Add RISC-V support.
[openocd.git] / src / jtag / drivers / usb_blaster / usb_blaster.c
1 /*
2 * Driver for USB-JTAG, Altera USB-Blaster and compatibles
3 *
4 * Inspired from original code from Kolja Waschk's USB-JTAG project
5 * (http://www.ixo.de/info/usb_jtag/), and from openocd project.
6 *
7 * Copyright (C) 2013 Franck Jullien franck.jullien@gmail.com
8 * Copyright (C) 2012 Robert Jarzmik robert.jarzmik@free.fr
9 * Copyright (C) 2011 Ali Lown ali@lown.me.uk
10 * Copyright (C) 2009 Catalin Patulea cat@vv.carleton.ca
11 * Copyright (C) 2006 Kolja Waschk usbjtag@ixo.de
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program. If not, see <http://www.gnu.org/licenses/>.
25 *
26 */
27
28 /*
29 * The following information is originally from Kolja Waschk's USB-JTAG,
30 * where it was obtained by reverse engineering an Altera USB-Blaster.
31 * See http://www.ixo.de/info/usb_jtag/ for USB-Blaster block diagram and
32 * usb_jtag-20080705-1200.zip#usb_jtag/host/openocd for protocol.
33 *
34 * The same information is also on the UrJTAG mediawiki, with some additional
35 * notes on bits marked as "unknown" by usb_jtag.
36 * (http://sourceforge.net/apps/mediawiki/urjtag/index.php?
37 * title=Cable_Altera_USB-Blaster)
38 *
39 * USB-JTAG, Altera USB-Blaster and compatibles are typically implemented as
40 * an FTDIChip FT245 followed by a CPLD which handles a two-mode protocol:
41 *
42 * _________
43 * | |
44 * | AT93C46 |
45 * |_________|
46 * __|__________ _________
47 * | | | |
48 * USB__| FTDI 245BM |__| EPM7064 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
49 * |_____________| |_________|
50 * __|__________ _|___________
51 * | | | |
52 * | 6 MHz XTAL | | 24 MHz Osc. |
53 * |_____________| |_____________|
54 *
55 * USB-JTAG, Altera USB-Blaster II are typically implemented as a Cypress
56 * EZ-USB FX2LP followed by a CPLD.
57 * _____________ _________
58 * | | | |
59 * USB__| EZ-USB FX2 |__| EPM570 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
60 * |_____________| |_________|
61 * __|__________
62 * | |
63 * | 24 MHz XTAL |
64 * |_____________|
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 #if IS_CYGWIN == 1
72 #include "windows.h"
73 #undef LOG_ERROR
74 #endif
75
76 /* project specific includes */
77 #include <jtag/interface.h>
78 #include <jtag/commands.h>
79 #include <helper/time_support.h>
80 #include "ublast_access.h"
81
82 /* system includes */
83 #include <string.h>
84 #include <stdlib.h>
85 #include <unistd.h>
86 #include <sys/time.h>
87 #include <time.h>
88
89 /* Size of USB endpoint max packet size, ie. 64 bytes */
90 #define MAX_PACKET_SIZE 64
91 /*
92 * Size of data buffer that holds bytes in byte-shift mode.
93 * This buffer can hold multiple USB packets aligned to
94 * MAX_PACKET_SIZE bytes boundaries.
95 * BUF_LEN must be grater than or equal MAX_PACKET_SIZE.
96 */
97 #define BUF_LEN 4096
98
99 /* USB-Blaster II specific command */
100 #define CMD_COPY_TDO_BUFFER 0x5F
101
102 enum gpio_steer {
103 FIXED_0 = 0,
104 FIXED_1,
105 SRST,
106 TRST,
107 };
108
109 struct ublast_info {
110 enum gpio_steer pin6;
111 enum gpio_steer pin8;
112 int tms;
113 int tdi;
114 bool trst_asserted;
115 bool srst_asserted;
116 uint8_t buf[BUF_LEN];
117 int bufidx;
118
119 char *lowlevel_name;
120 struct ublast_lowlevel *drv;
121 char *ublast_device_desc;
122 uint16_t ublast_vid, ublast_pid;
123 uint16_t ublast_vid_uninit, ublast_pid_uninit;
124 int flags;
125 char *firmware_path;
126 };
127
128 /*
129 * Global device control
130 */
131 static struct ublast_info info = {
132 .ublast_vid = 0x09fb, /* Altera */
133 .ublast_pid = 0x6001, /* USB-Blaster */
134 .lowlevel_name = NULL,
135 .srst_asserted = false,
136 .trst_asserted = false,
137 .pin6 = FIXED_1,
138 .pin8 = FIXED_1,
139 };
140
141 /*
142 * Available lowlevel drivers (FTDI, FTD2xx, ...)
