1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
11 * Copyright (C) 2008 by Hongtao Zheng *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
33 #include "embeddedice.h"
34 #include "target_request.h"
35 #include "arm7_9_common.h"
36 #include "time_support.h"
37 #include "arm_simulator.h"
40 int arm7_9_debug_entry(struct target
*target
);
43 * Clear watchpoints for an ARM7/9 target.
45 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
46 * @return JTAG error status after executing queue
48 static int arm7_9_clear_watchpoints(struct arm7_9_common
*arm7_9
)
51 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
52 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
53 arm7_9
->sw_breakpoint_count
= 0;
54 arm7_9
->sw_breakpoints_added
= 0;
56 arm7_9
->wp1_used
= arm7_9
->wp1_used_default
;
57 arm7_9
->wp_available
= arm7_9
->wp_available_max
;
59 return jtag_execute_queue();
63 * Assign a watchpoint to one of the two available hardware comparators in an
64 * ARM7 or ARM9 target.
66 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
69 static void arm7_9_assign_wp(struct arm7_9_common
*arm7_9
, struct breakpoint
*breakpoint
)
71 if (!arm7_9
->wp0_used
)
75 arm7_9
->wp_available
--;
77 else if (!arm7_9
->wp1_used
)
81 arm7_9
->wp_available
--;
85 LOG_ERROR("BUG: no hardware comparator available");
87 LOG_DEBUG("BPID: %d (0x%08" PRIx32
") using hw wp: %d",
88 breakpoint
->unique_id
,
94 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
96 * @param arm7_9 Pointer to common struct for ARM7/9 targets
97 * @return Error codes if there is a problem finding a watchpoint or the result
98 * of executing the JTAG queue
100 static int arm7_9_set_software_breakpoints(struct arm7_9_common
*arm7_9
)
102 if (arm7_9
->sw_breakpoints_added
)
106 if (arm7_9
->wp_available
< 1)
108 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
109 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
111 arm7_9
->wp_available
--;
113 /* pick a breakpoint unit */
114 if (!arm7_9
->wp0_used
)
116 arm7_9
->sw_breakpoints_added
= 1;
117 arm7_9
->wp0_used
= 3;
118 } else if (!arm7_9
->wp1_used
)
120 arm7_9
->sw_breakpoints_added
= 2;
121 arm7_9
->wp1_used
= 3;
125 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
129 if (arm7_9
->sw_breakpoints_added
== 1)
131 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], arm7_9
->arm_bkpt
);
132 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0x0);
133 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffffu
);
134 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
135 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
137 else if (arm7_9
->sw_breakpoints_added
== 2)
139 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], arm7_9
->arm_bkpt
);
140 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0x0);
141 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0xffffffffu
);
142 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
143 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
147 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
150 LOG_DEBUG("SW BP using hw wp: %d",
151 arm7_9
->sw_breakpoints_added
);
153 return jtag_execute_queue();
157 * Setup the common pieces for an ARM7/9 target after reset or on startup.
159 * @param target Pointer to an ARM7/9 target to setup
160 * @return Result of clearing the watchpoints on the target
162 int arm7_9_setup(struct target
*target
)
164 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
166 return arm7_9_clear_watchpoints(arm7_9
);
170 * Set either a hardware or software breakpoint on an ARM7/9 target. The
171 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
172 * might have erased the values in Embedded ICE.
174 * @param target Pointer to the target device to set the breakpoints on
175 * @param breakpoint Pointer to the breakpoint to be set
176 * @return For hardware breakpoints, this is the result of executing the JTAG
177 * queue. For software breakpoints, this will be the status of the
178 * required memory reads and writes
180 int arm7_9_set_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
182 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
183 int retval
= ERROR_OK
;
185 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
", Type: %d" ,
186 breakpoint
->unique_id
,
190 if (target
->state
!= TARGET_HALTED
)
192 LOG_WARNING("target not halted");
193 return ERROR_TARGET_NOT_HALTED
;
196 if (breakpoint
->type
== BKPT_HARD
)
198 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
199 uint32_t mask
= (breakpoint
->length
== 4) ? 0x3u
: 0x1u
;
201 /* reassign a hw breakpoint */
202 if (breakpoint
->set
== 0)
204 arm7_9_assign_wp(arm7_9
, breakpoint
);
207 if (breakpoint
->set
== 1)
209 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], breakpoint
->address
);
210 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
211 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffffu
);
212 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
213 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
215 else if (breakpoint
->set
== 2)
217 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], breakpoint
->address
);
218 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
219 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffffu
);
220 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
221 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
225 LOG_ERROR("BUG: no hardware comparator available");
229 retval
= jtag_execute_queue();
231 else if (breakpoint
->type
== BKPT_SOFT
)
233 /* did we already set this breakpoint? */
237 if (breakpoint
->length
== 4)
239 uint32_t verify
= 0xffffffff;
240 /* keep the original instruction in target endianness */
241 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
245 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
246 if ((retval
= target_write_u32(target
, breakpoint
->address
, arm7_9
->arm_bkpt
)) != ERROR_OK
)
251 if ((retval
= target_read_u32(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
255 if (verify
!= arm7_9
->arm_bkpt
)
257 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
263 uint16_t verify
= 0xffff;
264 /* keep the original instruction in target endianness */
265 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
269 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
270 if ((retval
= target_write_u16(target
, breakpoint
->address
, arm7_9
->thumb_bkpt
)) != ERROR_OK
)
275 if ((retval
= target_read_u16(target
, breakpoint
->address
, &verify
)) != ERROR_OK
)
279 if (verify
!= arm7_9
->thumb_bkpt
)
281 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32
" - check that memory is read/writable", breakpoint
->address
);
286 if ((retval
= arm7_9_set_software_breakpoints(arm7_9
)) != ERROR_OK
)
289 arm7_9
->sw_breakpoint_count
++;
298 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
299 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
300 * will be updated. Otherwise, the software breakpoint will be restored to its
301 * original instruction if it hasn't already been modified.
303 * @param target Pointer to ARM7/9 target to unset the breakpoint from
304 * @param breakpoint Pointer to breakpoint to be unset
305 * @return For hardware breakpoints, this is the result of executing the JTAG
306 * queue. For software breakpoints, this will be the status of the
307 * required memory reads and writes
309 int arm7_9_unset_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
311 int retval
= ERROR_OK
;
312 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
314 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32
,
315 breakpoint
->unique_id
,
316 breakpoint
->address
);
318 if (!breakpoint
->set
)
320 LOG_WARNING("breakpoint not set");
324 if (breakpoint
->type
== BKPT_HARD
)
326 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
327 breakpoint
->unique_id
,
329 if (breakpoint
->set
== 1)
331 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
332 arm7_9
->wp0_used
= 0;
333 arm7_9
->wp_available
++;
335 else if (breakpoint
->set
== 2)
337 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
338 arm7_9
->wp1_used
= 0;
339 arm7_9
->wp_available
++;
341 retval
= jtag_execute_queue();
346 /* restore original instruction (kept in target endianness) */
347 if (breakpoint
->length
== 4)
349 uint32_t current_instr
;
350 /* check that user program as not modified breakpoint instruction */
351 if ((retval
= target_read_memory(target
, breakpoint
->address
, 4, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
355 if (current_instr
== arm7_9
->arm_bkpt
)
356 if ((retval
= target_write_memory(target
, breakpoint
->address
, 4, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
363 uint16_t current_instr
;
364 /* check that user program as not modified breakpoint instruction */
365 if ((retval
= target_read_memory(target
, breakpoint
->address
, 2, 1, (uint8_t*)¤t_instr
)) != ERROR_OK
)
369 if (current_instr
== arm7_9
->thumb_bkpt
)
370 if ((retval
= target_write_memory(target
, breakpoint
->address
, 2, 1, breakpoint
->orig_instr
)) != ERROR_OK
)
376 if (--arm7_9
->sw_breakpoint_count
==0)
378 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
379 if (arm7_9
->sw_breakpoints_added
== 1)
381 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0);
383 else if (arm7_9
->sw_breakpoints_added
== 2)
385 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0);
396 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
397 * dangling breakpoints and that the desired breakpoint can be added.
