jtag: retire jtag_get/set_end_state()
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * Copyright (C) 2009 by David Brownell *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
30 ***************************************************************************/
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "breakpoints.h"
36 #include "embeddedice.h"
37 #include "target_request.h"
38 #include "etm.h"
39 #include <helper/time_support.h>
40 #include "arm_simulator.h"
41 #include "arm_semihosting.h"
42 #include "algorithm.h"
43 #include "register.h"
44 #include "armv4_5.h"
45
46
47 /**
48 * @file
49 * Hold common code supporting the ARM7 and ARM9 core generations.
50 *
51 * While the ARM core implementations evolved substantially during these
52 * two generations, they look quite similar from the JTAG perspective.
53 * Both have similar debug facilities, based on the same two scan chains
54 * providing access to the core and to an EmbeddedICE module. Both can
55 * support similar ETM and ETB modules, for tracing. And both expose
56 * what could be viewed as "ARM Classic", with multiple processor modes,
57 * shadowed registers, and support for the Thumb instruction set.
58 *
59 * Processor differences include things like presence or absence of MMU
60 * and cache, pipeline sizes, use of a modified Harvard Architecure
61 * (with separate instruction and data busses from the CPU), support
62 * for cpu clock gating during idle, and more.
63 */
64
65 static int arm7_9_debug_entry(struct target *target);
66
67 /**
68 * Clear watchpoints for an ARM7/9 target.
69 *
70 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
71 * @return JTAG error status after executing queue
72 */
73 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
74 {
75 LOG_DEBUG("-");
76 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
77 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
78 arm7_9->sw_breakpoint_count = 0;
79 arm7_9->sw_breakpoints_added = 0;
80 arm7_9->wp0_used = 0;
81 arm7_9->wp1_used = arm7_9->wp1_used_default;
82 arm7_9->wp_available = arm7_9->wp_available_max;
83
84 return jtag_execute_queue();
85 }
86
87 /**
88 * Assign a watchpoint to one of the two available hardware comparators in an
89 * ARM7 or ARM9 target.
90 *
91 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
92 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
93 */
94 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
95 {
96 if (!arm7_9->wp0_used)
97 {
98 arm7_9->wp0_used = 1;
99 breakpoint->set = 1;
100 arm7_9->wp_available--;
101 }
102 else if (!arm7_9->wp1_used)
103 {
104 arm7_9->wp1_used = 1;
105 breakpoint->set = 2;
106 arm7_9->wp_available--;
107 }
108 else
109 {
110 LOG_ERROR("BUG: no hardware comparator available");
111 }
112 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
113 breakpoint->unique_id,
114 breakpoint->address,
115 breakpoint->set );
116 }
117
118 /**
119 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
120 *
121 * @param arm7_9 Pointer to common struct for ARM7/9 targets
122 * @return Error codes if there is a problem finding a watchpoint or the result
123 * of executing the JTAG queue
124 */
125 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
126 {
127 if (arm7_9->sw_breakpoints_added)
128 {
129 return ERROR_OK;
130 }
131 if (arm7_9->wp_available < 1)
132 {
133 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
134 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
135 }
136 arm7_9->wp_available--;
137
138 /* pick a breakpoint unit */
139 if (!arm7_9->wp0_used)
140 {
141 arm7_9->sw_breakpoints_added = 1;
142 arm7_9->wp0_used = 3;
143 } else if (!arm7_9->wp1_used)
144 {
145 arm7_9->sw_breakpoints_added = 2;
146 arm7_9->wp1_used = 3;
147 }
148 else
149 {
150 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
151 return ERROR_FAIL;
152 }
153
154 if (arm7_9->sw_breakpoints_added == 1)
155 {
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
157 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
158 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
159 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
161 }
162 else if (arm7_9->sw_breakpoints_added == 2)
163 {
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
165 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
166 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
167 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
168 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
169 }
170 else
171 {
172 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
173 return ERROR_FAIL;
174 }
175 LOG_DEBUG("SW BP using hw wp: %d",
176 arm7_9->sw_breakpoints_added );
177
178 return jtag_execute_queue();
179 }
180
181 /**
182 * Setup the common pieces for an ARM7/9 target after reset or on startup.
183 *
184 * @param target Pointer to an ARM7/9 target to setup
185 * @return Result of clearing the watchpoints on the target
186 */
187 int arm7_9_setup(struct target *target)
188 {
189 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
190
191 return arm7_9_clear_watchpoints(arm7_9);
192 }
193
194 /**
195 * Set either a hardware or software breakpoint on an ARM7/9 target. The
196 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
197 * might have erased the values in Embedded ICE.
198 *
199 * @param target Pointer to the target device to set the breakpoints on
200 * @param breakpoint Pointer to the breakpoint to be set
201 * @return For hardware breakpoints, this is the result of executing the JTAG
202 * queue. For software breakpoints, this will be the status of the
203 * required memory reads and writes
204 */
205 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
206 {
207 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
208 int retval = ERROR_OK;
209
210 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
211 breakpoint->unique_id,
212 breakpoint->address,
213 breakpoint->type);
214
215 if (target->state != TARGET_HALTED)
216 {
217 LOG_WARNING("target not halted");
218 return ERROR_TARGET_NOT_HALTED;
219 }
220
221 if (breakpoint->type == BKPT_HARD)
222 {
223 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
224 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
225
226 /* reassign a hw breakpoint */
227 if (breakpoint->set == 0)
228 {
229 arm7_9_assign_wp(arm7_9, breakpoint);
230 }
231
232 if (breakpoint->set == 1)
233 {
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
235 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
236 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
237 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
239 }
240 else if (breakpoint->set == 2)
241 {
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
243 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
244 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
245 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
246 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
247 }
248 else
249 {
250 LOG_ERROR("BUG: no hardware comparator available");
251 return ERROR_OK;
252 }
253
254 retval = jtag_execute_queue();
255 }
256 else if (breakpoint->type == BKPT_SOFT)
257 {
258 /* did we already set this breakpoint? */
259 if (breakpoint->set)
260 return ERROR_OK;
261
262 if (breakpoint->length == 4)
263 {
264 uint32_t verify = 0xffffffff;
265 /* keep the original instruction in target endianness */
266 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
267 {
268 return retval;
269 }
270 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
271 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
272 {
273 return retval;
274 }
275
276 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
277 {
278 return retval;
279 }
280 if (verify != arm7_9->arm_bkpt)
281 {
282 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
283 return ERROR_OK;
284 }
285 }
286 else
287 {
288 uint16_t verify = 0xffff;
289 /* keep the original instruction in target endianness */
290 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
291 {
292 return retval;
293 }
294 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
295 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
296 {
297 return retval;
298 }
299
300 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
301 {
302 return retval;
303 }
304 if (verify != arm7_9->thumb_bkpt)
305 {
306 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
307 return ERROR_OK;
308 }
309 }
310
311 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
312 return retval;
313
314 arm7_9->sw_breakpoint_count++;
315
316 breakpoint->set = 1;
317 }
318
319 return retval;
320 }
321
322 /**
323 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
324 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
325 * will be updated. Otherwise, the software breakpoint will be restored to its
326 * original instruction if it hasn't already been modified.
