ftd2xx: fix build warnings
[openocd.git] / src / jtag / drivers / ft2232.c
1 /***************************************************************************
2 * Copyright (C) 2009 by Øyvind Harboe *
3 * Øyvind Harboe <oyvind.harboe@zylin.com> *
4 * *
5 * Copyright (C) 2009 by SoftPLC Corporation. http://softplc.com *
6 * Dick Hollenbeck <dick@softplc.com> *
7 * *
8 * Copyright (C) 2004, 2006 by Dominic Rath *
9 * Dominic.Rath@gmx.de *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29
30 /**
31 * @file
32 * JTAG adapters based on the FT2232 full and high speed USB parts are
33 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
34 * are discrete, but development boards may integrate them as alternatives
35 * to more capable (and expensive) third party JTAG pods.
36 *
37 * JTAG uses only one of the two communications channels ("MPSSE engines")
38 * on these devices. Adapters based on FT4232 parts have four ports/channels
39 * (A/B/C/D), instead of just two (A/B).
40 *
41 * Especially on development boards integrating one of these chips (as
42 * opposed to discrete pods/dongles), the additional channels can be used
43 * for a variety of purposes, but OpenOCD only uses one channel at a time.
44 *
45 * - As a USB-to-serial adapter for the target's console UART ...
46 * which may be able to support ROM boot loaders that load initial
47 * firmware images to flash (or SRAM).
48 *
49 * - On systems which support ARM's SWD in addition to JTAG, or instead
50 * of it, that second port can be used for reading SWV/SWO trace data.
51 *
52 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
53 *
54 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
55 * request/response interactions involve round trips over the USB link.
56 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
57 * can for example poll quickly for a status change (usually taking on the
58 * order of microseconds not milliseconds) before beginning a queued
59 * transaction which require the previous one to have completed.
60 *
61 * There are dozens of adapters of this type, differing in details which
62 * this driver needs to understand. Those "layout" details are required
63 * as part of FT2232 driver configuration.
64 *
65 * This code uses information contained in the MPSSE specification which was
66 * found here:
67 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
68 * Hereafter this is called the "MPSSE Spec".
69 *
70 * The datasheet for the ftdichip.com's FT2232D part is here:
71 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
72 *
73 * Also note the issue with code 0x4b (clock data to TMS) noted in
74 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
75 * which can affect longer JTAG state paths.
76 */
77
78 #ifdef HAVE_CONFIG_H
79 #include "config.h"
80 #endif
81
82 /* project specific includes */
83 #include <jtag/interface.h>
84 #include <transport/transport.h>
85 #include <helper/time_support.h>
86
87 #if IS_CYGWIN == 1
88 #include <windows.h>
89 #endif
90
91 #include <assert.h>
92
93 #if (BUILD_FT2232_FTD2XX == 1 && BUILD_FT2232_LIBFTDI == 1)
94 #error "BUILD_FT2232_FTD2XX && BUILD_FT2232_LIBFTDI are mutually exclusive"
95 #elif (BUILD_FT2232_FTD2XX != 1 && BUILD_FT2232_LIBFTDI != 1)
96 #error "BUILD_FT2232_FTD2XX || BUILD_FT2232_LIBFTDI must be chosen"
97 #endif
98
99 /* FT2232 access library includes */
100 #if BUILD_FT2232_FTD2XX == 1
101 #include <ftd2xx.h>
102 #include "ftd2xx_common.h"
103
104 enum ftdi_interface
105 {
106 INTERFACE_ANY = 0,
107 INTERFACE_A = 1,
108 INTERFACE_B = 2,
109 INTERFACE_C = 3,
110 INTERFACE_D = 4
111 };
112
113 #elif BUILD_FT2232_LIBFTDI == 1
114 #include <ftdi.h>
115 #endif
116
117 /* max TCK for the high speed devices 30000 kHz */
118 #define FTDI_2232H_4232H_MAX_TCK 30000
119 /* max TCK for the full speed devices 6000 kHz */
120 #define FTDI_2232C_MAX_TCK 6000
121 /* this speed value tells that RTCK is requested */
122 #define RTCK_SPEED -1
123
124 /*
125 * On my Athlon XP 1900+ EHCI host with FT2232H JTAG dongle I get read timeout
126 * errors with a retry count of 100. Increasing it solves the problem for me.
127 * - Dimitar
128 *
129 * FIXME There's likely an issue with the usb_read_timeout from libftdi.
130 * Fix that (libusb? kernel? libftdi? here?) and restore the retry count
131 * to something sane.
132 */
133 #define LIBFTDI_READ_RETRY_COUNT 2000
134
135 #ifndef BUILD_FT2232_HIGHSPEED
136 #if BUILD_FT2232_FTD2XX == 1
137 enum { FT_DEVICE_2232H = 6, FT_DEVICE_4232H };
138 #elif BUILD_FT2232_LIBFTDI == 1
139 enum { TYPE_2232H = 4, TYPE_4232H = 5 };
140 #endif
141 #endif
142
143 /**
144 * Send out \a num_cycles on the TCK line while the TAP(s) are in a
145 * stable state. Calling code must ensure that current state is stable,
146 * that verification is not done in here.
147 *
148 * @param num_cycles The number of clocks cycles to send.
149 * @param cmd The command to send.
150 *
151 * @returns ERROR_OK on success, or ERROR_JTAG_QUEUE_FAILED on failure.
152 */
153 static int ft2232_stableclocks(int num_cycles, struct jtag_command* cmd);
154
155 static char * ft2232_device_desc_A = NULL;
156 static char* ft2232_device_desc = NULL;
157 static char* ft2232_serial = NULL;
158 static uint8_t ft2232_latency = 2;
159 static unsigned ft2232_max_tck = FTDI_2232C_MAX_TCK;
160
161 #define MAX_USB_IDS 8
162 /* vid = pid = 0 marks the end of the list */
163 static uint16_t ft2232_vid[MAX_USB_IDS + 1] = { 0x0403, 0 };
164 static uint16_t ft2232_pid[MAX_USB_IDS + 1] = { 0x6010, 0 };
165
166 struct ft2232_layout {
167 char* name;
168 int (*init)(void);
169 void (*reset)(int trst, int srst);
170 void (*blink)(void);
171 int channel;
172 };
173
174 /* init procedures for supported layouts */
175 static int usbjtag_init(void);
176 static int jtagkey_init(void);
177 static int lm3s811_jtag_init(void);
178 static int icdi_jtag_init(void);
179 static int olimex_jtag_init(void);
180 static int flyswatter_init(void);
181 static int minimodule_init(void);
182 static int turtle_init(void);
183 static int comstick_init(void);
184 static int stm32stick_init(void);
185 static int axm0432_jtag_init(void);
186 static int sheevaplug_init(void);
187 static int icebear_jtag_init(void);
188 static int cortino_jtag_init(void);
189 static int signalyzer_init(void);
190 static int signalyzer_h_init(void);
191 static int ktlink_init(void);
192 static int redbee_init(void);
193 static int lisa_l_init(void);
194 static int flossjtag_init(void);
195 static int xds100v2_init(void);
196
197 /* reset procedures for supported layouts */
198 static void ftx23_reset(int trst, int srst);
199 static void jtagkey_reset(int trst, int srst);
200 static void olimex_jtag_reset(int trst, int srst);
201 static void flyswatter_reset(int trst, int srst);
202 static void minimodule_reset(int trst, int srst);
203 static void turtle_reset(int trst, int srst);
204 static void comstick_reset(int trst, int srst);
205 static void stm32stick_reset(int trst, int srst);
206 static void axm0432_jtag_reset(int trst, int srst);
207 static void sheevaplug_reset(int trst, int srst);
208 static void icebear_jtag_reset(int trst, int srst);
209 static void signalyzer_h_reset(int trst, int srst);
210 static void ktlink_reset(int trst, int srst);
211 static void redbee_reset(int trst, int srst);
212 static void xds100v2_reset(int trst, int srst);
213
214 /* blink procedures for layouts that support a blinking led */
215 static void olimex_jtag_blink(void);
216 static void flyswatter_jtag_blink(void);
217 static void turtle_jtag_blink(void);
218 static void signalyzer_h_blink(void);
219 static void ktlink_blink(void);
220 static void lisa_l_blink(void);
221 static void flossjtag_blink(void);
222
223 /* common transport support options */
224
225 //static const char *jtag_and_swd[] = { "jtag", "swd", NULL };
226
227 static const struct ft2232_layout ft2232_layouts[] =
228 {
229 { .name = "usbjtag",
230 .init = usbjtag_init,
231 .reset = ftx23_reset,
232 },
233 { .name = "jtagkey",
234 .init = jtagkey_init,
235 .reset = jtagkey_reset,
236 },
237 { .name = "jtagkey_prototype_v1",
238 .init = jtagkey_init,
239 .reset = jtagkey_reset,
240 },
241 { .name = "oocdlink",
242 .init = jtagkey_init,
243 .reset = jtagkey_reset,
244 },
245 { .name = "signalyzer",
246 .init = signalyzer_init,
247 .reset = ftx23_reset,
248 },
249 { .name = "evb_lm3s811",
250 .init = lm3s811_jtag_init,
251 .reset = ftx23_reset,
252 },
253 { .name = "luminary_icdi",
254 .init = icdi_jtag_init,
255 .reset = ftx23_reset,
256 },
257 { .name = "olimex-jtag",
258 .init = olimex_jtag_init,
259 .reset = olimex_jtag_reset,
260 .blink = olimex_jtag_blink
261 },
262 { .name = "flyswatter",
263 .init = flyswatter_init,
264 .reset = flyswatter_reset,
265 .blink = flyswatter_jtag_blink
266 },
267 { .name = "minimodule",
268 .init = minimodule_init,
269 .reset = minimodule_reset,
270 },
271 { .name = "turtelizer2",
272 .init = turtle_init,
273 .reset = turtle_reset,
274 .blink = turtle_jtag_blink
275 },
276 { .name = "comstick",
277 .init = comstick_init,
278 .reset = comstick_reset,
279 },
280 { .name = "stm32stick",
281 .init = stm32stick_init,
282 .reset = stm32stick_reset,
283 },
284 { .name = "axm0432_jtag",
285 .init = axm0432_jtag_init,
286 .reset = axm0432_jtag_reset,
287 },
288 { .name = "sheevaplug",
289 .init = sheevaplug_init,
290 .reset = sheevaplug_reset,
291 },
292 { .name = "icebear",
293 .init = icebear_jtag_init,
294 .reset = icebear_jtag_reset,
295 },
296 { .name = "cortino",
297 .init = cortino_jtag_init,
298 .reset = comstick_reset,
299 },
300 { .name = "signalyzer-h",
301 .init = signalyzer_h_init,
302 .reset = signalyzer_h_reset,
303 .blink = signalyzer_h_blink
304 },
305 { .name = "ktlink",
306 .init = ktlink_init,
307 .reset = ktlink_reset,
308 .blink = ktlink_blink
309 },
310 { .name = "redbee-econotag",
311 .init = redbee_init,
312 .reset = redbee_reset,
313 },
314 { .name = "redbee-usb",
315 .init = redbee_init,
316 .reset = redbee_reset,
317 .channel = INTERFACE_B,
318 },
319 { .name = "lisa-l",
320 .init = lisa_l_init,
321 .reset = ftx23_reset,
322 .blink = lisa_l_blink,
323 .channel = INTERFACE_B,
324 },
325 { .name = "flossjtag",
326 .init = flossjtag_init,
327 .reset = ftx23_reset,
328 .blink = flossjtag_blink,
329 },
330 { .name = "xds100v2",
331 .init = xds100v2_init,
332 .reset = xds100v2_reset,
333 },
334 { .name = NULL, /* END OF TABLE */ },
335 };
336
337 /* bitmask used to drive nTRST; usually a GPIOLx signal */
338 static uint8_t nTRST;
339 static uint8_t nTRSTnOE;
340 /* bitmask used to drive nSRST; usually a GPIOLx signal */
341 static uint8_t nSRST;
342 static uint8_t nSRSTnOE;
343
344 /** the layout being used with this debug session */
345 static const struct ft2232_layout *layout;
346
347 /** default bitmask values driven on DBUS: TCK/TDI/TDO/TMS and GPIOL(0..4) */
348 static uint8_t low_output = 0x0;
349
350 /* note that direction bit == 1 means that signal is an output */
351
352 /** default direction bitmask for DBUS: TCK/TDI/TDO/TMS and GPIOL(0..4) */
353 static uint8_t low_direction = 0x0;
354 /** default value bitmask for CBUS GPIOH(0..4) */
355 static uint8_t high_output = 0x0;
356 /** default direction bitmask for CBUS GPIOH(0..4) */
357 static uint8_t high_direction = 0x0;
358
359 #if BUILD_FT2232_FTD2XX == 1
360 static FT_HANDLE ftdih = NULL;
361 static FT_DEVICE ftdi_device = 0;
362 #elif BUILD_FT2232_LIBFTDI == 1
363 static struct ftdi_context ftdic;
364 static enum ftdi_chip_type ftdi_device;
365 #endif
366
367 static struct jtag_command* first_unsent; /* next command that has to be sent */
368 static int require_send;
369
370 /* http://urjtag.wiki.sourceforge.net/Cable + FT2232 says:
371
372 "There is a significant difference between libftdi and libftd2xx. The latter
373 one allows to schedule up to 64*64 bytes of result data while libftdi fails
374 with more than 4*64. As a consequence, the FT2232 driver is forced to
375 perform around 16x more USB transactions for long command streams with TDO
376 capture when running with libftdi."
377
378 No idea how we get
379 #define FT2232_BUFFER_SIZE 131072
380 a comment would have been nice.
381 */
382
383 #if BUILD_FT2232_FTD2XX == 1
384 #define FT2232_BUFFER_READ_QUEUE_SIZE (64*64)
385 #else
386 #define FT2232_BUFFER_READ_QUEUE_SIZE (64*4)
387 #endif
388
389 #define FT2232_BUFFER_SIZE 131072
390
391 static uint8_t* ft2232_buffer = NULL;
392 static int ft2232_buffer_size = 0;
393 static int ft2232_read_pointer = 0;
394 static int ft2232_expect_read = 0;
395
396 /**
397 * Function buffer_write
398 * writes a byte into the byte buffer, "ft2232_buffer", which must be sent later.
399 * @param val is the byte to send.
400 */
401 static inline void buffer_write(uint8_t val)
402 {
403 assert(ft2232_buffer);
404 assert((unsigned) ft2232_buffer_size < (unsigned) FT2232_BUFFER_SIZE);
405 ft2232_buffer[ft2232_buffer_size++] = val;
406 }
407
408 /**
409 * Function buffer_read
410 * returns a byte from the byte buffer.
411 */
412 static inline uint8_t buffer_read(void)
413 {
414 assert(ft2232_buffer);
415 assert(ft2232_read_pointer < ft2232_buffer_size);
416 return ft2232_buffer[ft2232_read_pointer++];
417 }
418
419 /**
420 * Clocks out \a bit_count bits on the TMS line, starting with the least
421 * significant bit of tms_bits and progressing to more significant bits.
422 * Rigorous state transition logging is done here via tap_set_state().
423 *
424 * @param mpsse_cmd One of the MPSSE TMS oriented commands such as
425 * 0x4b or 0x6b. See the MPSSE spec referenced above for their
426 * functionality. The MPSSE command "Clock Data to TMS/CS Pin (no Read)"
427 * is often used for this, 0x4b.
428 *
429 * @param tms_bits Holds the sequence of bits to send.
430 * @param tms_count Tells how many bits in the sequence.
431 * @param tdi_bit A single bit to pass on to TDI before the first TCK
432 * cycle and held static for the duration of TMS clocking.
433 *
434 * See the MPSSE spec referenced above.
435 */
436 static void clock_tms(uint8_t mpsse_cmd, int tms_bits, int tms_count, bool tdi_bit)
437 {
438 uint8_t tms_byte;
439 int i;
440 int tms_ndx; /* bit index into tms_byte */
441
442 assert(tms_count > 0);
443
444 DEBUG_JTAG_IO("mpsse cmd=%02x, tms_bits = 0x%08x, bit_count=%d",
445 mpsse_cmd, tms_bits, tms_count);
446
447 for (tms_byte = tms_ndx = i = 0; i < tms_count; ++i, tms_bits>>=1)
448 {
449 bool bit = tms_bits & 1;
450
451 if (bit)
452 tms_byte |= (1 << tms_ndx);
453
454 /* always do state transitions in public view */
455 tap_set_state(tap_state_transition(tap_get_state(), bit));
456
457 /* we wrote a bit to tms_byte just above, increment bit index. if bit was zero
458 also increment.
459 */
460 ++tms_ndx;
461
462 if (tms_ndx == 7 || i == tms_count-1)
463 {
464 buffer_write(mpsse_cmd);
465 buffer_write(tms_ndx - 1);
466
467 /* Bit 7 of the byte is passed on to TDI/DO before the first TCK/SK of
468 TMS/CS and is held static for the duration of TMS/CS clocking.
469 */
470 buffer_write(tms_byte | (tdi_bit << 7));
471 }
472 }
473 }
474
475 /**
476 * Function get_tms_buffer_requirements
477 * returns what clock_tms() will consume if called with
478 * same \a bit_count.
479 */
480 static inline int get_tms_buffer_requirements(int bit_count)
481 {
482 return ((bit_count + 6)/7) * 3;
483 }
484
485 /**
486 * Function move_to_state
487 * moves the TAP controller from the current state to a
488 * \a goal_state through a path given by tap_get_tms_path(). State transition
489 * logging is performed by delegation to clock_tms().
490 *
491 * @param goal_state is the destination state for the move.
492 */
493 static void move_to_state(tap_state_t goal_state)
494 {
495 tap_state_t start_state = tap_get_state();
496
497 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
498 lookup of the required TMS pattern to move to this state from the
499 start state.
