b65dd2ac444f66a265037597e3080fbe3bec1a9f
[openocd.git] / src / jtag / drivers / ftdi.c
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
20
21 /**
22 * @file
23 * JTAG adapters based on the FT2232 full and high speed USB parts are
24 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
25 * are discrete, but development boards may integrate them as alternatives
26 * to more capable (and expensive) third party JTAG pods.
27 *
28 * JTAG uses only one of the two communications channels ("MPSSE engines")
29 * on these devices. Adapters based on FT4232 parts have four ports/channels
30 * (A/B/C/D), instead of just two (A/B).
31 *
32 * Especially on development boards integrating one of these chips (as
33 * opposed to discrete pods/dongles), the additional channels can be used
34 * for a variety of purposes, but OpenOCD only uses one channel at a time.
35 *
36 * - As a USB-to-serial adapter for the target's console UART ...
37 * which may be able to support ROM boot loaders that load initial
38 * firmware images to flash (or SRAM).
39 *
40 * - On systems which support ARM's SWD in addition to JTAG, or instead
41 * of it, that second port can be used for reading SWV/SWO trace data.
42 *
43 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
44 *
45 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
46 * request/response interactions involve round trips over the USB link.
47 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
48 * can for example poll quickly for a status change (usually taking on the
49 * order of microseconds not milliseconds) before beginning a queued
50 * transaction which require the previous one to have completed.
51 *
52 * There are dozens of adapters of this type, differing in details which
53 * this driver needs to understand. Those "layout" details are required
54 * as part of FT2232 driver configuration.
55 *
56 * This code uses information contained in the MPSSE specification which was
57 * found here:
58 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
59 * Hereafter this is called the "MPSSE Spec".
60 *
61 * The datasheet for the ftdichip.com's FT2232D part is here:
62 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
63 *
64 * Also note the issue with code 0x4b (clock data to TMS) noted in
65 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
66 * which can affect longer JTAG state paths.
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 /* project specific includes */
74 #include <jtag/interface.h>
75 #include <jtag/swd.h>
76 #include <transport/transport.h>
77 #include <helper/time_support.h>
78
79 #if IS_CYGWIN == 1
80 #include <windows.h>
81 #endif
82
83 #include <assert.h>
84
85 /* FTDI access library includes */
86 #include "mpsse.h"
87
88 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
89 #define SWD_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
90
91 static char *ftdi_device_desc;
92 static char *ftdi_serial;
93 static uint8_t ftdi_channel;
94
95 static bool swd_mode;
96
97 #define MAX_USB_IDS 8
98 /* vid = pid = 0 marks the end of the list */
99 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
100 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
101
102 static struct mpsse_ctx *mpsse_ctx;
103
104 struct signal {
105 const char *name;
106 uint16_t data_mask;
107 uint16_t oe_mask;
108 bool invert_data;
109 bool invert_oe;
110 struct signal *next;
111 };
112
113 static struct signal *signals;
114
115 /* FIXME: Where to store per-instance data? We need an SWD context. */
116 static struct swd_cmd_queue_entry {
117 uint8_t cmd;
118 uint32_t *dst;
119 uint8_t trn_ack_data_parity_trn[DIV_ROUND_UP(4 + 3 + 32 + 1 + 4, 8)];
120 } *swd_cmd_queue;
121 static size_t swd_cmd_queue_length;
122 static size_t swd_cmd_queue_alloced;
123 static int queued_retval;
124 static int freq;
125
126 static uint16_t output;
127 static uint16_t direction;
128 static uint16_t jtag_output_init;
129 static uint16_t jtag_direction_init;
130
131 static int ftdi_swd_switch_seq(struct adiv5_dap *dap, enum swd_special_seq seq);
132
133 static struct signal *find_signal_by_name(const char *name)
134 {
135 for (struct signal *sig = signals; sig; sig = sig->next) {
136 if (strcmp(name, sig->name) == 0)
137 return sig;
138 }
139 return NULL;
140 }
141
142 static struct signal *create_signal(const char *name)
143 {
144 struct signal **psig = &signals;
145 while (*psig)
146 psig = &(*psig)->next;
147
148 *psig = calloc(1, sizeof(**psig));
149 if (*psig == NULL)
150 return NULL;
151
152 (*psig)->name = strdup(name);
153 if ((*psig)->name == NULL) {
154 free(*psig);
155 *psig = NULL;