143 */
144 struct drvs_map {
145 char *name;
146 struct ublast_lowlevel *(*drv_register)(void);
147 };
148
149 static struct drvs_map lowlevel_drivers_map[] = {
150 #if BUILD_USB_BLASTER
151 { .name = "ftdi", .drv_register = ublast_register_ftdi },
152 #endif
153 #if BUILD_USB_BLASTER_2
154 { .name = "ublast2", .drv_register = ublast2_register_libusb },
155 #endif
156 { NULL, NULL },
157 };
158
159 /*
160 * Access functions to lowlevel driver, agnostic of libftdi/libftdxx
161 */
162 static char *hexdump(uint8_t *buf, unsigned int size)
163 {
164 unsigned int i;
165 char *str = calloc(size * 2 + 1, 1);
166
167 for (i = 0; i < size; i++)
168 sprintf(str + 2*i, "%02x", buf[i]);
169 return str;
170 }
171
172 static int ublast_buf_read(uint8_t *buf, unsigned size, uint32_t *bytes_read)
173 {
174 int ret = info.drv->read(info.drv, buf, size, bytes_read);
175 char *str = hexdump(buf, *bytes_read);
176
177 DEBUG_JTAG_IO("(size=%d, buf=[%s]) -> %u", size, str,
178 *bytes_read);
179 free(str);
180 return ret;
181 }
182
183 static int ublast_buf_write(uint8_t *buf, int size, uint32_t *bytes_written)
184 {
185 int ret = info.drv->write(info.drv, buf, size, bytes_written);
186 char *str = hexdump(buf, *bytes_written);
187
188 DEBUG_JTAG_IO("(size=%d, buf=[%s]) -> %u", size, str,
189 *bytes_written);
190 free(str);
191 return ret;
192 }
193
194 static int nb_buf_remaining(void)
195 {
196 return BUF_LEN - info.bufidx;
197 }
198
199 static void ublast_flush_buffer(void)
200 {
201 unsigned int retlen;
202 int nb = info.bufidx, ret = ERROR_OK;
203
204 while (ret == ERROR_OK && nb > 0) {
205 ret = ublast_buf_write(info.buf, nb, &retlen);
206 nb -= retlen;
207 }
208 info.bufidx = 0;
209 }
210
211 /*
212 * Actually, the USB-Blaster offers a byte-shift mode to transmit up to 504 data
213 * bits (bidirectional) in a single USB packet. A header byte has to be sent as
214 * the first byte in a packet with the following meaning:
215 *
216 * Bit 7 (0x80): Must be set to indicate byte-shift mode.
217 * Bit 6 (0x40): If set, the USB-Blaster will also read data, not just write.
218 * Bit 5..0: Define the number N of following bytes
219 *
220 * All N following bytes will then be clocked out serially on TDI. If Bit 6 was
221 * set, it will afterwards return N bytes with TDO data read while clocking out
222 * the TDI data. LSB of the first byte after the header byte will appear first
223 * on TDI.
224 */
225
226 /* Simple bit banging mode:
227 *
228 * Bit 7 (0x80): Must be zero (see byte-shift mode above)
229 * Bit 6 (0x40): If set, you will receive a byte indicating the state of TDO
230 * in return.
231 * Bit 5 (0x20): Output Enable/LED.
232 * Bit 4 (0x10): TDI Output.
233 * Bit 3 (0x08): nCS Output (not used in JTAG mode).
234 * Bit 2 (0x04): nCE Output (not used in JTAG mode).
235 * Bit 1 (0x02): TMS Output.
236 * Bit 0 (0x01): TCK Output.
237 *
238 * For transmitting a single data bit, you need to write two bytes (one for
239 * setting up TDI/TMS/TCK=0, and one to trigger TCK high with same TDI/TMS
240 * held). Up to 64 bytes can be combined in a single USB packet.
241 * It isn't possible to read a data without transmitting data.