327 *
328 * @param target Pointer to ARM7/9 target to unset the breakpoint from
329 * @param breakpoint Pointer to breakpoint to be unset
330 * @return For hardware breakpoints, this is the result of executing the JTAG
331 * queue. For software breakpoints, this will be the status of the
332 * required memory reads and writes
333 */
334 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
335 {
336 int retval = ERROR_OK;
337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
338
339 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
340 breakpoint->unique_id,
341 breakpoint->address );
342
343 if (!breakpoint->set)
344 {
345 LOG_WARNING("breakpoint not set");
346 return ERROR_OK;
347 }
348
349 if (breakpoint->type == BKPT_HARD)
350 {
351 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
352 breakpoint->unique_id,
353 breakpoint->set );
354 if (breakpoint->set == 1)
355 {
356 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
357 arm7_9->wp0_used = 0;
358 arm7_9->wp_available++;
359 }
360 else if (breakpoint->set == 2)
361 {
362 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
363 arm7_9->wp1_used = 0;
364 arm7_9->wp_available++;
365 }
366 retval = jtag_execute_queue();
367 breakpoint->set = 0;
368 }
369 else
370 {
371 /* restore original instruction (kept in target endianness) */
372 if (breakpoint->length == 4)
373 {
374 uint32_t current_instr;
375 /* check that user program as not modified breakpoint instruction */
376 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
377 {
378 return retval;
379 }
380 if (current_instr == arm7_9->arm_bkpt)
381 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
382 {
383 return retval;
384 }
385 }
386 else
387 {
388 uint16_t current_instr;
389 /* check that user program as not modified breakpoint instruction */
390 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
391 {
392 return retval;
393 }
394 if (current_instr == arm7_9->thumb_bkpt)
395 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
396 {
397 return retval;
398 }
399 }
400
401 if (--arm7_9->sw_breakpoint_count==0)
402 {
403 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
404 if (arm7_9->sw_breakpoints_added == 1)
405 {
406 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
407 }
408 else if (arm7_9->sw_breakpoints_added == 2)
409 {
410 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
411 }
412 }
413
414 breakpoint->set = 0;
415 }
416
417 return retval;
418 }
419
420 /**
421 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
422 * dangling breakpoints and that the desired breakpoint can be added.
423 *
424 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
425 * @param breakpoint Pointer to the breakpoint to be added
426 * @return An error status if there is a problem adding the breakpoint or the
427 * result of setting the breakpoint
428 */
429 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
430 {
431 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
432
433 if (arm7_9->breakpoint_count == 0)
434 {
435 /* make sure we don't have any dangling breakpoints. This is vital upon
436 * GDB connect/disconnect
437 */
438 arm7_9_clear_watchpoints(arm7_9);
439 }
440
441 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
442 {
443 LOG_INFO("no watchpoint unit available for hardware breakpoint");
444 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
445 }
446
447 if ((breakpoint->length != 2) && (breakpoint->length != 4))
448 {
449 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
450 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
451 }
452
453 if (breakpoint->type == BKPT_HARD)
454 {
455 arm7_9_assign_wp(arm7_9, breakpoint);
456 }
457
458 arm7_9->breakpoint_count++;
459
460 return arm7_9_set_breakpoint(target, breakpoint);
461 }
462
463 /**
464 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
465 * dangling breakpoints and updates available watchpoints if it is a hardware
466 * breakpoint.
467 *
468 * @param target Pointer to the target to have a breakpoint removed
469 * @param breakpoint Pointer to the breakpoint to be removed
470 * @return Error status if there was a problem unsetting the breakpoint or the
471 * watchpoints could not be cleared
472 */
473 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
474 {
475 int retval = ERROR_OK;
476 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
477
478 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
479 {
480 return retval;
481 }
482
483 if (breakpoint->type == BKPT_HARD)
484 arm7_9->wp_available++;
485
486 arm7_9->breakpoint_count--;
487 if (arm7_9->breakpoint_count == 0)
488 {
489 /* make sure we don't have any dangling breakpoints */
490 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
491 {
492 return retval;
493 }
494 }
495
496 return ERROR_OK;
497 }
498
499 /**
500 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
501 * considered a bug to call this function when there are no available watchpoint
502 * units.
503 *
504 * @param target Pointer to an ARM7/9 target to set a watchpoint on
505 * @param watchpoint Pointer to the watchpoint to be set
506 * @return Error status if watchpoint set fails or the result of executing the
507 * JTAG queue
508 */
509 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
510 {
511 int retval = ERROR_OK;
512 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
513 int rw_mask = 1;
514 uint32_t mask;
515
516 mask = watchpoint->length - 1;
517
518 if (target->state != TARGET_HALTED)
519 {
520 LOG_WARNING("target not halted");
521 return ERROR_TARGET_NOT_HALTED;
522 }
523
524 if (watchpoint->rw == WPT_ACCESS)
525 rw_mask = 0;
526 else
527 rw_mask = 1;
528
529 if (!arm7_9->wp0_used)
530 {
531 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
532 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
534 if (watchpoint->mask != 0xffffffffu)
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
536 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
538
539 if ((retval = jtag_execute_queue()) != ERROR_OK)
540 {
541 return retval;
542 }
543 watchpoint->set = 1;
544 arm7_9->wp0_used = 2;
545 }
546 else if (!arm7_9->wp1_used)
547 {
548 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
549 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
551 if (watchpoint->mask != 0xffffffffu)
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
553 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
555
556 if ((retval = jtag_execute_queue()) != ERROR_OK)
557 {
558 return retval;
559 }
560 watchpoint->set = 2;
561 arm7_9->wp1_used = 2;
562 }
563 else
564 {
565 LOG_ERROR("BUG: no hardware comparator available");
566 return ERROR_OK;
567 }
568
569 return ERROR_OK;
570 }
571
572 /**
573 * Unset an existing watchpoint and clear the used watchpoint unit.
574 *
575 * @param target Pointer to the target to have the watchpoint removed
576 * @param watchpoint Pointer to the watchpoint to be removed
577 * @return Error status while trying to unset the watchpoint or the result of
578 * executing the JTAG queue
579 */
580 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
581 {
582 int retval = ERROR_OK;
583 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
584
585 if (target->state != TARGET_HALTED)
586 {
587 LOG_WARNING("target not halted");
588 return ERROR_TARGET_NOT_HALTED;
589 }
590
591 if (!watchpoint->set)
592 {
593 LOG_WARNING("breakpoint not set");
594 return ERROR_OK;
595 }
596
597 if (watchpoint->set == 1)
598 {
599 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
600 if ((retval = jtag_execute_queue()) != ERROR_OK)
601 {
602 return retval;
603 }
604 arm7_9->wp0_used = 0;
605 }
606 else if (watchpoint->set == 2)
607 {
608 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
609 if ((retval = jtag_execute_queue()) != ERROR_OK)
610 {
611 return retval;
612 }
613 arm7_9->wp1_used = 0;
614 }
615 watchpoint->set = 0;
616
617 return ERROR_OK;
618 }
619
620 /**
621 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
622 * available, an error response is returned.