399 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
400 * @param breakpoint Pointer to the breakpoint to be added
401 * @return An error status if there is a problem adding the breakpoint or the
402 * result of setting the breakpoint
404 int arm7_9_add_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
406 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
408 if (target
->state
!= TARGET_HALTED
)
410 LOG_WARNING("target not halted");
411 return ERROR_TARGET_NOT_HALTED
;
414 if (arm7_9
->breakpoint_count
== 0)
416 /* make sure we don't have any dangling breakpoints. This is vital upon
417 * GDB connect/disconnect
419 arm7_9_clear_watchpoints(arm7_9
);
422 if ((breakpoint
->type
== BKPT_HARD
) && (arm7_9
->wp_available
< 1))
424 LOG_INFO("no watchpoint unit available for hardware breakpoint");
425 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
428 if ((breakpoint
->length
!= 2) && (breakpoint
->length
!= 4))
430 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
431 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
434 if (breakpoint
->type
== BKPT_HARD
)
436 arm7_9_assign_wp(arm7_9
, breakpoint
);
439 arm7_9
->breakpoint_count
++;
441 return arm7_9_set_breakpoint(target
, breakpoint
);
445 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
446 * dangling breakpoints and updates available watchpoints if it is a hardware
449 * @param target Pointer to the target to have a breakpoint removed
450 * @param breakpoint Pointer to the breakpoint to be removed
451 * @return Error status if there was a problem unsetting the breakpoint or the
452 * watchpoints could not be cleared
454 int arm7_9_remove_breakpoint(struct target
*target
, struct breakpoint
*breakpoint
)
456 int retval
= ERROR_OK
;
457 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
459 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
464 if (breakpoint
->type
== BKPT_HARD
)
465 arm7_9
->wp_available
++;
467 arm7_9
->breakpoint_count
--;
468 if (arm7_9
->breakpoint_count
== 0)
470 /* make sure we don't have any dangling breakpoints */
471 if ((retval
= arm7_9_clear_watchpoints(arm7_9
)) != ERROR_OK
)
481 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
482 * considered a bug to call this function when there are no available watchpoint
485 * @param target Pointer to an ARM7/9 target to set a watchpoint on
486 * @param watchpoint Pointer to the watchpoint to be set
487 * @return Error status if watchpoint set fails or the result of executing the
490 int arm7_9_set_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
492 int retval
= ERROR_OK
;
493 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
497 mask
= watchpoint
->length
- 1;
499 if (target
->state
!= TARGET_HALTED
)
501 LOG_WARNING("target not halted");
502 return ERROR_TARGET_NOT_HALTED
;
505 if (watchpoint
->rw
== WPT_ACCESS
)
510 if (!arm7_9
->wp0_used
)
512 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], watchpoint
->address
);
513 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], mask
);
514 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], watchpoint
->mask
);
515 if (watchpoint
->mask
!= 0xffffffffu
)
516 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_VALUE
], watchpoint
->value
);
517 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
518 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
520 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
525 arm7_9
->wp0_used
= 2;
527 else if (!arm7_9
->wp1_used
)
529 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], watchpoint
->address
);
530 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], mask
);
531 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], watchpoint
->mask
);
532 if (watchpoint
->mask
!= 0xffffffffu
)
533 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_VALUE
], watchpoint
->value
);
534 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], 0xff & ~EICE_W_CTRL_nOPC
& ~rw_mask
);
535 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
| EICE_W_CTRL_nOPC
| (watchpoint
->rw
& 1));
537 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
542 arm7_9
->wp1_used
= 2;
546 LOG_ERROR("BUG: no hardware comparator available");
554 * Unset an existing watchpoint and clear the used watchpoint unit.
556 * @param target Pointer to the target to have the watchpoint removed
557 * @param watchpoint Pointer to the watchpoint to be removed
558 * @return Error status while trying to unset the watchpoint or the result of
559 * executing the JTAG queue
561 int arm7_9_unset_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
563 int retval
= ERROR_OK
;
564 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
566 if (target
->state
!= TARGET_HALTED
)
568 LOG_WARNING("target not halted");
569 return ERROR_TARGET_NOT_HALTED
;
572 if (!watchpoint
->set
)
574 LOG_WARNING("breakpoint not set");
578 if (watchpoint
->set
== 1)
580 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
581 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
585 arm7_9
->wp0_used
= 0;
587 else if (watchpoint
->set
== 2)
589 embeddedice_set_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
590 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
594 arm7_9
->wp1_used
= 0;
602 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
603 * available, an error response is returned.
605 * @param target Pointer to the ARM7/9 target to add a watchpoint to
606 * @param watchpoint Pointer to the watchpoint to be added
607 * @return Error status while trying to add the watchpoint
609 int arm7_9_add_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
611 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
613 if (target
->state
!= TARGET_HALTED
)
615 LOG_WARNING("target not halted");
616 return ERROR_TARGET_NOT_HALTED
;
619 if (arm7_9
->wp_available
< 1)
621 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
624 if ((watchpoint
->length
!= 1) && (watchpoint
->length
!= 2) && (watchpoint
->length
!= 4))
626 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
629 arm7_9
->wp_available
--;
635 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
636 * the used watchpoint unit will be reopened.
638 * @param target Pointer to the target to remove a watchpoint from
639 * @param watchpoint Pointer to the watchpoint to be removed
640 * @return Result of trying to unset the watchpoint
642 int arm7_9_remove_watchpoint(struct target
*target
, struct watchpoint
*watchpoint
)
644 int retval
= ERROR_OK
;
645 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
649 if ((retval
= arm7_9_unset_watchpoint(target
, watchpoint
)) != ERROR_OK
)
655 arm7_9
->wp_available
++;
661 * Restarts the target by sending a RESTART instruction and moving the JTAG
662 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
663 * asserted by the processor.
665 * @param target Pointer to target to issue commands to
666 * @return Error status if there is a timeout or a problem while executing the
669 int arm7_9_execute_sys_speed(struct target
*target
)
672 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
673 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
674 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
676 /* set RESTART instruction */
677 jtag_set_end_state(TAP_IDLE
);
678 if (arm7_9
->need_bypass_before_restart
) {
679 arm7_9
->need_bypass_before_restart
= 0;
680 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
682 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
684 long long then
= timeval_ms();
686 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
688 /* read debug status register */
689 embeddedice_read_reg(dbg_stat
);
690 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
692 if ((buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
693 && (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_SYSCOMP
, 1)))
695 if (debug_level
>= 3)
705 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32
"", buf_get_u32(dbg_stat
->value
, 0, dbg_stat
->size
));
706 return ERROR_TARGET_TIMEOUT
;
713 * Restarts the target by sending a RESTART instruction and moving the JTAG
714 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
715 * waiting until they are.
717 * @param target Pointer to the target to issue commands to
718 * @return Always ERROR_OK
720 int arm7_9_execute_fast_sys_speed(struct target
*target
)
723 static uint8_t check_value
[4], check_mask
[4];
725 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
726 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
727 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
729 /* set RESTART instruction */
730 jtag_set_end_state(TAP_IDLE
);
731 if (arm7_9
->need_bypass_before_restart
) {
732 arm7_9
->need_bypass_before_restart
= 0;
733 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
735 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
739 /* check for DBGACK and SYSCOMP set (others don't care) */
741 /* NB! These are constants that must be available until after next jtag_execute() and
742 * we evaluate the values upon first execution in lieu of setting up these constants
743 * during early setup.
745 buf_set_u32(check_value
, 0, 32, 0x9);
746 buf_set_u32(check_mask
, 0, 32, 0x9);
750 /* read debug status register */
751 embeddedice_read_reg_w_check(dbg_stat
, check_value
, check_mask
);
757 * Get some data from the ARM7/9 target.
759 * @param target Pointer to the ARM7/9 target to read data from
760 * @param size The number of 32bit words to be read
761 * @param buffer Pointer to the buffer that will hold the data
762 * @return The result of receiving data from the Embedded ICE unit
764 int arm7_9_target_request_data(struct target
*target
, uint32_t size
, uint8_t *buffer
)
766 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
767 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
769 int retval
= ERROR_OK
;
772 data
= malloc(size
* (sizeof(uint32_t)));
774 retval
= embeddedice_receive(jtag_info
, data
, size
);
776 /* return the 32-bit ints in the 8-bit array */
777 for (i
= 0; i
< size
; i
++)
779 h_u32_to_le(buffer
+ (i
* 4), data
[i
]);
788 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
789 * target is running and the DCC control register has the W bit high, this will
790 * execute the request on the target.
792 * @param priv Void pointer expected to be a struct target pointer
793 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
794 * from the Embedded ICE unit
796 int arm7_9_handle_target_request(void *priv
)
798 int retval
= ERROR_OK
;
799 struct target
*target
= priv
;
800 if (!target_was_examined(target
))
802 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
803 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
804 struct reg
*dcc_control
= &arm7_9
->eice_cache
->reg_list
[EICE_COMMS_CTRL
];
806 if (!target
->dbg_msg_enabled
)
809 if (target
->state
== TARGET_RUNNING
)
811 /* read DCC control register */
812 embeddedice_read_reg(dcc_control
);
813 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
819 if (buf_get_u32(dcc_control
->value
, 1, 1) == 1)
823 if ((retval
= embeddedice_receive(jtag_info
, &request
, 1)) != ERROR_OK
)
827 if ((retval
= target_request(target
, request
)) != ERROR_OK
)
838 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
839 * is manipulated to the right halted state based on its current state. This is
843 * <tr><th > State</th><th > Action</th></tr>
844 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
845 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
846 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
847 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
850 * If the target does not end up in the halted state, a warning is produced. If
851 * DBGACK is cleared, then the target is expected to either be running or
854 * @param target Pointer to the ARM7/9 target to poll
855 * @return ERROR_OK or an error status if a command fails
857 int arm7_9_poll(struct target
*target
)
860 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
861 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
863 /* read debug status register */
864 embeddedice_read_reg(dbg_stat
);
865 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
870 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1))
872 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
873 if (target
->state
== TARGET_UNKNOWN
)
875 /* Starting OpenOCD with target in debug-halt */
876 target
->state
= TARGET_RUNNING
;
877 LOG_DEBUG("DBGACK already set during server startup.");
879 if ((target
->state
== TARGET_RUNNING
) || (target
->state
== TARGET_RESET
))
882 if (target
->state
== TARGET_RESET
)
884 if (target
->reset_halt
)
886 enum reset_types jtag_reset_config
= jtag_get_reset_config();
887 if ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
894 target
->state
= TARGET_HALTED
;
896 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
901 struct reg
*reg
= register_get_by_name(target
->reg_cache
, "pc", 1);
902 uint32_t t
=*((uint32_t *)reg
->value
);
905 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
909 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
914 if (target
->state
== TARGET_DEBUG_RUNNING
)
916 target
->state
= TARGET_HALTED
;
917 if ((retval
= arm7_9_debug_entry(target
)) != ERROR_OK
)
920 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_HALTED
)) != ERROR_OK
)
925 if (target
->state
!= TARGET_HALTED
)
927 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target
->state
);
932 if (target
->state
!= TARGET_DEBUG_RUNNING
)
933 target
->state
= TARGET_RUNNING
;
940 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
941 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
942 * affected) completely stop the JTAG clock while the core is held in reset
943 * (SRST). It isn't possible to program the halt condition once reset is
944 * asserted, hence a hook that allows the target to set up its reset-halt
945 * condition is setup prior to asserting reset.
