flash/nor: implement flash bank deallocation in drivers with simple alloc
[openocd.git] / src / flash / nor / stm32lx.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 by Clement Burin des Roziers *
9 * clement.burin-des-roziers@hikob.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33 #include <target/cortex_m.h>
34
35 /* stm32lx flash register locations */
36
37 #define FLASH_ACR 0x00
38 #define FLASH_PECR 0x04
39 #define FLASH_PDKEYR 0x08
40 #define FLASH_PEKEYR 0x0C
41 #define FLASH_PRGKEYR 0x10
42 #define FLASH_OPTKEYR 0x14
43 #define FLASH_SR 0x18
44 #define FLASH_OBR 0x1C
45 #define FLASH_WRPR 0x20
46
47 /* FLASH_ACR bites */
48 #define FLASH_ACR__LATENCY (1<<0)
49 #define FLASH_ACR__PRFTEN (1<<1)
50 #define FLASH_ACR__ACC64 (1<<2)
51 #define FLASH_ACR__SLEEP_PD (1<<3)
52 #define FLASH_ACR__RUN_PD (1<<4)
53
54 /* FLASH_PECR bits */
55 #define FLASH_PECR__PELOCK (1<<0)
56 #define FLASH_PECR__PRGLOCK (1<<1)
57 #define FLASH_PECR__OPTLOCK (1<<2)
58 #define FLASH_PECR__PROG (1<<3)
59 #define FLASH_PECR__DATA (1<<4)
60 #define FLASH_PECR__FTDW (1<<8)
61 #define FLASH_PECR__ERASE (1<<9)
62 #define FLASH_PECR__FPRG (1<<10)
63 #define FLASH_PECR__EOPIE (1<<16)
64 #define FLASH_PECR__ERRIE (1<<17)
65 #define FLASH_PECR__OBL_LAUNCH (1<<18)
66
67 /* FLASH_SR bits */
68 #define FLASH_SR__BSY (1<<0)
69 #define FLASH_SR__EOP (1<<1)
70 #define FLASH_SR__ENDHV (1<<2)
71 #define FLASH_SR__READY (1<<3)
72 #define FLASH_SR__WRPERR (1<<8)
73 #define FLASH_SR__PGAERR (1<<9)
74 #define FLASH_SR__SIZERR (1<<10)
75 #define FLASH_SR__OPTVERR (1<<11)
76
77 /* Unlock keys */
78 #define PEKEY1 0x89ABCDEF
79 #define PEKEY2 0x02030405
80 #define PRGKEY1 0x8C9DAEBF
81 #define PRGKEY2 0x13141516
82 #define OPTKEY1 0xFBEAD9C8
83 #define OPTKEY2 0x24252627
84
85 /* other registers */
86 #define DBGMCU_IDCODE 0xE0042000
87 #define DBGMCU_IDCODE_L0 0x40015800
88
89 /* Constants */
90 #define FLASH_SECTOR_SIZE 4096
91 #define FLASH_BANK0_ADDRESS 0x08000000
92
93 /* option bytes */
94 #define OPTION_BYTES_ADDRESS 0x1FF80000
95
96 #define OPTION_BYTE_0_PR1 0xFFFF0000
97 #define OPTION_BYTE_0_PR0 0xFF5500AA
98
99 static int stm32lx_unlock_program_memory(struct flash_bank *bank);
100 static int stm32lx_lock_program_memory(struct flash_bank *bank);
101 static int stm32lx_enable_write_half_page(struct flash_bank *bank);
102 static int stm32lx_erase_sector(struct flash_bank *bank, int sector);
103 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank);
104 static int stm32lx_lock(struct flash_bank *bank);
105 static int stm32lx_unlock(struct flash_bank *bank);
106 static int stm32lx_mass_erase(struct flash_bank *bank);
107 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout);
108 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb);
109
110 struct stm32lx_rev {
111 uint16_t rev;
112 const char *str;
113 };
114
115 struct stm32lx_part_info {
116 uint16_t id;
117 const char *device_str;
118 const struct stm32lx_rev *revs;
119 size_t num_revs;
120 unsigned int page_size;
121 unsigned int pages_per_sector;
122 uint16_t max_flash_size_kb;
123 uint16_t first_bank_size_kb; /* used when has_dual_banks is true */
124 bool has_dual_banks;
125
126 uint32_t flash_base; /* Flash controller registers location */
127 uint32_t fsize_base; /* Location of FSIZE register */
128 };
129
130 struct stm32lx_flash_bank {
131 int probed;
132 uint32_t idcode;
133 uint32_t user_bank_size;
134 uint32_t flash_base;
135
136 struct stm32lx_part_info part_info;
137 };
138
139 static const struct stm32lx_rev stm32_416_revs[] = {
140 { 0x1000, "A" }, { 0x1008, "Y" }, { 0x1038, "W" }, { 0x1078, "V" },
141 };
142 static const struct stm32lx_rev stm32_417_revs[] = {
143 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" }, { 0x1038, "X" }
144 };
145 static const struct stm32lx_rev stm32_425_revs[] = {
146 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Y" },
147 };
148 static const struct stm32lx_rev stm32_427_revs[] = {
149 { 0x1000, "A" }, { 0x1018, "Y" }, { 0x1038, "X" },
150 };
151 static const struct stm32lx_rev stm32_429_revs[] = {
152 { 0x1000, "A" }, { 0x1018, "Z" },
153 };
154 static const struct stm32lx_rev stm32_436_revs[] = {
155 { 0x1000, "A" }, { 0x1008, "Z" }, { 0x1018, "Y" },
156 };
157 static const struct stm32lx_rev stm32_437_revs[] = {
158 { 0x1000, "A" },
159 };
160 static const struct stm32lx_rev stm32_447_revs[] = {
161 { 0x1000, "A" }, { 0x2000, "B" }, { 0x2008, "Z" },
162 };
163 static const struct stm32lx_rev stm32_457_revs[] = {
164 { 0x1000, "A" }, { 0x1008, "Z" },
165 };
166
167 static const struct stm32lx_part_info stm32lx_parts[] = {
168 {
169 .id = 0x416,
170 .revs = stm32_416_revs,
171 .num_revs = ARRAY_SIZE(stm32_416_revs),
172 .device_str = "STM32L1xx (Cat.1 - Low/Medium Density)",
173 .page_size = 256,
174 .pages_per_sector = 16,
175 .max_flash_size_kb = 128,
176 .has_dual_banks = false,
177 .flash_base = 0x40023C00,