156 }
157 return *psig;
158 }
159
160 static int ftdi_set_signal(const struct signal *s, char value)
161 {
162 bool data;
163 bool oe;
164
165 if (s->data_mask == 0 && s->oe_mask == 0) {
166 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
167 return ERROR_FAIL;
168 }
169 switch (value) {
170 case '0':
171 data = s->invert_data;
172 oe = !s->invert_oe;
173 break;
174 case '1':
175 if (s->data_mask == 0) {
176 LOG_ERROR("interface can't drive '%s' high", s->name);
177 return ERROR_FAIL;
178 }
179 data = !s->invert_data;
180 oe = !s->invert_oe;
181 break;
182 case 'z':
183 case 'Z':
184 if (s->oe_mask == 0) {
185 LOG_ERROR("interface can't tri-state '%s'", s->name);
186 return ERROR_FAIL;
187 }
188 data = s->invert_data;
189 oe = s->invert_oe;
190 break;
191 default:
192 assert(0 && "invalid signal level specifier");
193 return ERROR_FAIL;
194 }
195
196 uint16_t old_output = output;
197 uint16_t old_direction = direction;
198
199 output = data ? output | s->data_mask : output & ~s->data_mask;
200 if (s->oe_mask == s->data_mask)
201 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
202 else
203 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
204
205 if ((output & 0xff) != (old_output & 0xff) || (direction & 0xff) != (old_direction & 0xff))
206 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
207 if ((output >> 8 != old_output >> 8) || (direction >> 8 != old_direction >> 8))
208 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
209
210 return ERROR_OK;
211 }
212
213
214 /**
215 * Function move_to_state
216 * moves the TAP controller from the current state to a
217 * \a goal_state through a path given by tap_get_tms_path(). State transition
218 * logging is performed by delegation to clock_tms().
219 *
220 * @param goal_state is the destination state for the move.
221 */
222 static void move_to_state(tap_state_t goal_state)
223 {
224 tap_state_t start_state = tap_get_state();
225
226 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
227 lookup of the required TMS pattern to move to this state from the
228 start state.
229 */
230
231 /* do the 2 lookups */
232 uint8_t tms_bits = tap_get_tms_path(start_state, goal_state);
233 int tms_count = tap_get_tms_path_len(start_state, goal_state);
234 assert(tms_count <= 8);
235
236 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
237
238 /* Track state transitions step by step */
239 for (int i = 0; i < tms_count; i++)
240 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
241
242 mpsse_clock_tms_cs_out(mpsse_ctx,
243 &tms_bits,
244 0,
245 tms_count,
246 false,
247 JTAG_MODE);
248 }
249
250 static int ftdi_speed(int speed)
251 {
252 int retval;
253 retval = mpsse_set_frequency(mpsse_ctx, speed);
254
255 if (retval < 0) {
256 LOG_ERROR("couldn't set FTDI TCK speed");
257 return retval;
258 }
259
260 return ERROR_OK;
261 }
262
263 static int ftdi_speed_div(int speed, int *khz)
264 {
265 *khz = speed / 1000;
266 return ERROR_OK;
267 }
268
269 static int ftdi_khz(int khz, int *jtag_speed)
270 {
271 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
272 LOG_DEBUG("RCLK not supported");
273 return ERROR_FAIL;
274 }
275
276 *jtag_speed = khz * 1000;
277 return ERROR_OK;
278 }
279
280 static void ftdi_end_state(tap_state_t state)
281 {
282 if (tap_is_state_stable(state))
283 tap_set_end_state(state);
284 else {
285 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
286 exit(-1);
287 }
288 }
289
290 static void ftdi_execute_runtest(struct jtag_command *cmd)
291 {
292 int i;
293 uint8_t zero = 0;
294
295 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
296 cmd->cmd.runtest->num_cycles,
297 tap_state_name(cmd->cmd.runtest->end_state));
298
299 if (tap_get_state() != TAP_IDLE)
300 move_to_state(TAP_IDLE);
301
302 /* TODO: Reuse ftdi_execute_stableclocks */
303 i = cmd->cmd.runtest->num_cycles;
304 while (i > 0) {
305 /* there are no state transitions in this code, so omit state tracking */
306 unsigned this_len = i > 7 ? 7 : i;
307 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, JTAG_MODE);
308 i -= this_len;
309 }
310
311 ftdi_end_state(cmd->cmd.runtest->end_state);
312
313 if (tap_get_state() != tap_get_end_state())
314 move_to_state(tap_get_end_state());
315
316 DEBUG_JTAG_IO("runtest: %i, end in %s",
317 cmd->cmd.runtest->num_cycles,
318 tap_state_name(tap_get_end_state()));
319 }
320
321 static void ftdi_execute_statemove(struct jtag_command *cmd)
322 {
323 DEBUG_JTAG_IO("statemove end in %s",
324 tap_state_name(cmd->cmd.statemove->end_state));
325
326 ftdi_end_state(cmd->cmd.statemove->end_state);
327
328 /* shortest-path move to desired end state */