623 *
624 * @param target Pointer to the ARM7/9 target to add a watchpoint to
625 * @param watchpoint Pointer to the watchpoint to be added
626 * @return Error status while trying to add the watchpoint
627 */
628 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
629 {
630 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
631
632 if (arm7_9->wp_available < 1)
633 {
634 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
635 }
636
637 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
638 {
639 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
640 }
641
642 arm7_9->wp_available--;
643
644 return ERROR_OK;
645 }
646
647 /**
648 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
649 * the used watchpoint unit will be reopened.
650 *
651 * @param target Pointer to the target to remove a watchpoint from
652 * @param watchpoint Pointer to the watchpoint to be removed
653 * @return Result of trying to unset the watchpoint
654 */
655 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
656 {
657 int retval = ERROR_OK;
658 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
659
660 if (watchpoint->set)
661 {
662 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
663 {
664 return retval;
665 }
666 }
667
668 arm7_9->wp_available++;
669
670 return ERROR_OK;
671 }
672
673 /**
674 * Restarts the target by sending a RESTART instruction and moving the JTAG
675 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
676 * asserted by the processor.
677 *
678 * @param target Pointer to target to issue commands to
679 * @return Error status if there is a timeout or a problem while executing the
680 * JTAG queue
681 */
682 int arm7_9_execute_sys_speed(struct target *target)
683 {
684 int retval;
685 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
686 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
687 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
688
689 /* set RESTART instruction */
690 if (arm7_9->need_bypass_before_restart) {
691 arm7_9->need_bypass_before_restart = 0;
692 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
693 }
694 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
695
696 long long then = timeval_ms();
697 int timeout;
698 while (!(timeout = ((timeval_ms()-then) > 1000)))
699 {
700 /* read debug status register */
701 embeddedice_read_reg(dbg_stat);
702 if ((retval = jtag_execute_queue()) != ERROR_OK)
703 return retval;
704 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
705 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
706 break;
707 if (debug_level >= 3)
708 {
709 alive_sleep(100);
710 } else
711 {
712 keep_alive();
713 }
714 }
715 if (timeout)
716 {
717 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
718 return ERROR_TARGET_TIMEOUT;
719 }
720
721 return ERROR_OK;
722 }
723
724 /**
725 * Restarts the target by sending a RESTART instruction and moving the JTAG
726 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
727 * waiting until they are.
728 *
729 * @param target Pointer to the target to issue commands to
730 * @return Always ERROR_OK
731 */
732 int arm7_9_execute_fast_sys_speed(struct target *target)
733 {
734 static int set = 0;
735 static uint8_t check_value[4], check_mask[4];
736
737 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
738 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
739 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
740
741 /* set RESTART instruction */
742 if (arm7_9->need_bypass_before_restart) {
743 arm7_9->need_bypass_before_restart = 0;
744 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
745 }
746 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
747
748 if (!set)
749 {
750 /* check for DBGACK and SYSCOMP set (others don't care) */
751
752 /* NB! These are constants that must be available until after next jtag_execute() and
753 * we evaluate the values upon first execution in lieu of setting up these constants
754 * during early setup.
755 * */
756 buf_set_u32(check_value, 0, 32, 0x9);
757 buf_set_u32(check_mask, 0, 32, 0x9);
758 set = 1;
759 }
760
761 /* read debug status register */
762 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
763
764 return ERROR_OK;
765 }
766
767 /**
768 * Get some data from the ARM7/9 target.
769 *
770 * @param target Pointer to the ARM7/9 target to read data from
771 * @param size The number of 32bit words to be read
772 * @param buffer Pointer to the buffer that will hold the data
773 * @return The result of receiving data from the Embedded ICE unit
774 */
775 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
776 {
777 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
778 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
779 uint32_t *data;
780 int retval = ERROR_OK;
781 uint32_t i;
782
783 data = malloc(size * (sizeof(uint32_t)));
784
785 retval = embeddedice_receive(jtag_info, data, size);
786
787 /* return the 32-bit ints in the 8-bit array */
788 for (i = 0; i < size; i++)
789 {
790 h_u32_to_le(buffer + (i * 4), data[i]);
791 }
792
793 free(data);
794
795 return retval;
796 }
797
798 /**
799 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
800 * target is running and the DCC control register has the W bit high, this will
801 * execute the request on the target.
802 *
803 * @param priv Void pointer expected to be a struct target pointer
804 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
805 * from the Embedded ICE unit
806 */
807 int arm7_9_handle_target_request(void *priv)
808 {
809 int retval = ERROR_OK;
810 struct target *target = priv;
811 if (!target_was_examined(target))
812 return ERROR_OK;
813 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
814 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
815 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
816
817 if (!target->dbg_msg_enabled)
818 return ERROR_OK;
819
820 if (target->state == TARGET_RUNNING)
821 {
822 /* read DCC control register */
823 embeddedice_read_reg(dcc_control);
824 if ((retval = jtag_execute_queue()) != ERROR_OK)
825 {
826 return retval;
827 }
828
829 /* check W bit */
830 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
831 {
832 uint32_t request;
833
834 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
835 {
836 return retval;
837 }
838 if ((retval = target_request(target, request)) != ERROR_OK)
839 {
840 return retval;
841 }
842 }
843 }
844
845 return ERROR_OK;
846 }
847
848 /**
849 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
850 * is manipulated to the right halted state based on its current state. This is
851 * what happens:
852 *
853 * <table>
854 * <tr><th > State</th><th > Action</th></tr>
855 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
856 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
857 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
858 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
859 * </table>
860 *
861 * If the target does not end up in the halted state, a warning is produced. If
862 * DBGACK is cleared, then the target is expected to either be running or
863 * running in debug.