178 .fsize_base = 0x1FF8004C,
179 },
180 {
181 .id = 0x417,
182 .revs = stm32_417_revs,
183 .num_revs = ARRAY_SIZE(stm32_417_revs),
184 .device_str = "STM32L0xx (Cat. 3)",
185 .page_size = 128,
186 .pages_per_sector = 32,
187 .max_flash_size_kb = 64,
188 .has_dual_banks = false,
189 .flash_base = 0x40022000,
190 .fsize_base = 0x1FF8007C,
191 },
192 {
193 .id = 0x425,
194 .revs = stm32_425_revs,
195 .num_revs = ARRAY_SIZE(stm32_425_revs),
196 .device_str = "STM32L0xx (Cat. 2)",
197 .page_size = 128,
198 .pages_per_sector = 32,
199 .max_flash_size_kb = 32,
200 .has_dual_banks = false,
201 .flash_base = 0x40022000,
202 .fsize_base = 0x1FF8007C,
203 },
204 {
205 .id = 0x427,
206 .revs = stm32_427_revs,
207 .num_revs = ARRAY_SIZE(stm32_427_revs),
208 .device_str = "STM32L1xx (Cat.3 - Medium+ Density)",
209 .page_size = 256,
210 .pages_per_sector = 16,
211 .max_flash_size_kb = 256,
212 .has_dual_banks = false,
213 .flash_base = 0x40023C00,
214 .fsize_base = 0x1FF800CC,
215 },
216 {
217 .id = 0x429,
218 .revs = stm32_429_revs,
219 .num_revs = ARRAY_SIZE(stm32_429_revs),
220 .device_str = "STM32L1xx (Cat.2)",
221 .page_size = 256,
222 .pages_per_sector = 16,
223 .max_flash_size_kb = 128,
224 .has_dual_banks = false,
225 .flash_base = 0x40023C00,
226 .fsize_base = 0x1FF8004C,
227 },
228 {
229 .id = 0x436,
230 .revs = stm32_436_revs,
231 .num_revs = ARRAY_SIZE(stm32_436_revs),
232 .device_str = "STM32L1xx (Cat.4/Cat.3 - Medium+/High Density)",
233 .page_size = 256,
234 .pages_per_sector = 16,
235 .max_flash_size_kb = 384,
236 .first_bank_size_kb = 192,
237 .has_dual_banks = true,
238 .flash_base = 0x40023C00,
239 .fsize_base = 0x1FF800CC,
240 },
241 {
242 .id = 0x437,
243 .revs = stm32_437_revs,
244 .num_revs = ARRAY_SIZE(stm32_437_revs),
245 .device_str = "STM32L1xx (Cat.5/Cat.6)",
246 .page_size = 256,
247 .pages_per_sector = 16,
248 .max_flash_size_kb = 512,
249 .first_bank_size_kb = 0, /* determined in runtime */
250 .has_dual_banks = true,
251 .flash_base = 0x40023C00,
252 .fsize_base = 0x1FF800CC,
253 },
254 {
255 .id = 0x447,
256 .revs = stm32_447_revs,
257 .num_revs = ARRAY_SIZE(stm32_447_revs),
258 .device_str = "STM32L0xx (Cat.5)",
259 .page_size = 128,
260 .pages_per_sector = 32,
261 .max_flash_size_kb = 192,
262 .first_bank_size_kb = 0, /* determined in runtime */
263 .has_dual_banks = false, /* determined in runtime */
264 .flash_base = 0x40022000,
265 .fsize_base = 0x1FF8007C,
266 },
267 {
268 .id = 0x457,
269 .revs = stm32_457_revs,
270 .num_revs = ARRAY_SIZE(stm32_457_revs),
271 .device_str = "STM32L0xx (Cat.1)",
272 .page_size = 128,
273 .pages_per_sector = 32,
274 .max_flash_size_kb = 16,
275 .has_dual_banks = false,
276 .flash_base = 0x40022000,
277 .fsize_base = 0x1FF8007C,
278 },
279 };
280
281 /* flash bank stm32lx <base> <size> 0 0 <target#>
282 */
283 FLASH_BANK_COMMAND_HANDLER(stm32lx_flash_bank_command)
284 {
285 struct stm32lx_flash_bank *stm32lx_info;
286 if (CMD_ARGC < 6)
287 return ERROR_COMMAND_SYNTAX_ERROR;
288
289 /* Create the bank structure */
290 stm32lx_info = calloc(1, sizeof(*stm32lx_info));
291
292 /* Check allocation */
293 if (stm32lx_info == NULL) {
294 LOG_ERROR("failed to allocate bank structure");
295 return ERROR_FAIL;
296 }
297
298 bank->driver_priv = stm32lx_info;
299
300 stm32lx_info->probed = 0;
301 stm32lx_info->user_bank_size = bank->size;
302
303 /* the stm32l erased value is 0x00 */
304 bank->default_padded_value = bank->erased_value = 0x00;
305
306 return ERROR_OK;
307 }
308
309 COMMAND_HANDLER(stm32lx_handle_mass_erase_command)
310 {
311 int i;
312
313 if (CMD_ARGC < 1)
314 return ERROR_COMMAND_SYNTAX_ERROR;
315
316 struct flash_bank *bank;
317 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
318 if (ERROR_OK != retval)
319 return retval;
320
321 retval = stm32lx_mass_erase(bank);
322 if (retval == ERROR_OK) {
323 /* set all sectors as erased */
324 for (i = 0; i < bank->num_sectors; i++)
325 bank->sectors[i].is_erased = 1;
326
327 command_print(CMD_CTX, "stm32lx mass erase complete");
328 } else {
329 command_print(CMD_CTX, "stm32lx mass erase failed");
330 }
331
332 return retval;
333 }
334
335 COMMAND_HANDLER(stm32lx_handle_lock_command)
336 {
337 if (CMD_ARGC < 1)
338 return ERROR_COMMAND_SYNTAX_ERROR;
339
340 struct flash_bank *bank;
341 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
342 if (ERROR_OK != retval)
343 return retval;
344
345 retval = stm32lx_lock(bank);
346
347 if (retval == ERROR_OK)
348 command_print(CMD_CTX, "STM32Lx locked, takes effect after power cycle.");
349 else
350 command_print(CMD_CTX, "STM32Lx lock failed");
351
352 return retval;
353 }
354
355 COMMAND_HANDLER(stm32lx_handle_unlock_command)
356 {
357 if (CMD_ARGC < 1)
358 return ERROR_COMMAND_SYNTAX_ERROR;
359
360 struct flash_bank *bank;
361 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
362 if (ERROR_OK != retval)
363 return retval;
364
