e4f499d3cb8225d05ceda26955cdf0866f05e8b6
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33 #include <target/cortex_m.h>
34
35 /* stm32lx flash register locations */
36
37 #define FLASH_ACR 0x00
38 #define FLASH_PECR 0x04
39 #define FLASH_PDKEYR 0x08
40 #define FLASH_PEKEYR 0x0C
41 #define FLASH_PRGKEYR 0x10
42 #define FLASH_OPTKEYR 0x14
43 #define FLASH_SR 0x18
44 #define FLASH_OBR 0x1C
45 #define FLASH_WRPR 0x20
46
47 /* FLASH_ACR bites */
48 #define FLASH_ACR__LATENCY (1<<0)
49 #define FLASH_ACR__PRFTEN (1<<1)
50 #define FLASH_ACR__ACC64 (1<<2)
51 #define FLASH_ACR__SLEEP_PD (1<<3)
52 #define FLASH_ACR__RUN_PD (1<<4)
53
54 /* FLASH_PECR bits */
55 #define FLASH_PECR__PELOCK (1<<0)
56 #define FLASH_PECR__PRGLOCK (1<<1)
57 #define FLASH_PECR__OPTLOCK (1<<2)
58 #define FLASH_PECR__PROG (1<<3)
59 #define FLASH_PECR__DATA (1<<4)
60 #define FLASH_PECR__FTDW (1<<8)
61 #define FLASH_PECR__ERASE (1<<9)
62 #define FLASH_PECR__FPRG (1<<10)
63 #define FLASH_PECR__EOPIE (1<<16)
64 #define FLASH_PECR__ERRIE (1<<17)
65 #define FLASH_PECR__OBL_LAUNCH (1<<18)
66
67 /* FLASH_SR bits */
68 #define FLASH_SR__BSY (1<<0)
69 #define FLASH_SR__EOP (1<<1)
70 #define FLASH_SR__ENDHV (1<<2)
71 #define FLASH_SR__READY (1<<3)
72 #define FLASH_SR__WRPERR (1<<8)
73 #define FLASH_SR__PGAERR (1<<9)
74 #define FLASH_SR__SIZERR (1<<10)
75 #define FLASH_SR__OPTVERR (1<<11)
76
77 /* Unlock keys */
78 #define PEKEY1 0x89ABCDEF
79 #define PEKEY2 0x02030405
80 #define PRGKEY1 0x8C9DAEBF
81 #define PRGKEY2 0x13141516
82 #define OPTKEY1 0xFBEAD9C8
83 #define OPTKEY2 0x24252627
84
85 /* other registers */
86 #define DBGMCU_IDCODE 0xE0042000
87 #define DBGMCU_IDCODE_L0 0x40015800
88
89 /* Constants */
90 #define FLASH_SECTOR_SIZE 4096
91 #define FLASH_BANK0_ADDRESS 0x08000000
92
93 /* option bytes */
94 #define OPTION_BYTES_ADDRESS 0x1FF80000
95
96 #define OPTION_BYTE_0_PR1 0xFFFF0000
97 #define OPTION_BYTE_0_PR0 0xFF5500AA
98
99 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
100 static int stm32lx_lock_program_memory(struct flash_bank *bank);
101 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
102 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
103 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
104 static int stm32lx_lock(struct flash_bank *bank);
105 static int stm32lx_unlock(struct flash_bank *bank);
106 static int stm32lx_mass_erase(struct flash_bank *bank);
107 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
108 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
109
110 struct stm32lx_rev {
111 uint16_t rev;
112 const char *str;
113 };
114
115 struct stm32lx_part_info {
116 uint16_t id;
117 const char *device_str;
118 const struct stm32lx_rev *revs;
119 size_t num_revs;
120 unsigned int page_size;
121 unsigned int pages_per_sector;
122 uint16_t max_flash_size_kb;
123 uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
124 bool has_dual_banks;
125
126 uint32_t flash_base; /* Flash controller registers location */
127 uint32_t fsize_base; /* Location of FSIZE register */
128 };
129
130 struct stm32lx_flash_bank {
131 int probed;
132 uint32_t idcode;
133 uint32_t user_bank_size;
134 uint32_t flash_base;
135
136 struct stm32lx_part_info part_info;
137 };
138
139 static const struct stm32lx_rev stm32_416_revs[] = {
140 { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
141 };
142 static const struct stm32lx_rev stm32_417_revs[] = {
143 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
144 };
145 static const struct stm32lx_rev stm32_425_revs[] = {
146 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
147 };
148 static const struct stm32lx_rev stm32_427_revs[] = {
149 { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" },
150 };
151 static const struct stm32lx_rev stm32_429_revs[] = {
152 { 0x1000, "A" }, { 0x1018, "Z" },
153 };
154 static const struct stm32lx_rev stm32_436_revs[] = {
155 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
156 };
157 static const struct stm32lx_rev stm32_437_revs[] = {
158 { 0x1000, "A" },
159 };
160 static const struct stm32lx_rev stm32_447_revs[] = {
161 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
162 };
163 static const struct stm32lx_rev stm32_457_revs[] = {
164 { 0x1000, "A" }, { 0x1008, "Z" },
165 };
166
167 static const struct stm32lx_part_info stm32lx_parts[] = {
168 {
169 .id = 0x416,
170 .revs = stm32_416_revs,
171 .num_revs = ARRAY_SIZE(stm32_416_revs),
172 .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
173 .page_size = 256,
174 .pages_per_sector = 16,
175 .max_flash_size_kb = 128,
176 .has_dual_banks = false,
177 .flash_base = 0x40023C00,