947 * @param target Pointer to an ARM7/9 target to assert reset on
948 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
950 int arm7_9_assert_reset(struct target
*target
)
952 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
954 LOG_DEBUG("target->state: %s",
955 target_state_name(target
));
957 enum reset_types jtag_reset_config
= jtag_get_reset_config();
958 if (!(jtag_reset_config
& RESET_HAS_SRST
))
960 LOG_ERROR("Can't assert SRST");
964 /* At this point trst has been asserted/deasserted once. We would
965 * like to program EmbeddedICE while SRST is asserted, instead of
966 * depending on SRST to leave that module alone. However, many CPUs
967 * gate the JTAG clock while SRST is asserted; or JTAG may need
968 * clock stability guarantees (adaptive clocking might help).
970 * So we assume JTAG access during SRST is off the menu unless it's
971 * been specifically enabled.
973 bool srst_asserted
= false;
975 if (((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0)
976 && (jtag_reset_config
& RESET_SRST_NO_GATING
))
978 jtag_add_reset(0, 1);
979 srst_asserted
= true;
982 if (target
->reset_halt
)
985 * Some targets do not support communication while SRST is asserted. We need to
986 * set up the reset vector catch here.
988 * If TRST is asserted, then these settings will be reset anyway, so setting them
991 if (arm7_9
->has_vector_catch
)
993 /* program vector catch register to catch reset vector */
994 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
], 0x1);
996 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
997 jtag_add_runtest(1, jtag_get_end_state());
1001 /* program watchpoint unit to match on reset vector address */
1002 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
], 0x0);
1003 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0x3);
1004 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1005 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1006 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1010 /* here we should issue an SRST only, but we may have to assert TRST as well */
1011 if (jtag_reset_config
& RESET_SRST_PULLS_TRST
)
1013 jtag_add_reset(1, 1);
1014 } else if (!srst_asserted
)
1016 jtag_add_reset(0, 1);
1019 target
->state
= TARGET_RESET
;
1020 jtag_add_sleep(50000);
1022 armv4_5_invalidate_core_regs(target
);
1024 if ((target
->reset_halt
) && ((jtag_reset_config
& RESET_SRST_PULLS_TRST
) == 0))
1026 /* debug entry was already prepared in arm7_9_assert_reset() */
1027 target
->debug_reason
= DBG_REASON_DBGRQ
;
1034 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1035 * and the target is being reset into a halt, a warning will be triggered
1036 * because it is not possible to reset into a halted mode in this case. The
1037 * target is halted using the target's functions.
1039 * @param target Pointer to the target to have the reset deasserted
1040 * @return ERROR_OK or an error from polling or halting the target
1042 int arm7_9_deassert_reset(struct target
*target
)
1044 int retval
= ERROR_OK
;
1045 LOG_DEBUG("target->state: %s",
1046 target_state_name(target
));
1048 /* deassert reset lines */
1049 jtag_add_reset(0, 0);
1051 enum reset_types jtag_reset_config
= jtag_get_reset_config();
1052 if (target
->reset_halt
&& (jtag_reset_config
& RESET_SRST_PULLS_TRST
) != 0)
1054 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1055 /* set up embedded ice registers again */
1056 if ((retval
= target_examine_one(target
)) != ERROR_OK
)
1059 if ((retval
= target_poll(target
)) != ERROR_OK
)
1064 if ((retval
= target_halt(target
)) != ERROR_OK
)
1074 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1075 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1076 * vector catch was used, it is restored. Otherwise, the control value is
1077 * restored and the watchpoint unit is restored if it was in use.
1079 * @param target Pointer to the ARM7/9 target to have halt cleared
1080 * @return Always ERROR_OK
1082 int arm7_9_clear_halt(struct target
*target
)
1084 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1085 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1087 /* we used DBGRQ only if we didn't come out of reset */
1088 if (!arm7_9
->debug_entry_from_reset
&& arm7_9
->use_dbgrq
)
1090 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1092 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1093 embeddedice_store_reg(dbg_ctrl
);
1097 if (arm7_9
->debug_entry_from_reset
&& arm7_9
->has_vector_catch
)
1099 /* if we came out of reset, and vector catch is supported, we used
1100 * vector catch to enter debug state
1101 * restore the register in that case
1103 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_VEC_CATCH
]);
1107 /* restore registers if watchpoint unit 0 was in use
1109 if (arm7_9
->wp0_used
)
1111 if (arm7_9
->debug_entry_from_reset
)
1113 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_VALUE
]);
1115 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1116 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1117 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1119 /* control value always has to be restored, as it was either disabled,
1120 * or enabled with possibly different bits
1122 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1130 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1131 * and then there is a wait until the processor shows the halt. This wait can
1132 * timeout and results in an error being returned. The software reset involves
1133 * clearing the halt, updating the debug control register, changing to ARM mode,
1134 * reset of the program counter, and reset of all of the registers.
1136 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1137 * @return Error status if any of the commands fail, otherwise ERROR_OK
1139 int arm7_9_soft_reset_halt(struct target
*target
)
1141 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1142 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1143 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1144 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1148 /* FIX!!! replace some of this code with tcl commands
1150 * halt # the halt command is synchronous
1151 * armv4_5 core_state arm
1155 if ((retval
= target_halt(target
)) != ERROR_OK
)
1158 long long then
= timeval_ms();
1160 while (!(timeout
= ((timeval_ms()-then
) > 1000)))
1162 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_DBGACK
, 1) != 0)
1164 embeddedice_read_reg(dbg_stat
);
1165 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1167 if (debug_level
>= 3)
1177 LOG_ERROR("Failed to halt CPU after 1 sec");
1178 return ERROR_TARGET_TIMEOUT
;
1180 target
->state
= TARGET_HALTED
;
1182 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1183 * ensure that DBGRQ is cleared
1185 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1186 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1187 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1188 embeddedice_store_reg(dbg_ctrl
);
1190 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1195 /* if the target is in Thumb state, change to ARM state */
1196 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1198 uint32_t r0_thumb
, pc_thumb
;
1199 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1200 /* Entered debug from Thumb mode */
1201 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1202 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1205 /* all register content is now invalid */
1206 if ((retval
= armv4_5_invalidate_core_regs(target
)) != ERROR_OK
)
1211 /* SVC, ARM state, IRQ and FIQ disabled */
1212 buf_set_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8, 0xd3);
1213 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 1;
1214 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1216 /* start fetching from 0x0 */
1217 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, 0x0);
1218 armv4_5
->core_cache
->reg_list
[15].dirty
= 1;
1219 armv4_5
->core_cache
->reg_list
[15].valid
= 1;
1221 armv4_5
->core_mode
= ARMV4_5_MODE_SVC
;
1222 armv4_5
->core_state
= ARMV4_5_STATE_ARM
;
1224 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1227 /* reset registers */
1228 for (i
= 0; i
<= 14; i
++)
1230 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).value
, 0, 32, 0xffffffff);
1231 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= 1;
1232 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
= 1;
1235 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
1244 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1245 * line or by programming a watchpoint to trigger on any address. It is
1246 * considered a bug to call this function while the target is in the
1247 * TARGET_RESET state.
1249 * @param target Pointer to the ARM7/9 target to be halted
1250 * @return Always ERROR_OK
1252 int arm7_9_halt(struct target
*target
)
1254 if (target
->state
== TARGET_RESET
)
1256 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1260 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1261 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1263 LOG_DEBUG("target->state: %s",
1264 target_state_name(target
));
1266 if (target
->state
== TARGET_HALTED
)
1268 LOG_DEBUG("target was already halted");
1272 if (target
->state
== TARGET_UNKNOWN
)
1274 LOG_WARNING("target was in unknown state when halt was requested");
1277 if (arm7_9
->use_dbgrq
)
1279 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1281 if (arm7_9
->set_special_dbgrq
) {
1282 arm7_9
->set_special_dbgrq(target
);
1284 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 1);
1285 embeddedice_store_reg(dbg_ctrl
);
1290 /* program watchpoint unit to match on any address
1292 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1293 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1294 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1295 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1298 target
->debug_reason
= DBG_REASON_DBGRQ
;
1304 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1305 * ARM. The JTAG queue is then executed and the reason for debug entry is
1306 * examined. Once done, the target is verified to be halted and the processor
1307 * is forced into ARM mode. The core registers are saved for the current core
1308 * mode and the program counter (register 15) is updated as needed. The core
1309 * registers and CPSR and SPSR are saved for restoration later.