329 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
330 move_to_state(tap_get_end_state());
331 }
332
333 /**
334 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
335 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
336 */
337 static void ftdi_execute_tms(struct jtag_command *cmd)
338 {
339 DEBUG_JTAG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
340
341 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
342 mpsse_clock_tms_cs_out(mpsse_ctx,
343 cmd->cmd.tms->bits,
344 0,
345 cmd->cmd.tms->num_bits,
346 false,
347 JTAG_MODE);
348 }
349
350 static void ftdi_execute_pathmove(struct jtag_command *cmd)
351 {
352 tap_state_t *path = cmd->cmd.pathmove->path;
353 int num_states = cmd->cmd.pathmove->num_states;
354
355 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
356 tap_state_name(tap_get_state()),
357 tap_state_name(path[num_states-1]));
358
359 int state_count = 0;
360 unsigned bit_count = 0;
361 uint8_t tms_byte = 0;
362
363 DEBUG_JTAG_IO("-");
364
365 /* this loop verifies that the path is legal and logs each state in the path */
366 while (num_states--) {
367
368 /* either TMS=0 or TMS=1 must work ... */
369 if (tap_state_transition(tap_get_state(), false)
370 == path[state_count])
371 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
372 else if (tap_state_transition(tap_get_state(), true)
373 == path[state_count]) {
374 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
375
376 /* ... or else the caller goofed BADLY */
377 } else {
378 LOG_ERROR("BUG: %s -> %s isn't a valid "
379 "TAP state transition",
380 tap_state_name(tap_get_state()),
381 tap_state_name(path[state_count]));
382 exit(-1);
383 }
384
385 tap_set_state(path[state_count]);
386 state_count++;
387
388 if (bit_count == 7 || num_states == 0) {
389 mpsse_clock_tms_cs_out(mpsse_ctx,
390 &tms_byte,
391 0,
392 bit_count,
393 false,
394 JTAG_MODE);
395 bit_count = 0;
396 }
397 }
398 tap_set_end_state(tap_get_state());
399 }
400
401 static void ftdi_execute_scan(struct jtag_command *cmd)
402 {
403 DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
404 jtag_scan_type(cmd->cmd.scan));
405
406 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
407 while (cmd->cmd.scan->num_fields > 0
408 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
409 cmd->cmd.scan->num_fields--;
410 LOG_DEBUG("discarding trailing empty field");
411 }
412
413 if (cmd->cmd.scan->num_fields == 0) {
414 LOG_DEBUG("empty scan, doing nothing");
415 return;
416 }
417
418 if (cmd->cmd.scan->ir_scan) {
419 if (tap_get_state() != TAP_IRSHIFT)
420 move_to_state(TAP_IRSHIFT);
421 } else {
422 if (tap_get_state() != TAP_DRSHIFT)
423 move_to_state(TAP_DRSHIFT);
424 }
425
426 ftdi_end_state(cmd->cmd.scan->end_state);
427
428 struct scan_field *field = cmd->cmd.scan->fields;
429 unsigned scan_size = 0;
430
431 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
432 scan_size += field->num_bits;
433 DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
434 field->in_value ? "in" : "",
435 field->out_value ? "out" : "",
436 i,
437 cmd->cmd.scan->num_fields,
438 field->num_bits);
439
440 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
441 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
442 * movement. This last field can't have length zero, it was checked above. */
443 mpsse_clock_data(mpsse_ctx,
444 field->out_value,
445 0,
446 field->in_value,
447 0,
448 field->num_bits - 1,
449 JTAG_MODE);
450 uint8_t last_bit = 0;
451 if (field->out_value)
452 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
453 uint8_t tms_bits = 0x01;
454 mpsse_clock_tms_cs(mpsse_ctx,
455 &tms_bits,
456 0,
457 field->in_value,
458 field->num_bits - 1,
459 1,
460 last_bit,
461 JTAG_MODE);
462 tap_set_state(tap_state_transition(tap_get_state(), 1));
463 mpsse_clock_tms_cs_out(mpsse_ctx,
464 &tms_bits,
465 1,
466 1,
467 last_bit,
468 JTAG_MODE);
469 tap_set_state(tap_state_transition(tap_get_state(), 0));
470 } else
471 mpsse_clock_data(mpsse_ctx,
472 field->out_value,
473 0,
474 field->in_value,
475 0,
476 field->num_bits,
477 JTAG_MODE);
478 }
479
480 if (tap_get_state() != tap_get_end_state())
481 move_to_state(tap_get_end_state());
482
483 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
484 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
485 tap_state_name(tap_get_end_state()));
486 }
487
488 static void ftdi_execute_reset(struct jtag_command *cmd)
489 {
490 DEBUG_JTAG_IO("reset trst: %i srst %i",
491 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
492
493 if (cmd->cmd.reset->trst == 1
494 || (cmd->cmd.reset->srst