178 .fsize_base = 0x1FF8004C,
179 },
180 {
181 .id = 0x417,
182 .revs = stm32_417_revs,
183 .num_revs = ARRAY_SIZE(stm32_417_revs),
184 .device_str = "STM32L0xx (Cat. 3)",
185 .page_size = 128,
186 .pages_per_sector = 32,
187 .max_flash_size_kb = 64,
188 .has_dual_banks = false,
189 .flash_base = 0x40022000,
190 .fsize_base = 0x1FF8007C,
191 },
192 {
193 .id = 0x425,
194 .revs = stm32_425_revs,
195 .num_revs = ARRAY_SIZE(stm32_425_revs),
196 .device_str = "STM32L0xx (Cat. 2)",
197 .page_size = 128,
198 .pages_per_sector = 32,
199 .max_flash_size_kb = 32,
200 .has_dual_banks = false,
201 .flash_base = 0x40022000,
202 .fsize_base = 0x1FF8007C,
203 },
204 {
205 .id = 0x427,
206 .revs = stm32_427_revs,
207 .num_revs = ARRAY_SIZE(stm32_427_revs),
208 .device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
209 .page_size = 256,
210 .pages_per_sector = 16,
211 .max_flash_size_kb = 256,
212 .has_dual_banks = false,
213 .flash_base = 0x40023C00,
214 .fsize_base = 0x1FF800CC,
215 },
216 {
217 .id = 0x429,
218 .revs = stm32_429_revs,
219 .num_revs = ARRAY_SIZE(stm32_429_revs),
220 .device_str = "STM32L1xx (Cat.2)",
221 .page_size = 256,
222 .pages_per_sector = 16,
223 .max_flash_size_kb = 128,
224 .has_dual_banks = false,
225 .flash_base = 0x40023C00,
226 .fsize_base = 0x1FF8004C,
227 },
228 {
229 .id = 0x436,
230 .revs = stm32_436_revs,
231 .num_revs = ARRAY_SIZE(stm32_436_revs),
232 .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
233 .page_size = 256,
234 .pages_per_sector = 16,
235 .max_flash_size_kb = 384,
236 .first_bank_size_kb = 192,
237 .has_dual_banks = true,
238 .flash_base = 0x40023C00,
239 .fsize_base = 0x1FF800CC,
240 },
241 {
242 .id = 0x437,
243 .revs = stm32_437_revs,
244 .num_revs = ARRAY_SIZE(stm32_437_revs),
245 .device_str = "STM32L1xx (Cat.5/Cat.6)",
246 .page_size = 256,
247 .pages_per_sector = 16,
248 .max_flash_size_kb = 512,
249 .first_bank_size_kb = 0, /* determined in runtime */
250 .has_dual_banks = true,
251 .flash_base = 0x40023C00,
252 .fsize_base = 0x1FF800CC,
253 },
254 {
255 .id = 0x447,
256 .revs = stm32_447_revs,
257 .num_revs = ARRAY_SIZE(stm32_447_revs),
258 .device_str = "STM32L0xx (Cat.5)",
259 .page_size = 128,
260 .pages_per_sector = 32,
261 .max_flash_size_kb = 192,
262 .first_bank_size_kb = 0, /* determined in runtime */
263 .has_dual_banks = false, /* determined in runtime */
264 .flash_base = 0x40022000,
265 .fsize_base = 0x1FF8007C,
266 },
267 {
268 .id = 0x457,
269 .revs = stm32_457_revs,
270 .num_revs = ARRAY_SIZE(stm32_457_revs),
271 .device_str = "STM32L0xx (Cat.1)",
272 .page_size = 128,
273 .pages_per_sector = 32,
274 .max_flash_size_kb = 16,
275 .has_dual_banks = false,
276 .flash_base = 0x40022000,
277 .fsize_base = 0x1FF8007C,
278 },
279 };
280
281 /* flash bank stm32lx <base> <size> 0 0 <target#>
282 */
283 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
284 {
285 struct stm32lx_flash_bank *stm32lx_info;
286 if (CMD_ARGC < 6)
287 return ERROR_COMMAND_SYNTAX_ERROR;
288
289 /* Create the bank structure */
290 stm32lx_info = calloc(1, sizeof(*stm32lx_info));
291
292 /* Check allocation */
293 if (stm32lx_info == NULL) {
294 LOG_ERROR("failed to allocate bank structure");
295 return ERROR_FAIL;
296 }
297
298 bank->driver_priv = stm32lx_info;
299
300 stm32lx_info->probed = 0;
301 stm32lx_info->user_bank_size = bank->size;
302
303 /* the stm32l erased value is 0x00 */
304 bank->default_padded_value = bank->erased_value = 0x00;
305
306 return ERROR_OK;
307 }
308
309 COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
310 {
311 int i;
312
313 if (CMD_ARGC < 1)
314 return ERROR_COMMAND_SYNTAX_ERROR;
315
316 struct flash_bank *bank;
317 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
318 if (ERROR_OK != retval)
319 return retval;
320
321 retval = stm32lx_mass_erase(bank);
322 if (retval == ERROR_OK) {
323 /* set all sectors as erased */
324 for (i = 0; i < bank->num_sectors; i++)
325 bank->sectors[i].is_erased = 1;
326
327 command_print(CMD_CTX, "stm32lx mass erase complete");
328 } else {
329 command_print(CMD_CTX, "stm32lx mass erase failed");
330 }
331
332 return retval;
333 }
334
335 COMMAND_HANDLER(stm32lx_handle_lock_command)
336 {
337 if (CMD_ARGC < 1)
338 return ERROR_COMMAND_SYNTAX_ERROR;
339
340 struct flash_bank *bank;
341 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
342 if (ERROR_OK != retval)
343 return retval;
344
345 retval = stm32lx_lock(bank);
346
347 if (retval == ERROR_OK)
348 command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
349 else
350 command_print(CMD_CTX, "STM32Lx lock failed");
351
352 return retval;
353 }
354