500 */
501
502 /* do the 2 lookups */
503 int tms_bits = tap_get_tms_path(start_state, goal_state);
504 int tms_count = tap_get_tms_path_len(start_state, goal_state);
505
506 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
507
508 clock_tms(0x4b, tms_bits, tms_count, 0);
509 }
510
511 static int ft2232_write(uint8_t* buf, int size, uint32_t* bytes_written)
512 {
513 #if BUILD_FT2232_FTD2XX == 1
514 FT_STATUS status;
515 DWORD dw_bytes_written = 0;
516 if ((status = FT_Write(ftdih, buf, size, &dw_bytes_written)) != FT_OK)
517 {
518 *bytes_written = dw_bytes_written;
519 LOG_ERROR("FT_Write returned: %s", ftd2xx_status_string(status));
520 return ERROR_JTAG_DEVICE_ERROR;
521 }
522 else
523 {
524 *bytes_written = dw_bytes_written;
525 }
526 #elif BUILD_FT2232_LIBFTDI == 1
527 int retval;
528 if ((retval = ftdi_write_data(&ftdic, buf, size)) < 0)
529 {
530 *bytes_written = 0;
531 LOG_ERROR("ftdi_write_data: %s", ftdi_get_error_string(&ftdic));
532 return ERROR_JTAG_DEVICE_ERROR;
533 }
534 else
535 {
536 *bytes_written = retval;
537 }
538 #endif
539
540 if (*bytes_written != (uint32_t)size)
541 {
542 return ERROR_JTAG_DEVICE_ERROR;
543 }
544
545 return ERROR_OK;
546 }
547
548 static int ft2232_read(uint8_t* buf, uint32_t size, uint32_t* bytes_read)
549 {
550 #if BUILD_FT2232_FTD2XX == 1
551 DWORD dw_bytes_read;
552 FT_STATUS status;
553 int timeout = 5;
554 *bytes_read = 0;
555
556 while ((*bytes_read < size) && timeout--)
557 {
558 if ((status = FT_Read(ftdih, buf + *bytes_read, size -
559 *bytes_read, &dw_bytes_read)) != FT_OK)
560 {
561 *bytes_read = 0;
562 LOG_ERROR("FT_Read returned: %s", ftd2xx_status_string(status));
563 return ERROR_JTAG_DEVICE_ERROR;
564 }
565 *bytes_read += dw_bytes_read;
566 }
567
568 #elif BUILD_FT2232_LIBFTDI == 1
569 int retval;
570 int timeout = LIBFTDI_READ_RETRY_COUNT;
571 *bytes_read = 0;
572
573 while ((*bytes_read < size) && timeout--)
574 {
575 if ((retval = ftdi_read_data(&ftdic, buf + *bytes_read, size - *bytes_read)) < 0)
576 {
577 *bytes_read = 0;
578 LOG_ERROR("ftdi_read_data: %s", ftdi_get_error_string(&ftdic));
579 return ERROR_JTAG_DEVICE_ERROR;
580 }
581 *bytes_read += retval;
582 }
583
584 #endif
585
586 if (*bytes_read < size)
587 {
588 LOG_ERROR("couldn't read enough bytes from "
589 "FT2232 device (%i < %i)",
590 (unsigned)*bytes_read,
591 (unsigned)size);
592 return ERROR_JTAG_DEVICE_ERROR;
593 }
594
595 return ERROR_OK;
596 }
597
598 static bool ft2232_device_is_highspeed(void)
599 {
600 #if BUILD_FT2232_FTD2XX == 1
601 return (ftdi_device == FT_DEVICE_2232H) || (ftdi_device == FT_DEVICE_4232H);
602 #elif BUILD_FT2232_LIBFTDI == 1
603 return (ftdi_device == TYPE_2232H || ftdi_device == TYPE_4232H);
604 #endif
605 }
606
607 /*
608 * Commands that only apply to the FT2232H and FT4232H devices.
609 * See chapter 6 in http://www.ftdichip.com/Documents/AppNotes/
610 * AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf
611 */
612
613 static int ft2232h_ft4232h_adaptive_clocking(bool enable)
614 {
615 uint8_t buf = enable ? 0x96 : 0x97;
616 LOG_DEBUG("%2.2x", buf);
617
618 uint32_t bytes_written;
619 int retval;
620
621 if ((retval = ft2232_write(&buf, sizeof(buf), &bytes_written)) != ERROR_OK)
622 {
623 LOG_ERROR("couldn't write command to %s adaptive clocking"
624 , enable ? "enable" : "disable");
625 return retval;
626 }
627
628 return ERROR_OK;
629 }
630
631 /**
632 * Enable/disable the clk divide by 5 of the 60MHz master clock.
633 * This result in a JTAG clock speed range of 91.553Hz-6MHz
634 * respective 457.763Hz-30MHz.
635 */
636 static int ft2232h_ft4232h_clk_divide_by_5(bool enable)
637 {
638 uint32_t bytes_written;
639 uint8_t buf = enable ? 0x8b : 0x8a;
640
641 if (ft2232_write(&buf, sizeof(buf), &bytes_written) != ERROR_OK)
642 {
643 LOG_ERROR("couldn't write command to %s clk divide by 5"
644 , enable ? "enable" : "disable");
645 return ERROR_JTAG_INIT_FAILED;
646 }
647 ft2232_max_tck = enable ? FTDI_2232C_MAX_TCK : FTDI_2232H_4232H_MAX_TCK;
648 LOG_INFO("max TCK change to: %u kHz", ft2232_max_tck);
649
650 return ERROR_OK;
651 }
652
653 static int ft2232_speed(int speed)
654 {
655 uint8_t buf[3];
656 int retval;
657 uint32_t bytes_written;
658
659 retval = ERROR_OK;
660 bool enable_adaptive_clocking = (RTCK_SPEED == speed);
661 if (ft2232_device_is_highspeed())
662 retval = ft2232h_ft4232h_adaptive_clocking(enable_adaptive_clocking);
663 else if (enable_adaptive_clocking)
664 {
665 LOG_ERROR("ft2232 device %lu does not support RTCK"
666 , (long unsigned int)ftdi_device);
667 return ERROR_FAIL;
668 }
669
670 if ((enable_adaptive_clocking) || (ERROR_OK != retval))
671 return retval;
672
673 buf[0] = 0x86; /* command "set divisor" */
674 buf[1] = speed & 0xff; /* valueL (0 = 6MHz, 1 = 3MHz, 2 = 2.0MHz, ...*/
675 buf[2] = (speed >> 8) & 0xff; /* valueH */
676
677 LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
678 if ((retval = ft2232_write(buf, sizeof(buf), &bytes_written)) != ERROR_OK)
679 {
680 LOG_ERROR("couldn't set FT2232 TCK speed");
681 return retval;
682 }
683
684 return ERROR_OK;
685 }
686
687 static int ft2232_speed_div(int speed, int* khz)
688 {
689 /* Take a look in the FT2232 manual,
690 * AN2232C-01 Command Processor for
691 * MPSSE and MCU Host Bus. Chapter 3.8 */
692
693 *khz = (RTCK_SPEED == speed) ? 0 : ft2232_max_tck / (1 + speed);
694
695 return ERROR_OK;
696 }
697
698 static int ft2232_khz(int khz, int* jtag_speed)
699 {
700 if (khz == 0)
701 {
702 if (ft2232_device_is_highspeed())
703 {
704 *jtag_speed = RTCK_SPEED;
705 return ERROR_OK;
706 }
707 else
708 {
709 LOG_DEBUG("RCLK not supported");
710 return ERROR_FAIL;
711 }
712 }
713
714 /* Take a look in the FT2232 manual,
715 * AN2232C-01 Command Processor for
716 * MPSSE and MCU Host Bus. Chapter 3.8
717 *
718 * We will calc here with a multiplier
719 * of 10 for better rounding later. */
720
721 /* Calc speed, (ft2232_max_tck / khz) - 1 */
722 /* Use 65000 for better rounding */
723 *jtag_speed = ((ft2232_max_tck*10) / khz) - 10;
724
725 /* Add 0.9 for rounding */
726 *jtag_speed += 9;
727
728 /* Calc real speed */
729 *jtag_speed = *jtag_speed / 10;
730
731 /* Check if speed is greater than 0 */
732 if (*jtag_speed < 0)
733 {
734 *jtag_speed = 0;
735 }
736
737 /* Check max value */
738 if (*jtag_speed > 0xFFFF)
739 {
740 *jtag_speed = 0xFFFF;
741 }
742
743 return ERROR_OK;
744 }
745
746 static void ft2232_end_state(tap_state_t state)
747 {
748 if (tap_is_state_stable(state))
749 tap_set_end_state(state);
750 else
751 {
752 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
753 exit(-1);
754 }
755 }
756
757 static void ft2232_read_scan(enum scan_type type, uint8_t* buffer, int scan_size)
758 {
759 int num_bytes = (scan_size + 7) / 8;
760 int bits_left = scan_size;
761 int cur_byte = 0;
762
763 while (num_bytes-- > 1)
764 {
765 buffer[cur_byte++] = buffer_read();
766 bits_left -= 8;
767 }
768
769 buffer[cur_byte] = 0x0;
770
771 /* There is one more partial byte left from the clock data in/out instructions */
772 if (bits_left > 1)
773 {
774 buffer[cur_byte] = buffer_read() >> 1;
775 }
776 /* This shift depends on the length of the clock data to tms instruction, insterted at end of the scan, now fixed to a two step transition in ft2232_add_scan */
777 buffer[cur_byte] = (buffer[cur_byte] | (((buffer_read()) << 1) & 0x80)) >> (8 - bits_left);
778 }
779
780 static void ft2232_debug_dump_buffer(void)
781 {
782 int i;
783 char line[256];
784 char* line_p = line;
785
786 for (i = 0; i < ft2232_buffer_size; i++)
787 {
788 line_p += snprintf(line_p, sizeof(line) - (line_p - line), "%2.2x ", ft2232_buffer[i]);
789 if (i % 16 == 15)
790 {
791 LOG_DEBUG("%s", line);
792 line_p = line;
793 }
794 }
795
796 if (line_p != line)
797 LOG_DEBUG("%s", line);
798 }
799
800 static int ft2232_send_and_recv(struct jtag_command* first, struct jtag_command* last)
801 {
802 struct jtag_command* cmd;
803 uint8_t* buffer;
804 int scan_size;
805 enum scan_type type;
806 int retval;
807 uint32_t bytes_written = 0;
808 uint32_t bytes_read = 0;
809
810 #ifdef _DEBUG_USB_IO_
811 struct timeval start, inter, inter2, end;
812 struct timeval d_inter, d_inter2, d_end;
813 #endif
814
815 #ifdef _DEBUG_USB_COMMS_
816 LOG_DEBUG("write buffer (size %i):", ft2232_buffer_size);
817 ft2232_debug_dump_buffer();
818 #endif
819
820 #ifdef _DEBUG_USB_IO_
821 gettimeofday(&start, NULL);
822 #endif
823
824 if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
825 {
826 LOG_ERROR("couldn't write MPSSE commands to FT2232");
827 return retval;
828 }
829
830 #ifdef _DEBUG_USB_IO_
831 gettimeofday(&inter, NULL);
832 #endif
833
834 if (ft2232_expect_read)
835 {
836 /* FIXME this "timeout" is never changed ... */
837 int timeout = LIBFTDI_READ_RETRY_COUNT;
838 ft2232_buffer_size = 0;
839
840 #ifdef _DEBUG_USB_IO_
841 gettimeofday(&inter2, NULL);
842 #endif
843
844 if ((retval = ft2232_read(ft2232_buffer, ft2232_expect_read, &bytes_read)) != ERROR_OK)
845 {
846 LOG_ERROR("couldn't read from FT2232");
847 return retval;
848 }
849
850 #ifdef _DEBUG_USB_IO_
851 gettimeofday(&end, NULL);
852
853 timeval_subtract(&d_inter, &inter, &start);
854 timeval_subtract(&d_inter2, &inter2, &start);
855 timeval_subtract(&d_end, &end, &start);
856
857 LOG_INFO("inter: %u.%06u, inter2: %u.%06u end: %u.%06u",
858 (unsigned)d_inter.tv_sec, (unsigned)d_inter.tv_usec,
859 (unsigned)d_inter2.tv_sec, (unsigned)d_inter2.tv_usec,
860 (unsigned)d_end.tv_sec, (unsigned)d_end.tv_usec);
861 #endif
862
863 ft2232_buffer_size = bytes_read;
864
865 if (ft2232_expect_read != ft2232_buffer_size)
866 {
867 LOG_ERROR("ft2232_expect_read (%i) != "
868 "ft2232_buffer_size (%i) "
869 "(%i retries)",
870 ft2232_expect_read,
871 ft2232_buffer_size,
872 LIBFTDI_READ_RETRY_COUNT - timeout);
873 ft2232_debug_dump_buffer();
874
875 exit(-1);
876 }
877
878 #ifdef _DEBUG_USB_COMMS_
879 LOG_DEBUG("read buffer (%i retries): %i bytes",
880 LIBFTDI_READ_RETRY_COUNT - timeout,
881 ft2232_buffer_size);
882 ft2232_debug_dump_buffer();
883 #endif
884 }
885
886 ft2232_expect_read = 0;
887 ft2232_read_pointer = 0;
888
889 /* return ERROR_OK, unless a jtag_read_buffer returns a failed check
890 * that wasn't handled by a caller-provided error handler
891 */
892 retval = ERROR_OK;
893
894 cmd = first;
895 while (cmd != last)
896 {
897 switch (cmd->type)
898 {
899 case JTAG_SCAN:
900 type = jtag_scan_type(cmd->cmd.scan);
901 if (type != SCAN_OUT)
902 {
903 scan_size = jtag_scan_size(cmd->cmd.scan);
904 buffer = calloc(DIV_ROUND_UP(scan_size, 8), 1);
905 ft2232_read_scan(type, buffer, scan_size);
906 if (jtag_read_buffer(buffer, cmd->cmd.scan) != ERROR_OK)
907 retval = ERROR_JTAG_QUEUE_FAILED;
908 free(buffer);
909 }
910 break;
911
912 default:
913 break;
914 }
915
916 cmd = cmd->next;
917 }
918
919 ft2232_buffer_size = 0;
920
921 return retval;
922 }
923
924 /**
925 * Function ft2232_add_pathmove
926 * moves the TAP controller from the current state to a new state through the
927 * given path, where path is an array of tap_state_t's.
928 *
929 * @param path is an array of tap_stat_t which gives the states to traverse through
930 * ending with the last state at path[num_states-1]
931 * @param num_states is the count of state steps to move through
932 */
933 static void ft2232_add_pathmove(tap_state_t* path, int num_states)
934 {
935 int state_count = 0;
936
937 assert((unsigned) num_states <= 32u); /* tms_bits only holds 32 bits */
938
939 DEBUG_JTAG_IO("-");
940
941 /* this loop verifies that the path is legal and logs each state in the path */
942 while (num_states)
943 {
944 unsigned char tms_byte = 0; /* zero this on each MPSSE batch */
945 int bit_count = 0;
946 int num_states_batch = num_states > 7 ? 7 : num_states;
947
948 /* command "Clock Data to TMS/CS Pin (no Read)" */
949 buffer_write(0x4b);
950
951 /* number of states remaining */
952 buffer_write(num_states_batch - 1);
953
954 while (num_states_batch--) {
955 /* either TMS=0 or TMS=1 must work ... */
956 if (tap_state_transition(tap_get_state(), false)
957 == path[state_count])
958 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
959 else if (tap_state_transition(tap_get_state(), true)
960 == path[state_count])
961 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
962
963 /* ... or else the caller goofed BADLY */
964 else {
965 LOG_ERROR("BUG: %s -> %s isn't a valid "
966 "TAP state transition",
967 tap_state_name(tap_get_state()),
968 tap_state_name(path[state_count]));
969 exit(-1);
970 }
971
972 tap_set_state(path[state_count]);
973 state_count++;
974 num_states--;
975 }
976
977 buffer_write(tms_byte);
978 }
979 tap_set_end_state(tap_get_state());
980 }
981
982 static void ft2232_add_scan(bool ir_scan, enum scan_type type, uint8_t* buffer, int scan_size)
983 {
984 int num_bytes = (scan_size + 7) / 8;
985 int bits_left = scan_size;
986 int cur_byte = 0;
987 int last_bit;
988
989 if (!ir_scan)
990 {
991 if (tap_get_state() != TAP_DRSHIFT)
992 {
993 move_to_state(TAP_DRSHIFT);
994 }
995 }
996 else
997 {
998 if (tap_get_state() != TAP_IRSHIFT)
999 {
1000 move_to_state(TAP_IRSHIFT);
1001 }
1002 }
1003
1004 /* add command for complete bytes */
1005 while (num_bytes > 1)
1006 {
1007 int thisrun_bytes;
1008 if (type == SCAN_IO)
1009 {
1010 /* Clock Data Bytes In and Out LSB First */
1011 buffer_write(0x39);
1012 /* LOG_DEBUG("added TDI bytes (io %i)", num_bytes); */
1013 }
1014 else if (type == SCAN_OUT)
1015 {
1016 /* Clock Data Bytes Out on -ve Clock Edge LSB First (no Read) */
1017 buffer_write(0x19);
1018 /* LOG_DEBUG("added TDI bytes (o)"); */
1019 }
1020 else if (type == SCAN_IN)
1021 {
1022 /* Clock Data Bytes In on +ve Clock Edge LSB First (no Write) */
1023 buffer_write(0x28);
1024 /* LOG_DEBUG("added TDI bytes (i %i)", num_bytes); */
1025 }
1026
1027 thisrun_bytes = (num_bytes > 65537) ? 65536 : (num_bytes - 1);
1028 num_bytes -= thisrun_bytes;
1029
1030 buffer_write((uint8_t) (thisrun_bytes - 1));
1031 buffer_write((uint8_t) ((thisrun_bytes - 1) >> 8));
1032
1033 if (type != SCAN_IN)
1034 {
1035 /* add complete bytes */
1036 while (thisrun_bytes-- > 0)
1037 {
1038 buffer_write(buffer[cur_byte++]);
1039 bits_left -= 8;
1040 }
1041 }
1042 else /* (type == SCAN_IN) */
1043 {
1044 bits_left -= 8 * (thisrun_bytes);
1045 }
1046 }
1047
1048 /* the most signifcant bit is scanned during TAP movement */
1049 if (type != SCAN_IN)
1050 last_bit = (buffer[cur_byte] >> (bits_left - 1)) & 0x1;
1051 else
1052 last_bit = 0;
1053
1054 /* process remaining bits but the last one */
1055 if (bits_left > 1)
1056 {
1057 if (type == SCAN_IO)
1058 {
1059 /* Clock Data Bits In and Out LSB First */
1060 buffer_write(0x3b);
1061 /* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
1062 }
1063 else if (type == SCAN_OUT)
1064 {
1065 /* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
1066 buffer_write(0x1b);
1067 /* LOG_DEBUG("added TDI bits (o)"); */
1068 }
1069 else if (type == SCAN_IN)
1070 {
1071 /* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
1072 buffer_write(0x2a);
1073 /* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
1074 }
1075
1076 buffer_write(bits_left - 2);
1077 if (type != SCAN_IN)
1078 buffer_write(buffer[cur_byte]);
1079 }
1080
1081 if ((ir_scan && (tap_get_end_state() == TAP_IRSHIFT))
1082 || (!ir_scan && (tap_get_end_state() == TAP_DRSHIFT)))
1083 {
1084 if (type == SCAN_IO)
1085 {
1086 /* Clock Data Bits In and Out LSB First */
1087 buffer_write(0x3b);
1088 /* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
1089 }
1090 else if (type == SCAN_OUT)
1091 {
1092 /* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
1093 buffer_write(0x1b);
1094 /* LOG_DEBUG("added TDI bits (o)"); */
1095 }
1096 else if (type == SCAN_IN)
1097 {
1098 /* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
1099 buffer_write(0x2a);
1100 /* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
1101 }
1102 buffer_write(0x0);
1103 buffer_write(last_bit);
1104 }
1105 else
1106 {
1107 int tms_bits;
1108 int tms_count;
1109 uint8_t mpsse_cmd;
1110
1111 /* move from Shift-IR/DR to end state */
1112 if (type != SCAN_OUT)
1113 {
1114 /* We always go to the PAUSE state in two step at the end of an IN or IO scan */
1115 /* This must be coordinated with the bit shifts in ft2232_read_scan */
1116 tms_bits = 0x01;
1117 tms_count = 2;
1118 /* Clock Data to TMS/CS Pin with Read */
1119 mpsse_cmd = 0x6b;
1120 }
1121 else
1122 {
1123 tms_bits = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1124 tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1125 /* Clock Data to TMS/CS Pin (no Read) */
1126 mpsse_cmd = 0x4b;
1127 }
1128
1129 DEBUG_JTAG_IO("finish %s", (type == SCAN_OUT) ? "without read" : "via PAUSE");
1130 clock_tms(mpsse_cmd, tms_bits, tms_count, last_bit);
1131 }
1132
1133 if (tap_get_state() != tap_get_end_state())
1134 {
1135 move_to_state(tap_get_end_state());
1136 }
1137 }
1138
1139 static int ft2232_large_scan(struct scan_command* cmd, enum scan_type type, uint8_t* buffer, int scan_size)
1140 {
1141 int num_bytes = (scan_size + 7) / 8;
1142 int bits_left = scan_size;
1143 int cur_byte = 0;
1144 int last_bit;
1145 uint8_t* receive_buffer = malloc(DIV_ROUND_UP(scan_size, 8));
1146 uint8_t* receive_pointer = receive_buffer;
1147 uint32_t bytes_written;
1148 uint32_t bytes_read;
1149 int retval;
1150 int thisrun_read = 0;
1151
1152 if (cmd->ir_scan)
1153 {
1154 LOG_ERROR("BUG: large IR scans are not supported");
1155 exit(-1);
1156 }
1157
1158 if (tap_get_state() != TAP_DRSHIFT)
1159 {
1160 move_to_state(TAP_DRSHIFT);
1161 }
1162