365 retval = stm32lx_unlock(bank);
366
367 if (retval == ERROR_OK)
368 command_print(CMD_CTX, "STM32Lx unlocked, takes effect after power cycle.");
369 else
370 command_print(CMD_CTX, "STM32Lx unlock failed");
371
372 return retval;
373 }
374
375 static int stm32lx_protect_check(struct flash_bank *bank)
376 {
377 int retval;
378 struct target *target = bank->target;
379 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
380
381 uint32_t wrpr;
382
383 /*
384 * Read the WRPR word, and check each bit (corresponding to each
385 * flash sector
386 */
387 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_WRPR,
388 &wrpr);
389 if (retval != ERROR_OK)
390 return retval;
391
392 for (int i = 0; i < bank->num_sectors; i++) {
393 if (wrpr & (1 << i))
394 bank->sectors[i].is_protected = 1;
395 else
396 bank->sectors[i].is_protected = 0;
397 }
398 return ERROR_OK;
399 }
400
401 static int stm32lx_erase(struct flash_bank *bank, int first, int last)
402 {
403 int retval;
404
405 /*
406 * It could be possible to do a mass erase if all sectors must be
407 * erased, but it is not implemented yet.
408 */
409
410 if (bank->target->state != TARGET_HALTED) {
411 LOG_ERROR("Target not halted");
412 return ERROR_TARGET_NOT_HALTED;
413 }
414
415 /*
416 * Loop over the selected sectors and erase them
417 */
418 for (int i = first; i <= last; i++) {
419 retval = stm32lx_erase_sector(bank, i);
420 if (retval != ERROR_OK)
421 return retval;
422 bank->sectors[i].is_erased = 1;
423 }
424 return ERROR_OK;
425 }
426
427 static int stm32lx_protect(struct flash_bank *bank, int set, int first,
428 int last)
429 {
430 LOG_WARNING("protection of the STM32L flash is not implemented");
431 return ERROR_OK;
432 }
433
434 static int stm32lx_write_half_pages(struct flash_bank *bank, const uint8_t *buffer,
435 uint32_t offset, uint32_t count)
436 {
437 struct target *target = bank->target;
438 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
439
440 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
441 uint32_t buffer_size = 16384;
442 struct working_area *write_algorithm;
443 struct working_area *source;
444 uint32_t address = bank->base + offset;
445
446 struct reg_param reg_params[3];
447 struct armv7m_algorithm armv7m_info;
448
449 int retval = ERROR_OK;
450
451 /* see contib/loaders/flash/stm32lx.S for src */
452
453 static const uint8_t stm32lx_flash_write_code[] = {
454 0x92, 0x00, 0x8A, 0x18, 0x01, 0xE0, 0x08, 0xC9, 0x08, 0xC0, 0x91, 0x42, 0xFB, 0xD1, 0x00, 0xBE
455 };
456
457 /* Make sure we're performing a half-page aligned write. */
458 if (count % hp_nb) {
459 LOG_ERROR("The byte count must be %" PRIu32 "B-aligned but count is %" PRIi32 "B)", hp_nb, count);
460 return ERROR_FAIL;
461 }
462
463 /* flash write code */
464 if (target_alloc_working_area(target, sizeof(stm32lx_flash_write_code),
465 &write_algorithm) != ERROR_OK) {
466 LOG_DEBUG("no working area for block memory writes");
467 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
468 }
469
470 /* Write the flashing code */
471 retval = target_write_buffer(target,
472 write_algorithm->address,
473 sizeof(stm32lx_flash_write_code),
474 stm32lx_flash_write_code);
475 if (retval != ERROR_OK) {
476 target_free_working_area(target, write_algorithm);
477 return retval;
478 }
479
480 /* Allocate half pages memory */
481 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
482 if (buffer_size > 1024)
483 buffer_size -= 1024;
484 else
485 buffer_size /= 2;
486
487 if (buffer_size <= stm32lx_info->part_info.page_size) {
488 /* we already allocated the writing code, but failed to get a
489 * buffer, free the algorithm */
490 target_free_working_area(target, write_algorithm);
491
492 LOG_WARNING("no large enough working area available, can't do block memory writes");
493 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
494 }
495 }
496
497 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
498 armv7m_info.core_mode = ARM_MODE_THREAD;
499 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
500 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
501 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
502
503 /* Enable half-page write */
504 retval = stm32lx_enable_write_half_page(bank);
505 if (retval != ERROR_OK) {
506 target_free_working_area(target, source);
507 target_free_working_area(target, write_algorithm);
508
509 destroy_reg_param(&reg_params[0]);
510 destroy_reg_param(&reg_params[1]);
511 destroy_reg_param(&reg_params[2]);
512 return retval;
513 }
514
515 struct armv7m_common *armv7m = target_to_armv7m(target);
516 if (armv7m == NULL) {
517
518 /* something is very wrong if armv7m is NULL */
519 LOG_ERROR("unable to get armv7m target");
520 return retval;
521 }
522
523 /* save any DEMCR flags and configure target to catch any Hard Faults */
524 uint32_t demcr_save = armv7m->demcr;
525 armv7m->demcr = VC_HARDERR;
526
527 /* Loop while there are bytes to write */