355 COMMAND_HANDLER(stm32lx_handle_unlock_command)
356 {
357 if (CMD_ARGC < 1)
358 return ERROR_COMMAND_SYNTAX_ERROR;
359
360 struct flash_bank *bank;
361 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
362 if (ERROR_OK != retval)
363 return retval;
364
365 retval = stm32lx_unlock(bank);
366
367 if (retval == ERROR_OK)
368 command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
369 else
370 command_print(CMD_CTX, "STM32Lx unlock failed");
371
372 return retval;
373 }
374
375 static int stm32lx_protect_check(struct flash_bank *bank)
376 {
377 int retval;
378 struct target *target = bank->target;
379 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
380
381 uint32_t wrpr;
382
383 /*
384 * Read the WRPR word, and check each bit (corresponding to each
385 * flash sector
386 */
387 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
388 &wrpr);
389 if (retval != ERROR_OK)
390 return retval;
391
392 for (int i = 0; i < bank->num_sectors; i++) {
393 if (wrpr & (1 << i))
394 bank->sectors[i].is_protected = 1;
395 else
396 bank->sectors[i].is_protected = 0;
397 }
398 return ERROR_OK;
399 }
400
401 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
402 {
403 int retval;
404
405 /*
406 * It could be possible to do a mass erase if all sectors must be
407 * erased, but it is not implemented yet.
408 */
409
410 if (bank->target->state != TARGET_HALTED) {
411 LOG_ERROR("Target not halted");
412 return ERROR_TARGET_NOT_HALTED;
413 }
414
415 /*
416 * Loop over the selected sectors and erase them
417 */
418 for (int i = first; i <= last; i++) {
419 retval = stm32lx_erase_sector(bank, i);
420 if (retval != ERROR_OK)
421 return retval;
422 bank->sectors[i].is_erased = 1;
423 }
424 return ERROR_OK;
425 }
426
427 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
428 int last)
429 {
430 LOG_WARNING("protection of the STM32L flash is not implemented");
431 return ERROR_OK;
432 }
433
434 static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
435 uint32_t offset, uint32_t count)
436 {
437 struct target *target = bank->target;
438 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
439
440 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
441 uint32_t buffer_size = 16384;
442 struct working_area *write_algorithm;
443 struct working_area *source;
444 uint32_t address = bank->base + offset;
445
446 struct reg_param reg_params[3];
447 struct armv7m_algorithm armv7m_info;
448
449 int retval = ERROR_OK;
450
451 /* see contib/loaders/flash/stm32lx.S for src */
452
453 static const uint8_t stm32lx_flash_write_code[] = {
454 0x92, 0x00, 0x8A, 0x18, 0x01, 0xE0, 0x08, 0xC9, 0x08, 0xC0, 0x91, 0x42, 0xFB, 0xD1, 0x00, 0xBE
455 };
456
457 /* Make sure we're performing a half-page aligned write. */
458 if (count % hp_nb) {
459 LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
460 return ERROR_FAIL;
461 }
462
463 /* flash write code */
464 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
465 &write_algorithm) != ERROR_OK) {
466 LOG_DEBUG("no working area for block memory writes");
467 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
468 }
469
470 /* Write the flashing code */
471 retval = target_write_buffer(target,
472 write_algorithm->address,
473 sizeof(stm32lx_flash_write_code),
474 stm32lx_flash_write_code);
475 if (retval != ERROR_OK) {
476 target_free_working_area(target, write_algorithm);
477 return retval;
478 }
479
480 /* Allocate half pages memory */
481 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
482 if (buffer_size > 1024)
483 buffer_size -= 1024;
484 else
485 buffer_size /= 2;
486
487 if (buffer_size <= stm32lx_info->part_info.page_size) {
488 /* we already allocated the writing code, but failed to get a
489 * buffer, free the algorithm */
490 target_free_working_area(target, write_algorithm);
491
492 LOG_WARNING("no large enough working area available, can't do block memory writes");
493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
494 }
495 }
496
497 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
498 armv7m_info.core_mode = ARM_MODE_THREAD;
499 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
500 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
501 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
502
503 /* Enable half-page write */
504 retval = stm32lx_enable_write_half_page(bank);
505 if (retval != ERROR_OK) {
506 target_free_working_area(target, source);
507 target_free_working_area(target, write_algorithm);
508
509 destroy_reg_param(&reg_params[0]);
510 destroy_reg_param(&reg_params[1]);
511 destroy_reg_param(&reg_params[2]);
512 return retval;
513 }
514