1163 if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
1164 {
1165 LOG_ERROR("couldn't write MPSSE commands to FT2232");
1166 exit(-1);
1167 }
1168 LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
1169 ft2232_buffer_size, (int)bytes_written);
1170 ft2232_buffer_size = 0;
1171
1172 /* add command for complete bytes */
1173 while (num_bytes > 1)
1174 {
1175 int thisrun_bytes;
1176
1177 if (type == SCAN_IO)
1178 {
1179 /* Clock Data Bytes In and Out LSB First */
1180 buffer_write(0x39);
1181 /* LOG_DEBUG("added TDI bytes (io %i)", num_bytes); */
1182 }
1183 else if (type == SCAN_OUT)
1184 {
1185 /* Clock Data Bytes Out on -ve Clock Edge LSB First (no Read) */
1186 buffer_write(0x19);
1187 /* LOG_DEBUG("added TDI bytes (o)"); */
1188 }
1189 else if (type == SCAN_IN)
1190 {
1191 /* Clock Data Bytes In on +ve Clock Edge LSB First (no Write) */
1192 buffer_write(0x28);
1193 /* LOG_DEBUG("added TDI bytes (i %i)", num_bytes); */
1194 }
1195
1196 thisrun_bytes = (num_bytes > 65537) ? 65536 : (num_bytes - 1);
1197 thisrun_read = thisrun_bytes;
1198 num_bytes -= thisrun_bytes;
1199 buffer_write((uint8_t) (thisrun_bytes - 1));
1200 buffer_write((uint8_t) ((thisrun_bytes - 1) >> 8));
1201
1202 if (type != SCAN_IN)
1203 {
1204 /* add complete bytes */
1205 while (thisrun_bytes-- > 0)
1206 {
1207 buffer_write(buffer[cur_byte]);
1208 cur_byte++;
1209 bits_left -= 8;
1210 }
1211 }
1212 else /* (type == SCAN_IN) */
1213 {
1214 bits_left -= 8 * (thisrun_bytes);
1215 }
1216
1217 if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
1218 {
1219 LOG_ERROR("couldn't write MPSSE commands to FT2232");
1220 exit(-1);
1221 }
1222 LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
1223 ft2232_buffer_size,
1224 (int)bytes_written);
1225 ft2232_buffer_size = 0;
1226
1227 if (type != SCAN_OUT)
1228 {
1229 if ((retval = ft2232_read(receive_pointer, thisrun_read, &bytes_read)) != ERROR_OK)
1230 {
1231 LOG_ERROR("couldn't read from FT2232");
1232 exit(-1);
1233 }
1234 LOG_DEBUG("thisrun_read: %i, bytes_read: %i",
1235 thisrun_read,
1236 (int)bytes_read);
1237 receive_pointer += bytes_read;
1238 }
1239 }
1240
1241 thisrun_read = 0;
1242
1243 /* the most signifcant bit is scanned during TAP movement */
1244 if (type != SCAN_IN)
1245 last_bit = (buffer[cur_byte] >> (bits_left - 1)) & 0x1;
1246 else
1247 last_bit = 0;
1248
1249 /* process remaining bits but the last one */
1250 if (bits_left > 1)
1251 {
1252 if (type == SCAN_IO)
1253 {
1254 /* Clock Data Bits In and Out LSB First */
1255 buffer_write(0x3b);
1256 /* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
1257 }
1258 else if (type == SCAN_OUT)
1259 {
1260 /* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
1261 buffer_write(0x1b);
1262 /* LOG_DEBUG("added TDI bits (o)"); */
1263 }
1264 else if (type == SCAN_IN)
1265 {
1266 /* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
1267 buffer_write(0x2a);
1268 /* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
1269 }
1270 buffer_write(bits_left - 2);
1271 if (type != SCAN_IN)
1272 buffer_write(buffer[cur_byte]);
1273
1274 if (type != SCAN_OUT)
1275 thisrun_read += 2;
1276 }
1277
1278 if (tap_get_end_state() == TAP_DRSHIFT)
1279 {
1280 if (type == SCAN_IO)
1281 {
1282 /* Clock Data Bits In and Out LSB First */
1283 buffer_write(0x3b);
1284 /* LOG_DEBUG("added TDI bits (io) %i", bits_left - 1); */
1285 }
1286 else if (type == SCAN_OUT)
1287 {
1288 /* Clock Data Bits Out on -ve Clock Edge LSB First (no Read) */
1289 buffer_write(0x1b);
1290 /* LOG_DEBUG("added TDI bits (o)"); */
1291 }
1292 else if (type == SCAN_IN)
1293 {
1294 /* Clock Data Bits In on +ve Clock Edge LSB First (no Write) */
1295 buffer_write(0x2a);
1296 /* LOG_DEBUG("added TDI bits (i %i)", bits_left - 1); */
1297 }
1298 buffer_write(0x0);
1299 buffer_write(last_bit);
1300 }
1301 else
1302 {
1303 int tms_bits = tap_get_tms_path(tap_get_state(), tap_get_end_state());
1304 int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
1305 uint8_t mpsse_cmd;
1306
1307 /* move from Shift-IR/DR to end state */
1308 if (type != SCAN_OUT)
1309 {
1310 /* Clock Data to TMS/CS Pin with Read */
1311 mpsse_cmd = 0x6b;
1312 /* LOG_DEBUG("added TMS scan (read)"); */
1313 }
1314 else
1315 {
1316 /* Clock Data to TMS/CS Pin (no Read) */
1317 mpsse_cmd = 0x4b;
1318 /* LOG_DEBUG("added TMS scan (no read)"); */
1319 }
1320
1321 DEBUG_JTAG_IO("finish, %s", (type == SCAN_OUT) ? "no read" : "read");
1322 clock_tms(mpsse_cmd, tms_bits, tms_count, last_bit);
1323 }
1324
1325 if (type != SCAN_OUT)
1326 thisrun_read += 1;
1327
1328 if ((retval = ft2232_write(ft2232_buffer, ft2232_buffer_size, &bytes_written)) != ERROR_OK)
1329 {
1330 LOG_ERROR("couldn't write MPSSE commands to FT2232");
1331 exit(-1);
1332 }
1333 LOG_DEBUG("ft2232_buffer_size: %i, bytes_written: %i",
1334 ft2232_buffer_size,
1335 (int)bytes_written);
1336 ft2232_buffer_size = 0;
1337
1338 if (type != SCAN_OUT)
1339 {
1340 if ((retval = ft2232_read(receive_pointer, thisrun_read, &bytes_read)) != ERROR_OK)
1341 {
1342 LOG_ERROR("couldn't read from FT2232");
1343 exit(-1);
1344 }
1345 LOG_DEBUG("thisrun_read: %i, bytes_read: %i",
1346 thisrun_read,
1347 (int)bytes_read);
1348 receive_pointer += bytes_read;
1349 }
1350
1351 return ERROR_OK;
1352 }
1353
1354 static int ft2232_predict_scan_out(int scan_size, enum scan_type type)
1355 {
1356 int predicted_size = 3;
1357 int num_bytes = (scan_size - 1) / 8;
1358
1359 if (tap_get_state() != TAP_DRSHIFT)
1360 predicted_size += get_tms_buffer_requirements(tap_get_tms_path_len(tap_get_state(), TAP_DRSHIFT));
1361
1362 if (type == SCAN_IN) /* only from device to host */
1363 {
1364 /* complete bytes */
1365 predicted_size += DIV_ROUND_UP(num_bytes, 65536) * 3;
1366
1367 /* remaining bits - 1 (up to 7) */
1368 predicted_size += ((scan_size - 1) % 8) ? 2 : 0;
1369 }
1370 else /* host to device, or bidirectional */
1371 {
1372 /* complete bytes */
1373 predicted_size += num_bytes + DIV_ROUND_UP(num_bytes, 65536) * 3;
1374
1375 /* remaining bits -1 (up to 7) */
1376 predicted_size += ((scan_size - 1) % 8) ? 3 : 0;
1377 }
1378
1379 return predicted_size;
1380 }
1381
1382 static int ft2232_predict_scan_in(int scan_size, enum scan_type type)
1383 {
1384 int predicted_size = 0;
1385
1386 if (type != SCAN_OUT)
1387 {
1388 /* complete bytes */
1389 predicted_size += (DIV_ROUND_UP(scan_size, 8) > 1) ? (DIV_ROUND_UP(scan_size, 8) - 1) : 0;
1390
1391 /* remaining bits - 1 */
1392 predicted_size += ((scan_size - 1) % 8) ? 1 : 0;
1393
1394 /* last bit (from TMS scan) */
1395 predicted_size += 1;
1396 }
1397
1398 /* LOG_DEBUG("scan_size: %i, predicted_size: %i", scan_size, predicted_size); */
1399
1400 return predicted_size;
1401 }
1402
1403 /* semi-generic FT2232/FT4232 reset code */
1404 static void ftx23_reset(int trst, int srst)
1405 {
1406 enum reset_types jtag_reset_config = jtag_get_reset_config();
1407 if (trst == 1)
1408 {
1409 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1410 low_direction |= nTRSTnOE; /* switch to output pin (output is low) */
1411 else
1412 low_output &= ~nTRST; /* switch output low */
1413 }
1414 else if (trst == 0)
1415 {
1416 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1417 low_direction &= ~nTRSTnOE; /* switch to input pin (high-Z + internal and external pullup) */
1418 else
1419 low_output |= nTRST; /* switch output high */
1420 }
1421
1422 if (srst == 1)
1423 {
1424 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
1425 low_output &= ~nSRST; /* switch output low */
1426 else
1427 low_direction |= nSRSTnOE; /* switch to output pin (output is low) */
1428 }
1429 else if (srst == 0)
1430 {
1431 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
1432 low_output |= nSRST; /* switch output high */
1433 else
1434 low_direction &= ~nSRSTnOE; /* switch to input pin (high-Z) */
1435 }
1436
1437 /* command "set data bits low byte" */
1438 buffer_write(0x80);
1439 buffer_write(low_output);
1440 buffer_write(low_direction);
1441 }
1442
1443 static void jtagkey_reset(int trst, int srst)
1444 {
1445 enum reset_types jtag_reset_config = jtag_get_reset_config();
1446 if (trst == 1)
1447 {
1448 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1449 high_output &= ~nTRSTnOE;
1450 else
1451 high_output &= ~nTRST;
1452 }
1453 else if (trst == 0)
1454 {
1455 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1456 high_output |= nTRSTnOE;
1457 else
1458 high_output |= nTRST;
1459 }
1460
1461 if (srst == 1)
1462 {
1463 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
1464 high_output &= ~nSRST;
1465 else
1466 high_output &= ~nSRSTnOE;
1467 }
1468 else if (srst == 0)
1469 {
1470 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
1471 high_output |= nSRST;
1472 else
1473 high_output |= nSRSTnOE;
1474 }
1475
1476 /* command "set data bits high byte" */
1477 buffer_write(0x82);
1478 buffer_write(high_output);
1479 buffer_write(high_direction);
1480 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
1481 high_direction);
1482 }
1483
1484 static void olimex_jtag_reset(int trst, int srst)
1485 {
1486 enum reset_types jtag_reset_config = jtag_get_reset_config();
1487 if (trst == 1)
1488 {
1489 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1490 high_output &= ~nTRSTnOE;
1491 else
1492 high_output &= ~nTRST;
1493 }
1494 else if (trst == 0)
1495 {
1496 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
1497 high_output |= nTRSTnOE;
1498 else
1499 high_output |= nTRST;
1500 }
1501
1502 if (srst == 1)
1503 {
1504 high_output |= nSRST;
1505 }
1506 else if (srst == 0)
1507 {
1508 high_output &= ~nSRST;
1509 }
1510
1511 /* command "set data bits high byte" */
1512 buffer_write(0x82);
1513 buffer_write(high_output);
1514 buffer_write(high_direction);
1515 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
1516 high_direction);
1517 }
1518
1519 static void axm0432_jtag_reset(int trst, int srst)
1520 {
1521 if (trst == 1)
1522 {
1523 tap_set_state(TAP_RESET);
1524 high_output &= ~nTRST;
1525 }
1526 else if (trst == 0)
1527 {
1528 high_output |= nTRST;
1529 }
1530
1531 if (srst == 1)
1532 {
1533 high_output &= ~nSRST;
1534 }
1535 else if (srst == 0)
1536 {
1537 high_output |= nSRST;
1538 }
1539
1540 /* command "set data bits low byte" */
1541 buffer_write(0x82);
1542 buffer_write(high_output);
1543 buffer_write(high_direction);
1544 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
1545 high_direction);
1546 }
1547
1548 static void flyswatter_reset(int trst, int srst)
1549 {
1550 if (trst == 1)
1551 {
1552 low_output &= ~nTRST;
1553 }
1554 else if (trst == 0)
1555 {
1556 low_output |= nTRST;
1557 }
1558
1559 if (srst == 1)
1560 {
1561 low_output |= nSRST;
1562 }
1563 else if (srst == 0)
1564 {
1565 low_output &= ~nSRST;
1566 }
1567
1568 /* command "set data bits low byte" */
1569 buffer_write(0x80);
1570 buffer_write(low_output);
1571 buffer_write(low_direction);
1572 LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", trst, srst, low_output, low_direction);
1573 }
1574
1575 static void minimodule_reset(int trst, int srst)
1576 {
1577 if (srst == 1)
1578 {
1579 low_output &= ~nSRST;
1580 }
1581 else if (srst == 0)
1582 {
1583 low_output |= nSRST;
1584 }
1585
1586 /* command "set data bits low byte" */
1587 buffer_write(0x80);
1588 buffer_write(low_output);
1589 buffer_write(low_direction);
1590 LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", trst, srst, low_output, low_direction);
1591 }
1592
1593 static void turtle_reset(int trst, int srst)
1594 {
1595 trst = trst;
1596
1597 if (srst == 1)
1598 {
1599 low_output |= nSRST;
1600 }
1601 else if (srst == 0)
1602 {
1603 low_output &= ~nSRST;
1604 }
1605
1606 /* command "set data bits low byte" */
1607 buffer_write(0x80);
1608 buffer_write(low_output);
1609 buffer_write(low_direction);
1610 LOG_DEBUG("srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", srst, low_output, low_direction);
1611 }
1612
1613 static void comstick_reset(int trst, int srst)
1614 {
1615 if (trst == 1)
1616 {
1617 high_output &= ~nTRST;
1618 }
1619 else if (trst == 0)
1620 {
1621 high_output |= nTRST;
1622 }
1623
1624 if (srst == 1)
1625 {
1626 high_output &= ~nSRST;
1627 }
1628 else if (srst == 0)
1629 {
1630 high_output |= nSRST;
1631 }
1632
1633 /* command "set data bits high byte" */
1634 buffer_write(0x82);
1635 buffer_write(high_output);
1636 buffer_write(high_direction);
1637 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
1638 high_direction);
1639 }
1640
1641 static void stm32stick_reset(int trst, int srst)
1642 {
1643 if (trst == 1)
1644 {
1645 high_output &= ~nTRST;
1646 }
1647 else if (trst == 0)
1648 {
1649 high_output |= nTRST;
1650 }
1651
1652 if (srst == 1)
1653 {
1654 low_output &= ~nSRST;
1655 }
1656 else if (srst == 0)
1657 {
1658 low_output |= nSRST;
1659 }
1660
1661 /* command "set data bits low byte" */
1662 buffer_write(0x80);
1663 buffer_write(low_output);
1664 buffer_write(low_direction);
1665
1666 /* command "set data bits high byte" */
1667 buffer_write(0x82);
1668 buffer_write(high_output);
1669 buffer_write(high_direction);
1670 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,
1671 high_direction);
1672 }
1673
1674 static void sheevaplug_reset(int trst, int srst)
1675 {
1676 if (trst == 1)
1677 high_output &= ~nTRST;
1678 else if (trst == 0)
1679 high_output |= nTRST;
1680
1681 if (srst == 1)
1682 high_output &= ~nSRSTnOE;
1683 else if (srst == 0)
1684 high_output |= nSRSTnOE;
1685
1686 /* command "set data bits high byte" */
1687 buffer_write(0x82);
1688 buffer_write(high_output);
1689 buffer_write(high_direction);
1690 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output, high_direction);
1691 }
1692
1693 static void redbee_reset(int trst, int srst)
1694 {
1695 if (trst == 1)
1696 {
1697 tap_set_state(TAP_RESET);
1698 high_output &= ~nTRST;
1699 }
1700 else if (trst == 0)
1701 {
1702 high_output |= nTRST;
1703 }
1704
1705 if (srst == 1)
1706 {
1707 high_output &= ~nSRST;
1708 }
1709 else if (srst == 0)
1710 {
1711 high_output |= nSRST;
1712 }
1713
1714 /* command "set data bits low byte" */
1715 buffer_write(0x82);
1716 buffer_write(high_output);
1717 buffer_write(high_direction);
1718 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, "
1719 "high_direction: 0x%2.2x", trst, srst, high_output,
1720 high_direction);
1721 }
1722
1723 static void xds100v2_reset(int trst, int srst)
1724 {
1725 if (trst == 1)
1726 {
1727 tap_set_state(TAP_RESET);
1728 high_output &= ~nTRST;
1729 }
1730 else if (trst == 0)
1731 {
1732 high_output |= nTRST;
1733 }
1734
1735 if (srst == 1)
1736 {
1737 high_output |= nSRST;
1738 }
1739 else if (srst == 0)
1740 {
1741 high_output &= ~nSRST;
1742 }
1743
1744 /* command "set data bits low byte" */
1745 buffer_write(0x82);
1746 buffer_write(high_output);
1747 buffer_write(high_direction);
1748 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, "
1749 "high_direction: 0x%2.2x", trst, srst, high_output,
1750 high_direction);
1751 }
1752
1753 static int ft2232_execute_runtest(struct jtag_command *cmd)
1754 {
1755 int retval;
1756 int i;
1757 int predicted_size = 0;
1758 retval = ERROR_OK;
1759
1760 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
1761 cmd->cmd.runtest->num_cycles,
1762 tap_state_name(cmd->cmd.runtest->end_state));
1763
1764 /* only send the maximum buffer size that FT2232C can handle */
1765 predicted_size = 0;
1766 if (tap_get_state() != TAP_IDLE)
1767 predicted_size += 3;
1768 predicted_size += 3 * DIV_ROUND_UP(cmd->cmd.runtest->num_cycles, 7);
1769 if (cmd->cmd.runtest->end_state != TAP_IDLE)
1770 predicted_size += 3;
1771 if (tap_get_end_state() != TAP_IDLE)
1772 predicted_size += 3;
1773 if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
1774 {
1775 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1776 retval = ERROR_JTAG_QUEUE_FAILED;
1777 require_send = 0;
1778 first_unsent = cmd;
1779 }
1780 if (tap_get_state() != TAP_IDLE)
1781 {
1782 move_to_state(TAP_IDLE);
1783 require_send = 1;
1784 }
1785 i = cmd->cmd.runtest->num_cycles;
1786 while (i > 0)
1787 {
1788 /* there are no state transitions in this code, so omit state tracking */
1789
1790 /* command "Clock Data to TMS/CS Pin (no Read)" */
1791 buffer_write(0x4b);
1792
1793 /* scan 7 bits */
1794 buffer_write((i > 7) ? 6 : (i - 1));
1795
1796 /* TMS data bits */
1797 buffer_write(0x0);
1798
1799 i -= (i > 7) ? 7 : i;
1800 /* LOG_DEBUG("added TMS scan (no read)"); */
1801 }
1802
1803 ft2232_end_state(cmd->cmd.runtest->end_state);
1804
1805 if (tap_get_state() != tap_get_end_state())
1806 {
1807 move_to_state(tap_get_end_state());
1808 }
1809
1810 require_send = 1;
1811 DEBUG_JTAG_IO("runtest: %i, end in %s",
1812 cmd->cmd.runtest->num_cycles,
1813 tap_state_name(tap_get_end_state()));
1814 return retval;
1815 }
1816
1817 static int ft2232_execute_statemove(struct jtag_command *cmd)
1818 {
1819 int predicted_size = 0;
1820 int retval = ERROR_OK;
1821
1822 DEBUG_JTAG_IO("statemove end in %s",
1823 tap_state_name(cmd->cmd.statemove->end_state));
1824
1825 /* only send the maximum buffer size that FT2232C can handle */
1826 predicted_size = 3;
1827 if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
1828 {
1829 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1830 retval = ERROR_JTAG_QUEUE_FAILED;
1831 require_send = 0;
1832 first_unsent = cmd;
1833 }
1834 ft2232_end_state(cmd->cmd.statemove->end_state);
1835
1836 /* For TAP_RESET, ignore the current recorded state. It's often
1837 * wrong at server startup, and this transation is critical whenever
1838 * it's requested.