242 */
243
244 #define TCK (1 << 0)
245 #define TMS (1 << 1)
246 #define NCE (1 << 2)
247 #define NCS (1 << 3)
248 #define TDI (1 << 4)
249 #define LED (1 << 5)
250 #define READ (1 << 6)
251 #define SHMODE (1 << 7)
252 #define READ_TDO (1 << 0)
253
254 /**
255 * ublast_queue_byte - queue one 'bitbang mode' byte for USB Blaster
256 * @abyte: the byte to queue
257 *
258 * Queues one byte in 'bitbang mode' to the USB Blaster. The byte is not
259 * actually sent, but stored in a buffer. The write is performed once
260 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
261 */
262 static void ublast_queue_byte(uint8_t abyte)
263 {
264 if (nb_buf_remaining() < 1)
265 ublast_flush_buffer();
266 info.buf[info.bufidx++] = abyte;
267 if (nb_buf_remaining() == 0)
268 ublast_flush_buffer();
269 DEBUG_JTAG_IO("(byte=0x%02x)", abyte);
270 }
271
272 /**
273 * ublast_compute_pin - compute if gpio should be asserted
274 * @steer: control (ie. TRST driven, SRST driven, of fixed)
275 *
276 * Returns pin value (1 means driven high, 0 mean driven low)
277 */
278 bool ublast_compute_pin(enum gpio_steer steer)
279 {
280 switch (steer) {
281 case FIXED_0:
282 return 0;
283 case FIXED_1:
284 return 1;
285 case SRST:
286 return !info.srst_asserted;
287 case TRST:
288 return !info.trst_asserted;
289 default:
290 return 1;
291 }
292 }
293
294 /**
295 * ublast_build_out - build bitbang mode output byte
296 * @type: says if reading back TDO is required
297 *
298 * Returns the compute bitbang mode byte
299 */
300 static uint8_t ublast_build_out(enum scan_type type)
301 {
302 uint8_t abyte = 0;
303
304 abyte |= info.tms ? TMS : 0;
305 abyte |= ublast_compute_pin(info.pin6) ? NCE : 0;
306 abyte |= ublast_compute_pin(info.pin8) ? NCS : 0;
307 abyte |= info.tdi ? TDI : 0;
308 abyte |= LED;
309 if (type == SCAN_IN || type == SCAN_IO)
310 abyte |= READ;
311 return abyte;
312 }
313
314 /**
315 * ublast_reset - reset the JTAG device is possible
316 * @trst: 1 if TRST is to be asserted
317 * @srst: 1 if SRST is to be asserted
318 */
319 static void ublast_reset(int trst, int srst)
320 {
321 uint8_t out_value;
322
323 info.trst_asserted = trst;
324 info.srst_asserted = srst;
325 out_value = ublast_build_out(SCAN_OUT);
326 ublast_queue_byte(out_value);
327 ublast_flush_buffer();
328 }
329
330 /**
331 * ublast_clock_tms - clock a TMS transition
332 * @tms: the TMS to be sent
333 *
334 * Triggers a TMS transition (ie. one JTAG TAP state move).
335 */
336 static void ublast_clock_tms(int tms)
337 {
338 uint8_t out;
339
340 DEBUG_JTAG_IO("(tms=%d)", !!tms);
341 info.tms = !!tms;
342 info.tdi = 0;
343 out = ublast_build_out(SCAN_OUT);
344 ublast_queue_byte(out);
345 ublast_queue_byte(out | TCK);
346 }
347
348 /**
349 * ublast_idle_clock - put back TCK to low level
350 *
351 * See ublast_queue_tdi() comment for the usage of this function.
352 */
353 static void ublast_idle_clock(void)
354 {
355 uint8_t out = ublast_build_out(SCAN_OUT);
356
357 DEBUG_JTAG_IO(".");
358 ublast_queue_byte(out);
359 }
360
361 /**
362 * ublast_clock_tdi - Output a TDI with bitbang mode
363 * @tdi: the TDI bit to be shifted out
364 * @type: scan type (ie. does a readback of TDO is required)
365 *
366 * Output a TDI bit and assert clock to push it into the JTAG device :
367 * - writing out TCK=0, TMS=<old_state>=0, TDI=<tdi>
368 * - writing out TCK=1, TMS=<new_state>, TDI=<tdi> which triggers the JTAG
369 * device aquiring the data.
370 *
371 * If a TDO is to be read back, the required read is requested (bitbang mode),
372 * and the USB Blaster will send back a byte with bit0 reprensenting the TDO.
373 */
374 static void ublast_clock_tdi(int tdi, enum scan_type type)
375 {
376 uint8_t out;
377
378 DEBUG_JTAG_IO("(tdi=%d)", !!tdi);
379 info.tdi = !!tdi;
380
381 out = ublast_build_out(SCAN_OUT);
382 ublast_queue_byte(out);
383
384 out = ublast_build_out(type);
385 ublast_queue_byte(out | TCK);
386 }
387
388 /**
389 * ublast_clock_tdi_flip_tms - Output a TDI with bitbang mode, change JTAG state
390 * @tdi: the TDI bit to be shifted out
391 * @type: scan type (ie. does a readback of TDO is required)
392 *
393 * This function is the same as ublast_clock_tdi(), but it changes also the TMS
394 * while outputing the TDI. This should be the last TDI output of a TDI
395 * sequence, which will change state from :
396 * - IRSHIFT -> IREXIT1
397 * - or DRSHIFT -> DREXIT1
398 */
399 static void ublast_clock_tdi_flip_tms(int tdi, enum scan_type type)
