xmc4xxx: Improve xmc4xxx_blank_check_memory() error handling
[openocd.git] / src / flash / nor / xmc4xxx.c
1 /**************************************************************************
2 * Copyright (C) 2015 Jeff Ciesielski <jeffciesielski@gmail.com> *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 ***************************************************************************/
15
16 #ifdef HAVE_CONFIG_H
17 #include "config.h"
18 #endif
19
20 #include "imp.h"
21 #include <helper/binarybuffer.h>
22 #include <target/algorithm.h>
23 #include <target/armv7m.h>
24
25 /* Maximum number of sectors */
26 #define MAX_XMC_SECTORS 12
27
28 /* System control unit registers */
29 #define SCU_REG_BASE 0x50004000
30
31 #define SCU_ID_CHIP 0x04
32
33 /* Base of the non-cached flash memory */
34 #define PFLASH_BASE 0x0C000000
35
36 /* User configuration block offsets */
37 #define UCB0_BASE 0x00000000
38 #define UCB1_BASE 0x00000400
39 #define UCB2_BASE 0x00000800
40
41 /* Flash register base */
42 #define FLASH_REG_BASE 0x58000000
43
44 /* PMU ID Registers */
45 #define FLASH_REG_PMU_ID (FLASH_REG_BASE | 0x0508)
46
47 /* PMU Fields */
48 #define PMU_MOD_REV_MASK 0xFF
49 #define PMU_MOD_TYPE_MASK 0xFF00
50 #define PMU_MOD_NO_MASK 0xFFFF0000
51
52 /* Prefetch Config */
53 #define FLASH_REG_PREF_PCON (FLASH_REG_BASE | 0x4000)
54
55 /* Prefetch Fields */
56 #define PCON_IBYP (1 << 0)
57 #define PCON_IINV (1 << 1)
58
59 /* Flash ID Register */
60 #define FLASH_REG_FLASH0_ID (FLASH_REG_BASE | 0x2008)
61
62 /* Flash Status Register */
63 #define FLASH_REG_FLASH0_FSR (FLASH_REG_BASE | 0x2010)
64
65 #define FSR_PBUSY (0)
66 #define FSR_FABUSY (1)
67 #define FSR_PROG (4)
68 #define FSR_ERASE (5)
69 #define FSR_PFPAGE (6)
70 #define FSR_PFOPER (8)
71 #define FSR_SQER (10)
72 #define FSR_PROER (11)
73 #define FSR_PFSBER (12)
74 #define FSR_PFDBER (14)
75 #define FSR_PROIN (16)
76 #define FSR_RPROIN (18)
77 #define FSR_RPRODIS (19)
78 #define FSR_WPROIN0 (21)
79 #define FSR_WPROIN1 (22)
80 #define FSR_WPROIN2 (23)
81 #define FSR_WPRODIS0 (25)
82 #define FSR_WPRODIS1 (26)
83 #define FSR_SLM (28)
84 #define FSR_VER (31)
85
86 #define FSR_PBUSY_MASK (0x01 << FSR_PBUSY)
87 #define FSR_FABUSY_MASK (0x01 << FSR_FABUSY)
88 #define FSR_PROG_MASK (0x01 << FSR_PROG)
89 #define FSR_ERASE_MASK (0x01 << FSR_ERASE)
90 #define FSR_PFPAGE_MASK (0x01 << FSR_PFPAGE)
91 #define FSR_PFOPER_MASK (0x01 << FSR_PFOPER)
92 #define FSR_SQER_MASK (0x01 << FSR_SQER)
93 #define FSR_PROER_MASK (0x01 << FSR_PROER)
94 #define FSR_PFSBER_MASK (0x01 << FSR_PFSBER)
95 #define FSR_PFDBER_MASK (0x01 << FSR_PFDBER)
96 #define FSR_PROIN_MASK (0x01 << FSR_PROIN)
97 #define FSR_RPROIN_MASK (0x01 << FSR_RPROIN)
98 #define FSR_RPRODIS_MASK (0x01 << FSR_RPRODIS)
99 #define FSR_WPROIN0_MASK (0x01 << FSR_WPROIN0)
100 #define FSR_WPROIN1_MASK (0x01 << FSR_WPROIN1)
101 #define FSR_WPROIN2_MASK (0x01 << FSR_WPROIN2)
102 #define FSR_WPRODIS0_MASK (0x01 << FSR_WPRODIS0)
103 #define FSR_WPRODIS1_MASK (0x01 << FSR_WPRODIS1)
104 #define FSR_SLM_MASK (0x01 << FSR_SLM)
105 #define FSR_VER_MASK (0x01 << FSR_VER)
106
107 /* Flash Config Register */
108 #define FLASH_REG_FLASH0_FCON (FLASH_REG_BASE | 0x2014)
109
110 #define FCON_WSPFLASH (0)
111 #define FCON_WSECPF (4)
112 #define FCON_IDLE (13)
113 #define FCON_ESLDIS (14)
114 #define FCON_SLEEP (15)
115 #define FCON_RPA (16)
116 #define FCON_DCF (17)
117 #define FCON_DDF (18)
118 #define FCON_VOPERM (24)
119 #define FCON_SQERM (25)
120 #define FCON_PROERM (26)
121 #define FCON_PFSBERM (27)
122 #define FCON_PFDBERM (29)
123 #define FCON_EOBM (31)
124
125 #define FCON_WSPFLASH_MASK (0x0f << FCON_WSPFLASH)
126 #define FCON_WSECPF_MASK (0x01 << FCON_WSECPF)
127 #define FCON_IDLE_MASK (0x01 << FCON_IDLE)
128 #define FCON_ESLDIS_MASK (0x01 << FCON_ESLDIS)
129 #define FCON_SLEEP_MASK (0x01 << FCON_SLEEP)
130 #define FCON_RPA_MASK (0x01 << FCON_RPA)
131 #define FCON_DCF_MASK (0x01 << FCON_DCF)
132 #define FCON_DDF_MASK (0x01 << FCON_DDF)
133 #define FCON_VOPERM_MASK (0x01 << FCON_VOPERM)
134 #define FCON_SQERM_MASK (0x01 << FCON_SQERM)
135 #define FCON_PROERM_MASK (0x01 << FCON_PROERM)
136 #define FCON_PFSBERM_MASK (0x01 << FCON_PFSBERM)
137 #define FCON_PFDBERM_MASK (0x01 << FCON_PFDBERM)
138 #define FCON_EOBM_MASK (0x01 << FCON_EOBM)
139
140 /* Flash Margin Control Register */
141 #define FLASH_REG_FLASH0_MARP (FLASH_REG_BASE | 0x2018)
142
143 #define MARP_MARGIN (0)
144 #define MARP_TRAPDIS (15)
145
146 #define MARP_MARGIN_MASK (0x0f << MARP_MARGIN)
147 #define MARP_TRAPDIS_MASK (0x01 << MARP_TRAPDIS)
148
149 /* Flash Protection Registers */
150 #define FLASH_REG_FLASH0_PROCON0 (FLASH_REG_BASE | 0x2020)
151 #define FLASH_REG_FLASH0_PROCON1 (FLASH_REG_BASE | 0x2024)
152 #define FLASH_REG_FLASH0_PROCON2 (FLASH_REG_BASE | 0x2028)
153
154 #define PROCON_S0L (0)
155 #define PROCON_S1L (1)
156 #define PROCON_S2L (2)
157 #define PROCON_S3L (3)
158 #define PROCON_S4L (4)
159 #define PROCON_S5L (5)
160 #define PROCON_S6L (6)
161 #define PROCON_S7L (7)
162 #define PROCON_S8L (8)
163 #define PROCON_S9L (9)
164 #define PROCON_S10_S11L (10)
165 #define PROCON_RPRO (15)
166
167 #define PROCON_S0L_MASK (0x01 << PROCON_S0L)
168 #define PROCON_S1L_MASK (0x01 << PROCON_S1L)
169 #define PROCON_S2L_MASK (0x01 << PROCON_S2L)
