *buffer,
214 uint32_t offset, uint32_t count)
215 {
216 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
217 struct target *target = bank->target;
218 uint32_t buffer_size = 4096 * 4;
219 struct working_area *source;
220 uint32_t address = bank->base + offset;
221
222 struct reg_param reg_params[5];
223 struct armv7m_algorithm armv7m_info;
224
225 int retval = ERROR_OK;
226 uint32_t reg32;
227
228 /* see contib/loaders/flash/stm32lx.s for src */
229
230 static const uint16_t stm32lx_flash_write_code_16[] = {
231 /* 00000000 <write_word-0x4>: */
232 0x2300, /* 0: 2300 movs r3, #0 */
233 0xe004, /* 2: e004 b.n e <test_done> */
234
235 /* 00000004 <write_word>: */
236 0xf851, 0xcb04, /* 4: f851 cb04 ldr.w ip, [r1], #4 */
237 0xf840, 0xcb04, /* 8: f840 cb04 str.w ip, [r0], #4 */
238 0x3301, /* c: 3301 adds r3, #1 */
239
240 /* 0000000e <test_done>: */
241 0x4293, /* e: 4293 cmp r3, r2 */
242 0xd3f8, /* 10: d3f8 bcc.n 4 <write_word> */
243 0xbe00, /* 12: be00 bkpt 0x0000 */
244
245 };
246
247 /* Flip endian */
248 uint8_t stm32lx_flash_write_code[sizeof(stm32lx_flash_write_code_16)];
249 for (unsigned int i = 0; i < sizeof(stm32lx_flash_write_code_16) / 2; i++) {
250 stm32lx_flash_write_code[i * 2 + 0] = stm32lx_flash_write_code_16[i]
251 & 0xff;
252 stm32lx_flash_write_code[i * 2 + 1] = (stm32lx_flash_write_code_16[i]
253 >> 8) & 0xff;
254 }
255 /* Check if there is an even number of half pages (128bytes) */
256 if (count % 128) {
257 LOG_ERROR("there should be an even number "
258 "of half pages = 128 bytes (count = %" PRIi32 " bytes)", count);
259 return ERROR_FAIL;
260 }
261
262 /* Allocate working area */
263 reg32 = sizeof(stm32lx_flash_write_code);
264 /* Add bytes to make 4byte aligned */
265 reg32 += (4 - (reg32 % 4)) % 4;
266 retval = target_alloc_working_area(target, reg32,
267 &stm32lx_info->write_algorithm);
268 if (retval != ERROR_OK)
269 return retval;
270
271 /* Write the flashing code */
272 retval = target_write_buffer(target,
273 stm32lx_info->write_algorithm->address,
274 sizeof(stm32lx_flash_write_code),
275 (uint8_t *)stm32lx_flash_write_code);
276 if (retval != ERROR_OK) {
277 target_free_working_area(target, stm32lx_info->write_algorithm);
278 return retval;
279 }
280
281 /* Allocate half pages memory */
282 while (target_alloc_working_area_try(target, buffer_size, &source)
283 != ERROR_OK) {
284 if (buffer_size > 1024)
285 buffer_size -= 1024;
286 else
287 buffer_size /= 2;
288
289 if (buffer_size <= 256) {
290 /* if we already allocated the writing code, but failed to get a
291 * buffer, free the algorithm */
292 if (stm32lx_info->write_algorithm)
293 target_free_working_area(target, stm32lx_info->write_algorithm);
294
295 LOG_WARNING("no large enough working area available, can't do block memory writes");
296 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
297 }
298 }
299 LOG_DEBUG("allocated working area for data (%" PRIx32 " bytes)", buffer_size);
300
301 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
302 armv7m_info.core_mode = ARMV7M_MODE_ANY;
303 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
304 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
305 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
306 init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT);
307 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
308
309 /* Enable half-page write */
310 retval = stm32lx_enable_write_half_page(bank);
311 if (retval != ERROR_OK) {
312 target_free_working_area(target, source);
313 target_free_working_area(target, stm32lx_info->write_algorithm);
314
315 destroy_reg_param(&reg_params[0]);
316 destroy_reg_param(&reg_params[1]);
317 destroy_reg_param(&reg_params[2]);
318 destroy_reg_param(&reg_params[3]);
319 return retval;
320 }
321
322 /* Loop while there are bytes to write */
323 while (count > 0) {