495 && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
496 tap_set_state(TAP_RESET);
497
498 struct signal *trst = find_signal_by_name("nTRST");
499 if (cmd->cmd.reset->trst == 1) {
500 if (trst)
501 ftdi_set_signal(trst, '0');
502 else
503 LOG_ERROR("Can't assert TRST: nTRST signal is not defined");
504 } else if (trst && cmd->cmd.reset->trst == 0) {
505 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
506 ftdi_set_signal(trst, 'z');
507 else
508 ftdi_set_signal(trst, '1');
509 }
510
511 struct signal *srst = find_signal_by_name("nSRST");
512 if (cmd->cmd.reset->srst == 1) {
513 if (srst)
514 ftdi_set_signal(srst, '0');
515 else
516 LOG_ERROR("Can't assert SRST: nSRST signal is not defined");
517 } else if (srst && cmd->cmd.reset->srst == 0) {
518 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
519 ftdi_set_signal(srst, '1');
520 else
521 ftdi_set_signal(srst, 'z');
522 }
523
524 DEBUG_JTAG_IO("trst: %i, srst: %i",
525 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
526 }
527
528 static void ftdi_execute_sleep(struct jtag_command *cmd)
529 {
530 DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
531
532 mpsse_flush(mpsse_ctx);
533 jtag_sleep(cmd->cmd.sleep->us);
534 DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
535 cmd->cmd.sleep->us,
536 tap_state_name(tap_get_state()));
537 }
538
539 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
540 {
541 /* this is only allowed while in a stable state. A check for a stable
542 * state was done in jtag_add_clocks()
543 */
544 int num_cycles = cmd->cmd.stableclocks->num_cycles;
545
546 /* 7 bits of either ones or zeros. */
547 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
548
549 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
550 * the correct level and remain there during the scan */
551 while (num_cycles > 0) {
552 /* there are no state transitions in this code, so omit state tracking */
553 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
554 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, JTAG_MODE);
555 num_cycles -= this_len;
556 }
557
558 DEBUG_JTAG_IO("clocks %i while in %s",
559 cmd->cmd.stableclocks->num_cycles,
560 tap_state_name(tap_get_state()));
561 }
562
563 static void ftdi_execute_command(struct jtag_command *cmd)
564 {
565 switch (cmd->type) {
566 case JTAG_RESET:
567 ftdi_execute_reset(cmd);
568 break;
569 case JTAG_RUNTEST:
570 ftdi_execute_runtest(cmd);
571 break;
572 case JTAG_TLR_RESET:
573 ftdi_execute_statemove(cmd);
574 break;
575 case JTAG_PATHMOVE:
576 ftdi_execute_pathmove(cmd);
577 break;
578 case JTAG_SCAN:
579 ftdi_execute_scan(cmd);
580 break;
581 case JTAG_SLEEP:
582 ftdi_execute_sleep(cmd);
583 break;
584 case JTAG_STABLECLOCKS:
585 ftdi_execute_stableclocks(cmd);
586 break;
587 case JTAG_TMS:
588 ftdi_execute_tms(cmd);
589 break;
590 default:
591 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
592 break;
593 }
594 }
595
596 static int ftdi_execute_queue(void)
597 {
598 /* blink, if the current layout has that feature */
599 struct signal *led = find_signal_by_name("LED");
600 if (led)
601 ftdi_set_signal(led, '1');
602
603 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
604 /* fill the write buffer with the desired command */
605 ftdi_execute_command(cmd);
606 }
607
608 if (led)
609 ftdi_set_signal(led, '0');
610
611 int retval = mpsse_flush(mpsse_ctx);
612 if (retval != ERROR_OK)
613 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
614
615 return retval;
616 }
617
618 static int ftdi_initialize(void)
619 {
620 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
621 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
622 else
623 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
624
625 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
626 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
627 ftdi_serial, ftdi_channel);
628 if (mpsse_ctx)
629 break;
630 }
631
632 if (!mpsse_ctx)
633 return ERROR_JTAG_INIT_FAILED;
634
635 output = jtag_output_init;
636 direction = jtag_direction_init;
637
638 if (swd_mode) {
639 struct signal *sig = find_signal_by_name("SWD_EN");
640 if (!sig) {
641 LOG_ERROR("SWD mode is active but SWD_EN signal is not defined");
642 return ERROR_JTAG_INIT_FAILED;
643 }
644 /* A dummy SWD_EN would have zero mask */
645 if (sig->data_mask)
646 ftdi_set_signal(sig, '1');
647 }
648
649 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
650 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
651
652 mpsse_loopback_config(mpsse_ctx, false);
653
654 /* Set a low default */
655 freq = mpsse_set_frequency(mpsse_ctx, 1000);
656
657 if (swd_mode)