528 while (count > 0) {
529 uint32_t this_count;
530 this_count = (count > buffer_size) ? buffer_size : count;
531
532 /* Write the next half pages */
533 retval = target_write_buffer(target, source->address, this_count, buffer);
534 if (retval != ERROR_OK)
535 break;
536
537 /* 4: Store useful information in the registers */
538 /* the destination address of the copy (R0) */
539 buf_set_u32(reg_params[0].value, 0, 32, address);
540 /* The source address of the copy (R1) */
541 buf_set_u32(reg_params[1].value, 0, 32, source->address);
542 /* The length of the copy (R2) */
543 buf_set_u32(reg_params[2].value, 0, 32, this_count / 4);
544
545 /* 5: Execute the bunch of code */
546 retval = target_run_algorithm(target, 0, NULL, sizeof(reg_params)
547 / sizeof(*reg_params), reg_params,
548 write_algorithm->address, 0, 10000, &armv7m_info);
549 if (retval != ERROR_OK)
550 break;
551
552 /* check for Hard Fault */
553 if (armv7m->exception_number == 3)
554 break;
555
556 /* 6: Wait while busy */
557 retval = stm32lx_wait_until_bsy_clear(bank);
558 if (retval != ERROR_OK)
559 break;
560
561 buffer += this_count;
562 address += this_count;
563 count -= this_count;
564 }
565
566 /* restore previous flags */
567 armv7m->demcr = demcr_save;
568
569 if (armv7m->exception_number == 3) {
570
571 /* the stm32l15x devices seem to have an issue when blank.
572 * if a ram loader is executed on a blank device it will
573 * Hard Fault, this issue does not happen for a already programmed device.
574 * A related issue is described in the stm32l151xx errata (Doc ID 17721 Rev 6 - 2.1.3).
575 * The workaround of handling the Hard Fault exception does work, but makes the
576 * loader more complicated, as a compromise we manually write the pages, programming time
577 * is reduced by 50% using this slower method.
578 */
579
580 LOG_WARNING("Couldn't use loader, falling back to page memory writes");
581
582 while (count > 0) {
583 uint32_t this_count;
584 this_count = (count > hp_nb) ? hp_nb : count;
585
586 /* Write the next half pages */
587 retval = target_write_buffer(target, address, this_count, buffer);
588 if (retval != ERROR_OK)
589 break;
590
591 /* Wait while busy */
592 retval = stm32lx_wait_until_bsy_clear(bank);
593 if (retval != ERROR_OK)
594 break;
595
596 buffer += this_count;
597 address += this_count;
598 count -= this_count;
599 }
600 }
601
602 if (retval == ERROR_OK)
603 retval = stm32lx_lock_program_memory(bank);
604
605 target_free_working_area(target, source);
606 target_free_working_area(target, write_algorithm);
607
608 destroy_reg_param(&reg_params[0]);
609 destroy_reg_param(&reg_params[1]);
610 destroy_reg_param(&reg_params[2]);
611
612 return retval;
613 }
614
615 static int stm32lx_write(struct flash_bank *bank, const uint8_t *buffer,
616 uint32_t offset, uint32_t count)
617 {
618 struct target *target = bank->target;
619 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
620
621 uint32_t hp_nb = stm32lx_info->part_info.page_size / 2;
622 uint32_t halfpages_number;
623 uint32_t bytes_remaining = 0;
624 uint32_t address = bank->base + offset;
625 uint32_t bytes_written = 0;
626 int retval, retval2;
627
628 if (bank->target->state != TARGET_HALTED) {
629 LOG_ERROR("Target not halted");
630 return ERROR_TARGET_NOT_HALTED;
631 }
632
633 if (offset & 0x3) {
634 LOG_ERROR("offset 0x%" PRIx32 " breaks required 4-byte alignment", offset);
635 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
636 }
637
638 retval = stm32lx_unlock_program_memory(bank);
639 if (retval != ERROR_OK)
640 return retval;
641
642 /* first we need to write any unaligned head bytes upto
643 * the next 128 byte page */
644
645 if (offset % hp_nb)
646 bytes_remaining = MIN(count, hp_nb - (offset % hp_nb));
647
648 while (bytes_remaining > 0) {
649 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
650
651 /* copy remaining bytes into the write buffer */
652 uint32_t bytes_to_write = MIN(4, bytes_remaining);
653 memcpy(value, buffer + bytes_written, bytes_to_write);
654
655 retval = target_write_buffer(target, address, 4, value);
656 if (retval != ERROR_OK)
657 goto reset_pg_and_lock;
658
659 bytes_written += bytes_to_write;
660 bytes_remaining -= bytes_to_write;
661 address += 4;
662
663 retval = stm32lx_wait_until_bsy_clear(bank);
664 if (retval != ERROR_OK)
665 goto reset_pg_and_lock;
666 }
667
668 offset += bytes_written;
669 count -= bytes_written;
670
671 /* this should always pass this check here */
672 assert((offset % hp_nb) == 0);
673
674 /* calculate half pages */
675 halfpages_number = count / hp_nb;
676
677 if (halfpages_number) {
678 retval = stm32lx_write_half_pages(bank, buffer + bytes_written, offset, hp_nb * halfpages_number);
679 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
680 /* attempt slow memory writes */
681 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
682 halfpages_number = 0;