324 uint32_t this_count;
325 this_count = (count > buffer_size) ? buffer_size : count;
326
327 /* Write the next half pages */
328 retval = target_write_buffer(target, source->address, this_count,
329 buffer);
330 if (retval != ERROR_OK)
331 break;
332
333 /* 4: Store useful information in the registers */
334 /* the destination address of the copy (R0) */
335 buf_set_u32(reg_params[0].value, 0, 32, address);
336 /* The source address of the copy (R1) */
337 buf_set_u32(reg_params[1].value, 0, 32, source->address);
338 /* The length of the copy (R2) */
339 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
340
341 /* 5: Execute the bunch of code */
342 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
343 / sizeof(*reg_params), reg_params,
344 stm32lx_info->write_algorithm->address, 0, 20000, &armv7m_info);
345 if (retval != ERROR_OK)
346 break;
347
348 /* 6: Wait while busy */
349 retval = stm32lx_wait_until_bsy_clear(bank);
350 if (retval != ERROR_OK)
351 break;
352
353 buffer += this_count;
354 address += this_count;
355 count -= this_count;
356 }
357
358 if (retval == ERROR_OK)
359 retval = stm32lx_lock_program_memory(bank);
360
361 target_free_working_area(target, source);
362 target_free_working_area(target, stm32lx_info->write_algorithm);
363
364 destroy_reg_param(&reg_params[0]);
365 destroy_reg_param(&reg_params[1]);
366 destroy_reg_param(&reg_params[2]);
367 destroy_reg_param(&reg_params[3]);
368
369 return retval;
370 }
371 static int stm32lx_write(struct flash_bank *bank, uint8_t *buffer,
372 uint32_t offset, uint32_t count)
373 {
374 struct target *target = bank->target;
375
376 uint32_t halfpages_number;
377 uint32_t words_remaining;
378 uint32_t bytes_remaining;
379 uint32_t address = bank->base + offset;
380 uint32_t bytes_written = 0;
381 int retval;
382
383 if (bank->target->state != TARGET_HALTED) {
384 LOG_ERROR("Target not halted");
385 return ERROR_TARGET_NOT_HALTED;
386 }
387
388 if (offset & 0x1) {
389 LOG_ERROR("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
390 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
391 }
392
393 /* Check if there are some full half pages */
394 if (((offset % 128) == 0) && (count >= 128)) {
395 halfpages_number = count / 128;
396 words_remaining = (count - 128 * halfpages_number) / 4;
397 bytes_remaining = (count & 0x3);
398 } else {
399 halfpages_number = 0;
400 words_remaining = (count / 4);
401 bytes_remaining = (count & 0x3);
402 }
403
404 if (halfpages_number) {
405 retval = stm32lx_write_half_pages(bank, buffer, offset, 128
406 * halfpages_number);
407 if (retval != ERROR_OK)
408 return ERROR_FAIL;
409 }
410
411 bytes_written = 128 * halfpages_number;
412
413 retval = stm32lx_unlock_program_memory(bank);
414 if (retval != ERROR_OK)
415 return retval;
416
417 while (words_remaining > 0) {
418 uint32_t value;
419 uint8_t *p = buffer + bytes_written;
420
421 /* Prepare the word, Little endian conversion */
422 value = p[0] + (p[1] << 8) + (p[2] << 16) + (p[3] << 24);
423
424 retval = target_write_u32(target, address, value);
425 if (retval != ERROR_OK)
426 return retval;
427
428 bytes_written += 4;
429 words_remaining--;
430 address += 4;
431
432 retval = stm32lx_wait_until_bsy_clear(bank);
433 if (retval != ERROR_OK)
434 return retval;
435 }
436
437 if (bytes_remaining) {
438 uint8_t last_word[4] = {0xff, 0xff, 0xff, 0xff};
439
440 /* copy the last remaining bytes into the write buffer */
441 memcpy(last_word, buffer+bytes_written, bytes_remaining);
442
443 retval = target_write_buffer(target, address, 4, last_word);
444 if (retval != ERROR_OK)
445 return retval;
446
447 retval = stm32lx_wait_until_bsy_clear(bank);
448 if (retval != ERROR_OK)
449 return retval;
450 }
451
452 retval = stm32lx_lock_program_memory(bank);
453 if (retval != ERROR_OK)
454 return retval;
455
456 return ERROR_OK;