658 ftdi_swd_switch_seq(NULL, JTAG_TO_SWD);
659 else
660 ftdi_swd_switch_seq(NULL, SWD_TO_JTAG);
661
662 return mpsse_flush(mpsse_ctx);
663 }
664
665 static int ftdi_quit(void)
666 {
667 mpsse_close(mpsse_ctx);
668
669 return ERROR_OK;
670 }
671
672 COMMAND_HANDLER(ftdi_handle_device_desc_command)
673 {
674 if (CMD_ARGC == 1) {
675 if (ftdi_device_desc)
676 free(ftdi_device_desc);
677 ftdi_device_desc = strdup(CMD_ARGV[0]);
678 } else {
679 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
680 }
681
682 return ERROR_OK;
683 }
684
685 COMMAND_HANDLER(ftdi_handle_serial_command)
686 {
687 if (CMD_ARGC == 1) {
688 if (ftdi_serial)
689 free(ftdi_serial);
690 ftdi_serial = strdup(CMD_ARGV[0]);
691 } else {
692 return ERROR_COMMAND_SYNTAX_ERROR;
693 }
694
695 return ERROR_OK;
696 }
697
698 COMMAND_HANDLER(ftdi_handle_channel_command)
699 {
700 if (CMD_ARGC == 1)
701 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
702 else
703 return ERROR_COMMAND_SYNTAX_ERROR;
704
705 return ERROR_OK;
706 }
707
708 COMMAND_HANDLER(ftdi_handle_layout_init_command)
709 {
710 if (CMD_ARGC != 2)
711 return ERROR_COMMAND_SYNTAX_ERROR;
712
713 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], jtag_output_init);
714 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], jtag_direction_init);
715
716 return ERROR_OK;
717 }
718
719 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
720 {
721 if (CMD_ARGC < 1)
722 return ERROR_COMMAND_SYNTAX_ERROR;
723
724 bool invert_data = false;
725 uint16_t data_mask = 0;
726 bool invert_oe = false;
727 uint16_t oe_mask = 0;
728 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
729 if (strcmp("-data", CMD_ARGV[i]) == 0) {
730 invert_data = false;
731 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
732 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
733 invert_data = true;
734 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
735 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
736 invert_oe = false;
737 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
738 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
739 invert_oe = true;
740 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
741 } else if (!strcmp("-alias", CMD_ARGV[i]) ||
742 !strcmp("-nalias", CMD_ARGV[i])) {
743 if (!strcmp("-nalias", CMD_ARGV[i]))
744 invert_data = true;
745 struct signal *sig = find_signal_by_name(CMD_ARGV[i + 1]);
746 if (!sig) {
747 LOG_ERROR("signal %s is not defined", CMD_ARGV[i + 1]);
748 return ERROR_FAIL;
749 }
750 data_mask = sig->data_mask;
751 oe_mask = sig->oe_mask;
752 invert_oe = sig->invert_oe;
753 invert_data ^= sig->invert_data;
754 } else {
755 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
756 return ERROR_COMMAND_SYNTAX_ERROR;
757 }
758 }
759
760 struct signal *sig;
761 sig = find_signal_by_name(CMD_ARGV[0]);
762 if (!sig)
763 sig = create_signal(CMD_ARGV[0]);
764 if (!sig) {
765 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
766 return ERROR_FAIL;
767 }
768
769 sig->invert_data = invert_data;
770 sig->data_mask = data_mask;
771 sig->invert_oe = invert_oe;
772 sig->oe_mask = oe_mask;
773
774 return ERROR_OK;
775 }
776
777 COMMAND_HANDLER(ftdi_handle_set_signal_command)
778 {
779 if (CMD_ARGC < 2)
780 return ERROR_COMMAND_SYNTAX_ERROR;
781
782 struct signal *sig;
783 sig = find_signal_by_name(CMD_ARGV[0]);
784 if (!sig) {
785 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
786 return ERROR_FAIL;
787 }
788
789 switch (*CMD_ARGV[1]) {
790 case '0':
791 case '1':
792 case 'z':
793 case 'Z':
794 /* single character level specifier only */
795 if (CMD_ARGV[1][1] == '\0') {
796 ftdi_set_signal(sig, *CMD_ARGV[1]);
797 break;
798 }
799 default:
800 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
801 return ERROR_COMMAND_SYNTAX_ERROR;
802 }
803
804 return mpsse_flush(mpsse_ctx);
805 }
806
807 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
808 {
809 if (CMD_ARGC > MAX_USB_IDS * 2) {
810 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
811 "(maximum is %d pairs)", MAX_USB_IDS);
812 CMD_ARGC = MAX_USB_IDS * 2;
813 }
814 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
815 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
816 if (CMD_ARGC < 2)
817 return ERROR_COMMAND_SYNTAX_ERROR;
818 /* remove the incomplete trailing id */
819 CMD_ARGC -= 1;
820 }
821
822 unsigned i;
823 for (i = 0; i < CMD_ARGC; i += 2) {
824 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
825 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
826 }
827
828 /*
829 * Explicitly terminate, in case there are multiples instances of
830 * ftdi_vid_pid.