400 {
401 uint8_t out;
402
403 DEBUG_JTAG_IO("(tdi=%d)", !!tdi);
404 info.tdi = !!tdi;
405 info.tms = !info.tms;
406
407 out = ublast_build_out(SCAN_OUT);
408 ublast_queue_byte(out);
409
410 out = ublast_build_out(type);
411 ublast_queue_byte(out | TCK);
412
413 out = ublast_build_out(SCAN_OUT);
414 ublast_queue_byte(out);
415 }
416
417 /**
418 * ublast_queue_bytes - queue bytes for the USB Blaster
419 * @bytes: byte array
420 * @nb_bytes: number of bytes
421 *
422 * Queues bytes to be sent to the USB Blaster. The bytes are not
423 * actually sent, but stored in a buffer. The write is performed once
424 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
425 */
426 static void ublast_queue_bytes(uint8_t *bytes, int nb_bytes)
427 {
428 if (info.bufidx + nb_bytes > BUF_LEN) {
429 LOG_ERROR("buggy code, should never queue more that %d bytes",
430 info.bufidx + nb_bytes);
431 exit(-1);
432 }
433 DEBUG_JTAG_IO("(nb_bytes=%d, bytes=[0x%02x, ...])", nb_bytes,
434 bytes ? bytes[0] : 0);
435 if (bytes)
436 memcpy(&info.buf[info.bufidx], bytes, nb_bytes);
437 else
438 memset(&info.buf[info.bufidx], 0, nb_bytes);
439 info.bufidx += nb_bytes;
440 if (nb_buf_remaining() == 0)
441 ublast_flush_buffer();
442 }
443
444 /**
445 * ublast_tms_seq - write a TMS sequence transition to JTAG
446 * @bits: TMS bits to be written (bit0, bit1 .. bitN)
447 * @nb_bits: number of TMS bits (between 1 and 8)
448 *
449 * Write a serie of TMS transitions, where each transition consists in :
450 * - writing out TCK=0, TMS=<new_state>, TDI=<???>
451 * - writing out TCK=1, TMS=<new_state>, TDI=<???> which triggers the transition
452 * The function ensures that at the end of the sequence, the clock (TCK) is put
453 * low.
454 */
455 static void ublast_tms_seq(const uint8_t *bits, int nb_bits)
456 {
457 int i;
458
459 DEBUG_JTAG_IO("(bits=%02x..., nb_bits=%d)", bits[0], nb_bits);
460 for (i = 0; i < nb_bits; i++)
461 ublast_clock_tms((bits[i / 8] >> (i % 8)) & 0x01);
462 ublast_idle_clock();
463 }
464
465 /**
466 * ublast_tms - write a tms command
467 * @cmd: tms command
468 */
469 static void ublast_tms(struct tms_command *cmd)
470 {
471 DEBUG_JTAG_IO("(num_bits=%d)", cmd->num_bits);
472 ublast_tms_seq(cmd->bits, cmd->num_bits);
473 }
474
475 /**
476 * ublast_path_move - write a TMS sequence transition to JTAG
477 * @cmd: path transition
478 *
479 * Write a serie of TMS transitions, where each transition consists in :
480 * - writing out TCK=0, TMS=<new_state>, TDI=<???>
481 * - writing out TCK=1, TMS=<new_state>, TDI=<???> which triggers the transition
482 * The function ensures that at the end of the sequence, the clock (TCK) is put
483 * low.
484 */
485 static void ublast_path_move(struct pathmove_command *cmd)
486 {
487 int i;
488
489 DEBUG_JTAG_IO("(num_states=%d, last_state=%d)",
490 cmd->num_states, cmd->path[cmd->num_states - 1]);
491 for (i = 0; i < cmd->num_states; i++) {
492 if (tap_state_transition(tap_get_state(), false) == cmd->path[i])
493 ublast_clock_tms(0);
494 if (tap_state_transition(tap_get_state(), true) == cmd->path[i])
495 ublast_clock_tms(1);
496 tap_set_state(cmd->path[i]);
497 }
498 ublast_idle_clock();
499 }
500
501 /**
502 * ublast_state_move - move JTAG state to the target state
503 * @state: the target state
504 *
505 * Input the correct TMS sequence to the JTAG TAP so that we end up in the
506 * target state. This assumes the current state (tap_get_state()) is correct.
507 */
508 static void ublast_state_move(tap_state_t state)
509 {
510 uint8_t tms_scan;
511 int tms_len;
512
513 DEBUG_JTAG_IO("(from %s to %s)", tap_state_name(tap_get_state()),
514 tap_state_name(state));
515 if (tap_get_state() == state)
516 return;
517 tms_scan = tap_get_tms_path(tap_get_state(), state);
518 tms_len = tap_get_tms_path_len(tap_get_state(), state);
519 ublast_tms_seq(&tms_scan, tms_len);
520 tap_set_state(state);
521 }
522
523 /**
524 * ublast_read_byteshifted_tdos - read TDO of byteshift writes
525 * @buf: the buffer to store the bits
526 * @nb_bits: the number of bits
527 *
528 * Reads back from USB Blaster TDO bits, triggered by a 'byteshift write', ie. eight
529 * bits per received byte from USB interface, and store them in buffer.
530 *
531 * As the USB blaster stores the TDO bits in LSB (ie. first bit in (byte0,
532 * bit0), second bit in (byte0, bit1), ...), which is what we want to return,
533 * simply read bytes from USB interface and store them.