1311 * @param target Pointer to target that is entering debug mode
1312 * @return Error code if anything fails, otherwise ERROR_OK
1314 int arm7_9_debug_entry(struct target
*target
)
1317 uint32_t context
[16];
1318 uint32_t* context_p
[16];
1319 uint32_t r0_thumb
, pc_thumb
;
1322 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1323 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1324 struct reg
*dbg_stat
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_STAT
];
1325 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1327 #ifdef _DEBUG_ARM7_9_
1331 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1332 * ensure that DBGRQ is cleared
1334 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
1335 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGRQ
, 1, 0);
1336 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 1);
1337 embeddedice_store_reg(dbg_ctrl
);
1339 if ((retval
= arm7_9_clear_halt(target
)) != ERROR_OK
)
1344 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1349 if ((retval
= arm7_9
->examine_debug_reason(target
)) != ERROR_OK
)
1353 if (target
->state
!= TARGET_HALTED
)
1355 LOG_WARNING("target not halted");
1356 return ERROR_TARGET_NOT_HALTED
;
1359 /* if the target is in Thumb state, change to ARM state */
1360 if (buf_get_u32(dbg_stat
->value
, EICE_DBG_STATUS_ITBIT
, 1))
1362 LOG_DEBUG("target entered debug from Thumb state");
1363 /* Entered debug from Thumb mode */
1364 armv4_5
->core_state
= ARMV4_5_STATE_THUMB
;
1365 arm7_9
->change_to_arm(target
, &r0_thumb
, &pc_thumb
);
1366 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
", pc_thumb: 0x%8.8" PRIx32
"", r0_thumb
, pc_thumb
);
1370 LOG_DEBUG("target entered debug from ARM state");
1371 /* Entered debug from ARM mode */
1372 armv4_5
->core_state
= ARMV4_5_STATE_ARM
;
1375 for (i
= 0; i
< 16; i
++)
1376 context_p
[i
] = &context
[i
];
1377 /* save core registers (r0 - r15 of current core mode) */
1378 arm7_9
->read_core_regs(target
, 0xffff, context_p
);
1380 arm7_9
->read_xpsr(target
, &cpsr
, 0);
1382 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1385 /* if the core has been executing in Thumb state, set the T bit */
1386 if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1389 buf_set_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32, cpsr
);
1390 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 0;
1391 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1393 armv4_5
->core_mode
= cpsr
& 0x1f;
1395 if (armv4_5_mode_to_number(armv4_5
->core_mode
) == -1)
1397 target
->state
= TARGET_UNKNOWN
;
1398 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1399 return ERROR_TARGET_FAILURE
;
1402 LOG_DEBUG("target entered debug state in %s mode", armv4_5_mode_strings
[armv4_5_mode_to_number(armv4_5
->core_mode
)]);
1404 if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1406 LOG_DEBUG("thumb state, applying fixups");
1407 context
[0] = r0_thumb
;
1408 context
[15] = pc_thumb
;
1409 } else if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1411 /* adjust value stored by STM */
1412 context
[15] -= 3 * 4;
1415 if ((target
->debug_reason
!= DBG_REASON_DBGRQ
) || (!arm7_9
->use_dbgrq
))
1416 context
[15] -= 3 * ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1418 context
[15] -= arm7_9
->dbgreq_adjust_pc
* ((armv4_5
->core_state
== ARMV4_5_STATE_ARM
) ? 4 : 2);
1420 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1423 for (i
= 0; i
<= 15; i
++)
1425 LOG_DEBUG("r%i: 0x%8.8" PRIx32
"", i
, context
[i
]);
1426 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).value
, 0, 32, context
[i
]);
1427 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= 0;
1428 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
= 1;
1431 LOG_DEBUG("entered debug state at PC 0x%" PRIx32
"", context
[15]);
1433 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1436 /* exceptions other than USR & SYS have a saved program status register */
1437 if ((armv4_5
->core_mode
!= ARMV4_5_MODE_USR
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_SYS
))
1440 arm7_9
->read_xpsr(target
, &spsr
, 1);
1441 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1445 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).value
, 0, 32, spsr
);
1446 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).dirty
= 0;
1447 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 16).valid
= 1;
1450 /* r0 and r15 (pc) have to be restored later */
1451 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 0).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 0).valid
;
1452 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 15).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, 15).valid
;
1454 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1457 if (arm7_9
->post_debug_entry
)
1458 arm7_9
->post_debug_entry(target
);
1464 * Validate the full context for an ARM7/9 target in all processor modes. If
1465 * there are any invalid registers for the target, they will all be read. This
1468 * @param target Pointer to the ARM7/9 target to capture the full context from
1469 * @return Error if the target is not halted, has an invalid core mode, or if
1470 * the JTAG queue fails to execute
1472 int arm7_9_full_context(struct target
*target
)
1476 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1477 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1481 if (target
->state
!= TARGET_HALTED
)
1483 LOG_WARNING("target not halted");
1484 return ERROR_TARGET_NOT_HALTED
;
1487 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1490 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1491 * SYS shares registers with User, so we don't touch SYS
1493 for (i
= 0; i
< 6; i
++)
1496 uint32_t* reg_p
[16];
1500 /* check if there are invalid registers in the current mode
1502 for (j
= 0; j
<= 16; j
++)
1504 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1512 /* change processor mode (and mask T bit) */
1513 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1514 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1516 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1518 for (j
= 0; j
< 15; j
++)
1520 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
== 0)
1522 reg_p
[j
] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).value
;
1524 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).valid
= 1;
1525 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
).dirty
= 0;
1529 /* if only the PSR is invalid, mask is all zeroes */
1531 arm7_9
->read_core_regs(target
, mask
, reg_p
);
1533 /* check if the PSR has to be read */
1534 if (ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
== 0)
1536 arm7_9
->read_xpsr(target
, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).value
, 1);
1537 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).valid
= 1;
1538 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16).dirty
= 0;
1543 /* restore processor mode (mask T bit) */
1544 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
1546 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
1554 * Restore the processor context on an ARM7/9 target. The full processor
1555 * context is analyzed to see if any of the registers are dirty on this end, but
1556 * have a valid new value. If this is the case, the processor is changed to the
1557 * appropriate mode and the new register values are written out to the
1558 * processor. If there happens to be a dirty register with an invalid value, an
1559 * error will be logged.
1561 * @param target Pointer to the ARM7/9 target to have its context restored
1562 * @return Error status if the target is not halted or the core mode in the
1563 * armv4_5 struct is invalid.
1565 int arm7_9_restore_context(struct target
*target
)
1567 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1568 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1570 struct armv4_5_core_reg
*reg_arch_info
;
1571 enum armv4_5_mode current_mode
= armv4_5
->core_mode
;
1578 if (target
->state
!= TARGET_HALTED
)
1580 LOG_WARNING("target not halted");
1581 return ERROR_TARGET_NOT_HALTED
;
1584 if (arm7_9
->pre_restore_context
)
1585 arm7_9
->pre_restore_context(target
);
1587 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
1590 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1591 * SYS shares registers with User, so we don't touch SYS
1593 for (i
= 0; i
< 6; i
++)
1595 LOG_DEBUG("examining %s mode", armv4_5_mode_strings
[i
]);
1598 /* check if there are dirty registers in the current mode
1600 for (j
= 0; j
<= 16; j
++)
1602 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1603 reg_arch_info
= reg
->arch_info
;
1604 if (reg
->dirty
== 1)
1606 if (reg
->valid
== 1)
1609 LOG_DEBUG("examining dirty reg: %s", reg
->name
);
1610 if ((reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
)
1611 && (reg_arch_info
->mode
!= current_mode
)
1612 && !((reg_arch_info
->mode
== ARMV4_5_MODE_USR
) && (armv4_5
->core_mode
== ARMV4_5_MODE_SYS
))
1613 && !((reg_arch_info
->mode
== ARMV4_5_MODE_SYS
) && (armv4_5
->core_mode
== ARMV4_5_MODE_USR
)))
1616 LOG_DEBUG("require mode change");
1621 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg
->name
);
1628 uint32_t mask
= 0x0;
1636 /* change processor mode (mask T bit) */
1637 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1638 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1640 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1641 current_mode
= armv4_5_number_to_mode(i
);
1644 for (j
= 0; j
<= 14; j
++)
1646 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), j
);
1647 reg_arch_info
= reg
->arch_info
;
1650 if (reg
->dirty
== 1)
1652 regs
[j
] = buf_get_u32(reg
->value
, 0, 32);
1657 LOG_DEBUG("writing register %i of mode %s with value 0x%8.8" PRIx32
"", j
, armv4_5_mode_strings
[i
], regs
[j
]);
1663 arm7_9
->write_core_regs(target
, mask
, regs
);
1666 reg
= &ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5_number_to_mode(i
), 16);
1667 reg_arch_info
= reg
->arch_info
;
1668 if ((reg
->dirty
) && (reg_arch_info
->mode
!= ARMV4_5_MODE_ANY
))
1670 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32
"", i
, buf_get_u32(reg
->value
, 0, 32));
1671 arm7_9
->write_xpsr(target
, buf_get_u32(reg
->value
, 0, 32), 1);
1676 if ((armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
== 0) && (armv4_5
->core_mode
!= current_mode
))
1678 /* restore processor mode (mask T bit) */
1681 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
1682 tmp_cpsr
|= armv4_5_number_to_mode(i
);
1684 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr
));
1685 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
1687 else if (armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
== 1)
1689 /* CPSR has been changed, full restore necessary (mask T bit) */
1690 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32));
1691 arm7_9
->write_xpsr(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 32) & ~0x20, 0);
1692 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].dirty
= 0;
1693 armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].valid
= 1;
1697 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1698 arm7_9
->write_pc(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1699 armv4_5
->core_cache
->reg_list
[15].dirty
= 0;
1701 if (arm7_9
->post_restore_context
)
1702 arm7_9
->post_restore_context(target
);
1708 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1709 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1712 * @param target Pointer to the ARM7/9 target to be restarted
1713 * @return Result of executing the JTAG queue
1715 int arm7_9_restart_core(struct target
*target
)
1717 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1718 struct arm_jtag
*jtag_info
= &arm7_9
->jtag_info
;
1720 /* set RESTART instruction */
1721 jtag_set_end_state(TAP_IDLE
);
1722 if (arm7_9
->need_bypass_before_restart
) {
1723 arm7_9
->need_bypass_before_restart
= 0;
1724 arm_jtag_set_instr(jtag_info
, 0xf, NULL
);
1726 arm_jtag_set_instr(jtag_info
, 0x4, NULL
);
1728 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE
));
1729 return jtag_execute_queue();
1733 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1734 * iterated through and are set on the target if they aren't already set.