831 */
832 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
833
834 return ERROR_OK;
835 }
836
837 static const struct command_registration ftdi_command_handlers[] = {
838 {
839 .name = "ftdi_device_desc",
840 .handler = &ftdi_handle_device_desc_command,
841 .mode = COMMAND_CONFIG,
842 .help = "set the USB device description of the FTDI device",
843 .usage = "description_string",
844 },
845 {
846 .name = "ftdi_serial",
847 .handler = &ftdi_handle_serial_command,
848 .mode = COMMAND_CONFIG,
849 .help = "set the serial number of the FTDI device",
850 .usage = "serial_string",
851 },
852 {
853 .name = "ftdi_channel",
854 .handler = &ftdi_handle_channel_command,
855 .mode = COMMAND_CONFIG,
856 .help = "set the channel of the FTDI device that is used as JTAG",
857 .usage = "(0-3)",
858 },
859 {
860 .name = "ftdi_layout_init",
861 .handler = &ftdi_handle_layout_init_command,
862 .mode = COMMAND_CONFIG,
863 .help = "initialize the FTDI GPIO signals used "
864 "to control output-enables and reset signals",
865 .usage = "data direction",
866 },
867 {
868 .name = "ftdi_layout_signal",
869 .handler = &ftdi_handle_layout_signal_command,
870 .mode = COMMAND_ANY,
871 .help = "define a signal controlled by one or more FTDI GPIO as data "
872 "and/or output enable",
873 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask] [-alias|-nalias name]",
874 },
875 {
876 .name = "ftdi_set_signal",
877 .handler = &ftdi_handle_set_signal_command,
878 .mode = COMMAND_EXEC,
879 .help = "control a layout-specific signal",
880 .usage = "name (1|0|z)",
881 },
882 {
883 .name = "ftdi_vid_pid",
884 .handler = &ftdi_handle_vid_pid_command,
885 .mode = COMMAND_CONFIG,
886 .help = "the vendor ID and product ID of the FTDI device",
887 .usage = "(vid pid)* ",
888 },
889 COMMAND_REGISTRATION_DONE
890 };
891
892 static int create_default_signal(const char *name, uint16_t data_mask)
893 {
894 struct signal *sig = create_signal(name);
895 if (!sig) {
896 LOG_ERROR("failed to create signal %s", name);
897 return ERROR_FAIL;
898 }
899 sig->invert_data = false;
900 sig->data_mask = data_mask;
901 sig->invert_oe = false;
902 sig->oe_mask = 0;
903
904 return ERROR_OK;
905 }
906
907 static int create_signals(void)
908 {
909 if (create_default_signal("TCK", 0x01) != ERROR_OK)
910 return ERROR_FAIL;
911 if (create_default_signal("TDI", 0x02) != ERROR_OK)
912 return ERROR_FAIL;
913 if (create_default_signal("TDO", 0x04) != ERROR_OK)
914 return ERROR_FAIL;
915 if (create_default_signal("TMS", 0x08) != ERROR_OK)
916 return ERROR_FAIL;
917 return ERROR_OK;
918 }
919
920 static int ftdi_swd_init(void)
921 {
922 LOG_INFO("FTDI SWD mode enabled");
923 swd_mode = true;
924
925 if (create_signals() != ERROR_OK)
926 return ERROR_FAIL;
927
928 swd_cmd_queue_alloced = 10;
929 swd_cmd_queue = malloc(swd_cmd_queue_alloced * sizeof(*swd_cmd_queue));