457 }
458
459 static int stm32lx_probe(struct flash_bank *bank)
460 {
461 struct target *target = bank->target;
462 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
463 int i;
464 uint16_t flash_size_in_kb;
465 uint32_t device_id;
466
467 stm32lx_info->probed = 0;
468
469 /* read stm32 device id register */
470 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
471 if (retval != ERROR_OK)
472 return retval;
473
474 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
475
476 /* get flash size from target. */
477 retval = target_read_u16(target, F_SIZE, &flash_size_in_kb);
478 if (retval != ERROR_OK)
479 return retval;
480
481 if ((device_id & 0xfff) == 0x416) {
482 /* check for early silicon */
483 if (flash_size_in_kb == 0xffff) {
484 /* number of sectors may be incorrrect on early silicon */
485 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash");
486 flash_size_in_kb = 128;
487 }
488 } else if ((device_id & 0xfff) == 0x436) {
489 /* check for early silicon */
490 if (flash_size_in_kb == 0xffff) {
491 /* number of sectors may be incorrrect on early silicon */
492 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 384k flash");
493 flash_size_in_kb = 384;
494 }
495 } else {
496 LOG_WARNING("Cannot identify target as a STM32L family.");
497 return ERROR_FAIL;
498 }
499
500 /* STM32L - we have 32 sectors, 16 pages per sector -> 512 pages
501 * 16 pages for a protection area */
502
503 /* calculate numbers of sectors (4kB per sector) */
504 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
505 LOG_INFO("flash size = %dkbytes", flash_size_in_kb);
506
507 if (bank->sectors) {
508 free(bank->sectors);
509 bank->sectors = NULL;
510 }
511
512 bank->base = FLASH_BANK0_ADDRESS;
513 bank->size = flash_size_in_kb * 1024;
514 bank->num_sectors = num_sectors;
515 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
516 if (bank->sectors == NULL) {
517 LOG_ERROR("failed to allocate bank sectors");
518 return ERROR_FAIL;
519 }
520
521 for (i = 0; i < num_sectors; i++) {
522 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
523 bank->sectors[i].size = FLASH_SECTOR_SIZE;
524 bank->sectors[i].is_erased = -1;
525 bank->sectors[i].is_protected = 1;
526 }
527
528 stm32lx_info->probed = 1;
529
530 return ERROR_OK;
531 }
532
533 static int stm32lx_auto_probe(struct flash_bank *bank)
534 {
535 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
536
537 if (stm32lx_info->probed)
538 return ERROR_OK;
539
540 return stm32lx_probe(bank);
541 }
542
543 static int stm32lx_erase_check(struct flash_bank *bank)
544 {
545 struct target *target = bank->target;
546 const int buffer_size = 4096;
547 int i;
548 uint32_t nBytes;
549 int retval = ERROR_OK;
550
551 if (bank->target->state != TARGET_HALTED) {
552 LOG_ERROR("Target not halted");
553 return ERROR_TARGET_NOT_HALTED;
554 }
555
556 uint8_t *buffer = malloc(buffer_size);
557 if (buffer == NULL) {
558 LOG_ERROR("failed to allocate read buffer");
559 return ERROR_FAIL;
560 }
561
562 for (i = 0; i < bank->num_sectors; i++) {
563 uint32_t j;
564 bank->sectors[i].is_erased = 1;
565
566 /* Loop chunk by chunk over the sector */
567 for (j = 0; j < bank->sectors[i].size; j += buffer_size) {
568 uint32_t chunk;
569 chunk = buffer_size;
570 if (chunk > (j - bank->sectors[i].size))
571 chunk = (j - bank->sectors[i].size);
572
573 retval = target_read_memory(target, bank->base
574 + bank->sectors[i].offset + j, 4, chunk / 4, buffer);
575 if (retval != ERROR_OK)
576 break;
577
578 for (nBytes = 0; nBytes < chunk; nBytes++) {
579 if (buffer[nBytes] != 0x00) {
580 bank->sectors[i].is_erased = 0;
581 break;
582 }
583 }
584 }
585 if (retval != ERROR_OK)
586 break;
587 }
588 free(buffer);
589
590 return retval;
591 }
592
593 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
594 {
595 /* This method must return a string displaying information about the bank */