1839 */
1840 if (tap_get_end_state() == TAP_RESET) {
1841 clock_tms(0x4b, 0xff, 5, 0);
1842 require_send = 1;
1843
1844 /* shortest-path move to desired end state */
1845 } else if (tap_get_state() != tap_get_end_state())
1846 {
1847 move_to_state(tap_get_end_state());
1848 require_send = 1;
1849 }
1850
1851 return retval;
1852 }
1853
1854 /**
1855 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
1856 * (or SWD) state machine.
1857 */
1858 static int ft2232_execute_tms(struct jtag_command *cmd)
1859 {
1860 int retval = ERROR_OK;
1861 unsigned num_bits = cmd->cmd.tms->num_bits;
1862 const uint8_t *bits = cmd->cmd.tms->bits;
1863 unsigned count;
1864
1865 DEBUG_JTAG_IO("TMS: %d bits", num_bits);
1866
1867 /* only send the maximum buffer size that FT2232C can handle */
1868 count = 3 * DIV_ROUND_UP(num_bits, 4);
1869 if (ft2232_buffer_size + 3*count + 1 > FT2232_BUFFER_SIZE) {
1870 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1871 retval = ERROR_JTAG_QUEUE_FAILED;
1872
1873 require_send = 0;
1874 first_unsent = cmd;
1875 }
1876
1877 /* Shift out in batches of at most 6 bits; there's a report of an
1878 * FT2232 bug in this area, where shifting exactly 7 bits can make
1879 * problems with TMS signaling for the last clock cycle:
1880 *
1881 * http://developer.intra2net.com/mailarchive/html/
1882 * libftdi/2009/msg00292.html
1883 *
1884 * Command 0x4b is: "Clock Data to TMS/CS Pin (no Read)"
1885 *
1886 * Note that pathmoves in JTAG are not often seven bits, so that
1887 * isn't a particularly likely situation outside of "special"
1888 * signaling such as switching between JTAG and SWD modes.
1889 */
1890 while (num_bits) {
1891 if (num_bits <= 6) {
1892 buffer_write(0x4b);
1893 buffer_write(num_bits - 1);
1894 buffer_write(*bits & 0x3f);
1895 break;
1896 }
1897
1898 /* Yes, this is lazy ... we COULD shift out more data
1899 * bits per operation, but doing it in nybbles is easy
1900 */
1901 buffer_write(0x4b);
1902 buffer_write(3);
1903 buffer_write(*bits & 0xf);
1904 num_bits -= 4;
1905
1906 count = (num_bits > 4) ? 4 : num_bits;
1907
1908 buffer_write(0x4b);
1909 buffer_write(count - 1);
1910 buffer_write((*bits >> 4) & 0xf);
1911 num_bits -= count;
1912
1913 bits++;
1914 }
1915
1916 require_send = 1;
1917 return retval;
1918 }
1919
1920 static int ft2232_execute_pathmove(struct jtag_command *cmd)
1921 {
1922 int predicted_size = 0;
1923 int retval = ERROR_OK;
1924
1925 tap_state_t* path = cmd->cmd.pathmove->path;
1926 int num_states = cmd->cmd.pathmove->num_states;
1927
1928 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
1929 tap_state_name(tap_get_state()),
1930 tap_state_name(path[num_states-1]));
1931
1932 /* only send the maximum buffer size that FT2232C can handle */
1933 predicted_size = 3 * DIV_ROUND_UP(num_states, 7);
1934 if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
1935 {
1936 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1937 retval = ERROR_JTAG_QUEUE_FAILED;
1938
1939 require_send = 0;
1940 first_unsent = cmd;
1941 }
1942
1943 ft2232_add_pathmove(path, num_states);
1944 require_send = 1;
1945
1946 return retval;
1947 }
1948
1949 static int ft2232_execute_scan(struct jtag_command *cmd)
1950 {
1951 uint8_t* buffer;
1952 int scan_size; /* size of IR or DR scan */
1953 int predicted_size = 0;
1954 int retval = ERROR_OK;
1955
1956 enum scan_type type = jtag_scan_type(cmd->cmd.scan);
1957
1958 DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN", type);
1959
1960 scan_size = jtag_build_buffer(cmd->cmd.scan, &buffer);
1961
1962 predicted_size = ft2232_predict_scan_out(scan_size, type);
1963 if ((predicted_size + 1) > FT2232_BUFFER_SIZE)
1964 {
1965 LOG_DEBUG("oversized ft2232 scan (predicted_size > FT2232_BUFFER_SIZE)");
1966 /* unsent commands before this */
1967 if (first_unsent != cmd)
1968 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1969 retval = ERROR_JTAG_QUEUE_FAILED;
1970
1971 /* current command */
1972 ft2232_end_state(cmd->cmd.scan->end_state);
1973 ft2232_large_scan(cmd->cmd.scan, type, buffer, scan_size);
1974 require_send = 0;
1975 first_unsent = cmd->next;
1976 if (buffer)
1977 free(buffer);
1978 return retval;
1979 }
1980 else if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
1981 {
1982 LOG_DEBUG("ft2232 buffer size reached, sending queued commands (first_unsent: %p, cmd: %p)",
1983 first_unsent,
1984 cmd);
1985 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
1986 retval = ERROR_JTAG_QUEUE_FAILED;
1987 require_send = 0;
1988 first_unsent = cmd;
1989 }
1990 ft2232_expect_read += ft2232_predict_scan_in(scan_size, type);
1991 /* LOG_DEBUG("new read size: %i", ft2232_expect_read); */
1992 ft2232_end_state(cmd->cmd.scan->end_state);
1993 ft2232_add_scan(cmd->cmd.scan->ir_scan, type, buffer, scan_size);
1994 require_send = 1;
1995 if (buffer)
1996 free(buffer);
1997 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
1998 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
1999 tap_state_name(tap_get_end_state()));
2000 return retval;
2001
2002 }
2003
2004 static int ft2232_execute_reset(struct jtag_command *cmd)
2005 {
2006 int retval;
2007 int predicted_size = 0;
2008 retval = ERROR_OK;
2009
2010 DEBUG_JTAG_IO("reset trst: %i srst %i",
2011 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
2012
2013 /* only send the maximum buffer size that FT2232C can handle */
2014 predicted_size = 3;
2015 if (ft2232_buffer_size + predicted_size + 1 > FT2232_BUFFER_SIZE)
2016 {
2017 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
2018 retval = ERROR_JTAG_QUEUE_FAILED;
2019 require_send = 0;
2020 first_unsent = cmd;
2021 }
2022
2023 if ((cmd->cmd.reset->trst == 1) || (cmd->cmd.reset->srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
2024 {
2025 tap_set_state(TAP_RESET);
2026 }
2027
2028 layout->reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
2029 require_send = 1;
2030
2031 DEBUG_JTAG_IO("trst: %i, srst: %i",
2032 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
2033 return retval;
2034 }
2035
2036 static int ft2232_execute_sleep(struct jtag_command *cmd)
2037 {
2038 int retval;
2039 retval = ERROR_OK;
2040
2041 DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
2042
2043 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
2044 retval = ERROR_JTAG_QUEUE_FAILED;
2045 first_unsent = cmd->next;
2046 jtag_sleep(cmd->cmd.sleep->us);
2047 DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
2048 cmd->cmd.sleep->us,
2049 tap_state_name(tap_get_state()));
2050 return retval;
2051 }
2052
2053 static int ft2232_execute_stableclocks(struct jtag_command *cmd)
2054 {
2055 int retval;
2056 retval = ERROR_OK;
2057
2058 /* this is only allowed while in a stable state. A check for a stable
2059 * state was done in jtag_add_clocks()
2060 */
2061 if (ft2232_stableclocks(cmd->cmd.stableclocks->num_cycles, cmd) != ERROR_OK)
2062 retval = ERROR_JTAG_QUEUE_FAILED;
2063 DEBUG_JTAG_IO("clocks %i while in %s",
2064 cmd->cmd.stableclocks->num_cycles,
2065 tap_state_name(tap_get_state()));
2066 return retval;
2067 }
2068
2069 static int ft2232_execute_command(struct jtag_command *cmd)
2070 {
2071 int retval;
2072
2073 switch (cmd->type)
2074 {
2075 case JTAG_RESET: retval = ft2232_execute_reset(cmd); break;
2076 case JTAG_RUNTEST: retval = ft2232_execute_runtest(cmd); break;
2077 case JTAG_TLR_RESET: retval = ft2232_execute_statemove(cmd); break;
2078 case JTAG_PATHMOVE: retval = ft2232_execute_pathmove(cmd); break;
2079 case JTAG_SCAN: retval = ft2232_execute_scan(cmd); break;
2080 case JTAG_SLEEP: retval = ft2232_execute_sleep(cmd); break;
2081 case JTAG_STABLECLOCKS: retval = ft2232_execute_stableclocks(cmd); break;
2082 case JTAG_TMS:
2083 retval = ft2232_execute_tms(cmd);
2084 break;
2085 default:
2086 LOG_ERROR("BUG: unknown JTAG command type encountered");
2087 retval = ERROR_JTAG_QUEUE_FAILED;
2088 break;
2089 }
2090 return retval;
2091 }
2092
2093 static int ft2232_execute_queue(void)
2094 {
2095 struct jtag_command* cmd = jtag_command_queue; /* currently processed command */
2096 int retval;
2097
2098 first_unsent = cmd; /* next command that has to be sent */
2099 require_send = 0;
2100
2101 /* return ERROR_OK, unless ft2232_send_and_recv reports a failed check
2102 * that wasn't handled by a caller-provided error handler
2103 */
2104 retval = ERROR_OK;
2105
2106 ft2232_buffer_size = 0;
2107 ft2232_expect_read = 0;
2108
2109 /* blink, if the current layout has that feature */
2110 if (layout->blink)
2111 layout->blink();
2112
2113 while (cmd)
2114 {
2115 /* fill the write buffer with the desired command */
2116 if (ft2232_execute_command(cmd) != ERROR_OK)
2117 retval = ERROR_JTAG_QUEUE_FAILED;
2118 /* Start reading input before FT2232 TX buffer fills up.
2119 * Sometimes this happens because we don't know the
2120 * length of the last command before we execute it. So
2121 * we simple inform the user.
2122 */
2123 cmd = cmd->next;
2124
2125 if (ft2232_expect_read >= FT2232_BUFFER_READ_QUEUE_SIZE )
2126 {
2127 if (ft2232_expect_read > (FT2232_BUFFER_READ_QUEUE_SIZE+1) )
2128 LOG_DEBUG("read buffer size looks too high %d/%d",ft2232_expect_read,(FT2232_BUFFER_READ_QUEUE_SIZE+1));
2129 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
2130 retval = ERROR_JTAG_QUEUE_FAILED;
2131 first_unsent = cmd;
2132 }
2133 }
2134
2135 if (require_send > 0)
2136 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
2137 retval = ERROR_JTAG_QUEUE_FAILED;
2138
2139 return retval;
2140 }
2141
2142 #if BUILD_FT2232_FTD2XX == 1
2143 static int ft2232_init_ftd2xx(uint16_t vid, uint16_t pid, int more, int* try_more)
2144 {
2145 FT_STATUS status;
2146 DWORD deviceID;
2147 char SerialNumber[16];
2148 char Description[64];
2149 DWORD openex_flags = 0;
2150 char* openex_string = NULL;
2151 uint8_t latency_timer;
2152
2153 if (layout == NULL) {
2154 LOG_WARNING("No ft2232 layout specified'");
2155 return ERROR_JTAG_INIT_FAILED;
2156 }
2157
2158 LOG_DEBUG("'ft2232' interface using FTD2XX with '%s' layout (%4.4x:%4.4x)", layout->name, vid, pid);
2159
2160 #if IS_WIN32 == 0
2161 /* Add non-standard Vid/Pid to the linux driver */
2162 if ((status = FT_SetVIDPID(vid, pid)) != FT_OK)
2163 {
2164 LOG_WARNING("couldn't add %4.4x:%4.4x", vid, pid);
2165 }
2166 #endif
2167
2168 if (ft2232_device_desc && ft2232_serial)
2169 {
2170 LOG_WARNING("can't open by device description and serial number, giving precedence to serial");
2171 ft2232_device_desc = NULL;
2172 }
2173
2174 if (ft2232_device_desc)
2175 {
2176 openex_string = ft2232_device_desc;
2177 openex_flags = FT_OPEN_BY_DESCRIPTION;
2178 }
2179 else if (ft2232_serial)
2180 {
2181 openex_string = ft2232_serial;
2182 openex_flags = FT_OPEN_BY_SERIAL_NUMBER;
2183 }
2184 else
2185 {
2186 LOG_ERROR("neither device description nor serial number specified");
2187 LOG_ERROR("please add \"ft2232_device_desc <string>\" or \"ft2232_serial <string>\" to your .cfg file");
2188
2189 return ERROR_JTAG_INIT_FAILED;
2190 }
2191
2192 status = FT_OpenEx(openex_string, openex_flags, &ftdih);
2193 if (status != FT_OK) {
2194 /* under Win32, the FTD2XX driver appends an "A" to the end
2195 * of the description, if we tried by the desc, then
2196 * try by the alternate "A" description. */
2197 if (openex_string == ft2232_device_desc) {
2198 /* Try the alternate method. */
2199 openex_string = ft2232_device_desc_A;
2200 status = FT_OpenEx(openex_string, openex_flags, &ftdih);
2201 if (status == FT_OK) {
2202 /* yea, the "alternate" method worked! */
2203 } else {
2204 /* drat, give the user a meaningfull message.