864 *
865 * @param target Pointer to the ARM7/9 target to poll
866 * @return ERROR_OK or an error status if a command fails
867 */
868 int arm7_9_poll(struct target *target)
869 {
870 int retval;
871 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
872 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
873
874 /* read debug status register */
875 embeddedice_read_reg(dbg_stat);
876 if ((retval = jtag_execute_queue()) != ERROR_OK)
877 {
878 return retval;
879 }
880
881 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
882 {
883 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
884 if (target->state == TARGET_UNKNOWN)
885 {
886 /* Starting OpenOCD with target in debug-halt */
887 target->state = TARGET_RUNNING;
888 LOG_DEBUG("DBGACK already set during server startup.");
889 }
890 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
891 {
892 target->state = TARGET_HALTED;
893
894 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
895 return retval;
896
897 if (arm_semihosting(target, &retval) != 0)
898 return retval;
899
900 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
901 {
902 return retval;
903 }
904 }
905 if (target->state == TARGET_DEBUG_RUNNING)
906 {
907 target->state = TARGET_HALTED;
908 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
909 return retval;
910
911 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
912 {
913 return retval;
914 }
915 }
916 if (target->state != TARGET_HALTED)
917 {
918 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
919 }
920 }
921 else
922 {
923 if (target->state != TARGET_DEBUG_RUNNING)
924 target->state = TARGET_RUNNING;
925 }
926
927 return ERROR_OK;
928 }
929
930 /**
931 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
932 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
933 * affected) completely stop the JTAG clock while the core is held in reset
934 * (SRST). It isn't possible to program the halt condition once reset is
935 * asserted, hence a hook that allows the target to set up its reset-halt
936 * condition is setup prior to asserting reset.
937 *
938 * @param target Pointer to an ARM7/9 target to assert reset on
939 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
940 */
941 int arm7_9_assert_reset(struct target *target)
942 {
943 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
944 enum reset_types jtag_reset_config = jtag_get_reset_config();
945 bool use_event = false;
946
947 LOG_DEBUG("target->state: %s",
948 target_state_name(target));
949
950 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
951 use_event = true;
952 else if (!(jtag_reset_config & RESET_HAS_SRST)) {
953 LOG_ERROR("%s: how to reset?", target_name(target));
954 return ERROR_FAIL;
955 }
956
957 /* At this point trst has been asserted/deasserted once. We would
958 * like to program EmbeddedICE while SRST is asserted, instead of
959 * depending on SRST to leave that module alone. However, many CPUs
960 * gate the JTAG clock while SRST is asserted; or JTAG may need
961 * clock stability guarantees (adaptive clocking might help).
962 *
963 * So we assume JTAG access during SRST is off the menu unless it's
964 * been specifically enabled.
965 */
966 bool srst_asserted = false;
967
968 if (!use_event
969 && !(jtag_reset_config & RESET_SRST_PULLS_TRST)
970 && (jtag_reset_config & RESET_SRST_NO_GATING))
971 {
972 jtag_add_reset(0, 1);
973 srst_asserted = true;
974 }
975
976 if (target->reset_halt)
977 {
978 /*
979 * For targets that don't support communication while SRST is
980 * asserted, we need to set up the reset vector catch first.
981 *
982 * When we use TRST+SRST and that's equivalent to a power-up
983 * reset, these settings may well be reset anyway; so setting
984 * them here won't matter.
985 */
986 if (arm7_9->has_vector_catch)
987 {
988 /* program vector catch register to catch reset */
989 embeddedice_write_reg(&arm7_9->eice_cache
990 ->reg_list[EICE_VEC_CATCH], 0x1);
991
992 /* extra runtest added as issues were found with
993 * certain ARM9 cores (maybe more) - AT91SAM9260
994 * and STR9
995 */
996 jtag_add_runtest(1, TAP_IDLE);
997 }
998 else
999 {
1000 /* program watchpoint unit to match on reset vector
1001 * address
1002 */
1003 embeddedice_write_reg(&arm7_9->eice_cache
1004 ->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1005 embeddedice_write_reg(&arm7_9->eice_cache
1006 ->reg_list[EICE_W0_ADDR_MASK], 0x3);
1007 embeddedice_write_reg(&arm7_9->eice_cache
1008 ->reg_list[EICE_W0_DATA_MASK],
1009 0xffffffff);
1010 embeddedice_write_reg(&arm7_9->eice_cache
1011 ->reg_list[EICE_W0_CONTROL_VALUE],
1012 EICE_W_CTRL_ENABLE);
1013 embeddedice_write_reg(&arm7_9->eice_cache
1014 ->reg_list[EICE_W0_CONTROL_MASK],
1015 ~EICE_W_CTRL_nOPC & 0xff);
1016 }
1017 }
1018
1019 if (use_event) {
1020 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1021 } else {
1022 /* If we use SRST ... we'd like to issue just SRST, but the
1023 * board or chip may be set up so we have to assert TRST as
1024 * well. On some chips that combination is equivalent to a
1025 * power-up reset, and generally clobbers EICE state.
1026 */
1027 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1028 jtag_add_reset(1, 1);
1029 else if (!srst_asserted)
1030 jtag_add_reset(0, 1);
1031 jtag_add_sleep(50000);
1032 }
1033
1034 target->state = TARGET_RESET;
1035 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1036
1037 /* REVISIT why isn't standard debug entry logic sufficient?? */
1038 if (target->reset_halt
1039 && (!(jtag_reset_config & RESET_SRST_PULLS_TRST)
1040 || use_event))
1041 {
1042 /* debug entry was prepared above */
1043 target->debug_reason = DBG_REASON_DBGRQ;
1044 }
1045
1046 return ERROR_OK;
1047 }
1048
1049 /**
1050 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1051 * and the target is being reset into a halt, a warning will be triggered
1052 * because it is not possible to reset into a halted mode in this case. The
1053 * target is halted using the target's functions.
1054 *
1055 * @param target Pointer to the target to have the reset deasserted
1056 * @return ERROR_OK or an error from polling or halting the target
1057 */
1058 int arm7_9_deassert_reset(struct target *target)
1059 {
1060 int retval = ERROR_OK;
1061 LOG_DEBUG("target->state: %s",
1062 target_state_name(target));
1063
1064 /* deassert reset lines */
1065 jtag_add_reset(0, 0);
1066
1067 enum reset_types jtag_reset_config = jtag_get_reset_config();
1068 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1069 {
1070 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1071 /* set up embedded ice registers again */
1072 if ((retval = target_examine_one(target)) != ERROR_OK)
1073 return retval;
1074
1075 if ((retval = target_poll(target)) != ERROR_OK)
1076 {
1077 return retval;
1078 }
1079
1080 if ((retval = target_halt(target)) != ERROR_OK)
1081 {
1082 return retval;
1083 }
1084
1085 }
1086 return retval;
1087 }
1088
1089 /**
1090 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1091 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1092 * vector catch was used, it is restored. Otherwise, the control value is
1093 * restored and the watchpoint unit is restored if it was in use.
1094 *
1095 * @param target Pointer to the ARM7/9 target to have halt cleared
1096 * @return Always ERROR_OK
1097 */
1098 int arm7_9_clear_halt(struct target *target)
1099 {
1100 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1101 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1102
1103 /* we used DBGRQ only if we didn't come out of reset */
1104 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1105 {
1106 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1107 */
1108 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1109 embeddedice_store_reg(dbg_ctrl);
1110 }
1111 else
1112 {
1113 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1114 {
1115 /* if we came out of reset, and vector catch is supported, we used
1116 * vector catch to enter debug state
1117 * restore the register in that case
1118 */
1119 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1120 }
1121 else
1122 {
1123 /* restore registers if watchpoint unit 0 was in use
1124 */
1125 if (arm7_9->wp0_used)
1126 {
1127 if (arm7_9->debug_entry_from_reset)
1128 {
1129 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1130 }
1131 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1132 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1133 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1134 }
1135 /* control value always has to be restored, as it was either disabled,
1136 * or enabled with possibly different bits
1137 */
1138 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1139 }
1140 }
1141
1142 return ERROR_OK;
1143 }
1144
1145 /**
1146 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1147 * and then there is a wait until the processor shows the halt. This wait can
1148 * timeout and results in an error being returned. The software reset involves
1149 * clearing the halt, updating the debug control register, changing to ARM mode,
1150 * reset of the program counter, and reset of all of the registers.