170 #define PROCON_S3L_MASK (0x01 << PROCON_S3L)
171 #define PROCON_S4L_MASK (0x01 << PROCON_S4L)
172 #define PROCON_S5L_MASK (0x01 << PROCON_S5L)
173 #define PROCON_S6L_MASK (0x01 << PROCON_S6L)
174 #define PROCON_S7L_MASK (0x01 << PROCON_S7L)
175 #define PROCON_S8L_MASK (0x01 << PROCON_S8L)
176 #define PROCON_S9L_MASK (0x01 << PROCON_S9L)
177 #define PROCON_S10_S11L_MASK (0x01 << PROCON_S10_S11L)
178 #define PROCON_RPRO_MASK (0x01 << PROCON_RPRO)
179
180 #define FLASH_PROTECT_CONFIRMATION_CODE 0x8AFE15C3
181
182 /* Flash controller configuration values */
183 #define FLASH_ID_XMC4500 0xA2
184 #define FLASH_ID_XMC4700_4800 0x92
185 #define FLASH_ID_XMC4100_4200 0x9C
186 #define FLASH_ID_XMC4400 0x9F
187
188 /* Timeouts */
189 #define FLASH_OP_TIMEOUT 5000
190
191 /* Flash commands (write/erase/protect) are performed using special
192 * command sequences that are written to magic addresses in the flash controller */
193 /* Command sequence addresses. See reference manual, section 8: Flash Command Sequences */
194 #define FLASH_CMD_ERASE_1 0x0C005554
195 #define FLASH_CMD_ERASE_2 0x0C00AAA8
196 #define FLASH_CMD_ERASE_3 FLASH_CMD_ERASE_1
197 #define FLASH_CMD_ERASE_4 FLASH_CMD_ERASE_1
198 #define FLASH_CMD_ERASE_5 FLASH_CMD_ERASE_2
199 /* ERASE_6 is the sector base address */
200
201 #define FLASH_CMD_CLEAR_STATUS FLASH_CMD_ERASE_1
202
203 #define FLASH_CMD_ENTER_PAGEMODE FLASH_CMD_ERASE_1
204
205 #define FLASH_CMD_LOAD_PAGE_1 0x0C0055F0
206 #define FLASH_CMD_LOAD_PAGE_2 0x0C0055F4
207
208 #define FLASH_CMD_WRITE_PAGE_1 FLASH_CMD_ERASE_1
209 #define FLASH_CMD_WRITE_PAGE_2 FLASH_CMD_ERASE_2
210 #define FLASH_CMD_WRITE_PAGE_3 FLASH_CMD_ERASE_1
211 /* WRITE_PAGE_4 is the page base address */
212
213 #define FLASH_CMD_TEMP_UNPROT_1 FLASH_CMD_ERASE_1
214 #define FLASH_CMD_TEMP_UNPROT_2 FLASH_CMD_ERASE_2
215 #define FLASH_CMD_TEMP_UNPROT_3 0x0C00553C
216 #define FLASH_CMD_TEMP_UNPROT_4 FLASH_CMD_ERASE_2
217 #define FLASH_CMD_TEMP_UNPROT_5 FLASH_CMD_ERASE_2
218 #define FLASH_CMD_TEMP_UNPROT_6 0x0C005558
219
220 struct xmc4xxx_flash_bank {
221 bool probed;
222
223 /* We need the flash controller ID to choose the sector layout */
224 uint32_t fcon_id;
225
226 /* Passwords used for protection operations */
227 uint32_t pw1;
228 uint32_t pw2;
229 bool pw_set;
230
231 /* Protection flags */
232 bool read_protected;
233
234 bool write_prot_otp[MAX_XMC_SECTORS];
235 };
236
237 struct xmc4xxx_command_seq {
238 uint32_t address;
239 uint32_t magic;
240 };
241
242 /* Sector capacities. See section 8 of xmc4x00_rm */
243 static const unsigned int sector_capacity_8[8] = {
244 16, 16, 16, 16, 16, 16, 16, 128
245 };
246
247 static const unsigned int sector_capacity_9[9] = {
248 16, 16, 16, 16, 16, 16, 16, 128, 256
249 };
250
251 static const unsigned int sector_capacity_12[12] = {
252 16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256
253 };
254
255 static const unsigned int sector_capacity_16[16] = {
256 16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256, 256, 256, 256, 256
257 };
258
259 static int xmc4xxx_write_command_sequence(struct flash_bank *bank,
260 struct xmc4xxx_command_seq *seq,
261 int seq_len)
262 {
263 int res = ERROR_OK;
264
265 for (int i = 0; i < seq_len; i++) {
266 res = target_write_u32(bank->target, seq[i].address,
267 seq[i].magic);
268 if (res != ERROR_OK)
269 return res;
270 }
271
272 return ERROR_OK;
273 }
274
275 static int xmc4xxx_load_bank_layout(struct flash_bank *bank)
276 {
277 const unsigned int *capacity = NULL;
278
279 /* At this point, we know which flash controller ID we're
280 * talking to and simply need to fill out the bank structure accordingly */
281 LOG_DEBUG("%d sectors", bank->num_sectors);
282
283 switch (bank->num_sectors) {
284 case 8:
285 capacity = sector_capacity_8;
286 break;
287 case 9:
288 capacity = sector_capacity_9;
289 break;
290 case 12:
291 capacity = sector_capacity_12;
292 break;
293 case 16:
294 capacity = sector_capacity_16;
295 break;
296 default:
297 LOG_ERROR("Unexpected number of sectors, %d\n",
298 bank->num_sectors);
299 return ERROR_FAIL;
300 }
301
302 /* This looks like a bank that we understand, now we know the
303 * corresponding sector capacities and we can add those up into the
304 * bank size. */
305 uint32_t total_offset = 0;
306 bank->sectors = calloc(bank->num_sectors,
307 sizeof(struct flash_sector));
308 for (int i = 0; i < bank->num_sectors; i++) {
309 bank->sectors[i].size = capacity[i] * 1024;
310 bank->sectors[i].offset = total_offset;
311 bank->sectors[i].is_erased = -1;
312 bank->sectors[i].is_protected = -1;
313
314 bank->size += bank->sectors[i].size;
315 LOG_DEBUG("\t%d: %uk", i, capacity[i]);
316 total_offset += bank->sectors[i].size;
317 }
318
319 /* This part doesn't follow the typical standard of 0xff
320 * being the default padding value.*/
321 bank->default_padded_value = 0x00;
322
323 return ERROR_OK;
324 }
325
326 static int xmc4xxx_probe(struct flash_bank *bank)
327 {
328 int res;
329 uint32_t devid, config;
330 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
331 uint8_t flash_id;
332
333 if (fb->probed)
334 return ERROR_OK;
335
336 /* It's not possible for the DAP to access the OTP locations needed for
337 * probing the part info and Flash geometry so we require that the target
