zy1000: fix bug in end state of DCC writes
[openocd.git] / src / jtag / zy1000 / zy1000.c
1 /***************************************************************************
2 * Copyright (C) 2007-2010 by Øyvind Harboe *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program; if not, write to the *
16 * Free Software Foundation, Inc., *
17 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 ***************************************************************************/
19
20 /* This file supports the zy1000 debugger: http://www.zylin.com/zy1000.html
21 *
22 * The zy1000 is a standalone debugger that has a web interface and
23 * requires no drivers on the developer host as all communication
24 * is via TCP/IP. The zy1000 gets it performance(~400-700kBytes/s
25 * DCC downloads @ 16MHz target) as it has an FPGA to hardware
26 * accelerate the JTAG commands, while offering *very* low latency
27 * between OpenOCD and the FPGA registers.
28 *
29 * The disadvantage of the zy1000 is that it has a feeble CPU compared to
30 * a PC(ca. 50-500 DMIPS depending on how one counts it), whereas a PC
31 * is on the order of 10000 DMIPS(i.e. at a factor of 20-200).
32 *
33 * The zy1000 revc hardware is using an Altera Nios CPU, whereas the
34 * revb is using ARM7 + Xilinx.
35 *
36 * See Zylin web pages or contact Zylin for more information.
37 *
38 * The reason this code is in OpenOCD rather than OpenOCD linked with the
39 * ZY1000 code is that OpenOCD is the long road towards getting
40 * libopenocd into place. libopenocd will support both low performance,
41 * low latency systems(embedded) and high performance high latency
42 * systems(PCs).
43 */
44 #ifdef HAVE_CONFIG_H
45 #include "config.h"
46 #endif
47
48 #include <target/embeddedice.h>
49 #include <jtag/minidriver.h>
50 #include <jtag/interface.h>
51 #include "zy1000_version.h"
52
53 #include <cyg/hal/hal_io.h> // low level i/o
54 #include <cyg/hal/hal_diag.h>
55
56 #include <time.h>
57
58 #ifdef CYGPKG_HAL_NIOS2
59 #include <cyg/hal/io.h>
60 #include <cyg/firmwareutil/firmwareutil.h>
61 #endif
62
63 #define ZYLIN_VERSION GIT_ZY1000_VERSION
64 #define ZYLIN_DATE __DATE__
65 #define ZYLIN_TIME __TIME__
66 #define ZYLIN_OPENOCD GIT_OPENOCD_VERSION
67 #define ZYLIN_OPENOCD_VERSION "ZY1000 " ZYLIN_VERSION " " ZYLIN_DATE
68
69
70 static int zy1000_khz(int khz, int *jtag_speed)
71 {
72 if (khz == 0)
73 {
74 *jtag_speed = 0;
75 }
76 else
77 {
78 *jtag_speed = 64000/khz;
79 }
80 return ERROR_OK;
81 }
82
83 static int zy1000_speed_div(int speed, int *khz)
84 {
85 if (speed == 0)
86 {
87 *khz = 0;
88 }
89 else
90 {
91 *khz = 64000/speed;
92 }
93
94 return ERROR_OK;
95 }
96
97 static bool readPowerDropout(void)
98 {
99 cyg_uint32 state;
100 // sample and clear power dropout
101 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x80);
102 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
103 bool powerDropout;
104 powerDropout = (state & 0x80) != 0;
105 return powerDropout;
106 }
107
108
109 static bool readSRST(void)
110 {
111 cyg_uint32 state;
112 // sample and clear SRST sensing
113 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000040);
114 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, state);
115 bool srstAsserted;
116 srstAsserted = (state & 0x40) != 0;
117 return srstAsserted;
118 }
119
120 static int zy1000_srst_asserted(int *srst_asserted)
121 {
122 *srst_asserted = readSRST();
123 return ERROR_OK;
124 }
125
126 static int zy1000_power_dropout(int *dropout)
127 {
128 *dropout = readPowerDropout();
129 return ERROR_OK;
130 }
131
132 void zy1000_reset(int trst, int srst)
133 {
134 LOG_DEBUG("zy1000 trst=%d, srst=%d", trst, srst);
135
136 /* flush the JTAG FIFO. Not flushing the queue before messing with
137 * reset has such interesting bugs as causing hard to reproduce
138 * RCLK bugs as RCLK will stop responding when TRST is asserted
139 */
140 waitIdle();
141
142 if (!srst)
143 {
144 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000001);
145 }
146 else
147 {
148 /* Danger!!! if clk != 0 when in
149 * idle in TAP_IDLE, reset halt on str912 will fail.