930
931 return swd_cmd_queue != NULL ? ERROR_OK : ERROR_FAIL;
932 }
933
934 static void ftdi_swd_swdio_en(bool enable)
935 {
936 struct signal *oe = find_signal_by_name("SWDIO_OE");
937 if (oe)
938 ftdi_set_signal(oe, enable ? '1' : '0');
939 }
940
941 /**
942 * Flush the MPSSE queue and process the SWD transaction queue
943 * @param dap
944 * @return
945 */
946 static int ftdi_swd_run_queue(struct adiv5_dap *dap)
947 {
948 LOG_DEBUG("Executing %zu queued transactions", swd_cmd_queue_length);
949 int retval;
950 struct signal *led = find_signal_by_name("LED");
951
952 if (queued_retval != ERROR_OK) {
953 LOG_DEBUG("Skipping due to previous errors: %d", queued_retval);
954 goto skip;
955 }
956
957 /* A transaction must be followed by another transaction or at least 8 idle cycles to
958 * ensure that data is clocked through the AP. */
959 mpsse_clock_data_out(mpsse_ctx, NULL, 0, 8, SWD_MODE);
960
961 /* Terminate the "blink", if the current layout has that feature */
962 if (led)
963 ftdi_set_signal(led, '0');
964
965 queued_retval = mpsse_flush(mpsse_ctx);
966 if (queued_retval != ERROR_OK) {
967 LOG_ERROR("MPSSE failed");
968 goto skip;
969 }
970
971 for (size_t i = 0; i < swd_cmd_queue_length; i++) {
972 int ack = buf_get_u32(&swd_cmd_queue[i].trn_ack_data_parity_trn, 1, 3);
973
974 LOG_DEBUG("%s %s %s reg %X = %08"PRIx32,
975 ack == SWD_ACK_OK ? "OK" : ack == SWD_ACK_WAIT ? "WAIT" : ack == SWD_ACK_FAULT ? "FAULT" : "JUNK",
976 swd_cmd_queue[i].cmd & SWD_CMD_APnDP ? "AP" : "DP",
977 swd_cmd_queue[i].cmd & SWD_CMD_RnW ? "read" : "write",
978 (swd_cmd_queue[i].cmd & SWD_CMD_A32) >> 1,
979 buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn,
980 1 + 3 + (swd_cmd_queue[i].cmd & SWD_CMD_RnW ? 0 : 1), 32));
981
982 if (ack != SWD_ACK_OK) {
983 queued_retval = ack;
984 goto skip;
985
986 } else if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
987 uint32_t data = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3, 32);
988 int parity = buf_get_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 32, 1);
989
990 if (parity != parity_u32(data)) {
991 LOG_ERROR("SWD Read data parity mismatch");
992 queued_retval = ERROR_FAIL;
993 goto skip;
994 }
995
996 if (swd_cmd_queue[i].dst != NULL)
997 *swd_cmd_queue[i].dst = data;
998 }
999 }
1000
1001 skip:
1002 swd_cmd_queue_length = 0;
1003 retval = queued_retval;
1004 queued_retval = ERROR_OK;
1005
1006 /* Queue a new "blink" */
1007 if (led && retval == ERROR_OK)
1008 ftdi_set_signal(led, '1');
1009
1010 return retval;
1011 }
1012
1013 static void ftdi_swd_queue_cmd(struct adiv5_dap *dap, uint8_t cmd, uint32_t *dst, uint32_t data)
1014 {
1015 if (swd_cmd_queue_length >= swd_cmd_queue_alloced) {
1016 /* Not enough room in the queue. Run the queue and increase its size for next time.