683 } else {
684 if (retval != ERROR_OK)
685 return ERROR_FAIL;
686 }
687 }
688
689 /* write any remaining bytes */
690 uint32_t page_bytes_written = hp_nb * halfpages_number;
691 bytes_written += page_bytes_written;
692 address += page_bytes_written;
693 bytes_remaining = count - page_bytes_written;
694
695 retval = stm32lx_unlock_program_memory(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 while (bytes_remaining > 0) {
700 uint8_t value[4] = {0xff, 0xff, 0xff, 0xff};
701
702 /* copy remaining bytes into the write buffer */
703 uint32_t bytes_to_write = MIN(4, bytes_remaining);
704 memcpy(value, buffer + bytes_written, bytes_to_write);
705
706 retval = target_write_buffer(target, address, 4, value);
707 if (retval != ERROR_OK)
708 goto reset_pg_and_lock;
709
710 bytes_written += bytes_to_write;
711 bytes_remaining -= bytes_to_write;
712 address += 4;
713
714 retval = stm32lx_wait_until_bsy_clear(bank);
715 if (retval != ERROR_OK)
716 goto reset_pg_and_lock;
717 }
718
719 reset_pg_and_lock:
720 retval2 = stm32lx_lock_program_memory(bank);
721 if (retval == ERROR_OK)
722 retval = retval2;
723
724 return retval;
725 }
726
727 static int stm32lx_read_id_code(struct target *target, uint32_t *id)
728 {
729 struct armv7m_common *armv7m = target_to_armv7m(target);
730 int retval;
731 if (armv7m->arm.is_armv6m == true)
732 retval = target_read_u32(target, DBGMCU_IDCODE_L0, id);
733 else
734 /* read stm32 device id register */
735 retval = target_read_u32(target, DBGMCU_IDCODE, id);
736 return retval;
737 }
738
739 static int stm32lx_probe(struct flash_bank *bank)
740 {
741 struct target *target = bank->target;
742 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
743 int i;
744 uint16_t flash_size_in_kb;
745 uint32_t device_id;
746 uint32_t base_address = FLASH_BANK0_ADDRESS;
747 uint32_t second_bank_base;
748 unsigned int n;
749
750 stm32lx_info->probed = 0;
751
752 int retval = stm32lx_read_id_code(bank->target, &device_id);
753 if (retval != ERROR_OK)
754 return retval;
755
756 stm32lx_info->idcode = device_id;
757
758 LOG_DEBUG("device id = 0x%08" PRIx32 "", device_id);
759
760 for (n = 0; n < ARRAY_SIZE(stm32lx_parts); n++) {
761 if ((device_id & 0xfff) == stm32lx_parts[n].id) {
762 stm32lx_info->part_info = stm32lx_parts[n];
763 break;
764 }
765 }
766
767 if (n == ARRAY_SIZE(stm32lx_parts)) {
768 LOG_WARNING("Cannot identify target as a STM32L family.");
769 return ERROR_FAIL;
770 } else {
771 LOG_INFO("Device: %s", stm32lx_info->part_info.device_str);
772 }
773
774 stm32lx_info->flash_base = stm32lx_info->part_info.flash_base;
775
776 /* Get the flash size from target. */
777 retval = target_read_u16(target, stm32lx_info->part_info.fsize_base,
778 &flash_size_in_kb);
779
780 /* 0x436 devices report their flash size as a 0 or 1 code indicating 384K
781 * or 256K, respectively. Please see RM0038 r8 or newer and refer to
782 * section 30.1.1. */
783 if (retval == ERROR_OK && (device_id & 0xfff) == 0x436) {
784 if (flash_size_in_kb == 0)
785 flash_size_in_kb = 384;
786 else if (flash_size_in_kb == 1)
787 flash_size_in_kb = 256;
788 }
789
790 /* 0x429 devices only use the lowest 8 bits of the flash size register */
791 if (retval == ERROR_OK && (device_id & 0xfff) == 0x429) {
792 flash_size_in_kb &= 0xff;
793 }
794
795 /* Failed reading flash size or flash size invalid (early silicon),
796 * default to max target family */
797 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
798 LOG_WARNING("STM32L flash size failed, probe inaccurate - assuming %dk flash",
799 stm32lx_info->part_info.max_flash_size_kb);
800 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
801 } else if (flash_size_in_kb > stm32lx_info->part_info.max_flash_size_kb) {
802 LOG_WARNING("STM32L probed flash size assumed incorrect since FLASH_SIZE=%dk > %dk, - assuming %dk flash",
803 flash_size_in_kb, stm32lx_info->part_info.max_flash_size_kb,
804 stm32lx_info->part_info.max_flash_size_kb);
805 flash_size_in_kb = stm32lx_info->part_info.max_flash_size_kb;
806 }
807
808 /* Overwrite default dual-bank configuration */
809 retval = stm32lx_update_part_info(bank, flash_size_in_kb);
810 if (retval != ERROR_OK)
811 return ERROR_FAIL;
812
813 if (stm32lx_info->part_info.has_dual_banks) {
814 /* Use the configured base address to determine if this is the first or second flash bank.
815 * Verify that the base address is reasonably correct and determine the flash bank size
816 */
817 second_bank_base = base_address +
818 stm32lx_info->part_info.first_bank_size_kb * 1024;
819 if (bank->base == second_bank_base || !bank->base) {
820 /* This is the second bank */
821 base_address = second_bank_base;
822 flash_size_in_kb = flash_size_in_kb -
823 stm32lx_info->part_info.first_bank_size_kb;
824 } else if (bank->base == base_address) {
825 /* This is the first bank */
826 flash_size_in_kb = stm32lx_info->part_info.first_bank_size_kb;
