some trivial minidriver fixes
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "binarybuffer.h"
27 #include "log.h"
28
29
30 #ifdef _DEBUG_JTAG_IO_
31 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
32 #else
33 #define DEBUG_JTAG_IO(expr ...)
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /*-----<Macros>--------------------------------------------------*/
41
42 /** When given an array, compute its DIMension, i.e. number of elements in the array */
43 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
44
45 /** Calculate the number of bytes required to hold @a n TAP scan bits */
46 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
47
48 /*-----</Macros>-------------------------------------------------*/
49
50
51
52 /*
53 * Tap states from ARM7TDMI-S Technical reference manual.
54 * Also, validated against several other ARM core technical manuals.
55 *
56 * N.B. tap_get_tms_path() was changed to reflect this corrected
57 * numbering and ordering of the TAP states.
58 *
59 * DANGER!!!! some interfaces care about the actual numbers used
60 * as they are handed off directly to hardware implementations.
61 */
62
63 typedef enum tap_state
64 {
65 #if BUILD_ECOSBOARD
66 /* These are the old numbers. Leave as-is for now... */
67 TAP_RESET = 0, TAP_IDLE = 8,
68 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
69 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
70 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
71 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
72
73 TAP_NUM_STATES = 16, TAP_INVALID = -1,
74 #else
75 /* Proper ARM recommended numbers */
76 TAP_DREXIT2 = 0x0,
77 TAP_DREXIT1 = 0x1,
78 TAP_DRSHIFT = 0x2,
79 TAP_DRPAUSE = 0x3,
80 TAP_IRSELECT = 0x4,
81 TAP_DRUPDATE = 0x5,
82 TAP_DRCAPTURE = 0x6,
83 TAP_DRSELECT = 0x7,
84 TAP_IREXIT2 = 0x8,
85 TAP_IREXIT1 = 0x9,
86 TAP_IRSHIFT = 0xa,
87 TAP_IRPAUSE = 0xb,
88 TAP_IDLE = 0xc,
89 TAP_IRUPDATE = 0xd,
90 TAP_IRCAPTURE = 0xe,
91 TAP_RESET = 0x0f,
92
93 TAP_NUM_STATES = 0x10,
94
95 TAP_INVALID = -1,
96 #endif
97 } tap_state_t;
98
99 typedef struct tap_transition_s
100 {
101 tap_state_t high;
102 tap_state_t low;
103 } tap_transition_t;
104
105 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
106
107
108 #ifdef INCLUDE_JTAG_INTERFACE_H
109
110 /*-----<Cable Helper API>-------------------------------------------*/
111
112 /* The "Cable Helper API" is what the cable drivers can use to help implement
113 * their "Cable API". So a Cable Helper API is a set of helper functions used by
114 * cable drivers, and this is different from a Cable API. A "Cable API" is what
115 * higher level code used to talk to a cable.
116 */
117
118
119 /** implementation of wrapper function tap_set_state() */
120 void tap_set_state_impl(tap_state_t new_state);
121
122 /**
123 * Function tap_set_state
124 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
125 * cable. The state follower is hopefully always in the same state as the actual
126 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
127 * cable driver. All the cable drivers call this function to indicate the state they think
128 * the TAPs attached to their cables are in. Because this function can also log transitions,
129 * it will be helpful to call this function with every transition that the TAPs being manipulated
130 * are expected to traverse, not just end points of a multi-step state path.
131 * @param new_state is the state we think the TAPs are currently in or are about to enter.
132 */
133 #if defined(_DEBUG_JTAG_IO_)
134 #define tap_set_state(new_state) \
135 do { \
136 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
137 tap_set_state_impl(new_state); \
138 } while (0)
139 #else
140 static inline void tap_set_state(tap_state_t new_state)
141 {
142 tap_set_state_impl(new_state);
143 }
144
145 #endif
146
147 /**
148 * Function tap_get_state
149 * gets the state of the "state follower" which tracks the state of the TAPs connected to
150 * the cable.
151 * @see tap_set_state
152 * @return tap_state_t - The state the TAPs are in now.
153 */
154 tap_state_t tap_get_state(void);
155
156 /**
157 * Function tap_set_end_state
158 * sets the state of an "end state follower" which tracks the state that any cable driver
159 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
160 * of that TAP operation this value is copied into the state follower via tap_set_state().