596
597 struct target *target = bank->target;
598 uint32_t device_id;
599 int printed;
600
601 /* read stm32 device id register */
602 int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
603 if (retval != ERROR_OK)
604 return retval;
605
606 if ((device_id & 0xfff) == 0x416) {
607 printed = snprintf(buf, buf_size, "stm32lx - Rev: ");
608 buf += printed;
609 buf_size -= printed;
610
611 switch (device_id >> 16) {
612 case 0x1000:
613 snprintf(buf, buf_size, "A");
614 break;
615
616 case 0x1008:
617 snprintf(buf, buf_size, "Y");
618 break;
619
620 case 0x1038:
621 snprintf(buf, buf_size, "W");
622 break;
623
624 case 0x1078:
625 snprintf(buf, buf_size, "V");
626 break;
627
628 default:
629 snprintf(buf, buf_size, "unknown");
630 break;
631 }
632 } else if ((device_id & 0xfff) == 0x436) {
633 printed = snprintf(buf, buf_size, "stm32lx (HD) - Rev: ");
634 buf += printed;
635 buf_size -= printed;
636
637 switch (device_id >> 16) {
638 case 0x1000:
639 snprintf(buf, buf_size, "A");
640 break;
641
642 case 0x1008:
643 snprintf(buf, buf_size, "Z");
644 break;
645
646 default:
647 snprintf(buf, buf_size, "unknown");
648 break;
649 }
650 } else {
651 snprintf(buf, buf_size, "Cannot identify target as a stm32lx");
652 return ERROR_FAIL;
653 }
654
655 return ERROR_OK;
656 }
657
658 static const struct command_registration stm32lx_exec_command_handlers[] = {
659 COMMAND_REGISTRATION_DONE
660 };
661
662 static const struct command_registration stm32lx_command_handlers[] = {
663 {
664 .name = "stm32lx",
665 .mode = COMMAND_ANY,
666 .help = "stm32lx flash command group",
667 .usage = "",
668 .chain = stm32lx_exec_command_handlers,
669 },
670 COMMAND_REGISTRATION_DONE
671 };
672
673 struct flash_driver stm32lx_flash = {
674 .name = "stm32lx",
675 .commands = stm32lx_command_handlers,
676 .flash_bank_command = stm32lx_flash_bank_command,
677 .erase = stm32lx_erase,
678 .protect = stm32lx_protect,
679 .write = stm32lx_write,
680 .read = default_flash_read,
681 .probe = stm32lx_probe,
682 .auto_probe = stm32lx_auto_probe,
683 .erase_check = stm32lx_erase_check,
684 .protect_check = stm32lx_protect_check,
685 .info = stm32lx_get_info,
686 };
687
688 /* Static methods implementation */
689 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
690 {
691 struct target *target = bank->target;
692 int retval;
693 uint32_t reg32;
694
695 /*
696 * Unlocking the program memory is done by unlocking the PECR,
697 * then by writing the 2 PRGKEY to the PRGKEYR register
698 */
699
700 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
701 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY1);
702 if (retval != ERROR_OK)
703 return retval;
704
705 retval = target_write_u32(target, FLASH_PEKEYR, PEKEY2);
706 if (retval != ERROR_OK)
707 return retval;
708
709 /* Make sure it worked */
710 retval = target_read_u32(target, FLASH_PECR, &reg32);
711 if (retval != ERROR_OK)
712 return retval;
713
714 if (reg32 & FLASH_PECR__PELOCK) {
715 LOG_ERROR("PELOCK is not cleared :(");
716 return ERROR_FLASH_OPERATION_FAILED;
717 }
718
719 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY1);
720 if (retval != ERROR_OK)
721 return retval;
722 retval = target_write_u32(target, FLASH_PRGKEYR, PRGKEY2);
723 if (retval != ERROR_OK)
724 return retval;
725
726 /* Make sure it worked */
727 retval = target_read_u32(target, FLASH_PECR, &reg32);
728 if (retval != ERROR_OK)
729 return retval;
730
731 if (reg32 & FLASH_PECR__PRGLOCK) {
732 LOG_ERROR("PRGLOCK is not cleared :(");
733 return ERROR_FLASH_OPERATION_FAILED;
734 }
735 return ERROR_OK;
736 }
737
738 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
739 {
740 struct target *target = bank->target;
741 int retval;
742 uint32_t reg32;
743
744 /**
745 * Unlock the program memory, then set the FPRG bit in the PECR register.