1736 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1738 void arm7_9_enable_watchpoints(struct target
*target
)
1740 struct watchpoint
*watchpoint
= target
->watchpoints
;
1744 if (watchpoint
->set
== 0)
1745 arm7_9_set_watchpoint(target
, watchpoint
);
1746 watchpoint
= watchpoint
->next
;
1751 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1752 * iterated through and are set on the target.
1754 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1756 void arm7_9_enable_breakpoints(struct target
*target
)
1758 struct breakpoint
*breakpoint
= target
->breakpoints
;
1760 /* set any pending breakpoints */
1763 arm7_9_set_breakpoint(target
, breakpoint
);
1764 breakpoint
= breakpoint
->next
;
1768 int arm7_9_resume(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
, int debug_execution
)
1770 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1771 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1772 struct breakpoint
*breakpoint
= target
->breakpoints
;
1773 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
1774 int err
, retval
= ERROR_OK
;
1778 if (target
->state
!= TARGET_HALTED
)
1780 LOG_WARNING("target not halted");
1781 return ERROR_TARGET_NOT_HALTED
;
1784 if (!debug_execution
)
1786 target_free_all_working_areas(target
);
1789 /* current = 1: continue on current pc, otherwise continue at <address> */
1791 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1793 uint32_t current_pc
;
1794 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1796 /* the front-end may request us not to handle breakpoints */
1797 if (handle_breakpoints
)
1799 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
1801 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32
" (id: %d)", breakpoint
->address
, breakpoint
->unique_id
);
1802 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1807 /* calculate PC of next instruction */
1809 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
1811 uint32_t current_opcode
;
1812 target_read_u32(target
, current_pc
, ¤t_opcode
);
1813 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
1817 LOG_DEBUG("enable single-step");
1818 arm7_9
->enable_single_step(target
, next_pc
);
1820 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
1822 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1827 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1828 arm7_9
->branch_resume(target
);
1829 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1831 arm7_9
->branch_resume_thumb(target
);
1835 LOG_ERROR("unhandled core state");
1839 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1840 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1841 err
= arm7_9_execute_sys_speed(target
);
1843 LOG_DEBUG("disable single-step");
1844 arm7_9
->disable_single_step(target
);
1846 if (err
!= ERROR_OK
)
1848 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1852 target
->state
= TARGET_UNKNOWN
;
1856 arm7_9_debug_entry(target
);
1857 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32
"", buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32));
1859 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32
"", breakpoint
->address
);
1860 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
1867 /* enable any pending breakpoints and watchpoints */
1868 arm7_9_enable_breakpoints(target
);
1869 arm7_9_enable_watchpoints(target
);
1871 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
1876 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
1878 arm7_9
->branch_resume(target
);
1880 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
1882 arm7_9
->branch_resume_thumb(target
);
1886 LOG_ERROR("unhandled core state");
1890 /* deassert DBGACK and INTDIS */
1891 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
1892 /* INTDIS only when we really resume, not during debug execution */
1893 if (!debug_execution
)
1894 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_INTDIS
, 1, 0);
1895 embeddedice_write_reg(dbg_ctrl
, buf_get_u32(dbg_ctrl
->value
, 0, dbg_ctrl
->size
));
1897 if ((retval
= arm7_9_restart_core(target
)) != ERROR_OK
)
1902 target
->debug_reason
= DBG_REASON_NOTHALTED
;
1904 if (!debug_execution
)
1906 /* registers are now invalid */
1907 armv4_5_invalidate_core_regs(target
);
1908 target
->state
= TARGET_RUNNING
;
1909 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
1916 target
->state
= TARGET_DEBUG_RUNNING
;
1917 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_DEBUG_RESUMED
)) != ERROR_OK
)
1923 LOG_DEBUG("target resumed");
1928 void arm7_9_enable_eice_step(struct target
*target
, uint32_t next_pc
)
1930 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1931 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1932 uint32_t current_pc
;
1933 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
1935 if (next_pc
!= current_pc
)
1937 /* setup an inverse breakpoint on the current PC
1938 * - comparator 1 matches the current address
1939 * - rangeout from comparator 1 is connected to comparator 0 rangein
1940 * - comparator 0 matches any address, as long as rangein is low */
1941 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1942 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1943 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1944 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], ~(EICE_W_CTRL_RANGE
| EICE_W_CTRL_nOPC
) & 0xff);
1945 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], current_pc
);
1946 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1947 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1948 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], 0x0);
1949 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1953 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
], 0xffffffff);
1954 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
], 0xffffffff);
1955 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
], 0x0);
1956 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
], 0xff);
1957 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
], next_pc
);
1958 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
], 0);
1959 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
], 0xffffffff);
1960 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
], EICE_W_CTRL_ENABLE
);
1961 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
], ~EICE_W_CTRL_nOPC
& 0xff);
1965 void arm7_9_disable_eice_step(struct target
*target
)
1967 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1969 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_ADDR_MASK
]);
1970 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_DATA_MASK
]);
1971 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_VALUE
]);
1972 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W0_CONTROL_MASK
]);
1973 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_VALUE
]);
1974 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_ADDR_MASK
]);
1975 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_DATA_MASK
]);
1976 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_MASK
]);
1977 embeddedice_store_reg(&arm7_9
->eice_cache
->reg_list
[EICE_W1_CONTROL_VALUE
]);
1980 int arm7_9_step(struct target
*target
, int current
, uint32_t address
, int handle_breakpoints
)
1982 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
1983 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
1984 struct breakpoint
*breakpoint
= NULL
;
1987 if (target
->state
!= TARGET_HALTED
)
1989 LOG_WARNING("target not halted");
1990 return ERROR_TARGET_NOT_HALTED
;
1993 /* current = 1: continue on current pc, otherwise continue at <address> */
1995 buf_set_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32, address
);
1997 uint32_t current_pc
;
1998 current_pc
= buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32);
2000 /* the front-end may request us not to handle breakpoints */
2001 if (handle_breakpoints
)
2002 if ((breakpoint
= breakpoint_find(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[15].value
, 0, 32))))
2003 if ((retval
= arm7_9_unset_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2008 target
->debug_reason
= DBG_REASON_SINGLESTEP
;
2010 /* calculate PC of next instruction */
2012 if ((retval
= arm_simulate_step(target
, &next_pc
)) != ERROR_OK
)
2014 uint32_t current_opcode
;
2015 target_read_u32(target
, current_pc
, ¤t_opcode
);
2016 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32
"", current_opcode
);
2020 if ((retval
= arm7_9_restore_context(target