150 */
151 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000001);
152 }
153
154 if (!trst)
155 {
156 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x00000002);
157 }
158 else
159 {
160 /* assert reset */
161 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x00000002);
162 }
163
164 if (trst||(srst && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
165 {
166 /* we're now in the RESET state until trst is deasserted */
167 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_RESET);
168 } else
169 {
170 /* We'll get RCLK failure when we assert TRST, so clear any false positives here */
171 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
172 }
173
174 /* wait for srst to float back up */
175 if (!srst)
176 {
177 int i;
178 for (i = 0; i < 1000; i++)
179 {
180 // We don't want to sense our own reset, so we clear here.
181 // There is of course a timing hole where we could loose
182 // a "real" reset.
183 if (!readSRST())
184 break;
185
186 /* wait 1ms */
187 alive_sleep(1);
188 }
189
190 if (i == 1000)
191 {
192 LOG_USER("SRST didn't deassert after %dms", i);
193 } else if (i > 1)
194 {
195 LOG_USER("SRST took %dms to deassert", i);
196 }
197 }
198 }
199
200 int zy1000_speed(int speed)
201 {
202 /* flush JTAG master FIFO before setting speed */
203 waitIdle();
204
205 if (speed == 0)
206 {
207 /*0 means RCLK*/
208 speed = 0;
209 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x100);
210 LOG_DEBUG("jtag_speed using RCLK");
211 }
212 else
213 {
214 if (speed > 8190 || speed < 2)
215 {
216 LOG_USER("valid ZY1000 jtag_speed=[8190,2]. Divisor is 64MHz / even values between 8190-2, i.e. min 7814Hz, max 32MHz");
217 return ERROR_INVALID_ARGUMENTS;
218 }
219
220 LOG_USER("jtag_speed %d => JTAG clk=%f", speed, 64.0/(float)speed);
221 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x100);
222 ZY1000_POKE(ZY1000_JTAG_BASE + 0x1c, speed&~1);
223 }
224 return ERROR_OK;
225 }
226
227 static bool savePower;
228
229
230 static void setPower(bool power)
231 {
232 savePower = power;
233 if (power)
234 {
235 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x8);
236 } else
237 {
238 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x8);
239 }
240 }
241
242 COMMAND_HANDLER(handle_power_command)
243 {
244 switch (CMD_ARGC)
245 {
246 case 1: {
247 bool enable;
248 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
249 setPower(enable);
250 // fall through
251 }
252 case 0:
253 LOG_INFO("Target power %s", savePower ? "on" : "off");
254 break;
255 default:
256 return ERROR_INVALID_ARGUMENTS;
257 }
258
259 return ERROR_OK;
260 }
261
262
263 /* Give TELNET a way to find out what version this is */
264 static int jim_zy1000_version(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
265 {
266 if ((argc < 1) || (argc > 3))
267 return JIM_ERR;
268 const char *version_str = NULL;
269
270 if (argc == 1)
271 {
272 version_str = ZYLIN_OPENOCD_VERSION;
273 } else
274 {
275 const char *str = Jim_GetString(argv[1], NULL);
276 const char *str2 = NULL;
277 if (argc > 2)
278 str2 = Jim_GetString(argv[2], NULL);
279 if (strcmp("openocd", str) == 0)
280 {
281 version_str = ZYLIN_OPENOCD;
282 }
283 else if (strcmp("zy1000", str) == 0)
284 {
285 version_str = ZYLIN_VERSION;
286 }
287 else if (strcmp("date", str) == 0)
288 {
289 version_str = ZYLIN_DATE;
290 }
291 else if (strcmp("time", str) == 0)
292 {
293 version_str = ZYLIN_TIME;
294 }