746 */
747 retval = stm32lx_unlock_program_memory(bank);
748 if (retval != ERROR_OK)
749 return retval;
750
751 retval = target_read_u32(target, FLASH_PECR, &reg32);
752 if (retval != ERROR_OK)
753 return retval;
754
755 reg32 |= FLASH_PECR__FPRG;
756 retval = target_write_u32(target, FLASH_PECR, reg32);
757 if (retval != ERROR_OK)
758 return retval;
759
760 retval = target_read_u32(target, FLASH_PECR, &reg32);
761 if (retval != ERROR_OK)
762 return retval;
763
764 reg32 |= FLASH_PECR__PROG;
765 retval = target_write_u32(target, FLASH_PECR, reg32);
766
767 return retval;
768 }
769
770 static int stm32lx_lock_program_memory(struct flash_bank *bank)
771 {
772 struct target *target = bank->target;
773 int retval;
774 uint32_t reg32;
775
776 /* To lock the program memory, simply set the lock bit and lock PECR */
777
778 retval = target_read_u32(target, FLASH_PECR, &reg32);
779 if (retval != ERROR_OK)
780 return retval;
781
782 reg32 |= FLASH_PECR__PRGLOCK;
783 retval = target_write_u32(target, FLASH_PECR, reg32);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = target_read_u32(target, FLASH_PECR, &reg32);
788 if (retval != ERROR_OK)
789 return retval;
790
791 reg32 |= FLASH_PECR__PELOCK;
792 retval = target_write_u32(target, FLASH_PECR, reg32);
793 if (retval != ERROR_OK)
794 return retval;
795
796 return ERROR_OK;
797 }
798
799 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
800 {
801 struct target *target = bank->target;
802 int retval;
803 uint32_t reg32;
804
805 /*
806 * To erase a sector (i.e. FLASH_PAGES_PER_SECTOR pages),
807 * first unlock the memory, loop over the pages of this sector
808 * and write 0x0 to its first word.
809 */
810
811 retval = stm32lx_unlock_program_memory(bank);
812 if (retval != ERROR_OK)
813 return retval;
814
815 for (int page = 0; page < FLASH_PAGES_PER_SECTOR; page++) {
816 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
817 retval = target_write_u32(target, FLASH_PECR, reg32);
818 if (retval != ERROR_OK)
819 return retval;
820
821 retval = stm32lx_wait_until_bsy_clear(bank);
822 if (retval != ERROR_OK)
823 return retval;
824
825 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
826 * FLASH_PAGE_SIZE);
827 retval = target_write_u32(target, addr, 0x0);
828 if (retval != ERROR_OK)
829 return retval;
830
831 retval = stm32lx_wait_until_bsy_clear(bank);
832 if (retval != ERROR_OK)
833 return retval;
834 }
835
836 retval = stm32lx_lock_program_memory(bank);
837 if (retval != ERROR_OK)
838 return retval;
839
840 return ERROR_OK;
841 }
842
843 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
844 {
845 struct target *target = bank->target;
846 uint32_t status;
847 int retval = ERROR_OK;
848 int timeout = 100;
849
850 /* wait for busy to clear */
851 for (;;) {
852 retval = target_read_u32(target, FLASH_SR, &status);
853 if (retval != ERROR_OK)
854 return retval;
855
856 if ((status & FLASH_SR__BSY) == 0)
857 break;
858 if (timeout-- <= 0) {
859 LOG_ERROR("timed out waiting for flash");
860 return ERROR_FAIL;
861 }
862 alive_sleep(1);
863 }
864
865 if (status & FLASH_SR__WRPERR) {
866 LOG_ERROR("access denied / write protected");
867 retval = ERROR_FAIL;
868 }
869
870 if (status & FLASH_SR__PGAERR) {
871 LOG_ERROR("invalid program address");
872 retval = ERROR_FAIL;
873 }
874
875 return retval;
876 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)