)) != ERROR_OK
)
2025 arm7_9
->enable_single_step(target
, next_pc
);
2027 if (armv4_5
->core_state
== ARMV4_5_STATE_ARM
)
2029 arm7_9
->branch_resume(target
);
2031 else if (armv4_5
->core_state
== ARMV4_5_STATE_THUMB
)
2033 arm7_9
->branch_resume_thumb(target
);
2037 LOG_ERROR("unhandled core state");
2041 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_RESUMED
)) != ERROR_OK
)
2046 err
= arm7_9_execute_sys_speed(target
);
2047 arm7_9
->disable_single_step(target
);
2049 /* registers are now invalid */
2050 armv4_5_invalidate_core_regs(target
);
2052 if (err
!= ERROR_OK
)
2054 target
->state
= TARGET_UNKNOWN
;
2056 arm7_9_debug_entry(target
);
2057 if ((retval
= target_call_event_callbacks(target
, TARGET_EVENT_HALTED
)) != ERROR_OK
)
2061 LOG_DEBUG("target stepped");
2065 if ((retval
= arm7_9_set_breakpoint(target
, breakpoint
)) != ERROR_OK
)
2073 int arm7_9_read_core_reg(struct target
*target
, int num
, enum armv4_5_mode mode
)
2075 uint32_t* reg_p
[16];
2078 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2079 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
2081 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2084 enum armv4_5_mode reg_mode
= ((struct armv4_5_core_reg
*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
)->mode
;
2086 if ((num
< 0) || (num
> 16))
2087 return ERROR_INVALID_ARGUMENTS
;
2089 if ((mode
!= ARMV4_5_MODE_ANY
)
2090 && (mode
!= armv4_5
->core_mode
)
2091 && (reg_mode
!= ARMV4_5_MODE_ANY
))
2095 /* change processor mode (mask T bit) */
2096 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
2099 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2102 if ((num
>= 0) && (num
<= 15))
2104 /* read a normal core register */
2105 reg_p
[num
] = &value
;
2107 arm7_9
->read_core_regs(target
, 1 << num
, reg_p
);
2111 /* read a program status register
2112 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2114 struct armv4_5_core_reg
*arch_info
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
;
2115 int spsr
= (arch_info
->mode
== ARMV4_5_MODE_ANY
) ? 0 : 1;
2117 arm7_9
->read_xpsr(target
, &value
, spsr
);
2120 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2125 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).valid
= 1;
2126 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).dirty
= 0;
2127 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).value
, 0, 32, value
);
2129 if ((mode
!= ARMV4_5_MODE_ANY
)
2130 && (mode
!= armv4_5
->core_mode
)
2131 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2132 /* restore processor mode (mask T bit) */
2133 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2139 int arm7_9_write_core_reg(struct target
*target
, int num
, enum armv4_5_mode mode
, uint32_t value
)
2142 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2143 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
2145 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2148 enum armv4_5_mode reg_mode
= ((struct armv4_5_core_reg
*)ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
)->mode
;
2150 if ((num
< 0) || (num
> 16))
2151 return ERROR_INVALID_ARGUMENTS
;
2153 if ((mode
!= ARMV4_5_MODE_ANY
)
2154 && (mode
!= armv4_5
->core_mode
)
2155 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2158 /* change processor mode (mask T bit) */
2159 tmp_cpsr
= buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & 0xE0;
2162 arm7_9
->write_xpsr_im8(target
, tmp_cpsr
& 0xff, 0, 0);
2165 if ((num
>= 0) && (num
<= 15))
2167 /* write a normal core register */
2170 arm7_9
->write_core_regs(target
, 1 << num
, reg
);
2174 /* write a program status register
2175 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2177 struct armv4_5_core_reg
*arch_info
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).arch_info
;
2178 int spsr
= (arch_info
->mode
== ARMV4_5_MODE_ANY
) ? 0 : 1;
2180 /* if we're writing the CPSR, mask the T bit */
2184 arm7_9
->write_xpsr(target
, value
, spsr
);
2187 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).valid
= 1;
2188 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, mode
, num
).dirty
= 0;
2190 if ((mode
!= ARMV4_5_MODE_ANY
)
2191 && (mode
!= armv4_5
->core_mode
)
2192 && (reg_mode
!= ARMV4_5_MODE_ANY
)) {
2193 /* restore processor mode (mask T bit) */
2194 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2197 return jtag_execute_queue();
2200 int arm7_9_read_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2202 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2203 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
2205 uint32_t num_accesses
= 0;
2206 int thisrun_accesses
;
2212 LOG_DEBUG("address: 0x%8.8" PRIx32
", size: 0x%8.8" PRIx32
", count: 0x%8.8" PRIx32
"", address
, size
, count
);
2214 if (target
->state
!= TARGET_HALTED
)
2216 LOG_WARNING("target not halted");
2217 return ERROR_TARGET_NOT_HALTED
;
2220 /* sanitize arguments */
2221 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2222 return ERROR_INVALID_ARGUMENTS
;
2224 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2225 return ERROR_TARGET_UNALIGNED_ACCESS
;
2227 /* load the base register with the address of the first word */
2229 arm7_9
->write_core_regs(target
, 0x1, reg
);
2236 while (num_accesses
< count
)
2239 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2240 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2242 if (last_reg
<= thisrun_accesses
)
2243 last_reg
= thisrun_accesses
;
2245 arm7_9
->load_word_regs(target
, reg_list
);
2247 /* fast memory reads are only safe when the target is running
2248 * from a sufficiently high clock (32 kHz is usually too slow)
2250 if (arm7_9
->fast_memory_access
)
2251 retval
= arm7_9_execute_fast_sys_speed(target
);
2253 retval
= arm7_9_execute_sys_speed(target
);
2254 if (retval
!= ERROR_OK
)
2257 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 4);
2259 /* advance buffer, count number of accesses */
2260 buffer
+= thisrun_accesses
* 4;
2261 num_accesses
+= thisrun_accesses
;
2263 if ((j
++%1024) == 0)
2270 while (num_accesses
< count
)
2273 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2274 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2276 for (i
= 1; i
<= thisrun_accesses
; i
++)
2280 arm7_9
->load_hword_reg(target
, i
);
2281 /* fast memory reads are only safe when the target is running
2282 * from a sufficiently high clock (32 kHz is usually too slow)
2284 if (arm7_9
->fast_memory_access
)
2285 retval
= arm7_9_execute_fast_sys_speed(target
);
2287 retval
= arm7_9_execute_sys_speed(target
);
2288 if (retval
!= ERROR_OK
)
2295 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 2);
2297 /* advance buffer, count number of accesses */
2298 buffer
+= thisrun_accesses
* 2;
2299 num_accesses
+= thisrun_accesses
;
2301 if ((j
++%1024) == 0)
2308 while (num_accesses
< count
)
2311 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2312 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2314 for (i
= 1; i
<= thisrun_accesses
; i
++)
2318 arm7_9
->load_byte_reg(target
, i
);
2319 /* fast memory reads are only safe when the target is running
2320 * from a sufficiently high clock (32 kHz is usually too slow)
2322 if (arm7_9
->fast_memory_access
)
2323 retval
= arm7_9_execute_fast_sys_speed(target
);
2325 retval
= arm7_9_execute_sys_speed(target
);
2326 if (retval
!= ERROR_OK
)
2332 arm7_9
->read_core_regs_target_buffer(target
, reg_list
, buffer
, 1);
2334 /* advance buffer, count number of accesses */
2335 buffer
+= thisrun_accesses
* 1;
2336 num_accesses
+= thisrun_accesses
;
2338 if ((j
++%1024) == 0)
2345 LOG_ERROR("BUG: we shouldn't get here");
2350 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2353 for (i
= 0; i
<= last_reg
; i
++)
2354 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
;
2356 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2357 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2359 LOG_ERROR("JTAG error while reading cpsr");
2360 return ERROR_TARGET_DATA_ABORT
;
2363 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2365 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2367 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2369 return ERROR_TARGET_DATA_ABORT
;
2375 int arm7_9_write_memory(struct target
*target
, uint32_t address
, uint32_t size
, uint32_t count
, uint8_t *buffer
)
2377 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2378 struct armv4_5_common_s
*armv4_5
= &arm7_9
->armv4_5_common
;
2379 struct reg
*dbg_ctrl
= &arm7_9