827 } else {
828 LOG_WARNING("STM32L flash bank base address config is incorrect."
829 " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32,
830 bank->base, base_address, second_bank_base);
831 return ERROR_FAIL;
832 }
833 LOG_INFO("STM32L flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32,
834 bank->bank_number, flash_size_in_kb, base_address);
835 } else {
836 LOG_INFO("STM32L flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address);
837 }
838
839 /* if the user sets the size manually then ignore the probed value
840 * this allows us to work around devices that have a invalid flash size register value */
841 if (stm32lx_info->user_bank_size) {
842 flash_size_in_kb = stm32lx_info->user_bank_size / 1024;
843 LOG_INFO("ignoring flash probed value, using configured bank size: %dkbytes", flash_size_in_kb);
844 }
845
846 /* calculate numbers of sectors (4kB per sector) */
847 int num_sectors = (flash_size_in_kb * 1024) / FLASH_SECTOR_SIZE;
848
849 if (bank->sectors) {
850 free(bank->sectors);
851 bank->sectors = NULL;
852 }
853
854 bank->size = flash_size_in_kb * 1024;
855 bank->base = base_address;
856 bank->num_sectors = num_sectors;
857 bank->sectors = malloc(sizeof(struct flash_sector) * num_sectors);
858 if (bank->sectors == NULL) {
859 LOG_ERROR("failed to allocate bank sectors");
860 return ERROR_FAIL;
861 }
862
863 for (i = 0; i < num_sectors; i++) {
864 bank->sectors[i].offset = i * FLASH_SECTOR_SIZE;
865 bank->sectors[i].size = FLASH_SECTOR_SIZE;
866 bank->sectors[i].is_erased = -1;
867 bank->sectors[i].is_protected = 1;
868 }
869
870 stm32lx_info->probed = 1;
871
872 return ERROR_OK;
873 }
874
875 static int stm32lx_auto_probe(struct flash_bank *bank)
876 {
877 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
878
879 if (stm32lx_info->probed)
880 return ERROR_OK;
881
882 return stm32lx_probe(bank);
883 }
884
885 /* This method must return a string displaying information about the bank */
886 static int stm32lx_get_info(struct flash_bank *bank, char *buf, int buf_size)
887 {
888 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
889 const struct stm32lx_part_info *info = &stm32lx_info->part_info;
890 uint16_t rev_id = stm32lx_info->idcode >> 16;
891 const char *rev_str = NULL;
892
893 if (!stm32lx_info->probed) {
894 int retval = stm32lx_probe(bank);
895 if (retval != ERROR_OK) {
896 snprintf(buf, buf_size,
897 "Unable to find bank information.");
898 return retval;
899 }
900 }
901
902 for (unsigned int i = 0; i < info->num_revs; i++)
903 if (rev_id == info->revs[i].rev)
904 rev_str = info->revs[i].str;
905
906 if (rev_str != NULL) {
907 snprintf(buf, buf_size,
908 "%s - Rev: %s",
909 info->device_str, rev_str);
910 } else {
911 snprintf(buf, buf_size,
912 "%s - Rev: unknown (0x%04x)",
913 info->device_str, rev_id);
914 }
915
916 return ERROR_OK;
917 }
918
919 static const struct command_registration stm32lx_exec_command_handlers[] = {
920 {
921 .name = "mass_erase",
922 .handler = stm32lx_handle_mass_erase_command,
923 .mode = COMMAND_EXEC,
924 .usage = "bank_id",
925 .help = "Erase entire flash device. including available EEPROM",
926 },
927 {
928 .name = "lock",
929 .handler = stm32lx_handle_lock_command,
930 .mode = COMMAND_EXEC,
931 .usage = "bank_id",
932 .help = "Increase the readout protection to Level 1.",
933 },
934 {
935 .name = "unlock",
936 .handler = stm32lx_handle_unlock_command,
937 .mode = COMMAND_EXEC,
938 .usage = "bank_id",
939 .help = "Lower the readout protection from Level 1 to 0.",
940 },
941 COMMAND_REGISTRATION_DONE
942 };
943
944 static const struct command_registration stm32lx_command_handlers[] = {
945 {
946 .name = "stm32lx",
947 .mode = COMMAND_ANY,
948 .help = "stm32lx flash command group",
949 .usage = "",
950 .chain = stm32lx_exec_command_handlers,
951 },
952 COMMAND_REGISTRATION_DONE
953 };
954
955 struct flash_driver stm32lx_flash = {
956 .name = "stm32lx",
957 .commands = stm32lx_command_handlers,
958 .flash_bank_command = stm32lx_flash_bank_command,
959 .erase = stm32lx_erase,
960 .protect = stm32lx_protect,
961 .write = stm32lx_write,
962 .read = default_flash_read,
963 .probe = stm32lx_probe,
964 .auto_probe = stm32lx_auto_probe,
965 .erase_check = default_flash_blank_check,
966 .protect_check = stm32lx_protect_check,
967 .info = stm32lx_get_info,
968 .free_driver_priv = default_flash_free_driver_priv,
969 };
970
971 /* Static methods implementation */
972 static int stm32lx_unlock_program_memory(struct flash_bank *bank)
973 {
974 struct target *target = bank->target;
975 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
976 int retval;
977 uint32_t reg32;
978
979 /*
980 * Unlocking the program memory is done by unlocking the PECR,
981 * then by writing the 2 PRGKEY to the PRGKEYR register
982 */
983
984 /* check flash is not already unlocked */
985 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
986 &reg32);
987 if (retval != ERROR_OK)
988 return retval;
989
990 if ((reg32 & FLASH_PECR__PRGLOCK) == 0)
991 return ERROR_OK;
992
993 /* To unlock the PECR write the 2 PEKEY to the PEKEYR register */
994 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
995 PEKEY1);
996 if (retval != ERROR_OK)
997 return retval;
998
999 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR,
1000 PEKEY2);
1001 if (retval != ERROR_OK)
1002 return retval;
1003
1004 /* Make sure it worked */
1005 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1006 &reg32);
1007 if (retval != ERROR_OK)
1008 return retval;
1009
1010 if (reg32 & FLASH_PECR__PELOCK) {
1011 LOG_ERROR("PELOCK is not cleared :(");
1012 return ERROR_FLASH_OPERATION_FAILED;
1013 }
1014
1015 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1016 PRGKEY1);
1017 if (retval != ERROR_OK)
1018 return retval;
1019 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PRGKEYR,
1020 PRGKEY2);
1021 if (retval != ERROR_OK)
1022 return retval;
1023
1024 /* Make sure it worked */
1025 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1026 &reg32);
1027 if (retval != ERROR_OK)
1028 return retval;
1029
1030 if (reg32 & FLASH_PECR__PRGLOCK) {
1031 LOG_ERROR("PRGLOCK is not cleared :(");
1032 return ERROR_FLASH_OPERATION_FAILED;
1033 }
1034
1035 return ERROR_OK;
1036 }
1037
1038 static int stm32lx_enable_write_half_page(struct flash_bank *bank)
1039 {
1040 struct target *target = bank->target;
1041 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1042 int retval;
1043 uint32_t reg32;
1044
1045 /**
1046 * Unlock the program memory, then set the FPRG bit in the PECR register.