161 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
162 */
163 void tap_set_end_state(tap_state_t new_end_state);
164
165 /**
166 * Function tap_get_end_state
167 * @see tap_set_end_state
168 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
169 */
170 tap_state_t tap_get_end_state(void);
171
172 /**
173 * Function tap_get_tms_path
174 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
175 * during a sequence of seven TAP clock cycles in order to get from
176 * state \a "from" to state \a "to".
177 * @param from is the starting state
178 * @param to is the resultant or final state
179 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
180 */
181 int tap_get_tms_path(tap_state_t from, tap_state_t to);
182
183
184 /**
185 * Function int tap_get_tms_path_len
186 * returns the total number of bits that represents a TMS path
187 * transition as given by the function tap_get_tms_path().
188 *
189 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
190 * to fit a whole byte. (I suspect this is a general TAP problem within OOCD.)
191 * Padding TMS causes all manner of instability that's not easily
192 * discovered. Using this routine we can apply EXACTLY the state transitions
193 * required to make something work - no more - no less.
194 *
195 * @param from is the starting state
196 * @param to is the resultant or final state
197 * @return int - the total number of bits in a transition.
198 */
199 int tap_get_tms_path_len(tap_state_t from, tap_state_t to);
200
201
202 /**
203 * Function tap_move_ndx
204 * when given a stable state, returns an index from 0-5. The index corresponds to a
205 * sequence of stable states which are given in this order: <p>
206 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
207 * <p>
208 * This sequence corresponds to look up tables which are used in some of the
209 * cable drivers.
210 * @param astate is the stable state to find in the sequence. If a non stable
211 * state is passed, this may cause the program to output an error message
212 * and terminate.
213 * @return int - the array (or sequence) index as described above
214 */
215 int tap_move_ndx(tap_state_t astate);
216
217 /**
218 * Function tap_is_state_stable
219 * returns true if the \a astate is stable.
220 */
221 bool tap_is_state_stable(tap_state_t astate);
222
223 /**
224 * Function tap_state_transition
225 * takes a current TAP state and returns the next state according to the tms value.
226 * @param current_state is the state of a TAP currently.
227 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
228 * @return tap_state_t - the next state a TAP would enter.
229 */
230 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
231
232 /**
233 * Function tap_state_name
234 * Returns a string suitable for display representing the JTAG tap_state
235 */
236 const char* tap_state_name(tap_state_t state);
237
238 #ifdef _DEBUG_JTAG_IO_
239 /**
240 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
241 * @param tms_buf must points to a buffer containing the TMS bitstream.
242 * @param tdi_buf must points to a buffer containing the TDI bitstream.
243 * @param tap_len must specify the length of the TMS/TDI bitstreams.
244 * @param start_tap_state must specify the current TAP state.
245 * @returns the final TAP state; pass as @a start_tap_state in following call.
246 */
247 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
248 unsigned tap_len, tap_state_t start_tap_state);
249 #else
250 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
251 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
252 {
253 return start_tap_state;
254 }
255 #endif // _DEBUG_JTAG_IO_
256
257 /*-----</Cable Helper API>------------------------------------------*/
258
259 #endif // INCLUDE_JTAG_INTERFACE_H
260
261
262 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
263 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
264
265 typedef struct scan_field_s
266 {
267 jtag_tap_t* tap; /* tap pointer this instruction refers to */
268 int num_bits; /* number of bits this field specifies (up to 32) */
269 u8* out_value; /* value to be scanned into the device */
270 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
271
272 u8* check_value; /* Used together with jtag_add_dr_scan_check() to check data clocked
273 in */
274 u8* check_mask; /* mask to go with check_value */
275
276 /* internal work space */
277 int allocated; /* in_value has been allocated for the queue */
278 int modified; /* did we modify the in_value? */
279 u8 intmp[4]; /* temporary storage for checking synchronously */
280 } scan_field_t;
281
282 #ifdef INCLUDE_JTAG_INTERFACE_H
283
284 enum scan_type {
285 /* IN: from device to host, OUT: from host to device */