295 else if (strcmp("pcb", str) == 0)
296 {
297 #ifdef CYGPKG_HAL_NIOS2
298 version_str="c";
299 #else
300 version_str="b";
301 #endif
302 }
303 #ifdef CYGPKG_HAL_NIOS2
304 else if (strcmp("fpga", str) == 0)
305 {
306
307 /* return a list of 32 bit integers to describe the expected
308 * and actual FPGA
309 */
310 static char *fpga_id = "0x12345678 0x12345678 0x12345678 0x12345678";
311 cyg_uint32 id, timestamp;
312 HAL_READ_UINT32(SYSID_BASE, id);
313 HAL_READ_UINT32(SYSID_BASE+4, timestamp);
314 sprintf(fpga_id, "0x%08x 0x%08x 0x%08x 0x%08x", id, timestamp, SYSID_ID, SYSID_TIMESTAMP);
315 version_str = fpga_id;
316 if ((argc>2) && (strcmp("time", str2) == 0))
317 {
318 time_t last_mod = timestamp;
319 char * t = ctime (&last_mod) ;
320 t[strlen(t)-1] = 0;
321 version_str = t;
322 }
323 }
324 #endif
325
326 else
327 {
328 return JIM_ERR;
329 }
330 }
331
332 Jim_SetResult(interp, Jim_NewStringObj(interp, version_str, -1));
333
334 return JIM_OK;
335 }
336
337
338 #ifdef CYGPKG_HAL_NIOS2
339
340
341 struct info_forward
342 {
343 void *data;
344 struct cyg_upgrade_info *upgraded_file;
345 };
346
347 static void report_info(void *data, const char * format, va_list args)
348 {
349 char *s = alloc_vprintf(format, args);
350 LOG_USER_N("%s", s);
351 free(s);
352 }
353
354 struct cyg_upgrade_info firmware_info =
355 {
356 (cyg_uint8 *)0x84000000,
357 "/ram/firmware.phi",
358 "Firmware",
359 0x0300000,
360 0x1f00000 -
361 0x0300000,
362 "ZylinNiosFirmware\n",
363 report_info,
364 };
365
366 static int jim_zy1000_writefirmware(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
367 {
368 if (argc != 2)
369 return JIM_ERR;
370
371 int length;
372 const char *str = Jim_GetString(argv[1], &length);
373
374 /* */
375 int tmpFile;
376 if ((tmpFile = open(firmware_info.file, O_RDWR | O_CREAT | O_TRUNC)) <= 0)
377 {
378 return JIM_ERR;
379 }
380 bool success;
381 success = write(tmpFile, str, length) == length;
382 close(tmpFile);
383 if (!success)
384 return JIM_ERR;
385
386 if (!cyg_firmware_upgrade(NULL, firmware_info))
387 return JIM_ERR;
388
389 return JIM_OK;
390 }
391 #endif
392
393 static int
394 zylinjtag_Jim_Command_powerstatus(Jim_Interp *interp,
395 int argc,
396 Jim_Obj * const *argv)
397 {
398 if (argc != 1)
399 {
400 Jim_WrongNumArgs(interp, 1, argv, "powerstatus");
401 return JIM_ERR;
402 }
403
404 cyg_uint32 status;
405 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, status);
406
407 Jim_SetResult(interp, Jim_NewIntObj(interp, (status&0x80) != 0));
408
409 return JIM_OK;
410 }
411
412
413
414
415 int zy1000_init(void)
416 {
417 LOG_USER("%s", ZYLIN_OPENOCD_VERSION);
418
419 ZY1000_POKE(ZY1000_JTAG_BASE + 0x10, 0x30); // Turn on LED1 & LED2
420
421 setPower(true); // on by default
422
423
424 /* deassert resets. Important to avoid infinite loop waiting for SRST to deassert */
425 zy1000_reset(0, 0);
426 zy1000_speed(jtag_get_speed());
427
428 return ERROR_OK;
429 }
430
431 int zy1000_quit(void)
432 {
433
434 return ERROR_OK;
435 }
436
437
438
439 int interface_jtag_execute_queue(void)
440 {
441 cyg_uint32 empty;
442
443 waitIdle();
444 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x10, empty);
445 /* clear JTAG error register */
446 ZY1000_POKE(ZY1000_JTAG_BASE + 0x14, 0x400);
447
448 if ((empty&0x400) != 0)
449 {
450 LOG_WARNING("RCLK timeout");
451 /* the error is informative only as we don't want to break the firmware if there
452 * is a false positive.