->eice_cache
->reg_list
[EICE_DBG_CTRL
];
2382 uint32_t num_accesses
= 0;
2383 int thisrun_accesses
;
2389 #ifdef _DEBUG_ARM7_9_
2390 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address
, size
, count
);
2393 if (target
->state
!= TARGET_HALTED
)
2395 LOG_WARNING("target not halted");
2396 return ERROR_TARGET_NOT_HALTED
;
2399 /* sanitize arguments */
2400 if (((size
!= 4) && (size
!= 2) && (size
!= 1)) || (count
== 0) || !(buffer
))
2401 return ERROR_INVALID_ARGUMENTS
;
2403 if (((size
== 4) && (address
& 0x3u
)) || ((size
== 2) && (address
& 0x1u
)))
2404 return ERROR_TARGET_UNALIGNED_ACCESS
;
2406 /* load the base register with the address of the first word */
2408 arm7_9
->write_core_regs(target
, 0x1, reg
);
2410 /* Clear DBGACK, to make sure memory fetches work as expected */
2411 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 0);
2412 embeddedice_store_reg(dbg_ctrl
);
2417 while (num_accesses
< count
)
2420 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2421 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2423 for (i
= 1; i
<= thisrun_accesses
; i
++)
2427 reg
[i
] = target_buffer_get_u32(target
, buffer
);
2431 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2433 arm7_9
->store_word_regs(target
, reg_list
);
2435 /* fast memory writes are only safe when the target is running
2436 * from a sufficiently high clock (32 kHz is usually too slow)
2438 if (arm7_9
->fast_memory_access
)
2439 retval
= arm7_9_execute_fast_sys_speed(target
);
2441 retval
= arm7_9_execute_sys_speed(target
);
2442 if (retval
!= ERROR_OK
)
2447 num_accesses
+= thisrun_accesses
;
2451 while (num_accesses
< count
)
2454 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2455 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2457 for (i
= 1; i
<= thisrun_accesses
; i
++)
2461 reg
[i
] = target_buffer_get_u16(target
, buffer
) & 0xffff;
2465 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2467 for (i
= 1; i
<= thisrun_accesses
; i
++)
2469 arm7_9
->store_hword_reg(target
, i
);
2471 /* fast memory writes are only safe when the target is running
2472 * from a sufficiently high clock (32 kHz is usually too slow)
2474 if (arm7_9
->fast_memory_access
)
2475 retval
= arm7_9_execute_fast_sys_speed(target
);
2477 retval
= arm7_9_execute_sys_speed(target
);
2478 if (retval
!= ERROR_OK
)
2484 num_accesses
+= thisrun_accesses
;
2488 while (num_accesses
< count
)
2491 thisrun_accesses
= ((count
- num_accesses
) >= 14) ? 14 : (count
- num_accesses
);
2492 reg_list
= (0xffff >> (15 - thisrun_accesses
)) & 0xfffe;
2494 for (i
= 1; i
<= thisrun_accesses
; i
++)
2498 reg
[i
] = *buffer
++ & 0xff;
2501 arm7_9
->write_core_regs(target
, reg_list
, reg
);
2503 for (i
= 1; i
<= thisrun_accesses
; i
++)
2505 arm7_9
->store_byte_reg(target
, i
);
2506 /* fast memory writes are only safe when the target is running
2507 * from a sufficiently high clock (32 kHz is usually too slow)
2509 if (arm7_9
->fast_memory_access
)
2510 retval
= arm7_9_execute_fast_sys_speed(target
);
2512 retval
= arm7_9_execute_sys_speed(target
);
2513 if (retval
!= ERROR_OK
)
2520 num_accesses
+= thisrun_accesses
;
2524 LOG_ERROR("BUG: we shouldn't get here");
2530 buf_set_u32(dbg_ctrl
->value
, EICE_DBG_CONTROL_DBGACK
, 1, 1);
2531 embeddedice_store_reg(dbg_ctrl
);
2533 if (armv4_5_mode_to_number(armv4_5
->core_mode
)==-1)
2536 for (i
= 0; i
<= last_reg
; i
++)
2537 ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).dirty
= ARMV4_5_CORE_REG_MODE(armv4_5
->core_cache
, armv4_5
->core_mode
, i
).valid
;
2539 arm7_9
->read_xpsr(target
, &cpsr
, 0);
2540 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2542 LOG_ERROR("JTAG error while reading cpsr");
2543 return ERROR_TARGET_DATA_ABORT
;
2546 if (((cpsr
& 0x1f) == ARMV4_5_MODE_ABT
) && (armv4_5
->core_mode
!= ARMV4_5_MODE_ABT
))
2548 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32
", size: 0x%" PRIx32
", count: 0x%" PRIx32
")", address
, size
, count
);
2550 arm7_9
->write_xpsr_im8(target
, buf_get_u32(armv4_5
->core_cache
->reg_list
[ARMV4_5_CPSR
].value
, 0, 8) & ~0x20, 0, 0);
2552 return ERROR_TARGET_DATA_ABORT
;
2558 static int dcc_count
;
2559 static uint8_t *dcc_buffer
;
2561 static int arm7_9_dcc_completion(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
)
2563 int retval
= ERROR_OK
;
2564 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2566 if ((retval
= target_wait_state(target
, TARGET_DEBUG_RUNNING
, 500)) != ERROR_OK
)
2569 int little
= target
->endianness
== TARGET_LITTLE_ENDIAN
;
2570 int count
= dcc_count
;
2571 uint8_t *buffer
= dcc_buffer
;
2574 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2575 * core function repeated. */
2576 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2579 struct embeddedice_reg
*ice_reg
= arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
].arch_info
;
2580 uint8_t reg_addr
= ice_reg
->addr
& 0x1f;
2581 struct jtag_tap
*tap
;
2582 tap
= ice_reg
->jtag_info
->tap
;
2584 embeddedice_write_dcc(tap
, reg_addr
, buffer
, little
, count
-2);
2585 buffer
+= (count
-2)*4;
2587 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2591 for (i
= 0; i
< count
; i
++)
2593 embeddedice_write_reg(&arm7_9
->eice_cache
->reg_list
[EICE_COMMS_DATA
], fast_target_buffer_get_u32(buffer
, little
));
2598 if ((retval
= target_halt(target
))!= ERROR_OK
)
2602 return target_wait_state(target
, TARGET_HALTED
, 500);
2605 static const uint32_t dcc_code
[] =
2607 /* r0 == input, points to memory buffer
2611 /* spin until DCC control (c0) reports data arrived */
2612 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2613 0xe3110001, /* tst r1, #1 */
2614 0x0afffffc, /* bne w */
2616 /* read word from DCC (c1), write to memory */
2617 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2618 0xe4801004, /* str r1, [r0], #4 */
2621 0xeafffff9 /* b w */
2624 int armv4_5_run_algorithm_inner(struct target
*target
, int num_mem_params
, struct mem_param
*mem_params
, int num_reg_params
, struct reg_param
*reg_params
, uint32_t entry_point
, uint32_t exit_point
, int timeout_ms
, void *arch_info
, int (*run_it
)(struct target
*target
, uint32_t exit_point
, int timeout_ms
, void *arch_info
));
2626 int arm7_9_bulk_write_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint8_t *buffer
)
2629 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2632 if (!arm7_9
->dcc_downloads
)
2633 return target_write_memory(target
, address
, 4, count
, buffer
);
2635 /* regrab previously allocated working_area, or allocate a new one */
2636 if (!arm7_9
->dcc_working_area
)
2638 uint8_t dcc_code_buf
[6 * 4];
2640 /* make sure we have a working area */
2641 if (target_alloc_working_area(target
, 24, &arm7_9
->dcc_working_area
) != ERROR_OK
)
2643 LOG_INFO("no working area available, falling back to memory writes");
2644 return target_write_memory(target
, address
, 4, count
, buffer
);
2647 /* copy target instructions to target endianness */
2648 for (i
= 0; i
< 6; i
++)
2650 target_buffer_set_u32(target
, dcc_code_buf
+ i
*4, dcc_code
[i
]);
2653 /* write DCC code to working area */
2654 if ((retval
= target_write_memory(target
, arm7_9
->dcc_working_area
->address
, 4, 6, dcc_code_buf
)) != ERROR_OK
)
2660 struct armv4_5_algorithm armv4_5_info
;
2661 struct reg_param reg_params
[1];
2663 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2664 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2665 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2667 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2669 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2672 dcc_buffer
= buffer
;
2673 retval
= armv4_5_run_algorithm_inner(target
, 0, NULL
, 1, reg_params
,
2674 arm7_9
->dcc_working_area
->address
, arm7_9
->dcc_working_area
->address
+ 6*4, 20*1000, &armv4_5_info
, arm7_9_dcc_completion
);
2676 if (retval
== ERROR_OK
)
2678 uint32_t endaddress
= buf_get_u32(reg_params
[0].value
, 0, 32);
2679 if (endaddress
!= (address
+ count
*4))
2681 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32
" got 0x%0" PRIx32
"", (address
+ count
*4), endaddress
);
2682 retval
= ERROR_FAIL
;
2686 destroy_reg_param(®_params
[0]);
2691 int arm7_9_checksum_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint32_t* checksum
)
2693 struct working_area
*crc_algorithm
;
2694 struct armv4_5_algorithm armv4_5_info
;
2695 struct reg_param reg_params
[2];
2698 static const uint32_t arm7_9_crc_code
[] = {
2699 0xE1A02000, /* mov r2, r0 */