515 struct armv7m_common *armv7m = target_to_armv7m(target);
516 if (armv7m == NULL) {
517
518 /* something is very wrong if armv7m is NULL */
519 LOG_ERROR("unable to get armv7m target");
520 return retval;
521 }
522
523 /* save any DEMCR flags and configure target to catch any Hard Faults */
524 uint32_t demcr_save = armv7m->demcr;
525 armv7m->demcr = VC_HARDERR;
526
527 /* Loop while there are bytes to write */
528 while (count > 0) {
529 uint32_t this_count;
530 this_count = (count > buffer_size) ? buffer_size : count;
531
532 /* Write the next half pages */
533 retval = target_write_buffer(target, source->address, this_count, buffer);
534 if (retval != ERROR_OK)
535 break;
536
537 /* 4: Store useful information in the registers */
538 /* the destination address of the copy (R0) */
539 buf_set_u32(reg_params[0].value, 0, 32, address);
540 /* The source address of the copy (R1) */
541 buf_set_u32(reg_params[1].value, 0, 32, source->address);
542 /* The length of the copy (R2) */
543 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
544
545 /* 5: Execute the bunch of code */
546 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
547 / sizeof(*reg_params), reg_params,
548 write_algorithm->address, 0, 10000, &armv7m_info);
549 if (retval != ERROR_OK)
550 break;
551
552 /* check for Hard Fault */
553 if (armv7m->exception_number == 3)
554 break;
555
556 /* 6: Wait while busy */
557 retval = stm32lx_wait_until_bsy_clear(bank);
558 if (retval != ERROR_OK)
559 break;
560
561 buffer += this_count;
562 address += this_count;
563 count -= this_count;
564 }
565
566 /* restore previous flags */
567 armv7m->demcr = demcr_save;
568
569 if (armv7m->exception_number == 3) {
570
571 /* the stm32l15x devices seem to have an issue when blank.
572 * if a ram loader is executed on a blank device it will
573 * Hard Fault, this issue does not happen for a already programmed device.
574 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
575 * The workaround of handling the Hard Fault exception does work, but makes the
576 * loader more complicated, as a compromise we manually write the pages, programming time
577 * is reduced by 50% using this slower method.
578 */
579
580 LOG_WARNING("Couldn't use loader, falling back to page memory writes");
581
582 while (count > 0) {
583 uint32_t this_count;
584 this_count = (count > hp_nb) ? hp_nb : count;
585
586 /* Write the next half pages */
587 retval = target_write_buffer(target, address, this_count, buffer);
588 if (retval != ERROR_OK)
589 break;
590
591 /* Wait while busy */
592 retval = stm32lx_wait_until_bsy_clear(bank);
593 if (retval != ERROR_OK)
594 break;
595
596 buffer += this_count;
597 address += this_count;
598 count -= this_count;
599 }
600 }
601
602 if (retval == ERROR_OK)
603 retval = stm32lx_lock_program_memory(bank);
604
605 target_free_working_area(target, source);
606 target_free_working_area(target, write_algorithm);
607
608 destroy_reg_param(&reg_params[0]);
609 destroy_reg_param(&reg_params[1]);
610 destroy_reg_param(&reg_params[2]);
611
612 return retval;
613 }
614
615 static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
616 uint32_t offset, uint32_t count)
617 {
618 struct target *target = bank->target;
619 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
620
621 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
622 uint32_t halfpages_number;
623 uint32_t bytes_remaining = 0;
624 uint32_t address = bank->base + offset;
625 uint32_t bytes_written = 0;
626 int retval, retval2;
627
628 if (bank->target->state != TARGET_HALTED) {
629 LOG_ERROR("Target not halted");
630 return ERROR_TARGET_NOT_HALTED;
631 }
632
633 if (offset & 0x3) {
634 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
635 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
636 }
637
638 retval = stm32lx_unlock_program_memory(bank);
639 if (retval != ERROR_OK)
640 return retval;
641
642 /* first we need to write any unaligned head bytes upto
643 * the next 128 byte page */
644
645 if (offset % hp_nb)
646 bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
647
648 while (bytes_remaining > 0) {
649 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
650
651 /* copy remaining bytes into the write buffer */
652 uint32_t bytes_to_write = MIN(4, bytes_remaining);
653 memcpy(value, buffer + bytes_written, bytes_to_write);
654
655 retval = target_write_buffer(target, address, 4, value);
656 if (retval != ERROR_OK)
657 goto reset_pg_and_lock;
658
659 bytes_written += bytes_to_write;
660 bytes_remaining -= bytes_to_write;
661 address += 4;
662
663 retval = stm32lx_wait_until_bsy_clear(bank);
664 if (retval != ERROR_OK)