453 */
454 // return ERROR_FAIL;
455 }
456 return ERROR_OK;
457 }
458
459
460
461
462
463 static cyg_uint32 getShiftValue(void)
464 {
465 cyg_uint32 value;
466 waitIdle();
467 ZY1000_PEEK(ZY1000_JTAG_BASE + 0xc, value);
468 VERBOSE(LOG_INFO("getShiftValue %08x", value));
469 return value;
470 }
471 #if 0
472 static cyg_uint32 getShiftValueFlip(void)
473 {
474 cyg_uint32 value;
475 waitIdle();
476 ZY1000_PEEK(ZY1000_JTAG_BASE + 0x18, value);
477 VERBOSE(LOG_INFO("getShiftValue %08x (flipped)", value));
478 return value;
479 }
480 #endif
481
482 #if 0
483 static void shiftValueInnerFlip(const tap_state_t state, const tap_state_t endState, int repeat, cyg_uint32 value)
484 {
485 VERBOSE(LOG_INFO("shiftValueInner %s %s %d %08x (flipped)", tap_state_name(state), tap_state_name(endState), repeat, value));
486 cyg_uint32 a,b;
487 a = state;
488 b = endState;
489 ZY1000_POKE(ZY1000_JTAG_BASE + 0xc, value);
490 ZY1000_POKE(ZY1000_JTAG_BASE + 0x8, (1 << 15) | (repeat << 8) | (a << 4) | b);
491 VERBOSE(getShiftValueFlip());
492 }
493 #endif
494
495 static void gotoEndState(tap_state_t end_state)
496 {
497 setCurrentState(end_state);
498 }
499
500 static __inline void scanFields(int num_fields, const struct scan_field *fields, tap_state_t shiftState, int pause)
501 {
502 int i;
503 int j;
504 int k;
505
506 for (i = 0; i < num_fields; i++)
507 {
508 cyg_uint32 value;
509
510 uint8_t *inBuffer = NULL;
511
512
513 // figure out where to store the input data
514 int num_bits = fields[i].num_bits;
515 if (fields[i].in_value != NULL)
516 {
517 inBuffer = fields[i].in_value;
518 }
519
520 // here we shuffle N bits out/in
521 j = 0;
522 while (j < num_bits)
523 {
524 tap_state_t pause_state;
525 int l;
526 k = num_bits-j;
527 pause_state = (shiftState == TAP_DRSHIFT)?TAP_DRSHIFT:TAP_IRSHIFT;
528 if (k > 32)
529 {
530 k = 32;
531 /* we have more to shift out */
532 } else if (pause&&(i == num_fields-1))
533 {
534 /* this was the last to shift out this time */
535 pause_state = (shiftState==TAP_DRSHIFT)?TAP_DRPAUSE:TAP_IRPAUSE;
536 }
537
538 // we have (num_bits + 7)/8 bytes of bits to toggle out.
539 // bits are pushed out LSB to MSB
540 value = 0;
541 if (fields[i].out_value != NULL)
542 {
543 for (l = 0; l < k; l += 8)
544 {
545 value|=fields[i].out_value[(j + l)/8]<<l;
546 }
547 }
548 /* mask away unused bits for easier debugging */
549 if (k < 32)
550 {
551 value&=~(((uint32_t)0xffffffff) << k);
552 } else
553 {
554 /* Shifting by >= 32 is not defined by the C standard
555 * and will in fact shift by &0x1f bits on nios */
556 }
557
558 shiftValueInner(shiftState, pause_state, k, value);
559
560 if (inBuffer != NULL)
561 {
562 // data in, LSB to MSB
563 value = getShiftValue();
564 // we're shifting in data to MSB, shift data to be aligned for returning the value
565 value >>= 32-k;
566
567 for (l = 0; l < k; l += 8)
568 {
569 inBuffer[(j + l)/8]=(value >> l)&0xff;
570 }
571 }
572 j += k;
573 }
574 }
575 }
576
577 int interface_jtag_add_ir_scan(struct jtag_tap *active, const struct scan_field *fields, tap_state_t state)
578 {
579 int scan_size = 0;
580 struct jtag_tap *tap, *nextTap;
581
582 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
583 {
584 nextTap = jtag_tap_next_enabled(tap);
585 bool pause = (nextTap==NULL);
586 scan_size = tap->ir_length;
587
588 /* search the list */
589 if (tap == active)
590 {
591 scanFields(1, fields, TAP_IRSHIFT, pause);
592 /* update device information */
593 buf_cpy(fields[0].out_value, tap->cur_instr, scan_size);
594
595 tap->bypass = 0;
596 } else
597 {
598 /* if a device isn't listed, set it to BYPASS */
599 assert(scan_size <= 32);