534 *
535 * Returns ERROR_OK if OK, ERROR_xxx if a read error occured
536 */
537 static int ublast_read_byteshifted_tdos(uint8_t *buf, int nb_bytes)
538 {
539 unsigned int retlen;
540 int ret = ERROR_OK;
541
542 DEBUG_JTAG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bytes * 8);
543 ublast_flush_buffer();
544 while (ret == ERROR_OK && nb_bytes > 0) {
545 ret = ublast_buf_read(buf, nb_bytes, &retlen);
546 nb_bytes -= retlen;
547 }
548 return ret;
549 }
550
551 /**
552 * ublast_read_bitbang_tdos - read TDO of bitbang writes
553 * @buf: the buffer to store the bits
554 * @nb_bits: the number of bits
555 *
556 * Reads back from USB Blaster TDO bits, triggered by a 'bitbang write', ie. one
557 * bit per received byte from USB interface, and store them in buffer, where :
558 * - first bit is stored in byte0, bit0 (LSB)
559 * - second bit is stored in byte0, bit 1
560 * ...
561 * - eight bit is sotred in byte0, bit 7
562 * - ninth bit is sotred in byte1, bit 0
563 * - etc ...
564 *
565 * Returns ERROR_OK if OK, ERROR_xxx if a read error occured
566 */
567 static int ublast_read_bitbang_tdos(uint8_t *buf, int nb_bits)
568 {
569 int nb1 = nb_bits;
570 int i, ret = ERROR_OK;
571 unsigned int retlen;
572 uint8_t tmp[8];
573
574 DEBUG_JTAG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bits);
575
576 /*
577 * Ensure all previous bitbang writes were issued to the dongle, so that
578 * it returns back the read values.
579 */
580 ublast_flush_buffer();
581
582 ret = ublast_buf_read(tmp, nb1, &retlen);
583 for (i = 0; ret == ERROR_OK && i < nb1; i++)
584 if (tmp[i] & READ_TDO)
585 *buf |= (1 << i);
586 else
587 *buf &= ~(1 << i);
588 return ret;
589 }
590
591 /**
592 * ublast_queue_tdi - short description
593 * @bits: bits to be queued on TDI (or NULL if 0 are to be queued)
594 * @nb_bits: number of bits
595 * @scan: scan type (ie. if TDO read back is required or not)
596 *
597 * Outputs a serie of TDI bits on TDI.
598 * As a side effect, the last TDI bit is sent along a TMS=1, and triggers a JTAG
599 * TAP state shift if input bits were non NULL.
600 *
601 * In order to not saturate the USB Blaster queues, this method reads back TDO
602 * if the scan type requests it, and stores them back in bits.
603 *
604 * As a side note, the state of TCK when entering this function *must* be
605 * low. This is because byteshift mode outputs TDI on rising TCK and reads TDO
606 * on falling TCK if and only if TCK is low before queuing byteshift mode bytes.
607 * If TCK was high, the USB blaster will queue TDI on falling edge, and read TDO
608 * on rising edge !!!
609 */
610 static void ublast_queue_tdi(uint8_t *bits, int nb_bits, enum scan_type scan)
611 {
612 int nb8 = nb_bits / 8;
613 int nb1 = nb_bits % 8;
614 int nbfree_in_packet, i, trans = 0, read_tdos;
615 uint8_t *tdos = calloc(1, nb_bits / 8 + 1);
616 static uint8_t byte0[BUF_LEN];
617
618 /*
619 * As the last TDI bit should always be output in bitbang mode in order
620 * to activate the TMS=1 transition to EXIT_?R state. Therefore a
621 * situation where nb_bits is a multiple of 8 is handled as follows:
622 * - the number of TDI shifted out in "byteshift mode" is 8 less than
623 * nb_bits
624 * - nb1 = 8
625 * This ensures that nb1 is never 0, and allows the TMS transition.
626 */
627 if (nb8 > 0 && nb1 == 0) {
628 nb8--;
629 nb1 = 8;
630 }
631
632 read_tdos = (scan == SCAN_IN || scan == SCAN_IO);
633 for (i = 0; i < nb8; i += trans) {
634 /*
635 * Calculate number of bytes to fill USB packet of size MAX_PACKET_SIZE
636 */
637 nbfree_in_packet = (MAX_PACKET_SIZE - (info.bufidx%MAX_PACKET_SIZE));
638 trans = MIN(nbfree_in_packet - 1, nb8 - i);
639
640 /*
641 * Queue a byte-shift mode transmission, with as many bytes as
642 * is possible with regard to :
643 * - current filling level of write buffer
644 * - remaining bytes to write in byte-shift mode
645 */
646 if (read_tdos)
647 ublast_queue_byte(SHMODE | READ | trans);
648 else
649 ublast_queue_byte(SHMODE | trans);
650 if (bits)
651 ublast_queue_bytes(&bits[i], trans);
652 else
653 ublast_queue_bytes(byte0, trans);
654 if (read_tdos) {
655 if (info.flags & COPY_TDO_BUFFER)
656 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
657 ublast_read_byteshifted_tdos(&tdos[i], trans);
658 }
659 }
660
661 /*
662 * Queue the remaining TDI bits in bitbang mode.