665 goto reset_pg_and_lock;
666 }
667
668 offset += bytes_written;
669 count -= bytes_written;
670
671 /* this should always pass this check here */
672 assert((offset % hp_nb) == 0);
673
674 /* calculate half pages */
675 halfpages_number = count / hp_nb;
676
677 if (halfpages_number) {
678 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
679 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
680 /* attempt slow memory writes */
681 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
682 halfpages_number = 0;
683 } else {
684 if (retval != ERROR_OK)
685 return ERROR_FAIL;
686 }
687 }
688
689 /* write any remaining bytes */
690 uint32_t page_bytes_written = hp_nb * halfpages_number;
691 bytes_written += page_bytes_written;
692 address += page_bytes_written;
693 bytes_remaining = count - page_bytes_written;
694
695 retval = stm32lx_unlock_program_memory(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 while (bytes_remaining > 0) {
700 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
701
702 /* copy remaining bytes into the write buffer */
703 uint32_t bytes_to_write = MIN(4, bytes_remaining);
704 memcpy(value, buffer + bytes_written, bytes_to_write);
705
706 retval = target_write_buffer(target, address, 4, value);
707 if (retval != ERROR_OK)
708 goto reset_pg_and_lock;
709
710 bytes_written += bytes_to_write;
711 bytes_remaining -= bytes_to_write;
712 address += 4;
713
714 retval = stm32lx_wait_until_bsy_clear(bank);
715 if (retval != ERROR_OK)
716 goto reset_pg_and_lock;
717 }
718
719 reset_pg_and_lock:
720 retval2 = stm32lx_lock_program_memory(bank);
721 if (retval == ERROR_OK)
722 retval = retval2;
723
724 return retval;
725 }
726
727 static int stm32lx_read_id_code(struct target *target, uint32_t *id)
728 {
729 /* read stm32 device id register */
730 int retval = target_read_u32(target, DBGMCU_IDCODE, id);
731 if (retval != ERROR_OK)
732 return retval;
733
734 /* STM32L0 parts will have 0 there, try reading the L0's location for
735 * DBG_IDCODE in case this is an L0 part. */
736 if (*id == 0)
737 retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
738
739 return retval;
740 }
741
742 static int stm32lx_probe(struct flash_bank *bank)
743 {
744 struct target *target = bank->target;
745 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
746 int i;
747 uint16_t flash_size_in_kb;
748 uint32_t device_id;
749 uint32_t base_address = FLASH_BANK0_ADDRESS;
750 uint32_t second_bank_base;
751 unsigned int n;
752
753 stm32lx_info->probed = 0;
754
755 int retval = stm32lx_read_id_code(bank->target, &device_id);
756 if (retval != ERROR_OK)
757 return retval;
758
759 stm32lx_info->idcode = device_id;
760
761 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
762
763 for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
764 if ((device_id & 0xfff) == stm32lx_parts[n].id) {
765 stm32lx_info->part_info = stm32lx_parts[n];
766 break;
767 }
768 }
769
770 if (n == ARRAY_SIZE(stm32lx_parts)) {
771 LOG_WARNING("Cannot identify target as a STM32L family.");
772 return ERROR_FAIL;
773 } else {
774 LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
775 }
776
777 stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
778
779 /* Get the flash size from target. */
780 retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
781 &flash_size_in_kb);
782
783 /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
784 * or 256K, respectively. Please see RM0038 r8 or newer and refer to
785 * section 30.1.1. */
786 if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
787 if (flash_size_in_kb == 0)
788 flash_size_in_kb = 384;
789 else if (flash_size_in_kb == 1)
790 flash_size_in_kb = 256;
791 }
792
793 /* Failed reading flash size or flash size invalid (early silicon),
794 * default to max target family */
795 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
796 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
797 stm32lx_info->part_info.max_flash_size_kb);
798 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
799 } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
800 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
801 flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
802 stm32lx_info->part_info.max_flash_size_kb);
803 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
804 }
805
806 /* Overwrite default dual-bank configuration */
807 retval = stm32lx_update_part_info(bank, flash_size_in_kb);
808 if (retval != ERROR_OK)
809 return ERROR_FAIL;
810
811 if (stm32lx_info->part_info.has_dual_banks) {
812 /* Use the configured base address to determine if this is the first or second flash bank.