286 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
287 };
288
289 typedef struct scan_command_s
290 {
291 bool ir_scan; /* instruction/not data scan */
292 int num_fields; /* number of fields in *fields array */
293 scan_field_t* fields; /* pointer to an array of data scan fields */
294 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
295 } scan_command_t;
296
297 typedef struct statemove_command_s
298 {
299 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
300 } statemove_command_t;
301
302 typedef struct pathmove_command_s
303 {
304 int num_states; /* number of states in *path */
305 tap_state_t* path; /* states that have to be passed */
306 } pathmove_command_t;
307
308 typedef struct runtest_command_s
309 {
310 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
311 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
312 } runtest_command_t;
313
314
315 typedef struct stableclocks_command_s
316 {
317 int num_cycles; /* number of clock cycles that should be sent */
318 } stableclocks_command_t;
319
320
321 typedef struct reset_command_s
322 {
323 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
324 int srst;
325 } reset_command_t;
326
327 typedef struct end_state_command_s
328 {
329 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
330 } end_state_command_t;
331
332 typedef struct sleep_command_s
333 {
334 u32 us; /* number of microseconds to sleep */
335 } sleep_command_t;
336
337 typedef union jtag_command_container_u
338 {
339 scan_command_t* scan;
340 statemove_command_t* statemove;
341 pathmove_command_t* pathmove;
342 runtest_command_t* runtest;
343 stableclocks_command_t* stableclocks;
344 reset_command_t* reset;
345 end_state_command_t* end_state;
346 sleep_command_t* sleep;
347 } jtag_command_container_t;
348
349 enum jtag_command_type {
350 JTAG_SCAN = 1,
351 JTAG_STATEMOVE = 2,
352 JTAG_RUNTEST = 3,
353 JTAG_RESET = 4,
354 JTAG_PATHMOVE = 6,
355 JTAG_SLEEP = 7,
356 JTAG_STABLECLOCKS = 8
357 };
358
359 typedef struct jtag_command_s
360 {
361 jtag_command_container_t cmd;
362 enum jtag_command_type type;
363 struct jtag_command_s* next;
364 } jtag_command_t;
365
366 extern jtag_command_t* jtag_command_queue;
367
368 extern void* cmd_queue_alloc(size_t size);
369 extern void cmd_queue_free(void);
370
371 extern void jtag_queue_command(jtag_command_t *cmd);
372 extern void jtag_command_queue_reset(void);
373
374 #endif // INCLUDE_JTAG_INTERFACE_H
375
376 /* forward declaration */
377 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
378
379 /* this is really: typedef jtag_tap_t */
380 /* But - the typedef is done in "types.h" */
381 /* due to "forward decloration reasons" */
382 struct jtag_tap_s
383 {
384 const char* chip;
385 const char* tapname;
386 const char* dotted_name;
387 int abs_chain_position;
388 int enabled;
389 int ir_length; /* size of instruction register */
390 u32 ir_capture_value;
391 u8* expected; /* Capture-IR expected value */
392 u32 ir_capture_mask;
393 u8* expected_mask; /* Capture-IR expected mask */
394 u32 idcode; /* device identification code */
395 u32* expected_ids; /* Array of expected identification codes */
396 u8 expected_ids_cnt; /* Number of expected identification codes */
397 u8* cur_instr; /* current instruction */
398 int bypass; /* bypass register selected */
399
400 jtag_tap_event_action_t* event_action;
401
402 jtag_tap_t* next_tap;
403 };
404 extern jtag_tap_t* jtag_AllTaps(void);
405 extern jtag_tap_t* jtag_TapByPosition(int n);
406 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
407 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
408 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
409 extern int jtag_NumEnabledTaps(void);
410 extern int jtag_NumTotalTaps(void);
411
412 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
413 {
414 if (p == NULL)
415 {
416 /* start at the head of list */
417 p = jtag_AllTaps();
418 }
419 else
420 {
421 /* start *after* this one */
422 p = p->next_tap;
423 }
424 while (p)
425 {
426 if (p->enabled)
427 {
428 break;
429 }
430 else
431 {
432 p = p->next_tap;
433 }
434 }
435
436 return p;
437 }
438
439
440 enum reset_line_mode {
441 LINE_OPEN_DRAIN = 0x0,
442 LINE_PUSH_PULL = 0x1,
443 };
444
445 #ifdef INCLUDE_JTAG_INTERFACE_H
446
447 typedef struct jtag_interface_s
448 {
449 char* name;
450
451 /* queued command execution
452 */
453 int (*execute_queue)(void);
454
455 /* interface initalization
456 */
457 int (*speed)(int speed);
458 int (*register_commands)(struct command_context_s* cmd_ctx);
459 int (*init)(void);
460 int (*quit)(void);
461
462 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
463 * a failure if it can't support the KHz/RTCK.