1151 *
1152 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1153 * @return Error status if any of the commands fail, otherwise ERROR_OK
1154 */
1155 int arm7_9_soft_reset_halt(struct target *target)
1156 {
1157 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1158 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1159 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1160 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1161 int i;
1162 int retval;
1163
1164 /* FIX!!! replace some of this code with tcl commands
1165 *
1166 * halt # the halt command is synchronous
1167 * armv4_5 core_state arm
1168 *
1169 */
1170
1171 if ((retval = target_halt(target)) != ERROR_OK)
1172 return retval;
1173
1174 long long then = timeval_ms();
1175 int timeout;
1176 while (!(timeout = ((timeval_ms()-then) > 1000)))
1177 {
1178 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1179 break;
1180 embeddedice_read_reg(dbg_stat);
1181 if ((retval = jtag_execute_queue()) != ERROR_OK)
1182 return retval;
1183 if (debug_level >= 3)
1184 {
1185 alive_sleep(100);
1186 } else
1187 {
1188 keep_alive();
1189 }
1190 }
1191 if (timeout)
1192 {
1193 LOG_ERROR("Failed to halt CPU after 1 sec");
1194 return ERROR_TARGET_TIMEOUT;
1195 }
1196 target->state = TARGET_HALTED;
1197
1198 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1199 * ensure that DBGRQ is cleared
1200 */
1201 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1202 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1203 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1204 embeddedice_store_reg(dbg_ctrl);
1205
1206 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1207 {
1208 return retval;
1209 }
1210
1211 /* if the target is in Thumb state, change to ARM state */
1212 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1213 {
1214 uint32_t r0_thumb, pc_thumb;
1215 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1216 /* Entered debug from Thumb mode */
1217 armv4_5->core_state = ARM_STATE_THUMB;
1218 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1219 }
1220
1221 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1222
1223 /* all register content is now invalid */
1224 register_cache_invalidate(armv4_5->core_cache);
1225
1226 /* SVC, ARM state, IRQ and FIQ disabled */
1227 uint32_t cpsr;
1228
1229 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1230 cpsr &= ~0xff;
1231 cpsr |= 0xd3;
1232 arm_set_cpsr(armv4_5, cpsr);
1233 armv4_5->cpsr->dirty = 1;
1234
1235 /* start fetching from 0x0 */
1236 buf_set_u32(armv4_5->pc->value, 0, 32, 0x0);
1237 armv4_5->pc->dirty = 1;
1238 armv4_5->pc->valid = 1;
1239
1240 /* reset registers */
1241 for (i = 0; i <= 14; i++)
1242 {
1243 struct reg *r = arm_reg_current(armv4_5, i);
1244
1245 buf_set_u32(r->value, 0, 32, 0xffffffff);
1246 r->dirty = 1;
1247 r->valid = 1;
1248 }
1249
1250 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1251 {
1252 return retval;
1253 }
1254
1255 return ERROR_OK;
1256 }
1257
1258 /**
1259 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1260 * line or by programming a watchpoint to trigger on any address. It is
1261 * considered a bug to call this function while the target is in the
1262 * TARGET_RESET state.
1263 *
1264 * @param target Pointer to the ARM7/9 target to be halted
1265 * @return Always ERROR_OK
1266 */
1267 int arm7_9_halt(struct target *target)
1268 {
1269 if (target->state == TARGET_RESET)
1270 {
1271 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1272 return ERROR_OK;
1273 }
1274
1275 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1276 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1277
1278 LOG_DEBUG("target->state: %s",
1279 target_state_name(target));
1280
1281 if (target->state == TARGET_HALTED)
1282 {
1283 LOG_DEBUG("target was already halted");
1284 return ERROR_OK;
1285 }
1286
1287 if (target->state == TARGET_UNKNOWN)
1288 {
1289 LOG_WARNING("target was in unknown state when halt was requested");
1290 }
1291
1292 if (arm7_9->use_dbgrq)
1293 {
1294 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1295 */
1296 if (arm7_9->set_special_dbgrq) {
1297 arm7_9->set_special_dbgrq(target);
1298 } else {
1299 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1300 embeddedice_store_reg(dbg_ctrl);
1301 }
1302 }
1303 else
1304 {
1305 /* program watchpoint unit to match on any address
1306 */
1307 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1308 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1309 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1311 }
1312
1313 target->debug_reason = DBG_REASON_DBGRQ;
1314
1315 return ERROR_OK;
1316 }
1317
1318 /**
1319 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1320 * ARM. The JTAG queue is then executed and the reason for debug entry is
1321 * examined. Once done, the target is verified to be halted and the processor
1322 * is forced into ARM mode. The core registers are saved for the current core
1323 * mode and the program counter (register 15) is updated as needed. The core
1324 * registers and CPSR and SPSR are saved for restoration later.
1325 *
1326 * @param target Pointer to target that is entering debug mode
1327 * @return Error code if anything fails, otherwise ERROR_OK
1328 */
1329 static int arm7_9_debug_entry(struct target *target)
1330 {
1331 int i;
1332 uint32_t context[16];
1333 uint32_t* context_p[16];
1334 uint32_t r0_thumb, pc_thumb;
1335 uint32_t cpsr, cpsr_mask = 0;
1336 int retval;
1337 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1338 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1339 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1340 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1341
1342 #ifdef _DEBUG_ARM7_9_
1343 LOG_DEBUG("-");
1344 #endif
1345
1346 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1347 * ensure that DBGRQ is cleared
1348 */
1349 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1350 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1351 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1352 embeddedice_store_reg(dbg_ctrl);
1353
1354 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1355 {
1356 return retval;
1357 }
1358
1359 if ((retval = jtag_execute_queue()) != ERROR_OK)
1360 {
1361 return retval;
1362 }
1363
1364 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1365 return retval;
1366
1367
1368 if (target->state != TARGET_HALTED)
1369 {
1370 LOG_WARNING("target not halted");
1371 return ERROR_TARGET_NOT_HALTED;
1372 }
1373
1374 /* if the target is in Thumb state, change to ARM state */
1375 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1376 {
1377 LOG_DEBUG("target entered debug from Thumb state");
1378 /* Entered debug from Thumb mode */
1379 armv4_5->core_state = ARM_STATE_THUMB;
1380 cpsr_mask = 1 << 5;
1381 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1382 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1383 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1384 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1385 /* \todo Get some vaguely correct handling of Jazelle, if
1386 * anyone ever uses it and full info becomes available.