2205 * telling the use we tried *BOTH* methods. */
2206 LOG_WARNING("Unable to open FTDI Device tried: '%s' and '%s'",
2207 ft2232_device_desc,
2208 ft2232_device_desc_A);
2209 }
2210 }
2211 }
2212
2213 if (status != FT_OK)
2214 {
2215 DWORD num_devices;
2216
2217 if (more)
2218 {
2219 LOG_WARNING("unable to open ftdi device (trying more): %s",
2220 ftd2xx_status_string(status));
2221 *try_more = 1;
2222 return ERROR_JTAG_INIT_FAILED;
2223 }
2224 LOG_ERROR("unable to open ftdi device: %s",
2225 ftd2xx_status_string(status));
2226 status = FT_ListDevices(&num_devices, NULL, FT_LIST_NUMBER_ONLY);
2227 if (status == FT_OK)
2228 {
2229 char** desc_array = malloc(sizeof(char*) * (num_devices + 1));
2230 uint32_t i;
2231
2232 for (i = 0; i < num_devices; i++)
2233 desc_array[i] = malloc(64);
2234
2235 desc_array[num_devices] = NULL;
2236
2237 status = FT_ListDevices(desc_array, &num_devices, FT_LIST_ALL | openex_flags);
2238
2239 if (status == FT_OK)
2240 {
2241 LOG_ERROR("ListDevices: %" PRIu32, (uint32_t)num_devices);
2242 for (i = 0; i < num_devices; i++)
2243 LOG_ERROR("%" PRIu32 ": \"%s\"", i, desc_array[i]);
2244 }
2245
2246 for (i = 0; i < num_devices; i++)
2247 free(desc_array[i]);
2248
2249 free(desc_array);
2250 }
2251 else
2252 {
2253 LOG_ERROR("ListDevices: NONE");
2254 }
2255 return ERROR_JTAG_INIT_FAILED;
2256 }
2257
2258 if ((status = FT_SetLatencyTimer(ftdih, ft2232_latency)) != FT_OK)
2259 {
2260 LOG_ERROR("unable to set latency timer: %s",
2261 ftd2xx_status_string(status));
2262 return ERROR_JTAG_INIT_FAILED;
2263 }
2264
2265 if ((status = FT_GetLatencyTimer(ftdih, &latency_timer)) != FT_OK)
2266 {
2267 /* ftd2xx 1.04 (linux) has a bug when calling FT_GetLatencyTimer
2268 * so ignore errors if using this driver version */
2269 DWORD dw_version;
2270
2271 status = FT_GetDriverVersion(ftdih, &dw_version);
2272 LOG_ERROR("unable to get latency timer: %s",
2273 ftd2xx_status_string(status));
2274
2275 if ((status == FT_OK) && (dw_version == 0x10004)) {
2276 LOG_ERROR("ftd2xx 1.04 detected - this has known issues " \
2277 "with FT_GetLatencyTimer, upgrade to a newer version");
2278 }
2279 else {
2280 return ERROR_JTAG_INIT_FAILED;
2281 }
2282 }
2283 else
2284 {
2285 LOG_DEBUG("current latency timer: %i", latency_timer);
2286 }
2287
2288 if ((status = FT_SetTimeouts(ftdih, 5000, 5000)) != FT_OK)
2289 {
2290 LOG_ERROR("unable to set timeouts: %s",
2291 ftd2xx_status_string(status));
2292 return ERROR_JTAG_INIT_FAILED;
2293 }
2294
2295 if ((status = FT_SetBitMode(ftdih, 0x0b, 2)) != FT_OK)
2296 {
2297 LOG_ERROR("unable to enable bit i/o mode: %s",
2298 ftd2xx_status_string(status));
2299 return ERROR_JTAG_INIT_FAILED;
2300 }
2301
2302 if ((status = FT_GetDeviceInfo(ftdih, &ftdi_device, &deviceID, SerialNumber, Description, NULL)) != FT_OK)
2303 {
2304 LOG_ERROR("unable to get FT_GetDeviceInfo: %s",
2305 ftd2xx_status_string(status));
2306 return ERROR_JTAG_INIT_FAILED;
2307 }
2308 else
2309 {
2310 static const char* type_str[] =
2311 {"BM", "AM", "100AX", "UNKNOWN", "2232C", "232R", "2232H", "4232H"};
2312 unsigned no_of_known_types = ARRAY_SIZE(type_str) - 1;
2313 unsigned type_index = ((unsigned)ftdi_device <= no_of_known_types)
2314 ? ftdi_device : FT_DEVICE_UNKNOWN;
2315 LOG_INFO("device: %" PRIu32 " \"%s\"", (uint32_t)ftdi_device, type_str[type_index]);
2316 LOG_INFO("deviceID: %" PRIu32, (uint32_t)deviceID);
2317 LOG_INFO("SerialNumber: %s", SerialNumber);
2318 LOG_INFO("Description: %s", Description);
2319 }
2320
2321 return ERROR_OK;
2322 }
2323
2324 static int ft2232_purge_ftd2xx(void)
2325 {
2326 FT_STATUS status;
2327
2328 if ((status = FT_Purge(ftdih, FT_PURGE_RX | FT_PURGE_TX)) != FT_OK)
2329 {
2330 LOG_ERROR("error purging ftd2xx device: %s",
2331 ftd2xx_status_string(status));
2332 return ERROR_JTAG_INIT_FAILED;
2333 }
2334
2335 return ERROR_OK;
2336 }
2337
2338 #endif /* BUILD_FT2232_FTD2XX == 1 */
2339
2340 #if BUILD_FT2232_LIBFTDI == 1
2341 static int ft2232_init_libftdi(uint16_t vid, uint16_t pid, int more, int* try_more, int channel)
2342 {
2343 uint8_t latency_timer;
2344
2345 if (layout == NULL) {
2346 LOG_WARNING("No ft2232 layout specified'");
2347 return ERROR_JTAG_INIT_FAILED;
2348 }
2349
2350 LOG_DEBUG("'ft2232' interface using libftdi with '%s' layout (%4.4x:%4.4x)",
2351 layout->name, vid, pid);
2352
2353 if (ftdi_init(&ftdic) < 0)
2354 return ERROR_JTAG_INIT_FAILED;
2355
2356 /* default to INTERFACE_A */
2357 if(channel == INTERFACE_ANY) { channel = INTERFACE_A; }
2358
2359 if (ftdi_set_interface(&ftdic, channel) < 0)
2360 {
2361 LOG_ERROR("unable to select FT2232 channel A: %s", ftdic.error_str);
2362 return ERROR_JTAG_INIT_FAILED;
2363 }
2364
2365 /* context, vendor id, product id */
2366 if (ftdi_usb_open_desc(&ftdic, vid, pid, ft2232_device_desc,
2367 ft2232_serial) < 0)
2368 {
2369 if (more)
2370 LOG_WARNING("unable to open ftdi device (trying more): %s",
2371 ftdic.error_str);
2372 else
2373 LOG_ERROR("unable to open ftdi device: %s", ftdic.error_str);
2374 *try_more = 1;
2375 return ERROR_JTAG_INIT_FAILED;
2376 }
2377
2378 /* There is already a reset in ftdi_usb_open_desc, this should be redundant */
2379 if (ftdi_usb_reset(&ftdic) < 0)
2380 {
2381 LOG_ERROR("unable to reset ftdi device");
2382 return ERROR_JTAG_INIT_FAILED;
2383 }
2384
2385 if (ftdi_set_latency_timer(&ftdic, ft2232_latency) < 0)
2386 {
2387 LOG_ERROR("unable to set latency timer");
2388 return ERROR_JTAG_INIT_FAILED;
2389 }
2390
2391 if (ftdi_get_latency_timer(&ftdic, &latency_timer) < 0)
2392 {
2393 LOG_ERROR("unable to get latency timer");
2394 return ERROR_JTAG_INIT_FAILED;
2395 }
2396 else
2397 {
2398 LOG_DEBUG("current latency timer: %i", latency_timer);
2399 }
2400
2401 ftdi_set_bitmode(&ftdic, 0x0b, 2); /* ctx, JTAG I/O mask */
2402
2403 ftdi_device = ftdic.type;
2404 static const char* type_str[] =
2405 {"AM", "BM", "2232C", "R", "2232H", "4232H", "Unknown"};
2406 unsigned no_of_known_types = ARRAY_SIZE(type_str) - 1;
2407 unsigned type_index = ((unsigned)ftdi_device < no_of_known_types)
2408 ? ftdi_device : no_of_known_types;
2409 LOG_DEBUG("FTDI chip type: %i \"%s\"", (int)ftdi_device, type_str[type_index]);
2410 return ERROR_OK;
2411 }
2412
2413 static int ft2232_purge_libftdi(void)
2414 {
2415 if (ftdi_usb_purge_buffers(&ftdic) < 0)
2416 {
2417 LOG_ERROR("ftdi_purge_buffers: %s", ftdic.error_str);
2418 return ERROR_JTAG_INIT_FAILED;
2419 }
2420
2421 return ERROR_OK;
2422 }
2423
2424 #endif /* BUILD_FT2232_LIBFTDI == 1 */
2425
2426 static int ft2232_set_data_bits_low_byte( uint8_t value, uint8_t direction )
2427 {
2428 uint8_t buf[3];
2429 uint32_t bytes_written;
2430
2431 buf[0] = 0x80; /* command "set data bits low byte" */
2432 buf[1] = value; /* value */
2433 buf[2] = direction; /* direction */
2434
2435 LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
2436
2437 if (ft2232_write(buf, sizeof(buf), &bytes_written) != ERROR_OK)
2438 {
2439 LOG_ERROR("couldn't initialize data bits low byte");
2440 return ERROR_JTAG_INIT_FAILED;
2441 }
2442
2443 return ERROR_OK;
2444 }
2445
2446 static int ft2232_set_data_bits_high_byte( uint8_t value, uint8_t direction )
2447 {
2448 uint8_t buf[3];
2449 uint32_t bytes_written;
2450
2451 buf[0] = 0x82; /* command "set data bits high byte" */
2452 buf[1] = value; /* value */
2453 buf[2] = direction; /* direction */
2454
2455 LOG_DEBUG("%2.2x %2.2x %2.2x", buf[0], buf[1], buf[2]);
2456
2457 if (ft2232_write(buf, sizeof(buf), &bytes_written) != ERROR_OK)
2458 {
2459 LOG_ERROR("couldn't initialize data bits high byte");
2460 return ERROR_JTAG_INIT_FAILED;
2461 }
2462
2463 return ERROR_OK;
2464 }
2465
2466 static int ft2232_init(void)
2467 {
2468 uint8_t buf[1];
2469 int retval;
2470 uint32_t bytes_written;
2471
2472 if (tap_get_tms_path_len(TAP_IRPAUSE,TAP_IRPAUSE) == 7)
2473 {
2474 LOG_DEBUG("ft2232 interface using 7 step jtag state transitions");
2475 }
2476 else
2477 {
2478 LOG_DEBUG("ft2232 interface using shortest path jtag state transitions");
2479
2480 }
2481 if (layout == NULL) {
2482 LOG_WARNING("No ft2232 layout specified'");
2483 return ERROR_JTAG_INIT_FAILED;
2484 }
2485
2486 for (int i = 0; 1; i++)
2487 {
2488 /*
2489 * "more indicates that there are more IDs to try, so we should
2490 * not print an error for an ID mismatch (but for anything
2491 * else, we should).
2492 *
2493 * try_more indicates that the error code returned indicates an
2494 * ID mismatch (and nothing else) and that we should proceeed
2495 * with the next ID pair.
2496 */
2497 int more = ft2232_vid[i + 1] || ft2232_pid[i + 1];
2498 int try_more = 0;
2499
2500 #if BUILD_FT2232_FTD2XX == 1
2501 retval = ft2232_init_ftd2xx(ft2232_vid[i], ft2232_pid[i],
2502 more, &try_more);
2503 #elif BUILD_FT2232_LIBFTDI == 1
2504 retval = ft2232_init_libftdi(ft2232_vid[i], ft2232_pid[i],
2505 more, &try_more, layout->channel);
2506 #endif
2507 if (retval >= 0)
2508 break;
2509 if (!more || !try_more)
2510 return retval;
2511 }
2512
2513 ft2232_buffer_size = 0;
2514 ft2232_buffer = malloc(FT2232_BUFFER_SIZE);
2515
2516 if (layout->init() != ERROR_OK)
2517 return ERROR_JTAG_INIT_FAILED;
2518
2519 if (ft2232_device_is_highspeed())
2520 {
2521 #ifndef BUILD_FT2232_HIGHSPEED
2522 #if BUILD_FT2232_FTD2XX == 1
2523 LOG_WARNING("High Speed device found - You need a newer FTD2XX driver (version 2.04.16 or later)");
2524 #elif BUILD_FT2232_LIBFTDI == 1
2525 LOG_WARNING("High Speed device found - You need a newer libftdi version (0.16 or later)");
2526 #endif
2527 #endif
2528 /* make sure the legacy mode is disabled */
2529 if (ft2232h_ft4232h_clk_divide_by_5(false) != ERROR_OK)
2530 return ERROR_JTAG_INIT_FAILED;
2531 }
2532
2533 buf[0] = 0x85; /* Disconnect TDI/DO to TDO/DI for Loopback */
2534 if ((retval = ft2232_write(buf, 1, &bytes_written)) != ERROR_OK)
2535 {
2536 LOG_ERROR("couldn't write to FT2232 to disable loopback");
2537 return ERROR_JTAG_INIT_FAILED;
2538 }
2539
2540 #if BUILD_FT2232_FTD2XX == 1
2541 return ft2232_purge_ftd2xx();
2542 #elif BUILD_FT2232_LIBFTDI == 1
2543 return ft2232_purge_libftdi();
2544 #endif
2545
2546 return ERROR_OK;
2547 }
2548
2549 /** Updates defaults for DBUS signals: the four JTAG signals
2550 * (TCK, TDI, TDO, TMS) and * the four GPIOL signals.
2551 */
2552 static inline void ftx232_dbus_init(void)
2553 {
2554 low_output = 0x08;
2555 low_direction = 0x0b;
2556 }
2557
2558 /** Initializes DBUS signals: the four JTAG signals (TCK, TDI, TDO, TMS),
2559 * the four GPIOL signals. Initialization covers value and direction,
2560 * as customized for each layout.
2561 */
2562 static int ftx232_dbus_write(void)
2563 {
2564 enum reset_types jtag_reset_config = jtag_get_reset_config();
2565 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
2566 {
2567 low_direction &= ~nTRSTnOE; /* nTRST input */
2568 low_output &= ~nTRST; /* nTRST = 0 */
2569 }
2570 else
2571 {
2572 low_direction |= nTRSTnOE; /* nTRST output */
2573 low_output |= nTRST; /* nTRST = 1 */
2574 }
2575
2576 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
2577 {
2578 low_direction |= nSRSTnOE; /* nSRST output */
2579 low_output |= nSRST; /* nSRST = 1 */
2580 }
2581 else
2582 {
2583 low_direction &= ~nSRSTnOE; /* nSRST input */
2584 low_output &= ~nSRST; /* nSRST = 0 */
2585 }
2586
2587 /* initialize low byte for jtag */
2588 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2589 {
2590 LOG_ERROR("couldn't initialize FT2232 DBUS");
2591 return ERROR_JTAG_INIT_FAILED;
2592 }
2593
2594 return ERROR_OK;
2595 }
2596
2597 static int usbjtag_init(void)
2598 {
2599 /*
2600 * NOTE: This is now _specific_ to the "usbjtag" layout.
2601 * Don't try cram any more layouts into this.
2602 */
2603 ftx232_dbus_init();
2604
2605 nTRST = 0x10;
2606 nTRSTnOE = 0x10;
2607 nSRST = 0x40;
2608 nSRSTnOE = 0x40;
2609
2610 return ftx232_dbus_write();
2611 }
2612
2613 static int lm3s811_jtag_init(void)
2614 {
2615 ftx232_dbus_init();
2616
2617 /* There are multiple revisions of LM3S811 eval boards:
2618 * - Rev B (and older?) boards have no SWO trace support.
2619 * - Rev C boards add ADBUS_6 DBG_ENn and BDBUS_4 SWO_EN;
2620 * they should use the "luminary_icdi" layout instead.
2621 */
2622 nTRST = 0x0;
2623 nTRSTnOE = 0x00;
2624 nSRST = 0x20;
2625 nSRSTnOE = 0x20;
2626 low_output = 0x88;
2627 low_direction = 0x8b;
2628
2629 return ftx232_dbus_write();
2630 }
2631
2632 static int icdi_jtag_init(void)
2633 {
2634 ftx232_dbus_init();
2635
2636 /* Most Luminary eval boards support SWO trace output,
2637 * and should use this "luminary_icdi" layout.
2638 *
2639 * ADBUS 0..3 are used for JTAG as usual. GPIOs are used
2640 * to switch between JTAG and SWD, or switch the ft2232 UART
2641 * on the second MPSSE channel/interface (BDBUS)
2642 * between (i) the stellaris UART (on Luminary boards)
2643 * or (ii) SWO trace data (generic).
2644 *
2645 * We come up in JTAG mode and may switch to SWD later (with
2646 * SWO/trace option if SWD is active).