2700 0xE3E00000, /* mov r0, #0xffffffff */
2701 0xE1A03001, /* mov r3, r1 */
2702 0xE3A04000, /* mov r4, #0 */
2703 0xEA00000B, /* b ncomp */
2705 0xE7D21004, /* ldrb r1, [r2, r4] */
2706 0xE59F7030, /* ldr r7, CRC32XOR */
2707 0xE0200C01, /* eor r0, r0, r1, asl 24 */
2708 0xE3A05000, /* mov r5, #0 */
2710 0xE3500000, /* cmp r0, #0 */
2711 0xE1A06080, /* mov r6, r0, asl #1 */
2712 0xE2855001, /* add r5, r5, #1 */
2713 0xE1A00006, /* mov r0, r6 */
2714 0xB0260007, /* eorlt r0, r6, r7 */
2715 0xE3550008, /* cmp r5, #8 */
2716 0x1AFFFFF8, /* bne loop */
2717 0xE2844001, /* add r4, r4, #1 */
2719 0xE1540003, /* cmp r4, r3 */
2720 0x1AFFFFF1, /* bne nbyte */
2722 0xEAFFFFFE, /* b end */
2723 0x04C11DB7 /* CRC32XOR: .word 0x04C11DB7 */
2728 if (target_alloc_working_area(target
, sizeof(arm7_9_crc_code
), &crc_algorithm
) != ERROR_OK
)
2730 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2733 /* convert flash writing code into a buffer in target endianness */
2734 for (i
= 0; i
< (sizeof(arm7_9_crc_code
)/sizeof(uint32_t)); i
++)
2736 if ((retval
= target_write_u32(target
, crc_algorithm
->address
+ i
*sizeof(uint32_t), arm7_9_crc_code
[i
])) != ERROR_OK
)
2742 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2743 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2744 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2746 init_reg_param(®_params
[0], "r0", 32, PARAM_IN_OUT
);
2747 init_reg_param(®_params
[1], "r1", 32, PARAM_OUT
);
2749 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2750 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
2752 /* 20 second timeout/megabyte */
2753 int timeout
= 20000 * (1 + (count
/ (1024*1024)));
2755 if ((retval
= target_run_algorithm(target
, 0, NULL
, 2, reg_params
,
2756 crc_algorithm
->address
, crc_algorithm
->address
+ (sizeof(arm7_9_crc_code
) - 8), timeout
, &armv4_5_info
)) != ERROR_OK
)
2758 LOG_ERROR("error executing arm7_9 crc algorithm");
2759 destroy_reg_param(®_params
[0]);
2760 destroy_reg_param(®_params
[1]);
2761 target_free_working_area(target
, crc_algorithm
);
2765 *checksum
= buf_get_u32(reg_params
[0].value
, 0, 32);
2767 destroy_reg_param(®_params
[0]);
2768 destroy_reg_param(®_params
[1]);
2770 target_free_working_area(target
, crc_algorithm
);
2775 int arm7_9_blank_check_memory(struct target
*target
, uint32_t address
, uint32_t count
, uint32_t* blank
)
2777 struct working_area
*erase_check_algorithm
;
2778 struct reg_param reg_params
[3];
2779 struct armv4_5_algorithm armv4_5_info
;
2783 static const uint32_t erase_check_code
[] =
2786 0xe4d03001, /* ldrb r3, [r0], #1 */
2787 0xe0022003, /* and r2, r2, r3 */
2788 0xe2511001, /* subs r1, r1, #1 */
2789 0x1afffffb, /* bne loop */
2791 0xeafffffe /* b end */
2794 /* make sure we have a working area */
2795 if (target_alloc_working_area(target
, sizeof(erase_check_code
), &erase_check_algorithm
) != ERROR_OK
)
2797 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE
;
2800 /* convert flash writing code into a buffer in target endianness */
2801 for (i
= 0; i
< (sizeof(erase_check_code
)/sizeof(uint32_t)); i
++)
2802 if ((retval
= target_write_u32(target
, erase_check_algorithm
->address
+ i
*sizeof(uint32_t), erase_check_code
[i
])) != ERROR_OK
)
2807 armv4_5_info
.common_magic
= ARMV4_5_COMMON_MAGIC
;
2808 armv4_5_info
.core_mode
= ARMV4_5_MODE_SVC
;
2809 armv4_5_info
.core_state
= ARMV4_5_STATE_ARM
;
2811 init_reg_param(®_params
[0], "r0", 32, PARAM_OUT
);
2812 buf_set_u32(reg_params
[0].value
, 0, 32, address
);
2814 init_reg_param(®_params
[1], "r1", 32, PARAM_OUT
);
2815 buf_set_u32(reg_params
[1].value
, 0, 32, count
);
2817 init_reg_param(®_params
[2], "r2", 32, PARAM_IN_OUT
);
2818 buf_set_u32(reg_params
[2].value
, 0, 32, 0xff);
2820 if ((retval
= target_run_algorithm(target
, 0, NULL
, 3, reg_params
,
2821 erase_check_algorithm
->address
, erase_check_algorithm
->address
+ (sizeof(erase_check_code
) - 4), 10000, &armv4_5_info
)) != ERROR_OK
)
2823 destroy_reg_param(®_params
[0]);
2824 destroy_reg_param(®_params
[1]);
2825 destroy_reg_param(®_params
[2]);
2826 target_free_working_area(target
, erase_check_algorithm
);
2830 *blank
= buf_get_u32(reg_params
[2].value
, 0, 32);
2832 destroy_reg_param(®_params
[0]);
2833 destroy_reg_param(®_params
[1]);
2834 destroy_reg_param(®_params
[2]);
2836 target_free_working_area(target
, erase_check_algorithm
);
2841 COMMAND_HANDLER(handle_arm7_9_write_xpsr_command
)
2846 struct target
*target
= get_current_target(cmd_ctx
);
2847 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2849 if (!is_arm7_9(arm7_9
))
2851 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2852 return ERROR_TARGET_INVALID
;
2855 if (target
->state
!= TARGET_HALTED
)
2857 command_print(cmd_ctx
, "can't write registers while running");
2863 command_print(cmd_ctx
, "usage: write_xpsr <value> <not cpsr | spsr>");
2867 COMMAND_PARSE_NUMBER(u32
, args
[0], value
);
2868 COMMAND_PARSE_NUMBER(int, args
[1], spsr
);
2870 /* if we're writing the CPSR, mask the T bit */
2874 arm7_9
->write_xpsr(target
, value
, spsr
);
2875 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2877 LOG_ERROR("JTAG error while writing to xpsr");
2884 COMMAND_HANDLER(handle_arm7_9_write_xpsr_im8_command
)
2890 struct target
*target
= get_current_target(cmd_ctx
);
2891 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2893 if (!is_arm7_9(arm7_9
))
2895 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2896 return ERROR_TARGET_INVALID
;
2899 if (target
->state
!= TARGET_HALTED
)
2901 command_print(cmd_ctx
, "can't write registers while running");
2907 command_print(cmd_ctx
, "usage: write_xpsr_im8 <im8> <rotate> <not cpsr | spsr>");
2911 COMMAND_PARSE_NUMBER(u32
, args
[0], value
);
2912 COMMAND_PARSE_NUMBER(int, args
[1], rotate
);
2913 COMMAND_PARSE_NUMBER(int, args
[2], spsr
);
2915 arm7_9
->write_xpsr_im8(target
, value
, rotate
, spsr
);
2916 if ((retval
= jtag_execute_queue()) != ERROR_OK
)
2918 LOG_ERROR("JTAG error while writing 8-bit immediate to xpsr");
2925 COMMAND_HANDLER(handle_arm7_9_write_core_reg_command
)
2930 struct target
*target
= get_current_target(cmd_ctx
);
2931 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2933 if (!is_arm7_9(arm7_9
))
2935 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2936 return ERROR_TARGET_INVALID
;
2939 if (target
->state
!= TARGET_HALTED
)
2941 command_print(cmd_ctx
, "can't write registers while running");
2947 command_print(cmd_ctx
, "usage: write_core_reg <num> <mode> <value>");
2951 COMMAND_PARSE_NUMBER(int, args
[0], num
);
2952 COMMAND_PARSE_NUMBER(u32
, args
[1], mode
);
2953 COMMAND_PARSE_NUMBER(u32
, args
[2], value
);
2955 return arm7_9_write_core_reg(target
, num
, mode
, value
);
2958 COMMAND_HANDLER(handle_arm7_9_dbgrq_command
)
2960 struct target
*target
= get_current_target(cmd_ctx
);
2961 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2963 if (!is_arm7_9(arm7_9
))
2965 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2966 return ERROR_TARGET_INVALID
;
2971 if (strcmp("enable", args
[0]) == 0)
2973 arm7_9
->use_dbgrq
= 1;
2975 else if (strcmp("disable", args
[0]) == 0)
2977 arm7_9
->use_dbgrq
= 0;
2981 command_print(cmd_ctx
, "usage: arm7_9 dbgrq <enable | disable>");
2985 command_print(cmd_ctx
, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9
->use_dbgrq
) ? "enabled" : "disabled");
2990 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command
)
2992 struct target
*target
= get_current_target(cmd_ctx
);
2993 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
2995 if (!is_arm7_9(arm7_9
))
2997 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
2998 return ERROR_TARGET_INVALID
;
3003 if (strcmp("enable", args
[0]) == 0)
3005 arm7_9
->fast_memory_access
= 1;
3007 else if (strcmp("disable", args
[0]) == 0)
3009 arm7_9
->fast_memory_access
= 0;
3013 command_print(cmd_ctx
, "usage: arm7_9 fast_memory_access <enable | disable>");
3017 command_print(cmd_ctx
, "fast memory access is %s", (arm7_9
->fast_memory_access
) ? "enabled" : "disabled");
3022 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command
)
3024 struct target
*target
= get_current_target(cmd_ctx
);
3025 struct arm7_9_common
*arm7_9
= target_to_arm7_9(target
);
3027 if (!is_arm7_9(arm7_9
))
3029 command_print(cmd_ctx
, "current target isn't an ARM7/ARM9 target");
3030 return ERROR_TARGET_INVALID
;
3035 if (strcmp("enable", args
[0]) == 0)
3037 arm7_9
->dcc_downloads
= 1;
3039 else if (strcmp("disable"