1387 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1388 * B.7.3 for the reverse. That'd be the bare minimum...
1389 */
1390 LOG_DEBUG("target entered debug from Jazelle state");
1391 armv4_5->core_state = ARM_STATE_JAZELLE;
1392 cpsr_mask = 1 << 24;
1393 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1394 } else {
1395 LOG_DEBUG("target entered debug from ARM state");
1396 /* Entered debug from ARM mode */
1397 armv4_5->core_state = ARM_STATE_ARM;
1398 }
1399
1400 for (i = 0; i < 16; i++)
1401 context_p[i] = &context[i];
1402 /* save core registers (r0 - r15 of current core mode) */
1403 arm7_9->read_core_regs(target, 0xffff, context_p);
1404
1405 arm7_9->read_xpsr(target, &cpsr, 0);
1406
1407 if ((retval = jtag_execute_queue()) != ERROR_OK)
1408 return retval;
1409
1410 /* Sync our CPSR copy with J or T bits EICE reported, but
1411 * which we then erased by putting the core into ARM mode.
1412 */
1413 arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1414
1415 if (!is_arm_mode(armv4_5->core_mode))
1416 {
1417 target->state = TARGET_UNKNOWN;
1418 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1419 return ERROR_TARGET_FAILURE;
1420 }
1421
1422 LOG_DEBUG("target entered debug state in %s mode",
1423 arm_mode_name(armv4_5->core_mode));
1424
1425 if (armv4_5->core_state == ARM_STATE_THUMB)
1426 {
1427 LOG_DEBUG("thumb state, applying fixups");
1428 context[0] = r0_thumb;
1429 context[15] = pc_thumb;
1430 } else if (armv4_5->core_state == ARM_STATE_ARM)
1431 {
1432 /* adjust value stored by STM */
1433 context[15] -= 3 * 4;
1434 }
1435
1436 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1437 context[15] -= 3 * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1438 else
1439 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARM_STATE_ARM) ? 4 : 2);
1440
1441 for (i = 0; i <= 15; i++)
1442 {
1443 struct reg *r = arm_reg_current(armv4_5, i);
1444
1445 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1446
1447 buf_set_u32(r->value, 0, 32, context[i]);
1448 /* r0 and r15 (pc) have to be restored later */
1449 r->dirty = (i == 0) || (i == 15);
1450 r->valid = 1;
1451 }
1452
1453 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1454
1455 /* exceptions other than USR & SYS have a saved program status register */
1456 if (armv4_5->spsr) {
1457 uint32_t spsr;
1458 arm7_9->read_xpsr(target, &spsr, 1);
1459 if ((retval = jtag_execute_queue()) != ERROR_OK)
1460 {
1461 return retval;
1462 }
1463 buf_set_u32(armv4_5->spsr->value, 0, 32, spsr);
1464 armv4_5->spsr->dirty = 0;
1465 armv4_5->spsr->valid = 1;
1466 }
1467
1468 if ((retval = jtag_execute_queue()) != ERROR_OK)
1469 return retval;
1470
1471 if (arm7_9->post_debug_entry)
1472 arm7_9->post_debug_entry(target);
1473
1474 return ERROR_OK;
1475 }
1476
1477 /**
1478 * Validate the full context for an ARM7/9 target in all processor modes. If
1479 * there are any invalid registers for the target, they will all be read. This
1480 * includes the PSR.
1481 *
1482 * @param target Pointer to the ARM7/9 target to capture the full context from
1483 * @return Error if the target is not halted, has an invalid core mode, or if
1484 * the JTAG queue fails to execute
1485 */
1486 int arm7_9_full_context(struct target *target)
1487 {
1488 int i;
1489 int retval;
1490 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1491 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1492
1493 LOG_DEBUG("-");
1494
1495 if (target->state != TARGET_HALTED)
1496 {
1497 LOG_WARNING("target not halted");
1498 return ERROR_TARGET_NOT_HALTED;
1499 }
1500
1501 if (!is_arm_mode(armv4_5->core_mode))
1502 return ERROR_FAIL;
1503
1504 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1505 * SYS shares registers with User, so we don't touch SYS
1506 */
1507 for (i = 0; i < 6; i++)
1508 {
1509 uint32_t mask = 0;
1510 uint32_t* reg_p[16];
1511 int j;
1512 int valid = 1;
1513
1514 /* check if there are invalid registers in the current mode
1515 */
1516 for (j = 0; j <= 16; j++)
1517 {
1518 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1519 valid = 0;
1520 }
1521
1522 if (!valid)
1523 {
1524 uint32_t tmp_cpsr;
1525
1526 /* change processor mode (and mask T bit) */
1527 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1528 & 0xe0;
1529 tmp_cpsr |= armv4_5_number_to_mode(i);
1530 tmp_cpsr &= ~0x20;
1531 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1532
1533 for (j = 0; j < 15; j++)
1534 {
1535 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1536 {
1537 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1538 mask |= 1 << j;
1539 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1540 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1541 }
1542 }
1543
1544 /* if only the PSR is invalid, mask is all zeroes */
1545 if (mask)
1546 arm7_9->read_core_regs(target, mask, reg_p);
1547
1548 /* check if the PSR has to be read */
1549 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1550 {
1551 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1552 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1553 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1554 }
1555 }
1556 }
1557
1558 /* restore processor mode (mask T bit) */
1559 arm7_9->write_xpsr_im8(target,
1560 buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1561 0, 0);
1562
1563 if ((retval = jtag_execute_queue()) != ERROR_OK)
1564 {
1565 return retval;
1566 }
1567 return ERROR_OK;
1568 }
1569
1570 /**
1571 * Restore the processor context on an ARM7/9 target. The full processor
1572 * context is analyzed to see if any of the registers are dirty on this end, but
1573 * have a valid new value. If this is the case, the processor is changed to the
1574 * appropriate mode and the new register values are written out to the
1575 * processor. If there happens to be a dirty register with an invalid value, an
1576 * error will be logged.
1577 *
1578 * @param target Pointer to the ARM7/9 target to have its context restored
1579 * @return Error status if the target is not halted or the core mode in the
1580 * armv4_5 struct is invalid.