338 * be halted before proceeding. */
339 if (bank->target->state != TARGET_HALTED) {
340 LOG_WARNING("Cannot communicate... target not halted.");
341 return ERROR_TARGET_NOT_HALTED;
342 }
343
344 /* The SCU registers contain the ID of the chip */
345 res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &devid);
346 if (res != ERROR_OK) {
347 LOG_ERROR("Cannot read device identification register.");
348 return res;
349 }
350
351 /* Make sure this is a XMC4000 family device */
352 if ((devid & 0xF0000) != 0x40000 && devid != 0) {
353 LOG_ERROR("Platform ID doesn't match XMC4xxx: 0x%08" PRIx32, devid);
354 return ERROR_FAIL;
355 }
356
357 LOG_DEBUG("Found XMC4xxx with devid: 0x%08" PRIx32, devid);
358
359 /* Now sanity-check the Flash controller itself. */
360 res = target_read_u32(bank->target, FLASH_REG_FLASH0_ID,
361 &config);
362 if (res != ERROR_OK) {
363 LOG_ERROR("Cannot read Flash bank configuration.");
364 return res;
365 }
366 flash_id = (config & 0xff0000) >> 16;
367
368 /* The Flash configuration register is our only means of
369 * determining the sector layout. We need to make sure that
370 * we understand the type of controller we're dealing with */
371 switch (flash_id) {
372 case FLASH_ID_XMC4100_4200:
373 bank->num_sectors = 8;
374 LOG_DEBUG("XMC4xxx: XMC4100/4200 detected.");
375 break;
376 case FLASH_ID_XMC4400:
377 bank->num_sectors = 9;
378 LOG_DEBUG("XMC4xxx: XMC4400 detected.");
379 break;
380 case FLASH_ID_XMC4500:
381 bank->num_sectors = 12;
382 LOG_DEBUG("XMC4xxx: XMC4500 detected.");
383 break;
384 case FLASH_ID_XMC4700_4800:
385 bank->num_sectors = 16;
386 LOG_DEBUG("XMC4xxx: XMC4700/4800 detected.");
387 break;
388 default:
389 LOG_ERROR("XMC4xxx: Unexpected flash ID. got %02" PRIx8,
390 flash_id);
391 return ERROR_FAIL;
392 }
393
394 /* Retrieve information about the particular bank we're probing and fill in
395 * the bank structure accordingly. */
396 res = xmc4xxx_load_bank_layout(bank);
397 if (res == ERROR_OK) {
398 /* We're done */
399 fb->probed = true;
400 } else {
401 LOG_ERROR("Unable to load bank information.");
402 return ERROR_FAIL;
403 }
404
405 return ERROR_OK;
406 }
407
408 static int xmc4xxx_get_sector_start_addr(struct flash_bank *bank,
409 int sector, uint32_t *ret_addr)
410 {
411 /* Make sure we understand this sector */
412 if (sector > bank->num_sectors)
413 return ERROR_FAIL;
414
415 *ret_addr = bank->base + bank->sectors[sector].offset;
416
417 return ERROR_OK;
418
419 }
420
421 static int xmc4xxx_clear_flash_status(struct flash_bank *bank)
422 {
423 int res;
424 /* TODO: Do we need to check for sequence error? */
425 LOG_INFO("Clearing flash status");
426 res = target_write_u32(bank->target, FLASH_CMD_CLEAR_STATUS,
427 0xF5);
428 if (res != ERROR_OK) {
429 LOG_ERROR("Unable to write erase command sequence");
430 return res;
431 }
432
433 return ERROR_OK;
434 }
435
436 static int xmc4xxx_get_flash_status(struct flash_bank *bank, uint32_t *status)
437 {
438 int res;
439
440 res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, status);
441
442 if (res != ERROR_OK)
443 LOG_ERROR("Cannot read flash status register.");
444
445 return res;
446 }
447
448 static int xmc4xxx_wait_status_busy(struct flash_bank *bank, int timeout)
449 {
450 int res;
451 uint32_t status;
452
453 res = xmc4xxx_get_flash_status(bank, &status);
454 if (res != ERROR_OK)
455 return res;
456
457 /* While the flash controller is busy, wait */
458 while (status & FSR_PBUSY_MASK) {
459 res = xmc4xxx_get_flash_status(bank, &status);
460 if (res != ERROR_OK)
461 return res;
462
463 if (timeout-- <= 0) {
464 LOG_ERROR("Timed out waiting for flash");
465 return ERROR_FAIL;
466 }
467 alive_sleep(1);
468 keep_alive();
469 }
470
471 if (status & FSR_PROER_MASK) {
472 LOG_ERROR("XMC4xxx flash protected");
473 res = ERROR_FAIL;
474 }
475
476 return res;
477 }
478
479 static int xmc4xxx_erase_sector(struct flash_bank *bank, uint32_t address,
480 bool user_config)
481 {
482 int res;
483 uint32_t status;
484
485 /* See reference manual table 8.4: Command Sequences for Flash Control */
486 struct xmc4xxx_command_seq erase_cmd_seq[6] = {
487 {FLASH_CMD_ERASE_1, 0xAA},
488 {FLASH_CMD_ERASE_2, 0x55},
489 {FLASH_CMD_ERASE_3, 0x80},
490 {FLASH_CMD_ERASE_4, 0xAA},
491 {FLASH_CMD_ERASE_5, 0x55},
492 {0xFF, 0xFF} /* Needs filled in */
493 };
494
495 /* We need to fill in the base address of the sector we'll be
496 * erasing, as well as the magic code that determines whether
497 * this is a standard flash sector or a user configuration block */
498
499 erase_cmd_seq[5].address = address;
500 if (user_config) {
501 /* Removing flash protection requires the addition of
502 * the base address */
503 erase_cmd_seq[5].address += bank->base;
504 erase_cmd_seq[5].magic = 0xC0;
505 } else {
506 erase_cmd_seq[5].magic = 0x30;
507 }
508
509 res = xmc4xxx_write_command_sequence(bank, erase_cmd_seq,
510 ARRAY_SIZE(erase_cmd_seq));
511 if (res != ERROR_OK)
512 return res;
513
514 /* Read the flash status register */
515 res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, &status);
516 if (res != ERROR_OK) {
517 LOG_ERROR("Cannot read flash status register.");
518 return res;
519 }
520
521 /* Check for a sequence error */
522 if (status & FSR_SQER_MASK) {
523 LOG_ERROR("Error with flash erase sequence");