813 * Verify that the base address is reasonably correct and determine the flash bank size
814 */
815 second_bank_base = base_address +
816 stm32lx_info->part_info.first_bank_size_kb * 1024;
817 if (bank->base == second_bank_base || !bank->base) {
818 /* This is the second bank */
819 base_address = second_bank_base;
820 flash_size_in_kb = flash_size_in_kb -
821 stm32lx_info->part_info.first_bank_size_kb;
822 } else if (bank->base == base_address) {
823 /* This is the first bank */
824 flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
825 } else {
826 LOG_WARNING("STM32L flash bank base address config is incorrect."
827 " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
828 bank->base, base_address, second_bank_base);
829 return ERROR_FAIL;
830 }
831 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
832 bank->bank_number, flash_size_in_kb, base_address);
833 } else {
834 LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
835 }
836
837 /* if the user sets the size manually then ignore the probed value
838 * this allows us to work around devices that have a invalid flash size register value */
839 if (stm32lx_info->user_bank_size) {
840 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
841 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
842 }
843
844 /* calculate numbers of sectors (4kB per sector) */
845 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
846
847 if (bank->sectors) {
848 free(bank->sectors);
849 bank->sectors = NULL;
850 }
851
852 bank->size = flash_size_in_kb * 1024;
853 bank->base = base_address;
854 bank->num_sectors = num_sectors;
855 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
856 if (bank->sectors == NULL) {
857 LOG_ERROR("failed to allocate bank sectors");
858 return ERROR_FAIL;
859 }
860
861 for (i = 0; i < num_sectors; i++) {
862 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
863 bank->sectors[i].size = FLASH_SECTOR_SIZE;
864 bank->sectors[i].is_erased = -1;
865 bank->sectors[i].is_protected = 1;
866 }
867
868 stm32lx_info->probed = 1;
869
870 return ERROR_OK;
871 }
872
873 static int stm32lx_auto_probe(struct flash_bank *bank)
874 {
875 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
876
877 if (stm32lx_info->probed)
878 return ERROR_OK;
879
880 return stm32lx_probe(bank);
881 }
882
883 /* This method must return a string displaying information about the bank */
884 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
885 {
886 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
887 const struct stm32lx_part_info *info = &stm32lx_info->part_info;
888 uint16_t rev_id = stm32lx_info->idcode >> 16;
889 const char *rev_str = NULL;
890
891 if (!stm32lx_info->probed) {
892 int retval = stm32lx_probe(bank);
893 if (retval != ERROR_OK) {
894 snprintf(buf, buf_size,
895 "Unable to find bank information.");
896 return retval;
897 }
898 }
899
900 for (unsigned int i = 0; i < info->num_revs; i++)
901 if (rev_id == info->revs[i].rev)
902 rev_str = info->revs[i].str;
903
904 if (rev_str != NULL) {
905 snprintf(buf, buf_size,
906 "%s - Rev: %s",
907 info->device_str, rev_str);
908 } else {
909 snprintf(buf, buf_size,
910 "%s - Rev: unknown (0x%04x)",
911 info->device_str, rev_id);
912 }
913
914 return ERROR_OK;
915 }
916
917 static const struct command_registration stm32lx_exec_command_handlers[] = {
918 {
919 .name = "mass_erase",
920 .handler = stm32lx_handle_mass_erase_command,
921 .mode = COMMAND_EXEC,
922 .usage = "bank_id",
923 .help = "Erase entire flash device. including available EEPROM",
924 },
925 {
926 .name = "lock",
927 .handler = stm32lx_handle_lock_command,
928 .mode = COMMAND_EXEC,
929 .usage = "bank_id",
930 .help = "Increase the readout protection to Level 1.",
931 },
932 {
933 .name = "unlock",
934 .handler = stm32lx_handle_unlock_command,
935 .mode = COMMAND_EXEC,
936 .usage = "bank_id",
937 .help = "Lower the readout protection from Level 1 to 0.",
938 },
939 COMMAND_REGISTRATION_DONE
940 };
941
942 static const struct command_registration stm32lx_command_handlers[] = {
943 {
944 .name = "stm32lx",
945 .mode = COMMAND_ANY,
946 .help = "stm32lx flash command group",
947 .usage = "",
948 .chain = stm32lx_exec_command_handlers,
949 },
950 COMMAND_REGISTRATION_DONE
951 };
952
953 struct flash_driver stm32lx_flash = {
954 .name = "stm32lx",
955 .commands = stm32lx_command_handlers,
956 .flash_bank_command = stm32lx_flash_bank_command,
957 .erase = stm32lx_erase,
958 .protect = stm32lx_protect,
959 .write = stm32lx_write,
960 .read = default_flash_read,
961 .probe = stm32lx_probe,
962 .auto_probe = stm32lx_auto_probe,
963 .erase_check = default_flash_blank_check,
964 .protect_check = stm32lx_protect_check,
965 .info = stm32lx_get_info,
966 };
967
968 /* Static methods implementation */
969 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
970 {
971 struct target *target = bank->target;
972 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
973 int retval;
974 uint32_t reg32;
975
976 /*
977 * Unlocking the program memory is done by unlocking the PECR,
978 * then by writing the 2 PRGKEY to the PRGKEYR register
979 */
980
981 /* check flash is not already unlocked */
982 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
983 &reg32);
984 if (retval != ERROR_OK)
985 return retval;
986
987 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
988 return ERROR_OK;
989
990 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
991 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
992 PEKEY1);
993 if (retval != ERROR_OK)
994 return retval;
995
996 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
997 PEKEY2);
998 if (retval != ERROR_OK)
999 return retval;
1000
1001 /* Make sure it worked */
1002 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1003 &reg32);
1004 if (retval != ERROR_OK)
1005 return retval;
1006
1007 if (reg32 & FLASH_PECR__PELOCK) {
1008 LOG_ERROR("PELOCK is not cleared :(");
1009 return ERROR_FLASH_OPERATION_FAILED;
1010 }
1011
1012 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1013 PRGKEY1);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1017 PRGKEY2);
1018 if (retval != ERROR_OK)
1019 return retval;
1020
1021 /* Make sure it worked */
1022 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1023 &reg32);
1024 if (retval != ERROR_OK)
1025 return retval;
1026
1027 if (reg32 & FLASH_PECR__PRGLOCK) {
1028 LOG_ERROR("PRGLOCK is not cleared :(");
1029 return ERROR_FLASH_OPERATION_FAILED;
1030 }
1031
1032 return ERROR_OK;
1033 }
1034
1035 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
1036 {
1037 struct target *target = bank->target;
1038 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1039 int retval;
1040 uint32_t reg32;
1041
1042 /**
1043 * Unlock the program memory, then set the FPRG bit in the PECR register.