1581 */
1582 int arm7_9_restore_context(struct target *target)
1583 {
1584 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1585 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1586 struct reg *reg;
1587 struct arm_reg *reg_arch_info;
1588 enum arm_mode current_mode = armv4_5->core_mode;
1589 int i, j;
1590 int dirty;
1591 int mode_change;
1592
1593 LOG_DEBUG("-");
1594
1595 if (target->state != TARGET_HALTED)
1596 {
1597 LOG_WARNING("target not halted");
1598 return ERROR_TARGET_NOT_HALTED;
1599 }
1600
1601 if (arm7_9->pre_restore_context)
1602 arm7_9->pre_restore_context(target);
1603
1604 if (!is_arm_mode(armv4_5->core_mode))
1605 return ERROR_FAIL;
1606
1607 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1608 * SYS shares registers with User, so we don't touch SYS
1609 */
1610 for (i = 0; i < 6; i++)
1611 {
1612 LOG_DEBUG("examining %s mode",
1613 arm_mode_name(armv4_5->core_mode));
1614 dirty = 0;
1615 mode_change = 0;
1616 /* check if there are dirty registers in the current mode
1617 */
1618 for (j = 0; j <= 16; j++)
1619 {
1620 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1621 reg_arch_info = reg->arch_info;
1622 if (reg->dirty == 1)
1623 {
1624 if (reg->valid == 1)
1625 {
1626 dirty = 1;
1627 LOG_DEBUG("examining dirty reg: %s", reg->name);
1628 if ((reg_arch_info->mode != ARM_MODE_ANY)
1629 && (reg_arch_info->mode != current_mode)
1630 && !((reg_arch_info->mode == ARM_MODE_USR) && (armv4_5->core_mode == ARM_MODE_SYS))
1631 && !((reg_arch_info->mode == ARM_MODE_SYS) && (armv4_5->core_mode == ARM_MODE_USR)))
1632 {
1633 mode_change = 1;
1634 LOG_DEBUG("require mode change");
1635 }
1636 }
1637 else
1638 {
1639 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1640 }
1641 }
1642 }
1643
1644 if (dirty)
1645 {
1646 uint32_t mask = 0x0;
1647 int num_regs = 0;
1648 uint32_t regs[16];
1649
1650 if (mode_change)
1651 {
1652 uint32_t tmp_cpsr;
1653
1654 /* change processor mode (mask T bit) */
1655 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1656 0, 8) & 0xe0;
1657 tmp_cpsr |= armv4_5_number_to_mode(i);
1658 tmp_cpsr &= ~0x20;
1659 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1660 current_mode = armv4_5_number_to_mode(i);
1661 }
1662
1663 for (j = 0; j <= 14; j++)
1664 {
1665 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1666 reg_arch_info = reg->arch_info;
1667
1668
1669 if (reg->dirty == 1)
1670 {
1671 regs[j] = buf_get_u32(reg->value, 0, 32);
1672 mask |= 1 << j;
1673 num_regs++;
1674 reg->dirty = 0;
1675 reg->valid = 1;
1676 LOG_DEBUG("writing register %i mode %s "
1677 "with value 0x%8.8" PRIx32, j,
1678 arm_mode_name(armv4_5->core_mode),
1679 regs[j]);
1680 }
1681 }
1682
1683 if (mask)
1684 {
1685 arm7_9->write_core_regs(target, mask, regs);
1686 }
1687
1688 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1689 reg_arch_info = reg->arch_info;
1690 if ((reg->dirty) && (reg_arch_info->mode != ARM_MODE_ANY))
1691 {
1692 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1693 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1694 }
1695 }
1696 }
1697
1698 if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1699 {
1700 /* restore processor mode (mask T bit) */
1701 uint32_t tmp_cpsr;
1702
1703 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1704 tmp_cpsr |= armv4_5_number_to_mode(i);
1705 tmp_cpsr &= ~0x20;
1706 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1707 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1708 }
1709 else if (armv4_5->cpsr->dirty)
1710 {
1711 /* CPSR has been changed, full restore necessary (mask T bit) */
1712 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1713 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1714 arm7_9->write_xpsr(target,
1715 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1716 & ~0x20, 0);
1717 armv4_5->cpsr->dirty = 0;
1718 armv4_5->cpsr->valid = 1;
1719 }
1720
1721 /* restore PC */
1722 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32,
1723 buf_get_u32(armv4_5->pc->value, 0, 32));
1724 arm7_9->write_pc(target, buf_get_u32(armv4_5->pc->value, 0, 32));
1725 armv4_5->pc->dirty = 0;
1726
1727 return ERROR_OK;
1728 }
1729
1730 /**
1731 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1732 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1733 * restart.
1734 *
1735 * @param target Pointer to the ARM7/9 target to be restarted
1736 * @return Result of executing the JTAG queue
1737 */
1738 int arm7_9_restart_core(struct target *target)
1739 {
1740 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1741 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1742
1743 /* set RESTART instruction */
1744 if (arm7_9->need_bypass_before_restart) {
1745 arm7_9->need_bypass_before_restart = 0;
1746 arm_jtag_set_instr(jtag_info, 0xf, NULL, TAP_IDLE);
1747 }
1748 arm_jtag_set_instr(jtag_info, 0x4, NULL, TAP_IDLE);
1749
1750 jtag_add_runtest(1, TAP_IDLE);
1751 return jtag_execute_queue();
1752 }
1753
1754 /**
1755 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1756 * iterated through and are set on the target if they aren't already set.
1757 *
1758 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1759 */
1760 void arm7_9_enable_watchpoints(struct target *target)
1761 {
1762 struct watchpoint *watchpoint = target->watchpoints;
1763
1764 while (watchpoint)
1765 {
1766 if (watchpoint->set == 0)
1767 arm7_9_set_watchpoint(target, watchpoint);
1768 watchpoint = watchpoint->next;
1769 }
1770 }
1771
1772 /**
1773 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1774 * iterated through and are set on the target.