464 *
465 * WARNING!!!! if RTCK is *slow* then think carefully about
466 * whether you actually want to support this in the driver.
467 * Many target scripts are written to handle the absence of RTCK
468 * and use a fallback kHz TCK.
469 */
470 int (*khz)(int khz, int* jtag_speed);
471
472 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
473 * a failure if it can't support the KHz/RTCK. */
474 int (*speed_div)(int speed, int* khz);
475
476 /* Read and clear the power dropout flag. Note that a power dropout
477 * can be transitionary, easily much less than a ms.
478 *
479 * So to find out if the power is *currently* on, you must invoke
480 * this method twice. Once to clear the power dropout flag and a
481 * second time to read the current state.
482 *
483 * Currently the default implementation is never to detect power dropout.
484 */
485 int (*power_dropout)(int* power_dropout);
486
487 /* Read and clear the srst asserted detection flag.
488 *
489 * NB!!!! like power_dropout this does *not* read the current
490 * state. srst assertion is transitionary and *can* be much
491 * less than 1ms.
492 */
493 int (*srst_asserted)(int* srst_asserted);
494 } jtag_interface_t;
495
496 #endif // INCLUDE_JTAG_INTERFACE_H
497
498 enum jtag_event {
499 JTAG_TRST_ASSERTED
500 };
501
502 extern char* jtag_event_strings[];
503
504 enum jtag_tap_event {
505 JTAG_TAP_EVENT_ENABLE,
506 JTAG_TAP_EVENT_DISABLE
507 };
508
509 extern const Jim_Nvp nvp_jtag_tap_event[];
510
511 struct jtag_tap_event_action_s
512 {
513 enum jtag_tap_event event;
514 Jim_Obj* body;
515 jtag_tap_event_action_t* next;
516 };
517
518 extern int jtag_trst;
519 extern int jtag_srst;
520
521 typedef struct jtag_event_callback_s
522 {
523 int (*callback)(enum jtag_event event, void* priv);
524 void* priv;
525 struct jtag_event_callback_s* next;
526 } jtag_event_callback_t;
527
528 extern jtag_event_callback_t* jtag_event_callbacks;
529
530 extern int jtag_speed;
531 extern int jtag_speed_post_reset;
532
533 enum reset_types {
534 RESET_NONE = 0x0,
535 RESET_HAS_TRST = 0x1,
536 RESET_HAS_SRST = 0x2,
537 RESET_TRST_AND_SRST = 0x3,
538 RESET_SRST_PULLS_TRST = 0x4,
539 RESET_TRST_PULLS_SRST = 0x8,
540 RESET_TRST_OPEN_DRAIN = 0x10,
541 RESET_SRST_PUSH_PULL = 0x20,
542 };
543
544 extern enum reset_types jtag_reset_config;
545
546 /* initialize interface upon startup. A successful no-op
547 * upon subsequent invocations
548 */
549 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
550
551 /// Shutdown the JTAG interface upon program exit.
552 extern int jtag_interface_quit(void);
553
554 /* initialize JTAG chain using only a RESET reset. If init fails,
555 * try reset + init.
556 */
557 extern int jtag_init(struct command_context_s* cmd_ctx);
558
559 /* reset, then initialize JTAG chain */
560 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
561 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
562
563 /* JTAG interface, can be implemented with a software or hardware fifo
564 *
565 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
566 * can be emulated by using a larger scan.
567 *
568 * Code that is relatively insensitive to the path(as long
569 * as it is JTAG compliant) taken through state machine can use
570 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
571 * specified as end state and a subsequent jtag_add_pathmove() must
572 * be issued.
573 *
574 */
575 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
576 /* same as jtag_add_ir_scan except no verify is performed */
577 extern void jtag_add_ir_scan_noverify(int num_fields, const scan_field_t *fields, tap_state_t state);
578 extern void jtag_add_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
579
580 /* set in_value to point to 32 bits of memory to scan into. This function
581 * is a way to handle the case of synchronous and asynchronous
582 * JTAG queues.
583 *
584 * In the event of an asynchronous queue execution the queue buffer
585 * allocation method is used, for the synchronous case the temporary 32 bits come
586 * from the input field itself.