1047 */
1048 retval = stm32lx_unlock_program_memory(bank);
1049 if (retval != ERROR_OK)
1050 return retval;
1051
1052 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1053 &reg32);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 reg32 |= FLASH_PECR__FPRG;
1058 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1059 reg32);
1060 if (retval != ERROR_OK)
1061 return retval;
1062
1063 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1064 &reg32);
1065 if (retval != ERROR_OK)
1066 return retval;
1067
1068 reg32 |= FLASH_PECR__PROG;
1069 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1070 reg32);
1071
1072 return retval;
1073 }
1074
1075 static int stm32lx_lock_program_memory(struct flash_bank *bank)
1076 {
1077 struct target *target = bank->target;
1078 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1079 int retval;
1080 uint32_t reg32;
1081
1082 /* To lock the program memory, simply set the lock bit and lock PECR */
1083
1084 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1085 &reg32);
1086 if (retval != ERROR_OK)
1087 return retval;
1088
1089 reg32 |= FLASH_PECR__PRGLOCK;
1090 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1091 reg32);
1092 if (retval != ERROR_OK)
1093 return retval;
1094
1095 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1096 &reg32);
1097 if (retval != ERROR_OK)
1098 return retval;
1099
1100 reg32 |= FLASH_PECR__PELOCK;
1101 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1102 reg32);
1103 if (retval != ERROR_OK)
1104 return retval;
1105
1106 return ERROR_OK;
1107 }
1108
1109 static int stm32lx_erase_sector(struct flash_bank *bank, int sector)
1110 {
1111 struct target *target = bank->target;
1112 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1113 int retval;
1114 uint32_t reg32;
1115
1116 /*
1117 * To erase a sector (i.e. stm32lx_info->part_info.pages_per_sector pages),
1118 * first unlock the memory, loop over the pages of this sector
1119 * and write 0x0 to its first word.
1120 */
1121
1122 retval = stm32lx_unlock_program_memory(bank);
1123 if (retval != ERROR_OK)
1124 return retval;
1125
1126 for (int page = 0; page < (int)stm32lx_info->part_info.pages_per_sector;
1127 page++) {
1128 reg32 = FLASH_PECR__PROG | FLASH_PECR__ERASE;
1129 retval = target_write_u32(target,
1130 stm32lx_info->flash_base + FLASH_PECR, reg32);
1131 if (retval != ERROR_OK)
1132 return retval;
1133
1134 retval = stm32lx_wait_until_bsy_clear(bank);
1135 if (retval != ERROR_OK)
1136 return retval;
1137
1138 uint32_t addr = bank->base + bank->sectors[sector].offset + (page
1139 * stm32lx_info->part_info.page_size);
1140 retval = target_write_u32(target, addr, 0x0);
1141 if (retval != ERROR_OK)
1142 return retval;
1143
1144 retval = stm32lx_wait_until_bsy_clear(bank);
1145 if (retval != ERROR_OK)
1146 return retval;
1147 }
1148
1149 retval = stm32lx_lock_program_memory(bank);
1150 if (retval != ERROR_OK)
1151 return retval;
1152
1153 return ERROR_OK;
1154 }
1155
1156 static inline int stm32lx_get_flash_status(struct flash_bank *bank, uint32_t *status)
1157 {
1158 struct target *target = bank->target;
1159 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1160
1161 return target_read_u32(target, stm32lx_info->flash_base + FLASH_SR, status);
1162 }
1163
1164 static int stm32lx_wait_until_bsy_clear(struct flash_bank *bank)
1165 {
1166 return stm32lx_wait_until_bsy_clear_timeout(bank, 100);
1167 }
1168
1169 static int stm32lx_unlock_options_bytes(struct flash_bank *bank)
1170 {
1171 struct target *target = bank->target;
1172 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1173 int retval;
1174 uint32_t reg32;
1175
1176 /*
1177 * Unlocking the options bytes is done by unlocking the PECR,
1178 * then by writing the 2 FLASH_PEKEYR to the FLASH_OPTKEYR register
1179 */
1180
1181 /* check flash is not already unlocked */
1182 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1183 if (retval != ERROR_OK)
1184 return retval;
1185
1186 if ((reg32 & FLASH_PECR__OPTLOCK) == 0)
1187 return ERROR_OK;
1188
1189 if ((reg32 & FLASH_PECR__PELOCK) != 0) {
1190
1191 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY1);
1192 if (retval != ERROR_OK)
1193 return retval;
1194
1195 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PEKEYR, PEKEY2);
1196 if (retval != ERROR_OK)
1197 return retval;
1198 }
1199
1200 /* To unlock the PECR write the 2 OPTKEY to the FLASH_OPTKEYR register */
1201 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY1);
1202 if (retval != ERROR_OK)
1203 return retval;
1204
1205 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_OPTKEYR, OPTKEY2);
1206 if (retval != ERROR_OK)
1207 return retval;
1208
1209 return ERROR_OK;
1210 }
1211
1212 static int stm32lx_wait_until_bsy_clear_timeout(struct flash_bank *bank, int timeout)