524 return ERROR_FAIL;
525 }
526
527 /* Make sure a flash erase was triggered */
528 if (!(status & FSR_ERASE_MASK)) {
529 LOG_ERROR("Flash failed to erase");
530 return ERROR_FAIL;
531 }
532
533 /* Now we must wait for the erase operation to end */
534 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
535
536 return res;
537 }
538
539 static int xmc4xxx_erase(struct flash_bank *bank, int first, int last)
540 {
541 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
542 int res;
543
544 if (bank->target->state != TARGET_HALTED) {
545 LOG_ERROR("Unable to erase, target is not halted");
546 return ERROR_TARGET_NOT_HALTED;
547 }
548
549 if (!fb->probed) {
550 res = xmc4xxx_probe(bank);
551 if (res != ERROR_OK)
552 return res;
553 }
554
555 uint32_t tmp_addr;
556 /* Loop through the sectors and erase each one */
557 for (int i = first; i <= last; i++) {
558 res = xmc4xxx_get_sector_start_addr(bank, i, &tmp_addr);
559 if (res != ERROR_OK) {
560 LOG_ERROR("Invalid sector %d", i);
561 return res;
562 }
563
564 LOG_DEBUG("Erasing sector %d @ 0x%08"PRIx32, i, tmp_addr);
565
566 res = xmc4xxx_erase_sector(bank, tmp_addr, false);
567 if (res != ERROR_OK) {
568 LOG_ERROR("Unable to write erase command sequence");
569 goto clear_status_and_exit;
570 }
571
572 /* Now we must wait for the erase operation to end */
573 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
574
575 if (res != ERROR_OK)
576 goto clear_status_and_exit;
577
578 bank->sectors[i].is_erased = 1;
579 }
580
581 clear_status_and_exit:
582 res = xmc4xxx_clear_flash_status(bank);
583 return res;
584
585 }
586
587 static int xmc4xxx_enter_page_mode(struct flash_bank *bank)
588 {
589 int res;
590 uint32_t status;
591
592 res = target_write_u32(bank->target, FLASH_CMD_ENTER_PAGEMODE, 0x50);
593 if (res != ERROR_OK) {
594 LOG_ERROR("Unable to write enter page mode command");
595 return ERROR_FAIL;
596 }
597
598 res = xmc4xxx_get_flash_status(bank, &status);
599
600 if (res != ERROR_OK)
601 return res;
602
603 /* Make sure we're in page mode */
604 if (!(status & FSR_PFPAGE_MASK)) {
605 LOG_ERROR("Unable to enter page mode");
606 return ERROR_FAIL;
607 }
608
609 /* Make sure we didn't encounter a sequence error */
610 if (status & FSR_SQER_MASK) {
611 LOG_ERROR("Sequence error while entering page mode");
612 return ERROR_FAIL;
613 }
614
615 return res;
616 }
617
618 /* The logical erase value of an xmc4xxx memory cell is 0x00,
619 * therefore, we cannot use the built in flash blank check and must
620 * implement our own */
621
622 /** Checks whether a memory region is zeroed. */
623 static int xmc4xxx_blank_check_memory(struct target *target,
624 uint32_t address, uint32_t count, uint32_t *blank)
625 {
626 struct working_area *erase_check_algorithm;
627 struct reg_param reg_params[3];
628 struct armv7m_algorithm armv7m_info;
629 int retval;
630
631 static const uint8_t erase_check_code[] = {
632 #include "../../../contrib/loaders/erase_check/armv7m_0_erase_check.inc"
633 };
634
635 /* make sure we have a working area */
636 if (target_alloc_working_area(target, sizeof(erase_check_code),
637 &erase_check_algorithm) != ERROR_OK)
638 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
639
640 retval = target_write_buffer(target, erase_check_algorithm->address,
641 sizeof(erase_check_code), (uint8_t *)erase_check_code);
642 if (retval != ERROR_OK)
643 goto cleanup;
644
645 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
646 armv7m_info.core_mode = ARM_MODE_THREAD;
647
648 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
649 buf_set_u32(reg_params[0].value, 0, 32, address);
650
651 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
652 buf_set_u32(reg_params[1].value, 0, 32, count);
653
654 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
655 buf_set_u32(reg_params[2].value, 0, 32, 0x00);
656
657 retval = target_run_algorithm(target,
658 0,
659 NULL,
660 3,
661 reg_params,
662 erase_check_algorithm->address,
663 erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
664 10000,
665 &armv7m_info);
666
667 if (retval == ERROR_OK)
668 *blank = buf_get_u32(reg_params[2].value, 0, 32);
669
670 destroy_reg_param(&reg_params[0]);
671 destroy_reg_param(&reg_params[1]);
672 destroy_reg_param(&reg_params[2]);
673
674 cleanup:
675 target_free_working_area(target, erase_check_algorithm);
676
677 return retval;
678 }
679
680 static int xmc4xxx_flash_blank_check(struct flash_bank *bank)
681 {
682 struct target *target = bank->target;
683 int i;
684 int retval = ERROR_OK;
685 uint32_t blank;
686
687 if (bank->target->state != TARGET_HALTED) {
688 LOG_ERROR("Target not halted");
689 return ERROR_TARGET_NOT_HALTED;
690 }
691
692 for (i = 0; i < bank->num_sectors; i++) {
693 uint32_t address = bank->base + bank->sectors[i].offset;
694 uint32_t size = bank->sectors[i].size;
695
696 LOG_DEBUG("Erase checking 0x%08"PRIx32, address);
697 retval = xmc4xxx_blank_check_memory(target, address, size, &blank);
698
699 if (retval != ERROR_OK)
700 break;
701
702 if (blank == 0x00)
703 bank->sectors[i].is_erased = 1;
704 else
705 bank->sectors[i].is_erased = 0;
706 }
707
708 return retval;
709 }
710
711 static int xmc4xxx_write_page(struct flash_bank *bank, const uint8_t *pg_buf,
712 uint32_t offset, bool user_config)
713 {