663 */
664 for (i = 0; i < nb1; i++) {
665 int tdi = bits ? bits[nb8 + i / 8] & (1 << i) : 0;
666 if (bits && i == nb1 - 1)
667 ublast_clock_tdi_flip_tms(tdi, scan);
668 else
669 ublast_clock_tdi(tdi, scan);
670 }
671 if (nb1 && read_tdos) {
672 if (info.flags & COPY_TDO_BUFFER)
673 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
674 ublast_read_bitbang_tdos(&tdos[nb8], nb1);
675 }
676
677 if (bits)
678 memcpy(bits, tdos, DIV_ROUND_UP(nb_bits, 8));
679 free(tdos);
680
681 /*
682 * Ensure clock is in lower state
683 */
684 ublast_idle_clock();
685 }
686
687 static void ublast_runtest(int cycles, tap_state_t state)
688 {
689 DEBUG_JTAG_IO("%s(cycles=%i, end_state=%d)", __func__, cycles, state);
690
691 ublast_state_move(TAP_IDLE);
692 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
693 ublast_state_move(state);
694 }
695
696 static void ublast_stableclocks(int cycles)
697 {
698 DEBUG_JTAG_IO("%s(cycles=%i)", __func__, cycles);
699 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
700 }
701
702 /**
703 * ublast_scan - launches a DR-scan or IR-scan
704 * @cmd: the command to launch
705 *
706 * Launch a JTAG IR-scan or DR-scan
707 *
708 * Returns ERROR_OK if OK, ERROR_xxx if a read/write error occured.
709 */
710 static int ublast_scan(struct scan_command *cmd)
711 {
712 int scan_bits;
713 uint8_t *buf = NULL;
714 enum scan_type type;
715 int ret = ERROR_OK;
716 static const char * const type2str[] = { "", "SCAN_IN", "SCAN_OUT", "SCAN_IO" };
717 char *log_buf = NULL;
718
719 type = jtag_scan_type(cmd);
720 scan_bits = jtag_build_buffer(cmd, &buf);
721
722 if (cmd->ir_scan)
723 ublast_state_move(TAP_IRSHIFT);
724 else
725 ublast_state_move(TAP_DRSHIFT);
726
727 log_buf = hexdump(buf, DIV_ROUND_UP(scan_bits, 8));
728 DEBUG_JTAG_IO("%s(scan=%s, type=%s, bits=%d, buf=[%s], end_state=%d)", __func__,
729 cmd->ir_scan ? "IRSCAN" : "DRSCAN",
730 type2str[type],
731 scan_bits, log_buf, cmd->end_state);
732 free(log_buf);
733
734 ublast_queue_tdi(buf, scan_bits, type);
735
736 /*
737 * As our JTAG is in an unstable state (IREXIT1 or DREXIT1), move it
738 * forward to a stable IRPAUSE or DRPAUSE.
739 */
740 ublast_clock_tms(0);
741 if (cmd->ir_scan)
742 tap_set_state(TAP_IRPAUSE);
743 else
744 tap_set_state(TAP_DRPAUSE);
745
746 ret = jtag_read_buffer(buf, cmd);
747 if (buf)
748 free(buf);
749 ublast_state_move(cmd->end_state);
750 return ret;
751 }
752
753 static void ublast_usleep(int us)
754 {
755 DEBUG_JTAG_IO("%s(us=%d)", __func__, us);
756 jtag_sleep(us);
757 }
758
759 static void ublast_initial_wipeout(void)
760 {
761 static uint8_t tms_reset = 0xff;
762 uint8_t out_value;
763 uint32_t retlen;
764 int i;
765
766 out_value = ublast_build_out(SCAN_OUT);
767 for (i = 0; i < BUF_LEN; i++)
768 info.buf[i] = out_value | ((i % 2) ? TCK : 0);
769
770 /*
771 * Flush USB-Blaster queue fifos
772 * - empty the write FIFO (128 bytes)
773 * - empty the read FIFO (384 bytes)
774 */
775 ublast_buf_write(info.buf, BUF_LEN, &retlen);
776 /*
777 * Put JTAG in RESET state (five 1 on TMS)
778 */
779 ublast_tms_seq(&tms_reset, 5);
780 tap_set_state(TAP_RESET);
781 }
782
783 static int ublast_execute_queue(void)
784 {
785 struct jtag_command *cmd;
786 static int first_call = 1;
787 int ret = ERROR_OK;
788
789 if (first_call) {
790 first_call--;
791 ublast_initial_wipeout();
792 }
793
794 for (cmd = jtag_command_queue; ret == ERROR_OK && cmd != NULL;
795 cmd = cmd->next) {
796 switch (cmd->type) {
797 case JTAG_RESET:
798 ublast_reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
799 break;
800 case JTAG_RUNTEST:
801 ublast_runtest(cmd->cmd.runtest->num_cycles,
802 cmd->cmd.runtest->end_state);
803 break;
804 case JTAG_STABLECLOCKS:
805 ublast_stableclocks(cmd->cmd.stableclocks->num_cycles);
806 break;
807 case JTAG_TLR_RESET:
808 ublast_state_move(cmd->cmd.statemove->end_state);
809 break;
810 case JTAG_PATHMOVE:
811 ublast_path_move(cmd->cmd.pathmove);
812 break;
813 case JTAG_TMS:
814 ublast_tms(cmd->cmd.tms);
815 break;
816 case JTAG_SLEEP:
817 ublast_usleep(cmd->cmd.sleep->us);
818 break;
819 case JTAG_SCAN:
820 ret = ublast_scan(cmd->cmd.scan);
821 break;
822 }
823 }
824
825 ublast_flush_buffer();
826 return ret;
827 }
828
829 /**
830 * ublast_init - Initialize the Altera device
831 *
832 * Initialize the device :
833 * - open the USB device
834 * - pretend it's initialized while actual init is delayed until first jtag command
835 *
836 * Returns ERROR_OK if USB device found, error if not.