600 shiftValueInner(TAP_IRSHIFT, pause?TAP_IRPAUSE:TAP_IRSHIFT, scan_size, 0xffffffff);
601
602 tap->bypass = 1;
603 }
604 }
605 gotoEndState(state);
606
607 return ERROR_OK;
608 }
609
610
611
612
613
614 int interface_jtag_add_plain_ir_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
615 {
616 struct scan_field field;
617 field.num_bits = num_bits;
618 field.out_value = out_bits;
619 field.in_value = in_bits;
620
621 scanFields(1, &field, TAP_IRSHIFT, 1);
622 gotoEndState(state);
623
624 return ERROR_OK;
625 }
626
627 int interface_jtag_add_dr_scan(struct jtag_tap *active, int num_fields, const struct scan_field *fields, tap_state_t state)
628 {
629 struct jtag_tap *tap, *nextTap;
630 for (tap = jtag_tap_next_enabled(NULL); tap!= NULL; tap = nextTap)
631 {
632 nextTap = jtag_tap_next_enabled(tap);
633 bool pause = (nextTap==NULL);
634
635 /* Find a range of fields to write to this tap */
636 if (tap == active)
637 {
638 assert(!tap->bypass);
639
640 scanFields(num_fields, fields, TAP_DRSHIFT, pause);
641 } else
642 {
643 /* Shift out a 0 for disabled tap's */
644 assert(tap->bypass);
645 shiftValueInner(TAP_DRSHIFT, pause?TAP_DRPAUSE:TAP_DRSHIFT, 1, 0);
646 }
647 }
648 gotoEndState(state);
649 return ERROR_OK;
650 }
651
652 int interface_jtag_add_plain_dr_scan(int num_bits, const uint8_t *out_bits, uint8_t *in_bits, tap_state_t state)
653 {
654 struct scan_field field;
655 field.num_bits = num_bits;
656 field.out_value = out_bits;
657 field.in_value = in_bits;
658
659 scanFields(1, &field, TAP_DRSHIFT, 1);
660 gotoEndState(state);
661 return ERROR_OK;
662 }
663
664 int interface_jtag_add_tlr()
665 {
666 setCurrentState(TAP_RESET);
667 return ERROR_OK;
668 }
669
670
671 int interface_jtag_add_reset(int req_trst, int req_srst)
672 {
673 zy1000_reset(req_trst, req_srst);
674 return ERROR_OK;
675 }
676
677 static int zy1000_jtag_add_clocks(int num_cycles, tap_state_t state, tap_state_t clockstate)
678 {
679 /* num_cycles can be 0 */
680 setCurrentState(clockstate);
681
682 /* execute num_cycles, 32 at the time. */
683 int i;
684 for (i = 0; i < num_cycles; i += 32)
685 {
686 int num;
687 num = 32;
688 if (num_cycles-i < num)
689 {
690 num = num_cycles-i;
691 }
692 shiftValueInner(clockstate, clockstate, num, 0);
693 }
694
695 #if !TEST_MANUAL()
696 /* finish in end_state */
697 setCurrentState(state);
698 #else
699 tap_state_t t = TAP_IDLE;
700 /* test manual drive code on any target */
701 int tms;
702 uint8_t tms_scan = tap_get_tms_path(t, state);
703 int tms_count = tap_get_tms_path_len(tap_get_state(), tap_get_end_state());
704
705 for (i = 0; i < tms_count; i++)
706 {
707 tms = (tms_scan >> i) & 1;
708 waitIdle();
709 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
710 }
711 waitIdle();
712 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
713 #endif
714
715 return ERROR_OK;
716 }
717
718 int interface_jtag_add_runtest(int num_cycles, tap_state_t state)
719 {
720 return zy1000_jtag_add_clocks(num_cycles, state, TAP_IDLE);
721 }
722
723 int interface_jtag_add_clocks(int num_cycles)
724 {
725 return zy1000_jtag_add_clocks(num_cycles, cmd_queue_cur_state, cmd_queue_cur_state);
726 }
727
728 int interface_jtag_add_sleep(uint32_t us)
729 {
730 jtag_sleep(us);
731 return ERROR_OK;
732 }
733
734 int interface_add_tms_seq(unsigned num_bits, const uint8_t *seq, enum tap_state state)
735 {
736 /*wait for the fifo to be empty*/
737 waitIdle();
738
739 for (unsigned i = 0; i < num_bits; i++)
740 {
741 int tms;
742
743 if (((seq[i/8] >> (i % 8)) & 1) == 0)
744 {
745 tms = 0;
746 }
747 else
748 {
749 tms = 1;
750 }
751
752 waitIdle();
753 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, tms);