714 int res;
715 uint32_t status;
716
717 /* Base of the flash write command */
718 struct xmc4xxx_command_seq write_cmd_seq[4] = {
719 {FLASH_CMD_WRITE_PAGE_1, 0xAA},
720 {FLASH_CMD_WRITE_PAGE_2, 0x55},
721 {FLASH_CMD_WRITE_PAGE_3, 0xFF}, /* Needs filled in */
722 {0xFF, 0xFF} /* Needs filled in */
723 };
724
725 /* The command sequence differs depending on whether this is
726 * being written to standard flash or the user configuration
727 * area */
728 if (user_config)
729 write_cmd_seq[2].magic = 0xC0;
730 else
731 write_cmd_seq[2].magic = 0xA0;
732
733 /* Finally, we need to add the address that this page will be
734 * written to */
735 write_cmd_seq[3].address = bank->base + offset;
736 write_cmd_seq[3].magic = 0xAA;
737
738
739 /* Flash pages are written 256 bytes at a time. For each 256
740 * byte chunk, we need to:
741 * 1. Enter page mode. This activates the flash write buffer
742 * 2. Load the page buffer with data (2x 32 bit words at a time)
743 * 3. Burn the page buffer into its intended location
744 * If the starting offset is not on a 256 byte boundary, we
745 * will need to pad the beginning of the write buffer
746 * accordingly. Likewise, if the last page does not fill the
747 * buffer, we should pad it to avoid leftover data from being
748 * written to flash
749 */
750 res = xmc4xxx_enter_page_mode(bank);
751 if (res != ERROR_OK)
752 return res;
753
754 /* Copy the data into the page buffer*/
755 for (int i = 0; i < 256; i += 8) {
756 uint32_t w_lo = target_buffer_get_u32(bank->target, &pg_buf[i]);
757 uint32_t w_hi = target_buffer_get_u32(bank->target, &pg_buf[i + 4]);
758 LOG_DEBUG("WLO: %08"PRIx32, w_lo);
759 LOG_DEBUG("WHI: %08"PRIx32, w_hi);
760
761 /* Data is loaded 2x 32 bit words at a time */
762 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_1, w_lo);
763 if (res != ERROR_OK)
764 return res;
765
766 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_2, w_hi);
767 if (res != ERROR_OK)
768 return res;
769
770 /* Check for an error */
771 res = xmc4xxx_get_flash_status(bank, &status);
772 if (res != ERROR_OK)
773 return res;
774
775 if (status & FSR_SQER_MASK) {
776 LOG_ERROR("Error loading page buffer");
777 return ERROR_FAIL;
778 }
779 }
780
781 /* The page buffer is now full, time to commit it to flash */
782
783 res = xmc4xxx_write_command_sequence(bank, write_cmd_seq, ARRAY_SIZE(write_cmd_seq));
784 if (res != ERROR_OK) {
785 LOG_ERROR("Unable to enter write command sequence");
786 return res;
787 }
788
789 /* Read the flash status register */
790 res = xmc4xxx_get_flash_status(bank, &status);
791 if (res != ERROR_OK)
792 return res;
793
794 /* Check for a sequence error */
795 if (status & FSR_SQER_MASK) {
796 LOG_ERROR("Error with flash write sequence");
797 return ERROR_FAIL;
798 }
799
800 /* Make sure a flash write was triggered */
801 if (!(status & FSR_PROG_MASK)) {
802 LOG_ERROR("Failed to write flash page");
803 return ERROR_FAIL;
804 }
805
806 /* Wait for the write operation to end */
807 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
808 if (res != ERROR_OK)
809 return res;
810
811 /* TODO: Verify that page was written without error */
812 return res;
813 }
814
815 static int xmc4xxx_write(struct flash_bank *bank, const uint8_t *buffer,
816 uint32_t offset, uint32_t count)
817 {
818 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
819 int res = ERROR_OK;
820
821 if (bank->target->state != TARGET_HALTED) {
822 LOG_ERROR("Unable to erase, target is not halted");
823 return ERROR_TARGET_NOT_HALTED;
824 }
825
826 if (!fb->probed) {
827 res = xmc4xxx_probe(bank);
828 if (res != ERROR_OK)
829 return res;
830 }
831
832 /* Make sure we won't run off the end of the flash bank */
833 if ((offset + count) > (bank->size)) {
834 LOG_ERROR("Attempting to write past the end of flash");
835 return ERROR_FAIL;
836 }
837
838
839 /* Attempt to write the passed in buffer to flash */
840 /* Pages are written 256 bytes at a time, we need to handle
841 * scenarios where padding is required at the beginning and
842 * end of a page */
843 while (count) {
844 /* page working area */
845 uint8_t tmp_buf[256] = {0};
846
847 /* Amount of data we'll be writing to this page */
848 int remaining;
849 int end_pad;
850
851 remaining = MIN(count, sizeof(tmp_buf));
852 end_pad = sizeof(tmp_buf) - remaining;
853
854 /* Make sure we're starting on a page boundary */
855 int start_pad = offset % 256;
856 if (start_pad) {
857 LOG_INFO("Write does not start on a 256 byte boundary. "
858 "Padding by %d bytes", start_pad);
859 memset(tmp_buf, 0xff, start_pad);
860 /* Subtract the amount of start offset from
861 * the amount of data we'll need to write */
862 remaining -= start_pad;
863 }
864
865 /* Remove the amount we'll be writing from the total count */
866 count -= remaining;
867
868 /* Now copy in the remaining data */
869 memcpy(&tmp_buf[start_pad], buffer, remaining);
870
871 if (end_pad) {
872 LOG_INFO("Padding end of page @%08"PRIx32" by %d bytes",
873 bank->base + offset, end_pad);
874 memset(&tmp_buf[256 - end_pad], 0xff, end_pad);
875 }
876
877 /* Now commit this page to flash, if there was start
878 * padding, we should subtract that from the target offset */
879 res = xmc4xxx_write_page(bank, tmp_buf, (offset - start_pad), false);
880 if (res != ERROR_OK) {