837 */
838 static int ublast_init(void)
839 {
840 int ret, i;
841
842 for (i = 0; lowlevel_drivers_map[i].name; i++) {
843 if (info.lowlevel_name) {
844 if (!strcmp(lowlevel_drivers_map[i].name, info.lowlevel_name)) {
845 info.drv = lowlevel_drivers_map[i].drv_register();
846 if (!info.drv) {
847 LOG_ERROR("Error registering lowlevel driver \"%s\"",
848 info.lowlevel_name);
849 return ERROR_JTAG_DEVICE_ERROR;
850 }
851 break;
852 }
853 } else {
854 info.drv = lowlevel_drivers_map[i].drv_register();
855 if (info.drv) {
856 info.lowlevel_name = strdup(lowlevel_drivers_map[i].name);
857 LOG_INFO("No lowlevel driver configured, using %s", info.lowlevel_name);
858 break;
859 }
860 }
861 }
862
863 if (!info.drv) {
864 LOG_ERROR("No lowlevel driver available");
865 return ERROR_JTAG_DEVICE_ERROR;
866 }
867
868 /*
869 * Register the lowlevel driver
870 */
871 info.drv->ublast_vid = info.ublast_vid;
872 info.drv->ublast_pid = info.ublast_pid;
873 info.drv->ublast_vid_uninit = info.ublast_vid_uninit;
874 info.drv->ublast_pid_uninit = info.ublast_pid_uninit;
875 info.drv->ublast_device_desc = info.ublast_device_desc;
876 info.drv->firmware_path = info.firmware_path;
877
878 info.flags |= info.drv->flags;
879
880 ret = info.drv->open(info.drv);
881
882 /*
883 * Let lie here : the TAP is in an unknown state, but the first
884 * execute_queue() will trigger a ublast_initial_wipeout(), which will
885 * put the TAP in RESET.
886 */
887 tap_set_state(TAP_RESET);
888 return ret;
889 }
890
891 /**
892 * ublast_quit - Release the Altera device
893 *
894 * Releases the device :
895 * - put the device pins in 'high impedance' mode
896 * - close the USB device
897 *
898 * Returns always ERROR_OK
899 */
900 static int ublast_quit(void)
901 {
902 uint8_t byte0 = 0;
903 unsigned int retlen;
904
905 ublast_buf_write(&byte0, 1, &retlen);
906 return info.drv->close(info.drv);
907 }
908
909 COMMAND_HANDLER(ublast_handle_device_desc_command)
910 {
911 if (CMD_ARGC != 1)
912 return ERROR_COMMAND_SYNTAX_ERROR;
913
914 info.ublast_device_desc = strdup(CMD_ARGV[0]);
915
916 return ERROR_OK;
917 }
918
919 COMMAND_HANDLER(ublast_handle_vid_pid_command)
920 {
921 if (CMD_ARGC > 4) {
922 LOG_WARNING("ignoring extra IDs in ublast_vid_pid "
923 "(maximum is 2 pairs)");
924 CMD_ARGC = 4;
925 }
926
927 if (CMD_ARGC >= 2) {
928 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], info.ublast_vid);
929 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], info.ublast_pid);
930 } else {
931 LOG_WARNING("incomplete ublast_vid_pid configuration");
932 }
933
934 if (CMD_ARGC == 4) {
935 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], info.ublast_vid_uninit);
936 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], info.ublast_pid_uninit);
937 } else {
938 LOG_WARNING("incomplete ublast_vid_pid configuration");
939 }
940
941 return ERROR_OK;
942 }
943
944 COMMAND_HANDLER(ublast_handle_pin_command)
945 {
946 uint8_t out_value;
947 const char * const pin_name = CMD_ARGV[0];
948 enum gpio_steer *steer = NULL;
949 static const char * const pin_val_str[] = {
950 [FIXED_0] = "0",
951 [FIXED_1] = "1",
952 [SRST] = "SRST driven",
953 [TRST] = "TRST driven",
954 };
955
956 if (CMD_ARGC > 2) {
957 LOG_ERROR("%s takes exactly one or two arguments", CMD_NAME);