2647 *
2648 * DBUS == GPIO-Lx
2649 * CBUS == GPIO-Hx
2650 */
2651
2652
2653 #define ICDI_JTAG_EN (1 << 7) /* ADBUS 7 (a.k.a. DBGMOD) */
2654 #define ICDI_DBG_ENn (1 << 6) /* ADBUS 6 */
2655 #define ICDI_SRST (1 << 5) /* ADBUS 5 */
2656
2657
2658 /* GPIOs on second channel/interface (UART) ... */
2659 #define ICDI_SWO_EN (1 << 4) /* BDBUS 4 */
2660 #define ICDI_TX_SWO (1 << 1) /* BDBUS 1 */
2661 #define ICDI_VCP_RX (1 << 0) /* BDBUS 0 (to stellaris UART) */
2662
2663 nTRST = 0x0;
2664 nTRSTnOE = 0x00;
2665 nSRST = ICDI_SRST;
2666 nSRSTnOE = ICDI_SRST;
2667
2668 low_direction |= ICDI_JTAG_EN | ICDI_DBG_ENn;
2669 low_output |= ICDI_JTAG_EN;
2670 low_output &= ~ICDI_DBG_ENn;
2671
2672 return ftx232_dbus_write();
2673 }
2674
2675 static int signalyzer_init(void)
2676 {
2677 ftx232_dbus_init();
2678
2679 nTRST = 0x10;
2680 nTRSTnOE = 0x10;
2681 nSRST = 0x20;
2682 nSRSTnOE = 0x20;
2683 return ftx232_dbus_write();
2684 }
2685
2686 static int axm0432_jtag_init(void)
2687 {
2688 low_output = 0x08;
2689 low_direction = 0x2b;
2690
2691 /* initialize low byte for jtag */
2692 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2693 {
2694 LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
2695 return ERROR_JTAG_INIT_FAILED;
2696 }
2697
2698 if (strcmp(layout->name, "axm0432_jtag") == 0)
2699 {
2700 nTRST = 0x08;
2701 nTRSTnOE = 0x0; /* No output enable for TRST*/
2702 nSRST = 0x04;
2703 nSRSTnOE = 0x0; /* No output enable for SRST*/
2704 }
2705 else
2706 {
2707 LOG_ERROR("BUG: axm0432_jtag_init called for non axm0432 layout");
2708 exit(-1);
2709 }
2710
2711 high_output = 0x0;
2712 high_direction = 0x0c;
2713
2714 enum reset_types jtag_reset_config = jtag_get_reset_config();
2715 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
2716 {
2717 LOG_ERROR("can't set nTRSTOE to push-pull on the Dicarlo jtag");
2718 }
2719 else
2720 {
2721 high_output |= nTRST;
2722 }
2723
2724 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
2725 {
2726 LOG_ERROR("can't set nSRST to push-pull on the Dicarlo jtag");
2727 }
2728 else
2729 {
2730 high_output |= nSRST;
2731 }
2732
2733 /* initialize high byte for jtag */
2734 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2735 {
2736 LOG_ERROR("couldn't initialize FT2232 with 'Dicarlo' layout");
2737 return ERROR_JTAG_INIT_FAILED;
2738 }
2739
2740 return ERROR_OK;
2741 }
2742
2743 static int redbee_init(void)
2744 {
2745 low_output = 0x08;
2746 low_direction = 0x2b;
2747
2748 /* initialize low byte for jtag */
2749 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2750 {
2751 LOG_ERROR("couldn't initialize FT2232 with 'redbee' layout");
2752 return ERROR_JTAG_INIT_FAILED;
2753 }
2754
2755 nTRST = 0x08;
2756 nTRSTnOE = 0x0; /* No output enable for TRST*/
2757 nSRST = 0x04;
2758 nSRSTnOE = 0x0; /* No output enable for SRST*/
2759
2760 high_output = 0x0;
2761 high_direction = 0x0c;
2762
2763 enum reset_types jtag_reset_config = jtag_get_reset_config();
2764 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
2765 {
2766 LOG_ERROR("can't set nTRSTOE to push-pull on redbee");
2767 }
2768 else
2769 {
2770 high_output |= nTRST;
2771 }
2772
2773 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
2774 {
2775 LOG_ERROR("can't set nSRST to push-pull on redbee");
2776 }
2777 else
2778 {
2779 high_output |= nSRST;
2780 }
2781
2782 /* initialize high byte for jtag */
2783 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2784 {
2785 LOG_ERROR("couldn't initialize FT2232 with 'redbee' layout");
2786 return ERROR_JTAG_INIT_FAILED;
2787 }
2788
2789 return ERROR_OK;
2790 }
2791
2792 static int jtagkey_init(void)
2793 {
2794 low_output = 0x08;
2795 low_direction = 0x1b;
2796
2797 /* initialize low byte for jtag */
2798 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2799 {
2800 LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
2801 return ERROR_JTAG_INIT_FAILED;
2802 }
2803
2804 if (strcmp(layout->name, "jtagkey") == 0)
2805 {
2806 nTRST = 0x01;
2807 nTRSTnOE = 0x4;
2808 nSRST = 0x02;
2809 nSRSTnOE = 0x08;
2810 }
2811 else if ((strcmp(layout->name, "jtagkey_prototype_v1") == 0)
2812 || (strcmp(layout->name, "oocdlink") == 0))
2813 {
2814 nTRST = 0x02;
2815 nTRSTnOE = 0x1;
2816 nSRST = 0x08;
2817 nSRSTnOE = 0x04;
2818 }
2819 else
2820 {
2821 LOG_ERROR("BUG: jtagkey_init called for non jtagkey layout");
2822 exit(-1);
2823 }
2824
2825 high_output = 0x0;
2826 high_direction = 0x0f;
2827
2828 enum reset_types jtag_reset_config = jtag_get_reset_config();
2829 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
2830 {
2831 high_output |= nTRSTnOE;
2832 high_output &= ~nTRST;
2833 }
2834 else
2835 {
2836 high_output &= ~nTRSTnOE;
2837 high_output |= nTRST;
2838 }
2839
2840 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
2841 {
2842 high_output &= ~nSRSTnOE;
2843 high_output |= nSRST;
2844 }
2845 else
2846 {
2847 high_output |= nSRSTnOE;
2848 high_output &= ~nSRST;
2849 }
2850
2851 /* initialize high byte for jtag */
2852 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2853 {
2854 LOG_ERROR("couldn't initialize FT2232 with 'JTAGkey' layout");
2855 return ERROR_JTAG_INIT_FAILED;
2856 }
2857
2858 return ERROR_OK;
2859 }
2860
2861 static int olimex_jtag_init(void)
2862 {
2863 low_output = 0x08;
2864 low_direction = 0x1b;
2865
2866 /* initialize low byte for jtag */
2867 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2868 {
2869 LOG_ERROR("couldn't initialize FT2232 with 'Olimex' layout");
2870 return ERROR_JTAG_INIT_FAILED;
2871 }
2872
2873 nTRST = 0x01;
2874 nTRSTnOE = 0x4;
2875 nSRST = 0x02;
2876 nSRSTnOE = 0x00; /* no output enable for nSRST */
2877
2878 high_output = 0x0;
2879 high_direction = 0x0f;
2880
2881 enum reset_types jtag_reset_config = jtag_get_reset_config();
2882 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
2883 {
2884 high_output |= nTRSTnOE;
2885 high_output &= ~nTRST;
2886 }
2887 else
2888 {
2889 high_output &= ~nTRSTnOE;
2890 high_output |= nTRST;
2891 }
2892
2893 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
2894 {
2895 LOG_ERROR("can't set nSRST to push-pull on the Olimex ARM-USB-OCD");
2896 }
2897 else
2898 {
2899 high_output &= ~nSRST;
2900 }
2901
2902 /* turn red LED on */
2903 high_output |= 0x08;
2904
2905 /* initialize high byte for jtag */
2906 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2907 {
2908 LOG_ERROR("couldn't initialize FT2232 with 'Olimex' layout");
2909 return ERROR_JTAG_INIT_FAILED;
2910 }
2911
2912 return ERROR_OK;
2913 }
2914
2915 static int flyswatter_init(void)
2916 {
2917 low_output = 0x18;
2918 low_direction = 0xfb;
2919
2920 /* initialize low byte for jtag */
2921 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2922 {
2923 LOG_ERROR("couldn't initialize FT2232 with 'flyswatter' layout");
2924 return ERROR_JTAG_INIT_FAILED;
2925 }
2926
2927 nTRST = 0x10;
2928 nTRSTnOE = 0x0; /* not output enable for nTRST */
2929 nSRST = 0x20;
2930 nSRSTnOE = 0x00; /* no output enable for nSRST */
2931
2932 high_output = 0x00;
2933 high_direction = 0x0c;
2934
2935 /* turn red LED3 on, LED2 off */
2936 high_output |= 0x08;
2937
2938 /* initialize high byte for jtag */
2939 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2940 {
2941 LOG_ERROR("couldn't initialize FT2232 with 'flyswatter' layout");
2942 return ERROR_JTAG_INIT_FAILED;
2943 }
2944
2945 return ERROR_OK;
2946 }
2947
2948 static int minimodule_init(void)
2949 {
2950 low_output = 0x18;//check if srst should be 1 or 0 initially. (0x08) (flyswatter was 0x18)
2951 low_direction = 0xfb;//0xfb;
2952
2953 /* initialize low byte for jtag */
2954 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2955 {
2956 LOG_ERROR("couldn't initialize FT2232 with 'minimodule' layout");
2957 return ERROR_JTAG_INIT_FAILED;
2958 }
2959
2960
2961 nSRST = 0x20;
2962
2963 high_output = 0x00;
2964 high_direction = 0x05;
2965
2966 /* turn red LED3 on, LED2 off */
2967 //high_output |= 0x08;
2968
2969 /* initialize high byte for jtag */
2970 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2971 {
2972 LOG_ERROR("couldn't initialize FT2232 with 'minimodule' layout");
2973 return ERROR_JTAG_INIT_FAILED;
2974 }
2975
2976 return ERROR_OK;
2977 }
2978
2979 static int turtle_init(void)
2980 {
2981 low_output = 0x08;
2982 low_direction = 0x5b;
2983
2984 /* initialize low byte for jtag */
2985 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
2986 {
2987 LOG_ERROR("couldn't initialize FT2232 with 'turtelizer2' layout");
2988 return ERROR_JTAG_INIT_FAILED;
2989 }
2990
2991 nSRST = 0x40;
2992
2993 high_output = 0x00;
2994 high_direction = 0x0C;
2995
2996 /* initialize high byte for jtag */
2997 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
2998 {
2999 LOG_ERROR("couldn't initialize FT2232 with 'turtelizer2' layout");
3000 return ERROR_JTAG_INIT_FAILED;
3001 }
3002
3003 return ERROR_OK;
3004 }
3005
3006 static int comstick_init(void)
3007 {
3008 low_output = 0x08;
3009 low_direction = 0x0b;
3010
3011 /* initialize low byte for jtag */
3012 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
3013 {
3014 LOG_ERROR("couldn't initialize FT2232 with 'comstick' layout");
3015 return ERROR_JTAG_INIT_FAILED;
3016 }
3017
3018 nTRST = 0x01;
3019 nTRSTnOE = 0x00; /* no output enable for nTRST */
3020 nSRST = 0x02;
3021 nSRSTnOE = 0x00; /* no output enable for nSRST */
3022
3023 high_output = 0x03;
3024 high_direction = 0x03;
3025
3026 /* initialize high byte for jtag */
3027 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3028 {
3029 LOG_ERROR("couldn't initialize FT2232 with 'comstick' layout");
3030 return ERROR_JTAG_INIT_FAILED;
3031 }
3032
3033 return ERROR_OK;
3034 }
3035
3036 static int stm32stick_init(void)
3037 {
3038 low_output = 0x88;
3039 low_direction = 0x8b;
3040
3041 /* initialize low byte for jtag */
3042 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
3043 {
3044 LOG_ERROR("couldn't initialize FT2232 with 'stm32stick' layout");
3045 return ERROR_JTAG_INIT_FAILED;
3046 }
3047
3048 nTRST = 0x01;
3049 nTRSTnOE = 0x00; /* no output enable for nTRST */
3050 nSRST = 0x80;
3051 nSRSTnOE = 0x00; /* no output enable for nSRST */
3052
3053 high_output = 0x01;
3054 high_direction = 0x03;
3055
3056 /* initialize high byte for jtag */
3057 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3058 {
3059 LOG_ERROR("couldn't initialize FT2232 with 'stm32stick' layout");
3060 return ERROR_JTAG_INIT_FAILED;
3061 }
3062
3063 return ERROR_OK;
3064 }
3065
3066 static int sheevaplug_init(void)
3067 {
3068 low_output = 0x08;
3069 low_direction = 0x1b;
3070
3071 /* initialize low byte for jtag */
3072 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
3073 {
3074 LOG_ERROR("couldn't initialize FT2232 with 'sheevaplug' layout");
3075 return ERROR_JTAG_INIT_FAILED;
3076 }
3077
3078 nTRSTnOE = 0x1;
3079 nTRST = 0x02;
3080 nSRSTnOE = 0x4;
3081 nSRST = 0x08;
3082
3083 high_output = 0x0;
3084 high_direction = 0x0f;
3085
3086 /* nTRST is always push-pull */
3087 high_output &= ~nTRSTnOE;
3088 high_output |= nTRST;
3089
3090 /* nSRST is always open-drain */
3091 high_output |= nSRSTnOE;
3092 high_output &= ~nSRST;
3093
3094 /* initialize high byte for jtag */
3095 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3096 {
3097 LOG_ERROR("couldn't initialize FT2232 with 'sheevaplug' layout");
3098 return ERROR_JTAG_INIT_FAILED;
3099 }
3100
3101 return ERROR_OK;
3102 }
3103
3104 static int cortino_jtag_init(void)
3105 {
3106 low_output = 0x08;
3107 low_direction = 0x1b;
3108
3109 /* initialize low byte for jtag */
3110 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
3111 {
3112 LOG_ERROR("couldn't initialize FT2232 with 'cortino' layout");
3113 return ERROR_JTAG_INIT_FAILED;
3114 }
3115
3116 nTRST = 0x01;
3117 nTRSTnOE = 0x00; /* no output enable for nTRST */
3118 nSRST = 0x02;
3119 nSRSTnOE = 0x00; /* no output enable for nSRST */
3120
3121 high_output = 0x03;
3122 high_direction = 0x03;
3123
3124 /* initialize high byte for jtag */
3125 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3126 {
3127 LOG_ERROR("couldn't initialize FT2232 with 'cortino' layout");
3128 return ERROR_JTAG_INIT_FAILED;
3129 }
3130
3131 return ERROR_OK;
3132 }
3133
3134 static int lisa_l_init(void)
3135 {
3136 ftx232_dbus_init();
3137
3138 nTRST = 0x10;
3139 nTRSTnOE = 0x10;
3140 nSRST = 0x40;
3141 nSRSTnOE = 0x40;
3142
3143 high_output = 0x00;
3144 high_direction = 0x18;
3145
3146 /* initialize high byte for jtag */
3147 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3148 {
3149 LOG_ERROR("couldn't initialize FT2232 with 'lisa_l' layout");
3150 return ERROR_JTAG_INIT_FAILED;
3151 }
3152
3153 return ftx232_dbus_write();
3154 }
3155
3156 static int flossjtag_init(void)
3157 {
3158 ftx232_dbus_init();
3159
3160 nTRST = 0x10;
3161 nTRSTnOE = 0x10;
3162 nSRST = 0x40;
3163 nSRSTnOE = 0x40;
3164
3165 high_output = 0x00;
3166 high_direction = 0x18;
3167
3168 /* initialize high byte for jtag */
3169 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3170 {
3171 LOG_ERROR("couldn't initialize FT2232 with 'Floss-JTAG' layout");
3172 return ERROR_JTAG_INIT_FAILED;
3173 }
3174
3175 return ftx232_dbus_write();
3176 }
3177
3178 static int xds100v2_init(void)
3179 {
3180 low_output = 0x3A;
3181 low_direction = 0x7B;
3182
3183 /* initialize low byte for jtag */
3184 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
3185 {
3186 LOG_ERROR("couldn't initialize FT2232 with 'xds100v2' layout");
3187 return ERROR_JTAG_INIT_FAILED;
3188 }
3189
3190 nTRST = 0x10;
3191 nTRSTnOE = 0x0; /* not output enable for nTRST */
3192 nSRST = 0x00; /* TODO: SRST is not supported yet */
3193 nSRSTnOE = 0x00; /* no output enable for nSRST */
3194
3195 high_output = 0x00;
3196 high_direction = 0x59;
3197
3198 /* initialize high byte for jtag */
3199 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3200 {
3201 LOG_ERROR("couldn't initialize FT2232 with 'xds100v2' layout");
3202 return ERROR_JTAG_INIT_FAILED;
3203 }
3204
3205 high_output = 0x86;
3206 high_direction = 0x59;
3207
3208 /* initialize high byte for jtag */
3209 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
3210 {
3211 LOG_ERROR("couldn't initialize FT2232 with 'xds100v2' layout");
3212 return ERROR_JTAG_INIT_FAILED;
3213 }
3214
3215 return ERROR_OK;
3216 }
3217
3218 static void olimex_jtag_blink(void)
3219 {
3220 /* Olimex ARM-USB-OCD has a LED connected to ACBUS3
3221 * ACBUS3 is bit 3 of the GPIOH port
3222 */
3223 high_output ^= 0x08;
3224
3225 buffer_write(0x82);
3226 buffer_write(high_output);
3227 buffer_write(high_direction);
3228 }
3229
3230 static void flyswatter_jtag_blink(void)
3231 {
3232 /*
3233 * Flyswatter has two LEDs connected to ACBUS2 and ACBUS3
3234 */
3235 high_output ^= 0x0c;
3236
3237 buffer_write(0x82);
3238 buffer_write(high_output);
3239 buffer_write(high_direction);
3240 }
3241
3242 static void turtle_jtag_blink(void)
3243 {
3244 /*
3245 * Turtelizer2 has two LEDs connected to ACBUS2 and ACBUS3
3246 */
3247 if (high_output & 0x08)
3248 {
3249 high_output = 0x04;
3250 }
3251 else
3252 {
3253 high_output = 0x08;
3254 }
3255
3256 buffer_write(0x82);
3257 buffer_write(high_output);
3258 buffer_write(high_direction);
3259 }
3260
3261 static void lisa_l_blink(void)
3262 {
3263 /*
3264 * Lisa/L has two LEDs connected to BCBUS3 and BCBUS4
3265 */
3266 if (high_output & 0x10)
3267 {
3268 high_output = 0x08;
3269 }
3270 else
3271 {
3272 high_output = 0x10;
3273 }
3274
3275 buffer_write(0x82);
3276 buffer_write(high_output);
3277 buffer_write(high_direction);
3278 }
3279
3280 static void flossjtag_blink(void)
3281 {
3282 /*
3283 * Floss-JTAG has two LEDs connected to ACBUS3 and ACBUS4
3284 */
3285 if (high_output & 0x10)
3286 {
3287 high_output = 0x08;
3288 }
3289 else
3290 {
3291 high_output = 0x10;
3292 }
3293
3294 buffer_write(0x82);
3295 buffer_write(high_output);
3296 buffer_write(high_direction);
3297 }
3298
3299 static int ft2232_quit(void)
3300 {
3301 #if BUILD_FT2232_FTD2XX == 1
3302 FT_STATUS status;
3303
3304 status = FT_Close(ftdih);
3305 #elif BUILD_FT2232_LIBFTDI == 1
3306 ftdi_usb_close(&ftdic);
3307
3308 ftdi_deinit(&ftdic);
3309 #endif
3310
3311 free(ft2232_buffer);
3312 ft2232_buffer = NULL;
3313
3314 return ERROR_OK;
3315 }
3316
3317 COMMAND_HANDLER(ft2232_handle_device_desc_command)
3318 {
3319 char *cp;
3320 char buf[200];
3321 if (CMD_ARGC == 1)
3322 {
3323 ft2232_device_desc = strdup(CMD_ARGV[0]);
3324 cp = strchr(ft2232_device_desc, 0);
3325 /* under Win32, the FTD2XX driver appends an "A" to the end
3326 * of the description, this examines the given desc
3327 * and creates the 'missing' _A or non_A variable. */
3328 if ((cp[-1] == 'A') && (cp[-2]==' ')) {
3329 /* it was, so make this the "A" version. */
3330 ft2232_device_desc_A = ft2232_device_desc;
3331 /* and *CREATE* the non-A version. */
3332 strcpy(buf, ft2232_device_desc);
3333 cp = strchr(buf, 0);
3334 cp[-2] = 0;
3335 ft2232_device_desc = strdup(buf);
3336 } else {
3337 /* <space > A not defined
3338 * so create it */
3339 sprintf(buf, "%s A", ft2232_device_desc);
3340 ft2232_device_desc_A = strdup(buf);
3341 }
3342 }
3343 else
3344 {
3345 LOG_ERROR("expected exactly one argument to ft2232_device_desc <description>");
3346 }
3347
3348 return ERROR_OK;
3349 }
3350
3351 COMMAND_HANDLER(ft2232_handle_serial_command)
3352 {
3353 if (CMD_ARGC == 1)
3354 {
3355 ft2232_serial = strdup(CMD_ARGV[0]);
3356 }
3357 else
3358 {
3359 LOG_ERROR("expected exactly one argument to ft2232_serial <serial-number>");
3360 }
3361
3362 return ERROR_OK;
3363 }
3364
3365 COMMAND_HANDLER(ft2232_handle_layout_command)
3366 {
3367 if (CMD_ARGC != 1) {
3368 LOG_ERROR("Need exactly one argument to ft2232_layout");
3369 return ERROR_FAIL;
3370 }
3371
3372 if (layout) {
3373 LOG_ERROR("already specified ft2232_layout %s",
3374 layout->name);
3375 return (strcmp(layout->name, CMD_ARGV[0]) != 0)
3376 ? ERROR_FAIL
3377 : ERROR_OK;
3378 }
3379
3380 for (const struct ft2232_layout *l = ft2232_layouts; l->name; l++) {
3381 if (strcmp(l->name, CMD_ARGV[0]) == 0) {
3382 layout = l;
3383 return ERROR_OK;
3384 }
3385 }
3386
3387 LOG_ERROR("No FT2232 layout '%s' found", CMD_ARGV[0]);
3388 return ERROR_FAIL;
3389 }
3390
3391 COMMAND_HANDLER(ft2232_handle_vid_pid_command)
3392 {
3393 if (CMD_ARGC > MAX_USB_IDS * 2)
3394 {
3395 LOG_WARNING("ignoring extra IDs in ft2232_vid_pid "
3396 "(maximum is %d pairs)", MAX_USB_IDS);
3397 CMD_ARGC = MAX_USB_IDS * 2;
3398 }
3399 if (CMD_ARGC < 2 || (CMD_ARGC & 1))
3400 {
3401 LOG_WARNING("incomplete ft2232_vid_pid configuration directive");
3402 if (CMD_ARGC < 2)
3403 return ERROR_COMMAND_SYNTAX_ERROR;
3404 /* remove the incomplete trailing id */
3405 CMD_ARGC -= 1;
3406 }
3407
3408 unsigned i;
3409 for (i = 0; i < CMD_ARGC; i += 2)
3410 {
3411 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ft2232_vid[i >> 1]);
3412 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ft2232_pid[i >> 1]);
3413 }
3414
3415 /*
3416 * Explicitly terminate, in case there are multiples instances of
3417 * ft2232_vid_pid.
3418 */
3419 ft2232_vid[i >> 1] = ft2232_pid[i >> 1] = 0;
3420
3421 return ERROR_OK;
3422 }
3423
3424 COMMAND_HANDLER(ft2232_handle_latency_command)
3425 {
3426 if (CMD_ARGC == 1)
3427 {
3428 ft2232_latency = atoi(CMD_ARGV[0]);
3429 }
3430 else
3431 {
3432 LOG_ERROR("expected exactly one argument to ft2232_latency <ms>");
3433 }
3434
3435 return ERROR_OK;
3436 }
3437
3438 static int ft2232_stableclocks(int num_cycles, struct jtag_command* cmd)
3439 {
3440 int retval = 0;
3441
3442 /* 7 bits of either ones or zeros. */
3443 uint8_t tms = (tap_get_state() == TAP_RESET ? 0x7F : 0x00);
3444
3445 while (num_cycles > 0)
3446 {
3447 /* the command 0x4b, "Clock Data to TMS/CS Pin (no Read)" handles
3448 * at most 7 bits per invocation. Here we invoke it potentially
3449 * several times.