1017 * Note that it's not possible to avoid running the queue here, because mpsse contains
1018 * pointers into the queue which may be invalid after the realloc. */
1019 queued_retval = ftdi_swd_run_queue(dap);
1020 struct swd_cmd_queue_entry *q = realloc(swd_cmd_queue, swd_cmd_queue_alloced * 2 * sizeof(*swd_cmd_queue));
1021 if (q != NULL) {
1022 swd_cmd_queue = q;
1023 swd_cmd_queue_alloced *= 2;
1024 LOG_DEBUG("Increased SWD command queue to %zu elements", swd_cmd_queue_alloced);
1025 }
1026 }
1027
1028 if (queued_retval != ERROR_OK)
1029 return;
1030
1031 size_t i = swd_cmd_queue_length++;
1032 swd_cmd_queue[i].cmd = cmd | SWD_CMD_START | SWD_CMD_PARK;
1033
1034 mpsse_clock_data_out(mpsse_ctx, &swd_cmd_queue[i].cmd, 0, 8, SWD_MODE);
1035
1036 if (swd_cmd_queue[i].cmd & SWD_CMD_RnW) {
1037 /* Queue a read transaction */
1038 swd_cmd_queue[i].dst = dst;
1039
1040 ftdi_swd_swdio_en(false);
1041 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1042 0, 1 + 3 + 32 + 1 + 1, SWD_MODE);
1043 ftdi_swd_swdio_en(true);
1044 } else {
1045 /* Queue a write transaction */
1046 ftdi_swd_swdio_en(false);
1047
1048 mpsse_clock_data_in(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1049 0, 1 + 3 + 1, SWD_MODE);
1050
1051 ftdi_swd_swdio_en(true);
1052
1053 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1, 32, data);
1054 buf_set_u32(swd_cmd_queue[i].trn_ack_data_parity_trn, 1 + 3 + 1 + 32, 1, parity_u32(data));
1055
1056 mpsse_clock_data_out(mpsse_ctx, swd_cmd_queue[i].trn_ack_data_parity_trn,
1057 1 + 3 + 1, 32 + 1, SWD_MODE);
1058 }
1059
1060 /* Insert idle cycles after AP accesses to avoid WAIT */
1061 if (cmd & SWD_CMD_APnDP)
1062 mpsse_clock_data_out(mpsse_ctx, NULL, 0, dap->memaccess_tck, SWD_MODE);
1063
1064 }
1065
1066 static void ftdi_swd_read_reg(struct adiv5_dap *dap, uint8_t cmd, uint32_t *value)
1067 {
1068 assert(cmd & SWD_CMD_RnW);
1069 ftdi_swd_queue_cmd(dap, cmd, value, 0);
1070 }
1071
1072 static void ftdi_swd_write_reg(struct adiv5_dap *dap, uint8_t cmd, uint32_t value)
1073 {
1074 assert(!(cmd & SWD_CMD_RnW));
1075 ftdi_swd_queue_cmd(dap, cmd, NULL, value);
1076 }
1077
1078 static int_least32_t ftdi_swd_frequency(struct adiv5_dap *dap, int_least32_t hz)
1079 {
1080 if (hz > 0)
1081 freq = mpsse_set_frequency(mpsse_ctx, hz);
1082
1083 return freq;
1084 }
1085
1086 static int ftdi_swd_switch_seq(struct adiv5_dap *dap, enum swd_special_seq seq)
1087 {
1088 switch (seq) {
1089 case LINE_RESET:
1090 LOG_DEBUG("SWD line reset");
1091 mpsse_clock_data_out(mpsse_ctx, swd_seq_line_reset, 0, swd_seq_line_reset_len, SWD_MODE);
1092 break;
1093 case JTAG_TO_SWD:
1094 LOG_DEBUG("JTAG-to-SWD");
1095 mpsse_clock_data_out(mpsse_ctx, swd_seq_jtag_to_swd, 0, swd_seq_jtag_to_swd_len, SWD_MODE);
1096 break;
1097 case SWD_TO_JTAG:
1098 LOG_DEBUG("SWD-to-JTAG");
1099 mpsse_clock_data_out(mpsse_ctx, swd_seq_swd_to_jtag, 0, swd_seq_swd_to_jtag_len, SWD_MODE);
1100 break;
1101 default:
1102 LOG_ERROR("Sequence %d not supported", seq);
1103 return ERROR_FAIL;
1104 }
1105
1106 return ERROR_OK;
1107 }
1108
1109 static const struct swd_driver ftdi_swd = {
1110 .init = ftdi_swd_init,
1111 .frequency = ftdi_swd_frequency,
1112 .switch_seq = ftdi_swd_switch_seq,
1113 .read_reg = ftdi_swd_read_reg,
1114 .write_reg = ftdi_swd_write_reg,
1115 .run = ftdi_swd_run_queue,
1116 };
1117
1118 static const char * const ftdi_transports[] = { "jtag", "swd", NULL };
1119
1120 struct jtag_interface ftdi_interface = {
1121 .name = "ftdi",
1122 .supported = DEBUG_CAP_TMS_SEQ,
1123 .commands = ftdi_command_handlers,
1124 .transports = ftdi_transports,
1125 .swd = &ftdi_swd,
1126
1127 .init = ftdi_initialize,
1128 .quit = ftdi_quit,
1129 .speed = ftdi_speed,
1130 .speed_div = ftdi_speed_div,
1131 .khz = ftdi_khz,
1132 .execute_queue = ftdi_execute_queue,
1133 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)