881 LOG_ERROR("Unable to write flash page");
882 goto abort_write_and_exit;
883 }
884
885 /* Advance the buffer pointer */
886 buffer += remaining;
887
888 /* Advance the offset */
889 offset += remaining;
890 }
891
892 abort_write_and_exit:
893 xmc4xxx_clear_flash_status(bank);
894 return res;
895
896 }
897
898 static int xmc4xxx_get_info_command(struct flash_bank *bank, char *buf, int buf_size)
899 {
900 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
901 uint32_t scu_idcode;
902
903 if (bank->target->state != TARGET_HALTED) {
904 LOG_WARNING("Cannot communicate... target not halted.");
905 return ERROR_TARGET_NOT_HALTED;
906 }
907
908 /* The SCU registers contain the ID of the chip */
909 int res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &scu_idcode);
910 if (res != ERROR_OK) {
911 LOG_ERROR("Cannot read device identification register.");
912 return res;
913 }
914
915 uint16_t dev_id = (scu_idcode & 0xfff0) >> 4;
916 uint16_t rev_id = scu_idcode & 0xf;
917 const char *dev_str;
918 const char *rev_str = NULL;
919
920 switch (dev_id) {
921 case 0x100:
922 dev_str = "XMC4100";
923
924 switch (rev_id) {
925 case 0x1:
926 rev_str = "AA";
927 break;
928 case 0x2:
929 rev_str = "AB";
930 break;
931 }
932 break;
933 case 0x200:
934 dev_str = "XMC4200";
935
936 switch (rev_id) {
937 case 0x1:
938 rev_str = "AA";
939 break;
940 case 0x2:
941 rev_str = "AB";
942 break;
943 }
944 break;
945 case 0x400:
946 dev_str = "XMC4400";
947
948 switch (rev_id) {
949 case 0x1:
950 rev_str = "AA";
951 break;
952 case 0x2:
953 rev_str = "AB";
954 break;
955 }
956 break;
957 case 0:
958 /* XMC4500 EES AA13 with date codes before GE212
959 * had zero SCU_IDCHIP
960 */
961 dev_str = "XMC4500 EES";
962 rev_str = "AA13";
963 break;
964 case 0x500:
965 dev_str = "XMC4500";
966
967 switch (rev_id) {
968 case 0x2:
969 rev_str = "AA";
970 break;
971 case 0x3:
972 rev_str = "AB";
973 break;
974 case 0x4:
975 rev_str = "AC";
976 break;
977 }
978 break;
979 case 0x700:
980 dev_str = "XMC4700";
981
982 switch (rev_id) {
983 case 0x1:
984 rev_str = "EES-AA";
985 break;
986 }
987 break;
988 case 0x800:
989 dev_str = "XMC4800";
990
991 switch (rev_id) {
992 case 0x1:
993 rev_str = "EES-AA";
994 break;
995 }
996 break;
997
998 default:
999 snprintf(buf, buf_size,
1000 "Cannot identify target as an XMC4xxx. SCU_ID: %"PRIx32"\n",
1001 scu_idcode);
1002 return ERROR_OK;
1003 }
1004
1005 /* String to declare protection data held in the private driver */
1006 char prot_str[512] = {0};
1007 if (fb->read_protected)
1008 snprintf(prot_str, sizeof(prot_str), "\nFlash is read protected");
1009
1010 bool otp_enabled = false;
1011 for (int i = 0; i < bank->num_sectors; i++)
1012 if (fb->write_prot_otp[i])
1013 otp_enabled = true;
1014
1015 /* If OTP Write protection is enabled (User 2), list each
1016 * sector that has it enabled */
1017 char otp_str[8];
1018 if (otp_enabled) {
1019 strcat(prot_str, "\nOTP Protection is enabled for sectors:\n");
1020 for (int i = 0; i < bank->num_sectors; i++) {
1021 if (fb->write_prot_otp[i]) {
1022 snprintf(otp_str, sizeof(otp_str), "- %d\n", i);
1023 strncat(prot_str, otp_str, ARRAY_SIZE(otp_str));
1024 }
1025 }
1026 }
1027
1028 if (rev_str != NULL)
1029 snprintf(buf, buf_size, "%s - Rev: %s%s",
1030 dev_str, rev_str, prot_str);
1031 else
1032 snprintf(buf, buf_size, "%s - Rev: unknown (0x%01x)%s",
1033 dev_str, rev_id, prot_str);
1034
1035 return ERROR_OK;
1036 }
1037
1038 static int xmc4xxx_temp_unprotect(struct flash_bank *bank, int user_level)
1039 {
1040 struct xmc4xxx_flash_bank *fb;
1041 int res = ERROR_OK;
1042 uint32_t status = 0;
1043
1044 struct xmc4xxx_command_seq temp_unprot_seq[6] = {
1045 {FLASH_CMD_TEMP_UNPROT_1, 0xAA},
1046 {FLASH_CMD_TEMP_UNPROT_2, 0x55},
1047 {FLASH_CMD_TEMP_UNPROT_3, 0xFF}, /* Needs filled in */
1048 {FLASH_CMD_TEMP_UNPROT_4, 0xFF}, /* Needs filled in */
1049 {FLASH_CMD_TEMP_UNPROT_5, 0xFF}, /* Needs filled in */
1050 {FLASH_CMD_TEMP_UNPROT_6, 0x05}
1051 };
1052
1053 if (user_level < 0 || user_level > 2) {
1054 LOG_ERROR("Invalid user level, must be 0-2");
1055 return ERROR_FAIL;
1056 }
1057
1058 fb = bank->driver_priv;
1059
1060 /* Fill in the user level and passwords */
1061 temp_unprot_seq[2].magic = user_level;
1062 temp_unprot_seq[3].magic = fb->pw1;
1063 temp_unprot_seq[4].magic = fb->pw2;
1064
1065 res = xmc4xxx_write_command_sequence(bank, temp_unprot_seq,
1066 ARRAY_SIZE(temp_unprot_seq));
1067 if (res != ERROR_OK) {
1068 LOG_ERROR("Unable to write temp unprotect sequence");
1069 return res;
1070 }
1071
1072 res = xmc4xxx_get_flash_status(bank, &status);
1073 if (res != ERROR_OK)
1074 return res;
1075
1076 if (status & FSR_WPRODIS0) {
1077 LOG_INFO("Flash is temporarily unprotected");
1078 } else {
1079 LOG_INFO("Unable to disable flash protection");
1080 res = ERROR_FAIL;
1081 }
1082
1083
1084 return res;
1085 }
1086
1087 static int xmc4xxx_flash_unprotect(struct flash_bank *bank, int32_t level)
1088 {
1089 uint32_t addr;
1090 int res;
1091
1092 if ((level < 0) || (level > 1)) {
1093 LOG_ERROR("Invalid user level. Must be 0-1");
1094 return ERROR_FAIL;
1095 }
1096
1097 switch (level) {
1098 case 0:
1099 addr = UCB0_BASE;
1100 break;
1101 case 1:
1102 addr = UCB1_BASE;
1103 break;
1104 }
1105