754 }
755
756 waitIdle();
757 if (state != TAP_INVALID)
758 {
759 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, state);
760 } else
761 {
762 /* this would be normal if we are switching to SWD mode */
763 }
764 return ERROR_OK;
765 }
766
767 int interface_jtag_add_pathmove(int num_states, const tap_state_t *path)
768 {
769 int state_count;
770 int tms = 0;
771
772 state_count = 0;
773
774 tap_state_t cur_state = cmd_queue_cur_state;
775
776 uint8_t seq[16];
777 memset(seq, 0, sizeof(seq));
778 assert(num_states < (int)((sizeof(seq) * 8)));
779
780 while (num_states)
781 {
782 if (tap_state_transition(cur_state, false) == path[state_count])
783 {
784 tms = 0;
785 }
786 else if (tap_state_transition(cur_state, true) == path[state_count])
787 {
788 tms = 1;
789 }
790 else
791 {
792 LOG_ERROR("BUG: %s -> %s isn't a valid TAP transition", tap_state_name(cur_state), tap_state_name(path[state_count]));
793 exit(-1);
794 }
795
796 seq[state_count/8] = seq[state_count/8] | (tms << (state_count % 8));
797
798 cur_state = path[state_count];
799 state_count++;
800 num_states--;
801 }
802
803 return interface_add_tms_seq(state_count, seq, cur_state);
804 }
805
806 static void jtag_pre_post_bits(struct jtag_tap *tap, int *pre, int *post)
807 {
808 /* bypass bits before and after */
809 int pre_bits = 0;
810 int post_bits = 0;
811
812 bool found = false;
813 struct jtag_tap *cur_tap, *nextTap;
814 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
815 {
816 nextTap = jtag_tap_next_enabled(cur_tap);
817 if (cur_tap == tap)
818 {
819 found = true;
820 } else
821 {
822 if (found)
823 {
824 post_bits++;
825 } else
826 {
827 pre_bits++;
828 }
829 }
830 }
831 *pre = pre_bits;
832 *post = post_bits;
833 }
834
835 void embeddedice_write_dcc(struct jtag_tap *tap, int reg_addr, uint8_t *buffer, int little, int count)
836 {
837
838 int pre_bits;
839 int post_bits;
840 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
841
842 if (pre_bits + post_bits + 6 > 32)
843 {
844 int i;
845 for (i = 0; i < count; i++)
846 {
847 embeddedice_write_reg_inner(tap, reg_addr, fast_target_buffer_get_u32(buffer, little));
848 buffer += 4;
849 }
850 } else
851 {
852 tap_state_t end_state = TAP_IDLE;
853 tap_state_t shift_end_state = TAP_DRSHIFT;
854 if (post_bits == 0)
855 shift_end_state = end_state;
856
857 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
858 int i;
859 for (i = 0; i < count - 1; i++)
860 {
861 /* Fewer pokes means we get to use the FIFO more efficiently */
862 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
863 shiftValueInner(TAP_DRSHIFT, shift_end_state, 6 + post_bits + pre_bits, (reg_addr | (1 << 5)));
864 buffer += 4;
865 }
866 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, fast_target_buffer_get_u32(buffer, little));
867 shiftValueInner(TAP_DRSHIFT, shift_end_state, 6, reg_addr | (1 << 5));
868 shiftValueInner(shift_end_state, end_state, post_bits, 0);
869 }
870 }
871
872
873
874 int arm11_run_instr_data_to_core_noack_inner(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count)
875 {
876 #if 0
877 int arm11_run_instr_data_to_core_noack_inner_default(struct jtag_tap * tap, uint32_t opcode, uint32_t * data, size_t count);
878 return arm11_run_instr_data_to_core_noack_inner_default(tap, opcode, data, count);
879 #else
880 static const int bits[] = {32, 2};
881 uint32_t values[] = {0, 0};
882
883 /* FIX!!!!!! the target_write_memory() API started this nasty problem
884 * with unaligned uint32_t * pointers... */
885 const uint8_t *t = (const uint8_t *)data;
886
887
888 /* bypass bits before and after */
889 int pre_bits;