587 */
588
589 #ifndef HAVE_JTAG_MINIDRIVER_H
590 extern void jtag_alloc_in_value32(scan_field_t *field);
591 #else
592 static __inline__ void jtag_alloc_in_value32(scan_field_t *field)
593 {
594 field->in_value=field->intmp;
595 }
596 #endif
597
598
599
600 /* This version of jtag_add_dr_scan() uses the check_value/mask fields */
601 extern void jtag_add_dr_scan_check(int num_fields, scan_field_t* fields, tap_state_t endstate);
602 extern void jtag_add_plain_ir_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
603 extern void jtag_add_plain_dr_scan(int num_fields, const scan_field_t* fields, tap_state_t endstate);
604
605
606 /* Simplest/typical callback - do some conversion on the data clocked in.
607 * This callback is for such conversion that can not fail.
608 * For conversion types or checks that can
609 * fail, use the jtag_callback_t variant */
610 typedef void (*jtag_callback1_t)(u8 *in);
611
612 #ifndef HAVE_JTAG_MINIDRIVER_H
613 /* A simpler version of jtag_add_callback4 */
614 extern void jtag_add_callback(jtag_callback1_t, u8 *in);
615 #else
616 /* implemented by minidriver */
617 #endif
618
619
620 /* This type can store an integer safely by a normal cast on 64 and
621 * 32 bit systems. */
622 typedef intptr_t jtag_callback_data_t;
623
624 /* The generic callback mechanism.
625 *
626 * The callback is invoked with three arguments. The first argument is
627 * the pointer to the data clocked in.
628 */
629 typedef int (*jtag_callback_t)(u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
630
631
632 /* This callback can be executed immediately the queue has been flushed. Note that
633 * the JTAG queue can either be executed synchronously or asynchronously. Typically
634 * for USB the queue is executed asynchronously. For low latency interfaces, the
635 * queue may be executed synchronously.
636 *
637 * These callbacks are typically executed *after* the *entire* JTAG queue has been
638 * executed for e.g. USB interfaces.
639 *
640 * The callbacks are guaranteeed to be invoked in the order that they were queued.
641 *
642 * The strange name is due to C's lack of overloading using function arguments
643 *
644 * The callback mechansim is very general and does not really make any assumptions
645 * about what the callback does and what the arguments are.
646 *
647 * in - typically used to point to the data to operate on. More often than not
648 * this will be the data clocked in during a shift operation
649 *
650 * data1 - an integer that is big enough to be used either as an 'int' or
651 * cast to/from a pointer
652 *
653 * data2 - an integer that is big enough to be used either as an 'int' or
654 * cast to/from a pointer
655 *
656 * Why stop at 'data2' for arguments? Somewhat historical reasons. This is
657 * sufficient to implement the jtag_check_value_mask(), besides the
658 * line is best drawn somewhere...
659 *
660 * If the execution of the queue fails before the callbacks, then the
661 * callbacks may or may not be invoked depending on driver implementation.
662 */
663 #ifndef HAVE_JTAG_MINIDRIVER_H
664 extern void jtag_add_callback4(jtag_callback_t, u8 *in, jtag_callback_data_t data1, jtag_callback_data_t data2, jtag_callback_data_t data3);
665 #else
666 /* implemented by minidriver */
667 #endif
668
669
670 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
671 * of start state.
672 */
673 extern void jtag_add_tlr(void);
674
675 /* Application code *must* assume that interfaces will
676 * implement transitions between states with different
677 * paths and path lengths through the state diagram. The
678 * path will vary across interface and also across versions
679 * of the same interface over time. Even if the OpenOCD code
680 * is unchanged, the actual path taken may vary over time
681 * and versions of interface firmware or PCB revisions.
682 *
683 * Use jtag_add_pathmove() when specific transition sequences
684 * are required.
685 *
686 * Do not use jtag_add_pathmove() unless you need to, but do use it
687 * if you have to.
688 *
689 * DANGER! If the target is dependent upon a particular sequence
690 * of transitions for things to work correctly(e.g. as a workaround
691 * for an errata that contradicts the JTAG standard), then pathmove
692 * must be used, even if some jtag interfaces happen to use the
693 * desired path. Worse, the jtag interface used for testing a
694 * particular implementation, could happen to use the "desired"
695 * path when transitioning to/from end
696 * state.