1044 */
1045 retval = stm32lx_unlock_program_memory(bank);
1046 if (retval != ERROR_OK)
1047 return retval;
1048
1049 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1050 &reg32);
1051 if (retval != ERROR_OK)
1052 return retval;
1053
1054 reg32 |= FLASH_PECR__FPRG;
1055 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1056 reg32);
1057 if (retval != ERROR_OK)
1058 return retval;
1059
1060 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1061 &reg32);
1062 if (retval != ERROR_OK)
1063 return retval;
1064
1065 reg32 |= FLASH_PECR__PROG;
1066 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1067 reg32);
1068
1069 return retval;
1070 }
1071
1072 static int stm32lx_lock_program_memory(struct flash_bank *bank)
1073 {
1074 struct target *target = bank->target;
1075 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1076 int retval;
1077 uint32_t reg32;
1078
1079 /* To lock the program memory, simply set the lock bit and lock PECR */
1080
1081 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1082 &reg32);
1083 if (retval != ERROR_OK)
1084 return retval;
1085
1086 reg32 |= FLASH_PECR__PRGLOCK;
1087 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1088 reg32);
1089 if (retval != ERROR_OK)
1090 return retval;
1091
1092 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1093 &reg32);
1094 if (retval != ERROR_OK)
1095 return retval;
1096
1097 reg32 |= FLASH_PECR__PELOCK;
1098 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1099 reg32);
1100 if (retval != ERROR_OK)
1101 return retval;
1102
1103 return ERROR_OK;
1104 }
1105
1106 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
1107 {
1108 struct target *target = bank->target;
1109 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1110 int retval;
1111 uint32_t reg32;
1112
1113 /*
1114 * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
1115 * first unlock the memory, loop over the pages of this sector
1116 * and write 0x0 to its first word.
1117 */
1118
1119 retval = stm32lx_unlock_program_memory(bank);
1120 if (retval != ERROR_OK)
1121 return retval;
1122
1123 for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
1124 page++) {
1125 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
1126 retval = target_write_u32(target,
1127 stm32lx_info->flash_base + FLASH_PECR, reg32);
1128 if (retval != ERROR_OK)
1129 return retval;
1130
1131 retval = stm32lx_wait_until_bsy_clear(bank);
1132 if (retval != ERROR_OK)
1133 return retval;
1134
1135 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
1136 * stm32lx_info->part_info.page_size);
1137 retval = target_write_u32(target, addr, 0x0);
1138 if (retval != ERROR_OK)
1139 return retval;
1140
1141 retval = stm32lx_wait_until_bsy_clear(bank);
1142 if (retval != ERROR_OK)
1143 return retval;
1144 }
1145
1146 retval = stm32lx_lock_program_memory(bank);
1147 if (retval != ERROR_OK)
1148 return retval;
1149
1150 return ERROR_OK;
1151 }
1152
1153 static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
1154 {
1155 struct target *target = bank->target;
1156 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1157
1158 return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
1159 }
1160
1161 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
1162 {
1163 return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
1164 }
1165
1166 static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
1167 {
1168 struct target *target = bank->target;
1169 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1170 int retval;
1171 uint32_t reg32;
1172
1173 /*
1174 * Unlocking the options bytes is done by unlocking the PECR,
1175 * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
1176 */
1177
1178 /* check flash is not already unlocked */
1179 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1180 if (retval != ERROR_OK)
1181 return retval;
1182
1183 if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
1184 return ERROR_OK;
1185
1186 if ((reg32 & FLASH_PECR__PELOCK) != 0) {
1187
1188 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
1189 if (retval != ERROR_OK)
1190 return retval;
1191
1192 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
1193 if (retval != ERROR_OK)
1194 return retval;
1195 }
1196
1197 /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
1198 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
1199 if (retval != ERROR_OK)
1200 return retval;
1201
1202 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
1203 if (retval != ERROR_OK)
1204 return retval;
1205
1206 return ERROR_OK;
1207 }
1208
1209 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