958 return ERROR_COMMAND_SYNTAX_ERROR;
959 }
960
961 if (!strcmp(pin_name, "pin6"))
962 steer = &info.pin6;
963 if (!strcmp(pin_name, "pin8"))
964 steer = &info.pin8;
965 if (!steer) {
966 LOG_ERROR("%s: pin name must be \"pin6\" or \"pin8\"",
967 CMD_NAME);
968 return ERROR_COMMAND_SYNTAX_ERROR;
969 }
970
971 if (CMD_ARGC == 1) {
972 LOG_INFO("%s: %s is set as %s\n", CMD_NAME, pin_name,
973 pin_val_str[*steer]);
974 }
975
976 if (CMD_ARGC == 2) {
977 const char * const pin_value = CMD_ARGV[1];
978 char val = pin_value[0];
979
980 if (strlen(pin_value) > 1)
981 val = '?';
982 switch (tolower((unsigned char)val)) {
983 case '0':
984 *steer = FIXED_0;
985 break;
986 case '1':
987 *steer = FIXED_1;
988 break;
989 case 't':
990 *steer = TRST;
991 break;
992 case 's':
993 *steer = SRST;
994 break;
995 default:
996 LOG_ERROR("%s: pin value must be 0, 1, s (SRST) or t (TRST)",
997 pin_value);
998 return ERROR_COMMAND_SYNTAX_ERROR;
999 }
1000
1001 if (info.drv) {
1002 out_value = ublast_build_out(SCAN_OUT);
1003 ublast_queue_byte(out_value);
1004 ublast_flush_buffer();
1005 }
1006 }
1007 return ERROR_OK;
1008 }
1009
1010 COMMAND_HANDLER(ublast_handle_lowlevel_drv_command)
1011 {
1012 if (CMD_ARGC != 1)
1013 return ERROR_COMMAND_SYNTAX_ERROR;
1014
1015 info.lowlevel_name = strdup(CMD_ARGV[0]);
1016
1017 return ERROR_OK;
1018 }
1019
1020 COMMAND_HANDLER(ublast_firmware_command)
1021 {
1022 if (CMD_ARGC != 1)
1023 return ERROR_COMMAND_SYNTAX_ERROR;
1024
1025 info.firmware_path = strdup(CMD_ARGV[0]);
1026
1027 return ERROR_OK;
1028 }
1029
1030
1031 static const struct command_registration ublast_command_handlers[] = {
1032 {
1033 .name = "usb_blaster_device_desc",
1034 .handler = ublast_handle_device_desc_command,
1035 .mode = COMMAND_CONFIG,
1036 .help = "set the USB device description of the USB-Blaster",
1037 .usage = "description-string",
1038 },
1039 {
1040 .name = "usb_blaster_vid_pid",
1041 .handler = ublast_handle_vid_pid_command,
1042 .mode = COMMAND_CONFIG,
1043 .help = "the vendor ID and product ID of the USB-Blaster and " \
1044 "vendor ID and product ID of the uninitialized device " \
1045 "for USB-Blaster II",
1046 .usage = "vid pid vid_uninit pid_uninit",
1047 },
1048 {
1049 .name = "usb_blaster_lowlevel_driver",
1050 .handler = ublast_handle_lowlevel_drv_command,
1051 .mode = COMMAND_CONFIG,
1052 .help = "set the lowlevel access for the USB Blaster (ftdi, ublast2)",
1053 .usage = "(ftdi|ublast2)",
1054 },
1055 {
1056 .name = "usb_blaster_pin",
1057 .handler = ublast_handle_pin_command,
1058 .mode = COMMAND_ANY,
1059 .help = "show or set pin state for the unused GPIO pins",
1060 .usage = "(pin6|pin8) (0|1|s|t)",
1061 },
1062 {
1063 .name = "usb_blaster_firmware",
1064 .handler = &ublast_firmware_command,
1065 .mode = COMMAND_CONFIG,
1066 .help = "configure the USB-Blaster II firmware location",
1067 .usage = "path/to/blaster_xxxx.hex",
1068 },
1069 COMMAND_REGISTRATION_DONE
1070 };
1071
1072 struct jtag_interface usb_blaster_interface = {
1073 .name = "usb_blaster",
1074 .commands = ublast_command_handlers,
1075 .supported = DEBUG_CAP_TMS_SEQ,
1076
1077 .execute_queue = ublast_execute_queue,
1078 .init = ublast_init,
1079 .quit = ublast_quit,
1080 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)