1106 res = xmc4xxx_erase_sector(bank, addr, true);
1107
1108 if (res != ERROR_OK)
1109 LOG_ERROR("Error erasing user configuration block");
1110
1111 return res;
1112 }
1113
1114 /* Reference: "XMC4500 Flash Protection.pptx" app note */
1115 static int xmc4xxx_flash_protect(struct flash_bank *bank, int level, bool read_protect,
1116 int first, int last)
1117 {
1118 /* User configuration block buffers */
1119 uint8_t ucp0_buf[8 * sizeof(uint32_t)] = {0};
1120 uint32_t ucb_base = 0;
1121 uint32_t procon = 0;
1122 int res = ERROR_OK;
1123 uint32_t status = 0;
1124 bool proin = false;
1125
1126 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1127
1128 /* Read protect only works for user 0, make sure we don't try
1129 * to do something silly */
1130 if (level != 0 && read_protect) {
1131 LOG_ERROR("Read protection is for user level 0 only!");
1132 return ERROR_FAIL;
1133 }
1134
1135 /* Check to see if protection is already installed for the
1136 * specified user level. If it is, the user configuration
1137 * block will need to be erased before we can continue */
1138
1139 /* Grab the flash status register*/
1140 res = xmc4xxx_get_flash_status(bank, &status);
1141 if (res != ERROR_OK)
1142 return res;
1143
1144 switch (level) {
1145 case 0:
1146 if ((status & FSR_RPROIN_MASK) || (status & FSR_WPROIN0_MASK))
1147 proin = true;
1148 break;
1149 case 1:
1150 if (status & FSR_WPROIN1_MASK)
1151 proin = true;
1152 break;
1153 case 2:
1154 if (status & FSR_WPROIN2_MASK)
1155 proin = true;
1156 break;
1157 }
1158
1159 if (proin) {
1160 LOG_ERROR("Flash protection is installed for user %d"
1161 " and must be removed before continuing", level);
1162 return ERROR_FAIL;
1163 }
1164
1165 /* If this device has 12 flash sectors, protection for
1166 * sectors 10 & 11 are handled jointly. If we are trying to
1167 * write all sectors, we should decrement
1168 * last to ensure we don't write to a register bit that
1169 * doesn't exist*/
1170 if ((bank->num_sectors == 12) && (last == 12))
1171 last--;
1172
1173 /* We need to fill out the procon register representation
1174 * that we will be writing to the device */
1175 for (int i = first; i <= last; i++)
1176 procon |= 1 << i;
1177
1178 /* If read protection is requested, set the appropriate bit
1179 * (we checked that this is allowed above) */
1180 if (read_protect)
1181 procon |= PROCON_RPRO_MASK;
1182
1183 LOG_DEBUG("Setting flash protection with procon:");
1184 LOG_DEBUG("PROCON: %"PRIx32, procon);
1185
1186 /* First we need to copy in the procon register to the buffer
1187 * we're going to attempt to write. This is written twice */
1188 target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], procon);
1189 target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], procon);
1190
1191 /* Now we must copy in both flash passwords. As with the
1192 * procon data, this must be written twice (4 total words
1193 * worth of data) */
1194 target_buffer_set_u32(bank->target, &ucp0_buf[4 * 4], fb->pw1);
1195 target_buffer_set_u32(bank->target, &ucp0_buf[5 * 4], fb->pw2);
1196 target_buffer_set_u32(bank->target, &ucp0_buf[6 * 4], fb->pw1);
1197 target_buffer_set_u32(bank->target, &ucp0_buf[7 * 4], fb->pw2);
1198
1199 /* Finally, (if requested) we copy in the confirmation
1200 * code so that the protection is permanent and will
1201 * require a password to undo. */
1202 target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1203 target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1204
1205 /* Now that the data is copied into place, we must write
1206 * these pages into flash */
1207
1208 /* The user configuration block base depends on what level of
1209 * protection we're trying to install, select the proper one */
1210 switch (level) {
1211 case 0:
1212 ucb_base = UCB0_BASE;
1213 break;
1214 case 1:
1215 ucb_base = UCB1_BASE;
1216 break;
1217 case 2:
1218 ucb_base = UCB2_BASE;
1219 break;
1220 }
1221
1222 /* Write the user config pages */
1223 res = xmc4xxx_write_page(bank, ucp0_buf, ucb_base, true);
1224 if (res != ERROR_OK) {
1225 LOG_ERROR("Error writing user configuration block 0");
1226 return res;
1227 }
1228
1229 return ERROR_OK;
1230 }
1231
1232 static int xmc4xxx_protect(struct flash_bank *bank, int set, int first, int last)
1233 {
1234 int ret;
1235 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1236
1237 /* Check for flash passwords */
1238 if (!fb->pw_set) {
1239 LOG_ERROR("Flash passwords not set, use xmc4xxx flash_password to set them");
1240 return ERROR_FAIL;
1241 }
1242
1243 /* We want to clear flash protection temporarily*/
1244 if (set == 0) {
1245 LOG_WARNING("Flash protection will be temporarily disabled"
1246 " for all pages (User 0 only)!");
1247 ret = xmc4xxx_temp_unprotect(bank, 0);
1248 return ret;
1249 }
1250
1251 /* Install write protection for user 0 on the specified pages */
1252 ret = xmc4xxx_flash_protect(bank, 0, false, first, last);
1253
1254 return ret;
1255 }
1256
1257 static int xmc4xxx_protect_check(struct flash_bank *bank)
1258 {
1259 int ret;
1260 uint32_t protection[3] = {0};
1261 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1262
1263 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON0, &protection[0]);
1264 if (ret != ERROR_OK) {
1265 LOG_ERROR("Unable to read flash User0 protection register");