1210 {
1211 struct target *target = bank->target;
1212 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1213 uint32_t status;
1214 int retval = ERROR_OK;
1215
1216 /* wait for busy to clear */
1217 for (;;) {
1218 retval = stm32lx_get_flash_status(bank, &status);
1219 if (retval != ERROR_OK)
1220 return retval;
1221
1222 LOG_DEBUG("status: 0x%" PRIx32 "", status);
1223 if ((status & FLASH_SR__BSY) == 0)
1224 break;
1225
1226 if (timeout-- <= 0) {
1227 LOG_ERROR("timed out waiting for flash");
1228 return ERROR_FAIL;
1229 }
1230 alive_sleep(1);
1231 }
1232
1233 if (status & FLASH_SR__WRPERR) {
1234 LOG_ERROR("access denied / write protected");
1235 retval = ERROR_FAIL;
1236 }
1237
1238 if (status & FLASH_SR__PGAERR) {
1239 LOG_ERROR("invalid program address");
1240 retval = ERROR_FAIL;
1241 }
1242
1243 /* Clear but report errors */
1244 if (status & FLASH_SR__OPTVERR) {
1245 /* If this operation fails, we ignore it and report the original retval */
1246 target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
1247 }
1248
1249 return retval;
1250 }
1251
1252 static int stm32lx_obl_launch(struct flash_bank *bank)
1253 {
1254 struct target *target = bank->target;
1255 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1256 int retval;
1257
1258 /* This will fail as the target gets immediately rebooted */
1259 target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1260 FLASH_PECR__OBL_LAUNCH);
1261
1262 size_t tries = 10;
1263 do {
1264 target_halt(target);
1265 retval = target_poll(target);
1266 } while (--tries > 0 &&
1267 (retval != ERROR_OK || target->state != TARGET_HALTED));
1268
1269 return tries ? ERROR_OK : ERROR_FAIL;
1270 }
1271
1272 static int stm32lx_lock(struct flash_bank *bank)
1273 {
1274 int retval;
1275 struct target *target = bank->target;
1276
1277 if (target->state != TARGET_HALTED) {
1278 LOG_ERROR("Target not halted");
1279 return ERROR_TARGET_NOT_HALTED;
1280 }
1281
1282 retval = stm32lx_unlock_options_bytes(bank);
1283 if (retval != ERROR_OK)
1284 return retval;
1285
1286 /* set the RDP protection level to 1 */
1287 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
1288 if (retval != ERROR_OK)
1289 return retval;
1290
1291 return ERROR_OK;
1292 }
1293
1294 static int stm32lx_unlock(struct flash_bank *bank)
1295 {
1296 int retval;
1297 struct target *target = bank->target;
1298
1299 if (target->state != TARGET_HALTED) {
1300 LOG_ERROR("Target not halted");
1301 return ERROR_TARGET_NOT_HALTED;
1302 }
1303
1304 retval = stm32lx_unlock_options_bytes(bank);
1305 if (retval != ERROR_OK)
1306 return retval;
1307
1308 /* set the RDP protection level to 0 */
1309 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
1310 if (retval != ERROR_OK)
1311 return retval;
1312
1313 retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
1314 if (retval != ERROR_OK)
1315 return retval;
1316
1317 return ERROR_OK;
1318 }
1319
1320 static int stm32lx_mass_erase(struct flash_bank *bank)
1321 {
1322 int retval;
1323 struct target *target = bank->target;
1324 struct stm32lx_flash_bank *stm32lx_info = NULL;
1325 uint32_t reg32;
1326
1327 if (target->state != TARGET_HALTED) {
1328 LOG_ERROR("Target not halted");
1329 return ERROR_TARGET_NOT_HALTED;
1330 }
1331
1332 stm32lx_info = bank->driver_priv;
1333
1334 retval = stm32lx_lock(bank);
1335 if (retval != ERROR_OK)
1336 return retval;
1337
1338 retval = stm32lx_obl_launch(bank);
1339 if (retval != ERROR_OK)
1340 return retval;
1341
1342 retval = stm32lx_unlock(bank);
1343 if (retval != ERROR_OK)
1344 return retval;
1345
1346 retval = stm32lx_obl_launch(bank);
1347 if (retval != ERROR_OK)
1348 return retval;
1349
1350 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1351 if (retval != ERROR_OK)
1352 return retval;
1353
1354 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
1355 if (retval != ERROR_OK)
1356 return retval;
1357
1358 return ERROR_OK;
1359 }
1360
1361 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
1362 {
1363 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1364
1365 switch (stm32lx_info->part_info.id) {
1366 case 0x447: /* STM32L0xx (Cat.5) devices */
1367 if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
1368 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1369 stm32lx_info->part_info.has_dual_banks = true;
1370 }
1371 break;
1372 case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
1373 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1374 break;
1375 }
1376
1377 return ERROR_OK;
1378 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)