697 *
698 * A list of unambigious single clock state transitions, not
699 * all drivers can support this, but it is required for e.g.
700 * XScale and Xilinx support
701 *
702 * Note! TAP_RESET must not be used in the path!
703 *
704 * Note that the first on the list must be reachable
705 * via a single transition from the current state.
706 *
707 * All drivers are required to implement jtag_add_pathmove().
708 * However, if the pathmove sequence can not be precisely
709 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
710 * must return an error. It is legal, but not recommended, that
711 * a driver returns an error in all cases for a pathmove if it
712 * can only implement a few transitions and therefore
713 * a partial implementation of pathmove would have little practical
714 * application.
715 */
716 extern void jtag_add_pathmove(int num_states, const tap_state_t* path);
717
718 /* go to TAP_IDLE, if we're not already there and cycle
719 * precisely num_cycles in the TAP_IDLE after which move
720 * to the end state, if it is != TAP_IDLE
721 *
722 * nb! num_cycles can be 0, in which case the fn will navigate
723 * to endstate via TAP_IDLE
724 */
725 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
726
727 /* A reset of the TAP state machine can be requested.
728 *
729 * Whether tms or trst reset is used depends on the capabilities of
730 * the target and jtag interface(reset_config command configures this).
731 *
732 * srst can driver a reset of the TAP state machine and vice
733 * versa
734 *
735 * Application code may need to examine value of jtag_reset_config
736 * to determine the proper codepath
737 *
738 * DANGER! Even though srst drives trst, trst might not be connected to
739 * the interface, and it might actually be *harmful* to assert trst in this case.
740 *
741 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
742 * are supported.
743 *
744 * only req_tlr_or_trst and srst can have a transition for a
745 * call as the effects of transitioning both at the "same time"
746 * are undefined, but when srst_pulls_trst or vice versa,
747 * then trst & srst *must* be asserted together.
748 */
749 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
750
751 extern void jtag_add_end_state(tap_state_t endstate);
752 extern void jtag_add_sleep(u32 us);
753
754
755 /**
756 * Function jtag_add_stable_clocks
757 * first checks that the state in which the clocks are to be issued is
758 * stable, then queues up clock_count clocks for transmission.
759 */
760 void jtag_add_clocks(int num_cycles);
761
762
763 /*
764 * For software FIFO implementations, the queued commands can be executed
765 * during this call or earlier. A sw queue might decide to push out
766 * some of the jtag_add_xxx() operations once the queue is "big enough".
767 *
768 * This fn will return an error code if any of the prior jtag_add_xxx()
769 * calls caused a failure, e.g. check failure. Note that it does not
770 * matter if the operation was executed *before* jtag_execute_queue(),
771 * jtag_execute_queue() will still return an error code.
772 *
773 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
774 * executed when this fn returns, but if what has been queued only
775 * clocks data out, without reading anything back, then JTAG could
776 * be running *after* jtag_execute_queue() returns. The API does
777 * not define a way to flush a hw FIFO that runs *after*
778 * jtag_execute_queue() returns.
779 *
780 * jtag_add_xxx() commands can either be executed immediately or
781 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
782 */
783 extern int jtag_execute_queue(void);
784
785 /* same as jtag_execute_queue() but does not clear the error flag */
786 extern void jtag_execute_queue_noclear(void);
787
788 /* this flag is set when an error occurs while executing the queue. cleared
789 * by jtag_execute_queue()
790 *
791 * this flag can also be set from application code if some error happens
792 * during processing that should be reported during jtag_execute_queue().