1213 {
1214 struct target *target = bank->target;
1215 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1216 uint32_t status;
1217 int retval = ERROR_OK;
1218
1219 /* wait for busy to clear */
1220 for (;;) {
1221 retval = stm32lx_get_flash_status(bank, &status);
1222 if (retval != ERROR_OK)
1223 return retval;
1224
1225 LOG_DEBUG("status: 0x%" PRIx32 "", status);
1226 if ((status & FLASH_SR__BSY) == 0)
1227 break;
1228
1229 if (timeout-- <= 0) {
1230 LOG_ERROR("timed out waiting for flash");
1231 return ERROR_FAIL;
1232 }
1233 alive_sleep(1);
1234 }
1235
1236 if (status & FLASH_SR__WRPERR) {
1237 LOG_ERROR("access denied / write protected");
1238 retval = ERROR_FAIL;
1239 }
1240
1241 if (status & FLASH_SR__PGAERR) {
1242 LOG_ERROR("invalid program address");
1243 retval = ERROR_FAIL;
1244 }
1245
1246 /* Clear but report errors */
1247 if (status & FLASH_SR__OPTVERR) {
1248 /* If this operation fails, we ignore it and report the original retval */
1249 target_write_u32(target, stm32lx_info->flash_base + FLASH_SR, status & FLASH_SR__OPTVERR);
1250 }
1251
1252 return retval;
1253 }
1254
1255 static int stm32lx_obl_launch(struct flash_bank *bank)
1256 {
1257 struct target *target = bank->target;
1258 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1259 int retval;
1260
1261 /* This will fail as the target gets immediately rebooted */
1262 target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR,
1263 FLASH_PECR__OBL_LAUNCH);
1264
1265 size_t tries = 10;
1266 do {
1267 target_halt(target);
1268 retval = target_poll(target);
1269 } while (--tries > 0 &&
1270 (retval != ERROR_OK || target->state != TARGET_HALTED));
1271
1272 return tries ? ERROR_OK : ERROR_FAIL;
1273 }
1274
1275 static int stm32lx_lock(struct flash_bank *bank)
1276 {
1277 int retval;
1278 struct target *target = bank->target;
1279
1280 if (target->state != TARGET_HALTED) {
1281 LOG_ERROR("Target not halted");
1282 return ERROR_TARGET_NOT_HALTED;
1283 }
1284
1285 retval = stm32lx_unlock_options_bytes(bank);
1286 if (retval != ERROR_OK)
1287 return retval;
1288
1289 /* set the RDP protection level to 1 */
1290 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR1);
1291 if (retval != ERROR_OK)
1292 return retval;
1293
1294 return ERROR_OK;
1295 }
1296
1297 static int stm32lx_unlock(struct flash_bank *bank)
1298 {
1299 int retval;
1300 struct target *target = bank->target;
1301
1302 if (target->state != TARGET_HALTED) {
1303 LOG_ERROR("Target not halted");
1304 return ERROR_TARGET_NOT_HALTED;
1305 }
1306
1307 retval = stm32lx_unlock_options_bytes(bank);
1308 if (retval != ERROR_OK)
1309 return retval;
1310
1311 /* set the RDP protection level to 0 */
1312 retval = target_write_u32(target, OPTION_BYTES_ADDRESS, OPTION_BYTE_0_PR0);
1313 if (retval != ERROR_OK)
1314 return retval;
1315
1316 retval = stm32lx_wait_until_bsy_clear_timeout(bank, 30000);
1317 if (retval != ERROR_OK)
1318 return retval;
1319
1320 return ERROR_OK;
1321 }
1322
1323 static int stm32lx_mass_erase(struct flash_bank *bank)
1324 {
1325 int retval;
1326 struct target *target = bank->target;
1327 struct stm32lx_flash_bank *stm32lx_info = NULL;
1328 uint32_t reg32;
1329
1330 if (target->state != TARGET_HALTED) {
1331 LOG_ERROR("Target not halted");
1332 return ERROR_TARGET_NOT_HALTED;
1333 }
1334
1335 stm32lx_info = bank->driver_priv;
1336
1337 retval = stm32lx_lock(bank);
1338 if (retval != ERROR_OK)
1339 return retval;
1340
1341 retval = stm32lx_obl_launch(bank);
1342 if (retval != ERROR_OK)
1343 return retval;
1344
1345 retval = stm32lx_unlock(bank);
1346 if (retval != ERROR_OK)
1347 return retval;
1348
1349 retval = stm32lx_obl_launch(bank);
1350 if (retval != ERROR_OK)
1351 return retval;
1352
1353 retval = target_read_u32(target, stm32lx_info->flash_base + FLASH_PECR, &reg32);
1354 if (retval != ERROR_OK)
1355 return retval;
1356
1357 retval = target_write_u32(target, stm32lx_info->flash_base + FLASH_PECR, reg32 | FLASH_PECR__OPTLOCK);
1358 if (retval != ERROR_OK)
1359 return retval;
1360
1361 return ERROR_OK;
1362 }
1363
1364 static int stm32lx_update_part_info(struct flash_bank *bank, uint16_t flash_size_in_kb)
1365 {
1366 struct stm32lx_flash_bank *stm32lx_info = bank->driver_priv;
1367
1368 switch (stm32lx_info->part_info.id) {
1369 case 0x447: /* STM32L0xx (Cat.5) devices */
1370 if (flash_size_in_kb == 192 || flash_size_in_kb == 128) {
1371 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1372 stm32lx_info->part_info.has_dual_banks = true;
1373 }
1374 break;
1375 case 0x437: /* STM32L1xx (Cat.5/Cat.6) */
1376 stm32lx_info->part_info.first_bank_size_kb = flash_size_in_kb / 2;
1377 break;
1378 }
1379
1380 return ERROR_OK;
1381 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)