890 int post_bits;
891 jtag_pre_post_bits(tap, &pre_bits, &post_bits);
892
893 bool found = false;
894 struct jtag_tap *cur_tap, *nextTap;
895 for (cur_tap = jtag_tap_next_enabled(NULL); cur_tap!= NULL; cur_tap = nextTap)
896 {
897 nextTap = jtag_tap_next_enabled(cur_tap);
898 if (cur_tap == tap)
899 {
900 found = true;
901 } else
902 {
903 if (found)
904 {
905 post_bits++;
906 } else
907 {
908 pre_bits++;
909 }
910 }
911 }
912
913 post_bits+=2;
914
915
916 while (--count > 0)
917 {
918 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, pre_bits, 0);
919
920 uint32_t value;
921 value = *t++;
922 value |= (*t++<<8);
923 value |= (*t++<<16);
924 value |= (*t++<<24);
925
926 shiftValueInner(TAP_DRSHIFT, TAP_DRSHIFT, 32, value);
927 /* minimum 2 bits */
928 shiftValueInner(TAP_DRSHIFT, TAP_DRPAUSE, post_bits, 0);
929
930 #if 1
931 /* copy & paste from arm11_dbgtap.c */
932 //TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
933
934 waitIdle();
935 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
936 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
937 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
938 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
939 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
940 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 1);
941 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
942 ZY1000_POKE(ZY1000_JTAG_BASE + 0x28, 0);
943 /* we don't have to wait for the queue to empty here. waitIdle(); */
944 ZY1000_POKE(ZY1000_JTAG_BASE + 0x20, TAP_DRSHIFT);
945 #else
946 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
947 {
948 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
949 };
950
951 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
952 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
953 #endif
954 }
955
956 values[0] = *t++;
957 values[0] |= (*t++<<8);
958 values[0] |= (*t++<<16);
959 values[0] |= (*t++<<24);
960
961 /* This will happen on the last iteration updating the current tap state
962 * so we don't have to track it during the common code path */
963 jtag_add_dr_out(tap,
964 2,
965 bits,
966 values,
967 TAP_IDLE);
968
969 return jtag_execute_queue();
970 #endif
971 }
972
973
974 static const struct command_registration zy1000_commands[] = {
975 {
976 .name = "power",
977 .handler = handle_power_command,
978 .mode = COMMAND_ANY,
979 .help = "Turn power switch to target on/off. "
980 "With no arguments, prints status.",
981 .usage = "('on'|'off)",
982 },
983 {
984 .name = "zy1000_version",
985 .mode = COMMAND_ANY,
986 .jim_handler = jim_zy1000_version,
987 .help = "Print version info for zy1000.",
988 .usage = "['openocd'|'zy1000'|'date'|'time'|'pcb'|'fpga']",
989 },
990 {
991 .name = "powerstatus",
992 .mode = COMMAND_ANY,
993 .jim_handler = zylinjtag_Jim_Command_powerstatus,
994 .help = "Returns power status of target",
995 },
996 #ifdef CYGPKG_HAL_NIOS2
997 {
998 .name = "updatezy1000firmware",
999 .mode = COMMAND_ANY,
1000 .jim_handler = jim_zy1000_writefirmware,
1001 .help = "writes firmware to flash",
1002 /* .usage = "some_string", */
1003 },
1004 #endif
1005 COMMAND_REGISTRATION_DONE
1006 };
1007
1008
1009
1010 struct jtag_interface zy1000_interface =
1011 {
1012 .name = "ZY1000",
1013 .supported = DEBUG_CAP_TMS_SEQ,
1014 .execute_queue = NULL,
1015 .speed = zy1000_speed,
1016 .commands = zy1000_commands,
1017 .init = zy1000_init,
1018 .quit = zy1000_quit,
1019 .khz = zy1000_khz,
1020 .speed_div = zy1000_speed_div,
1021 .power_dropout = zy1000_power_dropout,
1022 .srst_asserted = zy1000_srst_asserted,
1023 };
1024

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)