793 */
794 extern int jtag_error;
795
796 static __inline__ void jtag_set_error(int error)
797 {
798 if ((error==ERROR_OK)||(jtag_error!=ERROR_OK))
799 {
800 /* keep first error */
801 return;
802 }
803 jtag_error=error;
804 }
805
806
807
808 /* can be implemented by hw+sw */
809 extern int jtag_power_dropout(int* dropout);
810 extern int jtag_srst_asserted(int* srst_asserted);
811
812 /* JTAG support functions */
813
814 /* execute jtag queue and check value and use mask if mask is != NULL. invokes
815 * jtag_set_error() with any error. */
816 extern void jtag_check_value_mask(scan_field_t *field, u8 *value, u8 *mask);
817
818 #ifdef INCLUDE_JTAG_INTERFACE_H
819 extern enum scan_type jtag_scan_type(const scan_command_t* cmd);
820 extern int jtag_scan_size(const scan_command_t* cmd);
821 extern int jtag_read_buffer(u8* buffer, const scan_command_t* cmd);
822 extern int jtag_build_buffer(const scan_command_t* cmd, u8** buffer);
823 #endif // INCLUDE_JTAG_INTERFACE_H
824
825 extern void jtag_sleep(u32 us);
826 extern int jtag_call_event_callbacks(enum jtag_event event);
827 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
828
829 extern int jtag_verify_capture_ir;
830
831 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
832
833 /* error codes
834 * JTAG subsystem uses codes between -100 and -199 */
835
836 #define ERROR_JTAG_INIT_FAILED (-100)
837 #define ERROR_JTAG_INVALID_INTERFACE (-101)
838 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
839 #define ERROR_JTAG_TRST_ASSERTED (-103)
840 #define ERROR_JTAG_QUEUE_FAILED (-104)
841 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
842 #define ERROR_JTAG_DEVICE_ERROR (-107)
843
844 #ifdef INCLUDE_JTAG_MINIDRIVER_H
845
846 extern void interface_jtag_add_scan_check_alloc(scan_field_t *field);
847
848 extern int interface_jtag_add_ir_scan(
849 int num_fields, const scan_field_t* fields,
850 tap_state_t endstate);
851 extern int interface_jtag_add_plain_ir_scan(
852 int num_fields, const scan_field_t* fields,
853 tap_state_t endstate);
854
855 extern int interface_jtag_add_dr_scan(
856 int num_fields, const scan_field_t* fields,
857 tap_state_t endstate);
858 extern int interface_jtag_add_plain_dr_scan(
859 int num_fields, const scan_field_t* fields,
860 tap_state_t endstate);
861
862 extern int interface_jtag_add_tlr(void);
863 extern int interface_jtag_add_pathmove(int num_states, const tap_state_t* path);
864 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
865
866 /**
867 * This drives the actual srst and trst pins. srst will always be 0
868 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
869 * trst.
870 *
871 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
872 * approperiate
873 */
874 extern int interface_jtag_add_reset(int trst, int srst);
875 extern int interface_jtag_add_end_state(tap_state_t endstate);
876 extern int interface_jtag_add_sleep(u32 us);
877 extern int interface_jtag_add_clocks(int num_cycles);
878 extern int interface_jtag_execute_queue(void);
879
880 /**
881 * Calls the interface callback to execute the queue. This routine
882 * is used by the JTAG driver layer and should not be called directly.
883 */
884 extern int default_interface_jtag_execute_queue(void);
885
886
887 #endif // INCLUDE_JTAG_MINIDRIVER_H
888
889 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
890 #ifdef HAVE_JTAG_MINIDRIVER_H
891 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
892 #include "jtag_minidriver.h"
893 #else
894 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
895 tap_state_t end_state);
896
897 #endif
898
899 /* jtag_add_dr_out() is a version of jtag_add_dr_scan() which
900 * only scans data out. It operates on 32 bit integers instead
901 * of 8 bit, which makes it a better impedance match with
902 * the calling code which often operate on 32 bit integers.
903 *
904 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
905 *
906 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
907 *
908 * If the device is in bypass, then that is an error condition in
909 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
910 * does detect it. Similarly if the device is not in bypass, data must
911 * be passed to it.
912 *
913 * If anything fails, then jtag_error will be set and jtag_execute() will
914 * return an error. There is no way to determine if there was a failure
915 * during this function call.
916 *
917 * This is an inline fn to speed up embedded hosts. Also note that
918 * interface_jtag_add_dr_out() can be a *small* inline function for
919 * embedded hosts.
920 *
921 * There is no jtag_add_dr_outin() version of this fn that also allows
922 * clocking data back in. Patches gladly accepted!
923 */
924 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
925 tap_state_t end_state)
926 {
927 if (end_state != TAP_INVALID)
928 cmd_queue_end_state = end_state;
929 cmd_queue_cur_state = cmd_queue_end_state;
930 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
931 }
932
933
934
935
936 /**
937 * Function jtag_add_statemove
938 * moves from the current state to the goal \a state. This needs
939 * to be handled according to the xsvf spec, see the XSTATE command
940 * description.
941 */
942 extern int jtag_add_statemove(tap_state_t goal_state);
943
944 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)