1266 return ret;
1267 }
1268
1269 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON1, &protection[1]);
1270 if (ret != ERROR_OK) {
1271 LOG_ERROR("Unable to read flash User1 protection register");
1272 return ret;
1273 }
1274
1275 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON2, &protection[2]);
1276 if (ret != ERROR_OK) {
1277 LOG_ERROR("Unable to read flash User2 protection register");
1278 return ret;
1279 }
1280
1281 int sectors = bank->num_sectors;
1282
1283 /* On devices with 12 sectors, sectors 10 & 11 are ptected
1284 * together instead of individually */
1285 if (sectors == 12)
1286 sectors--;
1287
1288 /* Clear the protection status */
1289 for (int i = 0; i < bank->num_sectors; i++) {
1290 bank->sectors[i].is_protected = 0;
1291 fb->write_prot_otp[i] = false;
1292 }
1293 fb->read_protected = false;
1294
1295 /* The xmc4xxx series supports 3 levels of user protection
1296 * (User0, User1 (low priority), and User 2(OTP), we need to
1297 * check all 3 */
1298 for (unsigned int i = 0; i < ARRAY_SIZE(protection); i++) {
1299
1300 /* Check for write protection on every available
1301 * sector */
1302 for (int j = 0; j < sectors; j++) {
1303 int set = (protection[i] & (1 << j)) ? 1 : 0;
1304 bank->sectors[j].is_protected |= set;
1305
1306 /* Handle sector 11 */
1307 if (j == 10)
1308 bank->sectors[j + 1].is_protected |= set;
1309
1310 /* User 2 indicates this protection is
1311 * permanent, make note in the private driver structure */
1312 if (i == 2 && set) {
1313 fb->write_prot_otp[j] = true;
1314
1315 /* Handle sector 11 */
1316 if (j == 10)
1317 fb->write_prot_otp[j + 1] = true;
1318 }
1319
1320 }
1321 }
1322
1323 /* XMC4xxx also supports read proptection, make a note
1324 * in the private driver structure */
1325 if (protection[0] & PROCON_RPRO_MASK)
1326 fb->read_protected = true;
1327
1328 return ERROR_OK;
1329 }
1330
1331 FLASH_BANK_COMMAND_HANDLER(xmc4xxx_flash_bank_command)
1332 {
1333 bank->driver_priv = malloc(sizeof(struct xmc4xxx_flash_bank));
1334
1335 if (!bank->driver_priv)
1336 return ERROR_FLASH_OPERATION_FAILED;
1337
1338 (void)memset(bank->driver_priv, 0, sizeof(struct xmc4xxx_flash_bank));
1339
1340 return ERROR_OK;
1341 }
1342
1343 COMMAND_HANDLER(xmc4xxx_handle_flash_password_command)
1344 {
1345 int res;
1346 struct flash_bank *bank;
1347
1348 if (CMD_ARGC < 3)
1349 return ERROR_COMMAND_SYNTAX_ERROR;
1350
1351 res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1352 if (res != ERROR_OK)
1353 return res;
1354
1355 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1356
1357 errno = 0;
1358
1359 /* We skip over the flash bank */
1360 fb->pw1 = strtol(CMD_ARGV[1], NULL, 16);
1361
1362 if (errno)
1363 return ERROR_COMMAND_SYNTAX_ERROR;
1364
1365 fb->pw2 = strtol(CMD_ARGV[2], NULL, 16);
1366
1367 if (errno)
1368 return ERROR_COMMAND_SYNTAX_ERROR;
1369
1370 fb->pw_set = true;
1371
1372 command_print(CMD_CTX, "XMC4xxx flash passwords set to:\n");
1373 command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw1);
1374 command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw2);
1375 return ERROR_OK;
1376 }
1377
1378 COMMAND_HANDLER(xmc4xxx_handle_flash_unprotect_command)
1379 {
1380 struct flash_bank *bank;
1381 int res;
1382 int32_t level;
1383
1384 if (CMD_ARGC < 2)
1385 return ERROR_COMMAND_SYNTAX_ERROR;
1386
1387 res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1388 if (res != ERROR_OK)
1389 return res;
1390
1391 COMMAND_PARSE_NUMBER(s32, CMD_ARGV[1], level);
1392
1393 res = xmc4xxx_flash_unprotect(bank, level);
1394
1395 return res;
1396 }
1397
1398 static const struct command_registration xmc4xxx_exec_command_handlers[] = {
1399 {
1400 .name = "flash_password",
1401 .handler = xmc4xxx_handle_flash_password_command,
1402 .mode = COMMAND_EXEC,
1403 .usage = "bank_id password1 password2",
1404 .help = "Set the flash passwords used for protect operations. "
1405 "Passwords should be in standard hex form (0x00000000). "
1406 "(You must call this before any other protect commands) "
1407 "NOTE: The xmc4xxx's UCB area only allows for FOUR cycles. "
1408 "Please use protection carefully!",
1409 },
1410 {
1411 .name = "flash_unprotect",
1412 .handler = xmc4xxx_handle_flash_unprotect_command,
1413 .mode = COMMAND_EXEC,
1414 .usage = "bank_id user_level[0-1]",
1415 .help = "Permanently Removes flash protection (read and write) "
1416 "for the specified user level",
1417 }, COMMAND_REGISTRATION_DONE
1418 };
1419
1420 static const struct command_registration xmc4xxx_command_handlers[] = {
1421 {
1422 .name = "xmc4xxx",
1423 .mode = COMMAND_ANY,
1424 .help = "xmc4xxx flash command group",
1425 .usage = "",
1426 .chain = xmc4xxx_exec_command_handlers,
1427 },
1428 COMMAND_REGISTRATION_DONE
1429 };
1430
1431 struct flash_driver xmc4xxx_flash = {
1432 .name = "xmc4xxx",
1433 .commands = xmc4xxx_command_handlers,
1434 .flash_bank_command = xmc4xxx_flash_bank_command,
1435 .erase = xmc4xxx_erase,
1436 .write = xmc4xxx_write,
1437 .read = default_flash_read,
1438 .probe = xmc4xxx_probe,
1439 .auto_probe = xmc4xxx_probe,
1440 .erase_check = xmc4xxx_flash_blank_check,
1441 .info = xmc4xxx_get_info_command,
1442 .protect_check = xmc4xxx_protect_check,
1443 .protect = xmc4xxx_protect,
1444 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)