3450 */
3451 int bitcount_per_command = (num_cycles > 7) ? 7 : num_cycles;
3452
3453 if (ft2232_buffer_size + 3 >= FT2232_BUFFER_SIZE)
3454 {
3455 if (ft2232_send_and_recv(first_unsent, cmd) != ERROR_OK)
3456 retval = ERROR_JTAG_QUEUE_FAILED;
3457
3458 first_unsent = cmd;
3459 }
3460
3461 /* there are no state transitions in this code, so omit state tracking */
3462
3463 /* command "Clock Data to TMS/CS Pin (no Read)" */
3464 buffer_write(0x4b);
3465
3466 /* scan 7 bit */
3467 buffer_write(bitcount_per_command - 1);
3468
3469 /* TMS data bits are either all zeros or ones to stay in the current stable state */
3470 buffer_write(tms);
3471
3472 require_send = 1;
3473
3474 num_cycles -= bitcount_per_command;
3475 }
3476
3477 return retval;
3478 }
3479
3480 /* ---------------------------------------------------------------------
3481 * Support for IceBear JTAG adapter from Section5:
3482 * http://section5.ch/icebear
3483 *
3484 * Author: Sten, debian@sansys-electronic.com
3485 */
3486
3487 /* Icebear pin layout
3488 *
3489 * ADBUS5 (nEMU) nSRST | 2 1| GND (10k->VCC)
3490 * GND GND | 4 3| n.c.
3491 * ADBUS3 TMS | 6 5| ADBUS6 VCC
3492 * ADBUS0 TCK | 8 7| ADBUS7 (GND)
3493 * ADBUS4 nTRST |10 9| ACBUS0 (GND)
3494 * ADBUS1 TDI |12 11| ACBUS1 (GND)
3495 * ADBUS2 TDO |14 13| GND GND
3496 *
3497 * ADBUS0 O L TCK ACBUS0 GND
3498 * ADBUS1 O L TDI ACBUS1 GND
3499 * ADBUS2 I TDO ACBUS2 n.c.
3500 * ADBUS3 O H TMS ACBUS3 n.c.
3501 * ADBUS4 O H nTRST
3502 * ADBUS5 O H nSRST
3503 * ADBUS6 - VCC
3504 * ADBUS7 - GND
3505 */
3506 static int icebear_jtag_init(void) {
3507 low_direction = 0x0b; /* output: TCK TDI TMS; input: TDO */
3508 low_output = 0x08; /* high: TMS; low: TCK TDI */
3509 nTRST = 0x10;
3510 nSRST = 0x20;
3511
3512 enum reset_types jtag_reset_config = jtag_get_reset_config();
3513 if ((jtag_reset_config & RESET_TRST_OPEN_DRAIN) != 0) {
3514 low_direction &= ~nTRST; /* nTRST high impedance */
3515 }
3516 else {
3517 low_direction |= nTRST;
3518 low_output |= nTRST;
3519 }
3520
3521 low_direction |= nSRST;
3522 low_output |= nSRST;
3523
3524 /* initialize low byte for jtag */
3525 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK) {
3526 LOG_ERROR("couldn't initialize FT2232 with 'IceBear' layout (low)");
3527 return ERROR_JTAG_INIT_FAILED;
3528 }
3529
3530 high_output = 0x0;
3531 high_direction = 0x00;
3532
3533 /* initialize high byte for jtag */
3534 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK) {
3535 LOG_ERROR("couldn't initialize FT2232 with 'IceBear' layout (high)");
3536 return ERROR_JTAG_INIT_FAILED;
3537 }
3538
3539 return ERROR_OK;
3540 }
3541
3542 static void icebear_jtag_reset(int trst, int srst) {
3543
3544 if (trst == 1) {
3545 low_direction |= nTRST;
3546 low_output &= ~nTRST;
3547 }
3548 else if (trst == 0) {
3549 enum reset_types jtag_reset_config = jtag_get_reset_config();
3550 if ((jtag_reset_config & RESET_TRST_OPEN_DRAIN) != 0)
3551 low_direction &= ~nTRST;
3552 else
3553 low_output |= nTRST;
3554 }
3555
3556 if (srst == 1) {
3557 low_output &= ~nSRST;
3558 }
3559 else if (srst == 0) {
3560 low_output |= nSRST;
3561 }
3562
3563 /* command "set data bits low byte" */
3564 buffer_write(0x80);
3565 buffer_write(low_output);
3566 buffer_write(low_direction);
3567
3568 LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, low_direction: 0x%2.2x", trst, srst, low_output, low_direction);
3569 }
3570
3571 /* ---------------------------------------------------------------------
3572 * Support for Signalyzer H2 and Signalyzer H4
3573 * JTAG adapter from Xverve Technologies Inc.
3574 * http://www.signalyzer.com or http://www.xverve.com
3575 *
3576 * Author: Oleg Seiljus, oleg@signalyzer.com
3577 */
3578 static unsigned char signalyzer_h_side;
3579 static unsigned int signalyzer_h_adapter_type;
3580
3581 static int signalyzer_h_ctrl_write(int address, unsigned short value);
3582
3583 #if BUILD_FT2232_FTD2XX == 1
3584 static int signalyzer_h_ctrl_read(int address, unsigned short *value);
3585 #endif
3586
3587 #define SIGNALYZER_COMMAND_ADDR 128
3588 #define SIGNALYZER_DATA_BUFFER_ADDR 129
3589
3590 #define SIGNALYZER_COMMAND_VERSION 0x41
3591 #define SIGNALYZER_COMMAND_RESET 0x42
3592 #define SIGNALYZER_COMMAND_POWERCONTROL_GET 0x50
3593 #define SIGNALYZER_COMMAND_POWERCONTROL_SET 0x51
3594 #define SIGNALYZER_COMMAND_PWM_SET 0x52
3595 #define SIGNALYZER_COMMAND_LED_SET 0x53
3596 #define SIGNALYZER_COMMAND_ADC 0x54
3597 #define SIGNALYZER_COMMAND_GPIO_STATE 0x55
3598 #define SIGNALYZER_COMMAND_GPIO_MODE 0x56
3599 #define SIGNALYZER_COMMAND_GPIO_PORT 0x57
3600 #define SIGNALYZER_COMMAND_I2C 0x58
3601
3602 #define SIGNALYZER_CHAN_A 1
3603 #define SIGNALYZER_CHAN_B 2
3604 /* LEDS use channel C */
3605 #define SIGNALYZER_CHAN_C 4
3606
3607 #define SIGNALYZER_LED_GREEN 1
3608 #define SIGNALYZER_LED_RED 2
3609
3610 #define SIGNALYZER_MODULE_TYPE_EM_LT16_A 0x0301
3611 #define SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG 0x0302
3612 #define SIGNALYZER_MODULE_TYPE_EM_JTAG 0x0303
3613 #define SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P 0x0304
3614 #define SIGNALYZER_MODULE_TYPE_EM_JTAG_P 0x0305
3615
3616
3617 static int signalyzer_h_ctrl_write(int address, unsigned short value)
3618 {
3619 #if BUILD_FT2232_FTD2XX == 1
3620 return FT_WriteEE(ftdih, address, value);
3621 #elif BUILD_FT2232_LIBFTDI == 1
3622 return 0;
3623 #endif
3624 }
3625
3626 #if BUILD_FT2232_FTD2XX == 1
3627 static int signalyzer_h_ctrl_read(int address, unsigned short *value)
3628 {
3629 return FT_ReadEE(ftdih, address, value);
3630 }
3631 #endif
3632
3633 static int signalyzer_h_led_set(unsigned char channel, unsigned char led,
3634 int on_time_ms, int off_time_ms, unsigned char cycles)
3635 {
3636 unsigned char on_time;
3637 unsigned char off_time;
3638
3639 if (on_time_ms < 0xFFFF)
3640 on_time = (unsigned char)(on_time_ms / 62);
3641 else
3642 on_time = 0xFF;
3643
3644 off_time = (unsigned char)(off_time_ms / 62);
3645
3646 #if BUILD_FT2232_FTD2XX == 1
3647 FT_STATUS status;
3648
3649 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
3650 ((uint32_t)(channel << 8) | led))) != FT_OK)
3651 {
3652 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3653 ftd2xx_status_string(status));
3654 return ERROR_JTAG_DEVICE_ERROR;
3655 }
3656
3657 if ((status = signalyzer_h_ctrl_write(
3658 (SIGNALYZER_DATA_BUFFER_ADDR + 1),
3659 ((uint32_t)(on_time << 8) | off_time))) != FT_OK)
3660 {
3661 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3662 ftd2xx_status_string(status));
3663 return ERROR_JTAG_DEVICE_ERROR;
3664 }
3665
3666 if ((status = signalyzer_h_ctrl_write(
3667 (SIGNALYZER_DATA_BUFFER_ADDR + 2),
3668 ((uint32_t)cycles))) != FT_OK)
3669 {
3670 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3671 ftd2xx_status_string(status));
3672 return ERROR_JTAG_DEVICE_ERROR;
3673 }
3674
3675 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3676 SIGNALYZER_COMMAND_LED_SET)) != FT_OK)
3677 {
3678 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3679 ftd2xx_status_string(status));
3680 return ERROR_JTAG_DEVICE_ERROR;
3681 }
3682
3683 return ERROR_OK;
3684 #elif BUILD_FT2232_LIBFTDI == 1
3685 int retval;
3686
3687 if ((retval = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
3688 ((uint32_t)(channel << 8) | led))) < 0)
3689 {
3690 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3691 ftdi_get_error_string(&ftdic));
3692 return ERROR_JTAG_DEVICE_ERROR;
3693 }
3694
3695 if ((retval = signalyzer_h_ctrl_write(
3696 (SIGNALYZER_DATA_BUFFER_ADDR + 1),
3697 ((uint32_t)(on_time << 8) | off_time))) < 0)
3698 {
3699 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3700 ftdi_get_error_string(&ftdic));
3701 return ERROR_JTAG_DEVICE_ERROR;
3702 }
3703
3704 if ((retval = signalyzer_h_ctrl_write(
3705 (SIGNALYZER_DATA_BUFFER_ADDR + 2),
3706 (uint32_t)cycles)) < 0)
3707 {
3708 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3709 ftdi_get_error_string(&ftdic));
3710 return ERROR_JTAG_DEVICE_ERROR;
3711 }
3712
3713 if ((retval = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3714 SIGNALYZER_COMMAND_LED_SET)) < 0)
3715 {
3716 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3717 ftdi_get_error_string(&ftdic));
3718 return ERROR_JTAG_DEVICE_ERROR;
3719 }
3720
3721 return ERROR_OK;
3722 #endif
3723 }
3724
3725 static int signalyzer_h_init(void)
3726 {
3727 #if BUILD_FT2232_FTD2XX == 1
3728 FT_STATUS status;
3729 int i;
3730 #endif
3731
3732 char *end_of_desc;
3733
3734 uint16_t read_buf[12] = { 0 };
3735
3736 /* turn on center green led */
3737 signalyzer_h_led_set(SIGNALYZER_CHAN_C, SIGNALYZER_LED_GREEN,
3738 0xFFFF, 0x00, 0x00);
3739
3740 /* determine what channel config wants to open
3741 * TODO: change me... current implementation is made to work
3742 * with openocd description parsing.
3743 */
3744 end_of_desc = strrchr(ft2232_device_desc, 0x00);
3745
3746 if (end_of_desc)
3747 {
3748 signalyzer_h_side = *(end_of_desc - 1);
3749 if (signalyzer_h_side == 'B')
3750 signalyzer_h_side = SIGNALYZER_CHAN_B;
3751 else
3752 signalyzer_h_side = SIGNALYZER_CHAN_A;
3753 }
3754 else
3755 {
3756 LOG_ERROR("No Channel was specified");
3757 return ERROR_FAIL;
3758 }
3759
3760 signalyzer_h_led_set(signalyzer_h_side, SIGNALYZER_LED_GREEN,
3761 1000, 1000, 0xFF);
3762
3763 #if BUILD_FT2232_FTD2XX == 1
3764 /* read signalyzer versionining information */
3765 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3766 SIGNALYZER_COMMAND_VERSION)) != FT_OK)
3767 {
3768 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3769 ftd2xx_status_string(status));
3770 return ERROR_JTAG_DEVICE_ERROR;
3771 }
3772
3773 for (i = 0; i < 10; i++)
3774 {
3775 if ((status = signalyzer_h_ctrl_read(
3776 (SIGNALYZER_DATA_BUFFER_ADDR + i),
3777 &read_buf[i])) != FT_OK)
3778 {
3779 LOG_ERROR("signalyzer_h_ctrl_read returned: %s",
3780 ftd2xx_status_string(status));
3781 return ERROR_JTAG_DEVICE_ERROR;
3782 }
3783 }
3784
3785 LOG_INFO("Signalyzer: ID info: { %.4x %.4x %.4x %.4x %.4x %.4x %.4x }",
3786 read_buf[0], read_buf[1], read_buf[2], read_buf[3],
3787 read_buf[4], read_buf[5], read_buf[6]);
3788
3789 /* set gpio register */
3790 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
3791 (uint32_t)(signalyzer_h_side << 8))) != FT_OK)
3792 {
3793 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3794 ftd2xx_status_string(status));
3795 return ERROR_JTAG_DEVICE_ERROR;
3796 }
3797
3798 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR + 1,
3799 0x0404)) != FT_OK)
3800 {
3801 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3802 ftd2xx_status_string(status));
3803 return ERROR_JTAG_DEVICE_ERROR;
3804 }
3805
3806 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3807 SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
3808 {
3809 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3810 ftd2xx_status_string(status));
3811 return ERROR_JTAG_DEVICE_ERROR;
3812 }
3813
3814 /* read adapter type information */
3815 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_DATA_BUFFER_ADDR,
3816 ((uint32_t)(signalyzer_h_side << 8) | 0x01))) != FT_OK)
3817 {
3818 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3819 ftd2xx_status_string(status));
3820 return ERROR_JTAG_DEVICE_ERROR;
3821 }
3822
3823 if ((status = signalyzer_h_ctrl_write(
3824 (SIGNALYZER_DATA_BUFFER_ADDR + 1), 0xA000)) != FT_OK)
3825 {
3826 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3827 ftd2xx_status_string(status));
3828 return ERROR_JTAG_DEVICE_ERROR;
3829 }
3830
3831 if ((status = signalyzer_h_ctrl_write(
3832 (SIGNALYZER_DATA_BUFFER_ADDR + 2), 0x0008)) != FT_OK)
3833 {
3834 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3835 ftd2xx_status_string(status));
3836 return ERROR_JTAG_DEVICE_ERROR;
3837 }
3838
3839 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3840 SIGNALYZER_COMMAND_I2C)) != FT_OK)
3841 {
3842 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3843 ftd2xx_status_string(status));
3844 return ERROR_JTAG_DEVICE_ERROR;
3845 }
3846
3847 usleep(100000);
3848
3849 if ((status = signalyzer_h_ctrl_read(SIGNALYZER_COMMAND_ADDR,
3850 &read_buf[0])) != FT_OK)
3851 {
3852 LOG_ERROR("signalyzer_h_ctrl_read returned: %s",
3853 ftd2xx_status_string(status));
3854 return ERROR_JTAG_DEVICE_ERROR;
3855 }
3856
3857 if (read_buf[0] != 0x0498)
3858 signalyzer_h_adapter_type = 0x0000;
3859 else
3860 {
3861 for (i = 0; i < 4; i++)
3862 {
3863 if ((status = signalyzer_h_ctrl_read(
3864 (SIGNALYZER_DATA_BUFFER_ADDR + i),
3865 &read_buf[i])) != FT_OK)
3866 {
3867 LOG_ERROR("signalyzer_h_ctrl_read returned: %s",
3868 ftd2xx_status_string(status));
3869 return ERROR_JTAG_DEVICE_ERROR;
3870 }
3871 }
3872
3873 signalyzer_h_adapter_type = read_buf[0];
3874 }
3875
3876 #elif BUILD_FT2232_LIBFTDI == 1
3877 /* currently libftdi does not allow reading individual eeprom
3878 * locations, therefore adapter type cannot be detected.
3879 * override with most common type
3880 */
3881 signalyzer_h_adapter_type = SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG;
3882 #endif
3883
3884 enum reset_types jtag_reset_config = jtag_get_reset_config();
3885
3886 /* ADAPTOR: EM_LT16_A */
3887 if (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_LT16_A)
3888 {
3889 LOG_INFO("Signalyzer: EM-LT (16-channel level translator) "
3890 "detected. (HW: %2x).", (read_buf[1] >> 8));
3891
3892 nTRST = 0x10;
3893 nTRSTnOE = 0x10;
3894 nSRST = 0x20;
3895 nSRSTnOE = 0x20;
3896
3897 low_output = 0x08;
3898 low_direction = 0x1b;
3899
3900 high_output = 0x0;
3901 high_direction = 0x0;
3902
3903 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
3904 {
3905 low_direction &= ~nTRSTnOE; /* nTRST input */
3906 low_output &= ~nTRST; /* nTRST = 0 */
3907 }
3908 else
3909 {
3910 low_direction |= nTRSTnOE; /* nTRST output */
3911 low_output |= nTRST; /* nTRST = 1 */
3912 }
3913
3914 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
3915 {
3916 low_direction |= nSRSTnOE; /* nSRST output */
3917 low_output |= nSRST; /* nSRST = 1 */
3918 }
3919 else
3920 {
3921 low_direction &= ~nSRSTnOE; /* nSRST input */
3922 low_output &= ~nSRST; /* nSRST = 0 */
3923 }
3924
3925 #if BUILD_FT2232_FTD2XX == 1
3926 /* enable power to the module */
3927 if ((status = signalyzer_h_ctrl_write(
3928 SIGNALYZER_DATA_BUFFER_ADDR,
3929 ((uint32_t)(signalyzer_h_side << 8) | 0x01)))
3930 != FT_OK)
3931 {
3932 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3933 ftd2xx_status_string(status));
3934 return ERROR_JTAG_DEVICE_ERROR;
3935 }
3936
3937 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3938 SIGNALYZER_COMMAND_POWERCONTROL_SET)) != FT_OK)
3939 {
3940 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3941 ftd2xx_status_string(status));
3942 return ERROR_JTAG_DEVICE_ERROR;
3943 }
3944
3945 /* set gpio mode register */
3946 if ((status = signalyzer_h_ctrl_write(
3947 SIGNALYZER_DATA_BUFFER_ADDR,
3948 (uint32_t)(signalyzer_h_side << 8))) != FT_OK)
3949 {
3950 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3951 ftd2xx_status_string(status));
3952 return ERROR_JTAG_DEVICE_ERROR;
3953 }
3954
3955 if ((status = signalyzer_h_ctrl_write(
3956 SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0000))
3957 != FT_OK)
3958 {
3959 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3960 ftd2xx_status_string(status));
3961 return ERROR_JTAG_DEVICE_ERROR;
3962 }
3963
3964 if ((status = signalyzer_h_ctrl_write(SIGNALYZER_COMMAND_ADDR,
3965 SIGNALYZER_COMMAND_GPIO_MODE)) != FT_OK)
3966 {
3967 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3968 ftd2xx_status_string(status));
3969 return ERROR_JTAG_DEVICE_ERROR;
3970 }
3971
3972 /* set gpio register */
3973 if ((status = signalyzer_h_ctrl_write(
3974 SIGNALYZER_DATA_BUFFER_ADDR,
3975 (uint32_t)(signalyzer_h_side << 8))) != FT_OK)
3976 {
3977 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3978 ftd2xx_status_string(status));
3979 return ERROR_JTAG_DEVICE_ERROR;
3980 }
3981
3982 if ((status = signalyzer_h_ctrl_write(
3983 SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x4040))
3984 != FT_OK)
3985 {
3986 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3987 ftd2xx_status_string(status));
3988 return ERROR_JTAG_DEVICE_ERROR;
3989 }
3990
3991 if ((status = signalyzer_h_ctrl_write(
3992 SIGNALYZER_COMMAND_ADDR,
3993 SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
3994 {
3995 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
3996 ftd2xx_status_string(status));
3997 return ERROR_JTAG_DEVICE_ERROR;
3998 }
3999 #endif
4000 }
4001
4002 /* ADAPTOR: EM_ARM_JTAG, EM_ARM_JTAG_P, EM_JTAG, EM_JTAG_P */
4003 else if ((signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG) ||
4004 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P) ||
4005 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG) ||
4006 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG_P))
4007 {
4008 if (signalyzer_h_adapter_type
4009 == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG)
4010 LOG_INFO("Signalyzer: EM-ARM-JTAG (ARM JTAG) "
4011 "detected. (HW: %2x).", (read_buf[1] >> 8));
4012 else if (signalyzer_h_adapter_type
4013 == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P)
4014 LOG_INFO("Signalyzer: EM-ARM-JTAG_P "
4015 "(ARM JTAG with PSU) detected. (HW: %2x).",
4016 (read_buf[1] >> 8));
4017 else if (signalyzer_h_adapter_type
4018 == SIGNALYZER_MODULE_TYPE_EM_JTAG)
4019 LOG_INFO("Signalyzer: EM-JTAG (Generic JTAG) "
4020 "detected. (HW: %2x).", (read_buf[1] >> 8));
4021 else if (signalyzer_h_adapter_type
4022 == SIGNALYZER_MODULE_TYPE_EM_JTAG_P)
4023 LOG_INFO("Signalyzer: EM-JTAG-P "
4024 "(Generic JTAG with PSU) detected. (HW: %2x).",
4025 (read_buf[1] >> 8));
4026
4027 nTRST = 0x02;
4028 nTRSTnOE = 0x04;
4029 nSRST = 0x08;
4030 nSRSTnOE = 0x10;
4031
4032 low_output = 0x08;
4033 low_direction = 0x1b;
4034
4035 high_output = 0x0;
4036 high_direction = 0x1f;
4037
4038 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4039 {
4040 high_output |= nTRSTnOE;
4041 high_output &= ~nTRST;
4042 }
4043 else
4044 {
4045 high_output &= ~nTRSTnOE;
4046 high_output |= nTRST;
4047 }
4048
4049 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4050 {
4051 high_output &= ~nSRSTnOE;
4052 high_output |= nSRST;
4053 }
4054 else
4055 {
4056 high_output |= nSRSTnOE;
4057 high_output &= ~nSRST;
4058 }
4059
4060 #if BUILD_FT2232_FTD2XX == 1
4061 /* enable power to the module */
4062 if ((status = signalyzer_h_ctrl_write(
4063 SIGNALYZER_DATA_BUFFER_ADDR,
4064 ((uint32_t)(signalyzer_h_side << 8) | 0x01)))
4065 != FT_OK)
4066 {
4067 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4068 ftd2xx_status_string(status));
4069 return ERROR_JTAG_DEVICE_ERROR;
4070 }
4071
4072 if ((status = signalyzer_h_ctrl_write(
4073 SIGNALYZER_COMMAND_ADDR,
4074 SIGNALYZER_COMMAND_POWERCONTROL_SET)) != FT_OK)
4075 {
4076 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4077 ftd2xx_status_string(status));
4078 return ERROR_JTAG_DEVICE_ERROR;
4079 }
4080
4081 /* set gpio mode register (IO_16 and IO_17 set as analog
4082 * inputs, other is gpio)
4083 */
4084 if ((status = signalyzer_h_ctrl_write(
4085 SIGNALYZER_DATA_BUFFER_ADDR,
4086 (uint32_t)(signalyzer_h_side << 8))) != FT_OK)
4087 {
4088 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4089 ftd2xx_status_string(status));
4090 return ERROR_JTAG_DEVICE_ERROR;
4091 }
4092
4093 if ((status = signalyzer_h_ctrl_write(
4094 SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0060))
4095 != FT_OK)
4096 {
4097 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4098 ftd2xx_status_string(status));
4099 return ERROR_JTAG_DEVICE_ERROR;
4100 }
4101
4102 if ((status = signalyzer_h_ctrl_write(
4103 SIGNALYZER_COMMAND_ADDR,
4104 SIGNALYZER_COMMAND_GPIO_MODE)) != FT_OK)
4105 {
4106 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4107 ftd2xx_status_string(status));
4108 return ERROR_JTAG_DEVICE_ERROR;
4109 }
4110
4111 /* set gpio register (all inputs, for -P modules,
4112 * PSU will be turned off)
4113 */
4114 if ((status = signalyzer_h_ctrl_write(
4115 SIGNALYZER_DATA_BUFFER_ADDR,
4116 (uint32_t)(signalyzer_h_side << 8))) != FT_OK)
4117 {
4118 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4119 ftd2xx_status_string(status));
4120 return ERROR_JTAG_DEVICE_ERROR;
4121 }
4122
4123 if ((status = signalyzer_h_ctrl_write(
4124 SIGNALYZER_DATA_BUFFER_ADDR + 1, 0x0000))
4125 != FT_OK)
4126 {
4127 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4128 ftd2xx_status_string(status));
4129 return ERROR_JTAG_DEVICE_ERROR;
4130 }
4131
4132 if ((status = signalyzer_h_ctrl_write(
4133 SIGNALYZER_COMMAND_ADDR,
4134 SIGNALYZER_COMMAND_GPIO_STATE)) != FT_OK)
4135 {
4136 LOG_ERROR("signalyzer_h_ctrl_write returned: %s",
4137 ftd2xx_status_string(status));
4138 return ERROR_JTAG_DEVICE_ERROR;
4139 }
4140 #endif
4141 }
4142
4143 else if (signalyzer_h_adapter_type == 0x0000)
4144 {
4145 LOG_INFO("Signalyzer: No external modules were detected.");
4146
4147 nTRST = 0x10;
4148 nTRSTnOE = 0x10;
4149 nSRST = 0x20;
4150 nSRSTnOE = 0x20;
4151
4152 low_output = 0x08;
4153 low_direction = 0x1b;
4154
4155 high_output = 0x0;
4156 high_direction = 0x0;
4157
4158 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4159 {
4160 low_direction &= ~nTRSTnOE; /* nTRST input */
4161 low_output &= ~nTRST; /* nTRST = 0 */
4162 }
4163 else
4164 {
4165 low_direction |= nTRSTnOE; /* nTRST output */
4166 low_output |= nTRST; /* nTRST = 1 */
4167 }
4168
4169 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4170 {
4171 low_direction |= nSRSTnOE; /* nSRST output */
4172 low_output |= nSRST; /* nSRST = 1 */
4173 }
4174 else
4175 {
4176 low_direction &= ~nSRSTnOE; /* nSRST input */
4177 low_output &= ~nSRST; /* nSRST = 0 */
4178 }
4179 }
4180 else
4181 {
4182 LOG_ERROR("Unknown module type is detected: %.4x",
4183 signalyzer_h_adapter_type);
4184 return ERROR_JTAG_DEVICE_ERROR;
4185 }
4186
4187 /* initialize low byte of controller for jtag operation */
4188 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
4189 {
4190 LOG_ERROR("couldn't initialize Signalyzer-H layout");
4191 return ERROR_JTAG_INIT_FAILED;
4192 }
4193
4194 #if BUILD_FT2232_FTD2XX == 1
4195 if (ftdi_device == FT_DEVICE_2232H)
4196 {
4197 /* initialize high byte of controller for jtag operation */
4198 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
4199 {
4200 LOG_ERROR("couldn't initialize Signalyzer-H layout");
4201 return ERROR_JTAG_INIT_FAILED;
4202 }
4203 }
4204 #elif BUILD_FT2232_LIBFTDI == 1
4205 if (ftdi_device == TYPE_2232H)
4206 {
4207 /* initialize high byte of controller for jtag operation */
4208 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
4209 {
4210 LOG_ERROR("couldn't initialize Signalyzer-H layout");
4211 return ERROR_JTAG_INIT_FAILED;
4212 }
4213 }
4214 #endif
4215 return ERROR_OK;
4216 }
4217
4218 static void signalyzer_h_reset(int trst, int srst)
4219 {
4220 enum reset_types jtag_reset_config = jtag_get_reset_config();
4221
4222 /* ADAPTOR: EM_LT16_A */
4223 if (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_LT16_A)
4224 {
4225 if (trst == 1)
4226 {
4227 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4228 /* switch to output pin (output is low) */
4229 low_direction |= nTRSTnOE;
4230 else
4231 /* switch output low */
4232 low_output &= ~nTRST;
4233 }
4234 else if (trst == 0)
4235 {
4236 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4237 /* switch to input pin (high-Z + internal
4238 * and external pullup) */
4239 low_direction &= ~nTRSTnOE;
4240 else
4241 /* switch output high */
4242 low_output |= nTRST;
4243 }
4244
4245 if (srst == 1)
4246 {
4247 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4248 /* switch output low */
4249 low_output &= ~nSRST;
4250 else
4251 /* switch to output pin (output is low) */
4252 low_direction |= nSRSTnOE;
4253 }
4254 else if (srst == 0)
4255 {
4256 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4257 /* switch output high */
4258 low_output |= nSRST;
4259 else
4260 /* switch to input pin (high-Z) */
4261 low_direction &= ~nSRSTnOE;
4262 }
4263
4264 /* command "set data bits low byte" */
4265 buffer_write(0x80);
4266 buffer_write(low_output);
4267 buffer_write(low_direction);
4268 LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, "
4269 "low_direction: 0x%2.2x",
4270 trst, srst, low_output, low_direction);
4271 }
4272 /* ADAPTOR: EM_ARM_JTAG, EM_ARM_JTAG_P, EM_JTAG, EM_JTAG_P */
4273 else if ((signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG) ||
4274 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_ARM_JTAG_P) ||
4275 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG) ||
4276 (signalyzer_h_adapter_type == SIGNALYZER_MODULE_TYPE_EM_JTAG_P))
4277 {
4278 if (trst == 1)
4279 {
4280 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4281 high_output &= ~nTRSTnOE;
4282 else
4283 high_output &= ~nTRST;
4284 }
4285 else if (trst == 0)
4286 {
4287 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4288 high_output |= nTRSTnOE;
4289 else
4290 high_output |= nTRST;
4291 }
4292
4293 if (srst == 1)
4294 {
4295 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4296 high_output &= ~nSRST;
4297 else
4298 high_output &= ~nSRSTnOE;
4299 }
4300 else if (srst == 0)
4301 {
4302 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4303 high_output |= nSRST;
4304 else
4305 high_output |= nSRSTnOE;
4306 }
4307
4308 /* command "set data bits high byte" */
4309 buffer_write(0x82);
4310 buffer_write(high_output);
4311 buffer_write(high_direction);
4312 LOG_INFO("trst: %i, srst: %i, high_output: 0x%2.2x, "
4313 "high_direction: 0x%2.2x",
4314 trst, srst, high_output, high_direction);
4315 }
4316 else if (signalyzer_h_adapter_type == 0x0000)
4317 {
4318 if (trst == 1)
4319 {
4320 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4321 /* switch to output pin (output is low) */
4322 low_direction |= nTRSTnOE;
4323 else
4324 /* switch output low */
4325 low_output &= ~nTRST;
4326 }
4327 else if (trst == 0)
4328 {
4329 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4330 /* switch to input pin (high-Z + internal
4331 * and external pullup) */
4332 low_direction &= ~nTRSTnOE;
4333 else
4334 /* switch output high */
4335 low_output |= nTRST;
4336 }
4337
4338 if (srst == 1)
4339 {
4340 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4341 /* switch output low */
4342 low_output &= ~nSRST;
4343 else
4344 /* switch to output pin (output is low) */
4345 low_direction |= nSRSTnOE;
4346 }
4347 else if (srst == 0)
4348 {
4349 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4350 /* switch output high */
4351 low_output |= nSRST;
4352 else
4353 /* switch to input pin (high-Z) */
4354 low_direction &= ~nSRSTnOE;
4355 }
4356
4357 /* command "set data bits low byte" */
4358 buffer_write(0x80);
4359 buffer_write(low_output);
4360 buffer_write(low_direction);
4361 LOG_DEBUG("trst: %i, srst: %i, low_output: 0x%2.2x, "
4362 "low_direction: 0x%2.2x",
4363 trst, srst, low_output, low_direction);
4364 }
4365 }
4366
4367 static void signalyzer_h_blink(void)
4368 {
4369 signalyzer_h_led_set(signalyzer_h_side, SIGNALYZER_LED_RED, 100, 0, 1);
4370 }
4371
4372 /********************************************************************
4373 * Support for KT-LINK
4374 * JTAG adapter from KRISTECH
4375 * http://www.kristech.eu
4376 *******************************************************************/
4377 static int ktlink_init(void)
4378 {
4379 uint8_t swd_en = 0x20; //0x20 SWD disable, 0x00 SWD enable (ADBUS5)
4380
4381 low_output = 0x08 | swd_en; // value; TMS=1,TCK=0,TDI=0,SWD=swd_en
4382 low_direction = 0x3B; // out=1; TCK/TDI/TMS=out,TDO=in,SWD=out,RTCK=in,SRSTIN=in
4383
4384 /* initialize low byte for jtag */
4385 if (ft2232_set_data_bits_low_byte(low_output,low_direction) != ERROR_OK)
4386 {
4387 LOG_ERROR("couldn't initialize FT2232 with 'ktlink' layout");
4388 return ERROR_JTAG_INIT_FAILED;
4389 }
4390
4391 nTRST = 0x01;
4392 nSRST = 0x02;
4393 nTRSTnOE = 0x04;
4394 nSRSTnOE = 0x08;
4395
4396 high_output = 0x80; // turn LED on
4397 high_direction = 0xFF; // all outputs
4398
4399 enum reset_types jtag_reset_config = jtag_get_reset_config();
4400
4401 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN) {
4402 high_output |= nTRSTnOE;
4403 high_output &= ~nTRST;
4404 } else {
4405 high_output &= ~nTRSTnOE;
4406 high_output |= nTRST;
4407 }
4408
4409 if (jtag_reset_config & RESET_SRST_PUSH_PULL) {
4410 high_output &= ~nSRSTnOE;
4411 high_output |= nSRST;
4412 } else {
4413 high_output |= nSRSTnOE;
4414 high_output &= ~nSRST;
4415 }
4416
4417 /* initialize high byte for jtag */
4418 if (ft2232_set_data_bits_high_byte(high_output,high_direction) != ERROR_OK)
4419 {
4420 LOG_ERROR("couldn't initialize FT2232 with 'ktlink' layout");
4421 return ERROR_JTAG_INIT_FAILED;
4422 }
4423
4424 return ERROR_OK;
4425 }
4426
4427 static void ktlink_reset(int trst, int srst)
4428 {
4429 enum reset_types jtag_reset_config = jtag_get_reset_config();
4430
4431 if (trst == 1) {
4432 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4433 high_output &= ~nTRSTnOE;
4434 else
4435 high_output &= ~nTRST;
4436 } else if (trst == 0) {
4437 if (jtag_reset_config & RESET_TRST_OPEN_DRAIN)
4438 high_output |= nTRSTnOE;
4439 else
4440 high_output |= nTRST;
4441 }
4442
4443 if (srst == 1) {
4444 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4445 high_output &= ~nSRST;
4446 else
4447 high_output &= ~nSRSTnOE;
4448 } else if (srst == 0) {
4449 if (jtag_reset_config & RESET_SRST_PUSH_PULL)
4450 high_output |= nSRST;
4451 else
4452 high_output |= nSRSTnOE;
4453 }
4454
4455 buffer_write(0x82); // command "set data bits high byte"
4456 buffer_write(high_output);
4457 buffer_write(high_direction);
4458 LOG_DEBUG("trst: %i, srst: %i, high_output: 0x%2.2x, high_direction: 0x%2.2x", trst, srst, high_output,high_direction);
4459 }
4460
4461 static void ktlink_blink(void)
4462 {
4463 /* LED connected to ACBUS7 */
4464 high_output ^= 0x80;
4465
4466 buffer_write(0x82); // command "set data bits high byte"
4467 buffer_write(high_output);
4468 buffer_write(high_direction);
4469 }
4470
4471 static const struct command_registration ft2232_command_handlers[] = {
4472 {
4473 .name = "ft2232_device_desc",
4474 .handler = &ft2232_handle_device_desc_command,
4475 .mode = COMMAND_CONFIG,
4476 .help = "set the USB device description of the FTDI FT2232 device",
4477 .usage = "description_string",
4478 },
4479 {
4480 .name = "ft2232_serial",
4481 .handler = &ft2232_handle_serial_command,
4482 .mode = COMMAND_CONFIG,
4483 .help = "set the serial number of the FTDI FT2232 device",
4484 .usage = "serial_string",
4485 },
4486 {
4487 .name = "ft2232_layout",
4488 .handler = &ft2232_handle_layout_command,
4489 .mode = COMMAND_CONFIG,
4490 .help = "set the layout of the FT2232 GPIO signals used "
4491 "to control output-enables and reset signals",
4492 .usage = "layout_name",
4493 },
4494 {
4495 .name = "ft2232_vid_pid",
4496 .handler = &ft2232_handle_vid_pid_command,
4497 .mode = COMMAND_CONFIG,
4498 .help = "the vendor ID and product ID of the FTDI FT2232 device",
4499 .usage = "(vid pid)* ",
4500 },
4501 {
4502 .name = "ft2232_latency",
4503 .handler = &ft2232_handle_latency_command,
4504 .mode = COMMAND_CONFIG,
4505 .help = "set the FT2232 latency timer to a new value",
4506 .usage = "value",
4507 },
4508 COMMAND_REGISTRATION_DONE
4509 };
4510
4511 struct jtag_interface ft2232_interface = {
4512 .name = "ft2232",
4513 .supported = DEBUG_CAP_TMS_SEQ,
4514 .commands = ft2232_command_handlers,
4515 .transports = jtag_only,
4516
4517 .init = ft2232_init,
4518 .quit = ft2232_quit,
4519 .speed = ft2232_speed,
4520 .speed_div = ft2232_speed_div,
4521 .khz = ft2232_khz,
4522 .execute_queue = ft2232_execute_queue,
4523 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)