1775 *
1776 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1777 */
1778 void arm7_9_enable_breakpoints(struct target *target)
1779 {
1780 struct breakpoint *breakpoint = target->breakpoints;
1781
1782 /* set any pending breakpoints */
1783 while (breakpoint)
1784 {
1785 arm7_9_set_breakpoint(target, breakpoint);
1786 breakpoint = breakpoint->next;
1787 }
1788 }
1789
1790 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1791 {
1792 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1793 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1794 struct breakpoint *breakpoint = target->breakpoints;
1795 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1796 int err, retval = ERROR_OK;
1797
1798 LOG_DEBUG("-");
1799
1800 if (target->state != TARGET_HALTED)
1801 {
1802 LOG_WARNING("target not halted");
1803 return ERROR_TARGET_NOT_HALTED;
1804 }
1805
1806 if (!debug_execution)
1807 {
1808 target_free_all_working_areas(target);
1809 }
1810
1811 /* current = 1: continue on current pc, otherwise continue at <address> */
1812 if (!current)
1813 buf_set_u32(armv4_5->pc->value, 0, 32, address);
1814
1815 uint32_t current_pc;
1816 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1817
1818 /* the front-end may request us not to handle breakpoints */
1819 if (handle_breakpoints)
1820 {
1821 breakpoint = breakpoint_find(target,
1822 buf_get_u32(armv4_5->pc->value, 0, 32));
1823 if (breakpoint != NULL)
1824 {
1825 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1826 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1827 {
1828 return retval;
1829 }
1830
1831 /* calculate PC of next instruction */
1832 uint32_t next_pc;
1833 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1834 {
1835 uint32_t current_opcode;
1836 target_read_u32(target, current_pc, &current_opcode);
1837 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1838 return retval;
1839 }
1840
1841 LOG_DEBUG("enable single-step");
1842 arm7_9->enable_single_step(target, next_pc);
1843
1844 target->debug_reason = DBG_REASON_SINGLESTEP;
1845
1846 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1847 {
1848 return retval;
1849 }
1850
1851 if (armv4_5->core_state == ARM_STATE_ARM)
1852 arm7_9->branch_resume(target);
1853 else if (armv4_5->core_state == ARM_STATE_THUMB)
1854 {
1855 arm7_9->branch_resume_thumb(target);
1856 }
1857 else
1858 {
1859 LOG_ERROR("unhandled core state");
1860 return ERROR_FAIL;
1861 }
1862
1863 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1864 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1865 err = arm7_9_execute_sys_speed(target);
1866
1867 LOG_DEBUG("disable single-step");
1868 arm7_9->disable_single_step(target);
1869
1870 if (err != ERROR_OK)
1871 {
1872 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1873 {
1874 return retval;
1875 }
1876 target->state = TARGET_UNKNOWN;
1877 return err;
1878 }
1879
1880 arm7_9_debug_entry(target);
1881 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32,
1882 buf_get_u32(armv4_5->pc->value, 0, 32));
1883
1884 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1885 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1886 {
1887 return retval;
1888 }
1889 }
1890 }
1891
1892 /* enable any pending breakpoints and watchpoints */
1893 arm7_9_enable_breakpoints(target);
1894 arm7_9_enable_watchpoints(target);
1895
1896 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1897 {
1898 return retval;
1899 }
1900
1901 if (armv4_5->core_state == ARM_STATE_ARM)
1902 {
1903 arm7_9->branch_resume(target);
1904 }
1905 else if (armv4_5->core_state == ARM_STATE_THUMB)
1906 {
1907 arm7_9->branch_resume_thumb(target);
1908 }
1909 else
1910 {
1911 LOG_ERROR("unhandled core state");
1912 return ERROR_FAIL;
1913 }
1914
1915 /* deassert DBGACK and INTDIS */
1916 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1917 /* INTDIS only when we really resume, not during debug execution */
1918 if (!debug_execution)
1919 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1920 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1921
1922 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1923 {
1924 return retval;
1925 }
1926
1927 target->debug_reason = DBG_REASON_NOTHALTED;
1928
1929 if (!debug_execution)
1930 {
1931 /* registers are now invalid */
1932 register_cache_invalidate(armv4_5->core_cache);
1933 target->state = TARGET_RUNNING;
1934 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1935 {
1936 return retval;
1937 }
1938 }
1939 else
1940 {
1941 target->state = TARGET_DEBUG_RUNNING;
1942 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1943 {
1944 return retval;
1945 }
1946 }
1947
1948 LOG_DEBUG("target resumed");
1949
1950 return ERROR_OK;
1951 }
1952
1953 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1954 {
1955 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1956 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1957 uint32_t current_pc;
1958 current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
1959
1960 if (next_pc != current_pc)
1961 {
1962 /* setup an inverse breakpoint on the current PC
1963 * - comparator 1 matches the current address
1964 * - rangeout from comparator 1 is connected to comparator 0 rangein
1965 * - comparator 0 matches any address, as long as rangein is low */
1966 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1967 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1968 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1969 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1971 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1975 }
1976 else
1977 {
1978 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1979 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1980 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1981 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1982 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1983 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1984 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1985 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1986 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1987 }
1988 }
1989
1990 void arm7_9_disable_eice_step(struct target *target)
1991 {
1992 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1993
1994 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1995 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1996 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1997 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1998 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
1999 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2000 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2001 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2002 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2003 }
2004
2005 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2006 {
2007 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2008 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2009 struct breakpoint *breakpoint = NULL;
2010 int err, retval;
2011
2012 if (target->state != TARGET_HALTED)
2013 {
2014 LOG_WARNING("target not halted");
2015 return ERROR_TARGET_NOT_HALTED;
2016 }
2017
2018 /* current = 1: continue on current pc, otherwise continue at <address> */
2019 if (!current)
2020 buf_set_u32(armv4_5->pc->value, 0, 32, address);
2021
2022 uint32_t current_pc = buf_get_u32(armv4_5->pc->value, 0, 32);
2023
2024 /* the front-end may request us not to handle breakpoints */
2025 if (handle_breakpoints)
2026 breakpoint = breakpoint_find(target, current_pc);
2027 if (breakpoint != NULL) {
2028 retval = arm7_9_unset_breakpoint(target, breakpoint);
2029 if (retval != ERROR_OK)
2030 return retval;
2031 }
2032
2033 target->debug_reason = DBG_REASON_SINGLESTEP;
2034
2035 /* calculate PC of next instruction */
2036 uint32_t next_pc;
2037 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2038 {
2039 uint32_t current_opcode;
2040 target_read_u32(target, current_pc, &current_opcode);
2041 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2042 return retval;
2043 }
2044
2045 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2046 {
2047 return retval;
2048 }
2049
2050 arm7_9->enable_single_step(target, next_pc);
2051
2052 if (armv4_5->core_state == ARM_STATE_ARM)
2053 {
2054 arm7_9->branch_resume(target);
2055 }
2056 else if (armv4_5->core_state == ARM_STATE_THUMB)
2057 {
2058 arm7_9->branch_resume_thumb(target);
2059 }
2060 else
2061 {
2062 LOG_ERROR("unhandled core state");
2063 return ERROR_FAIL;
2064 }
2065
2066 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2067 {
2068 return retval;
2069 }
2070
2071 err = arm7_9_execute_sys_speed(target);
2072 arm7_9->disable_single_step(target);
2073
2074 /* registers are now invalid */
2075 register_cache_invalidate(armv4_5->core_cache);
2076
2077 if (err != ERROR_OK)
2078 {
2079 target->state = TARGET_UNKNOWN;
2080 } else {
2081 arm7_9_debug_entry(target);
2082 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2083 {
2084 return retval;
2085 }
2086 LOG_DEBUG("target stepped");
2087 }
2088
2089 if (breakpoint)
2090 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2091 {
2092 return retval;
2093 }
2094
2095 return err;
2096 }
2097
2098 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2099 int num, enum arm_mode mode)
2100 {
2101 uint32_t* reg_p[16];
2102 uint32_t value;
2103 int retval;
2104 struct arm_reg *areg = r->arch_info;
2105 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2106 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2107
2108 if (!is_arm_mode(armv4_5->core_mode))
2109 return ERROR_FAIL;
2110 if ((num < 0) || (num > 16))
2111 return ERROR_INVALID_ARGUMENTS;
2112
2113 if ((mode != ARM_MODE_ANY)
2114 && (mode != armv4_5->core_mode)
2115 && (areg->mode != ARM_MODE_ANY))
2116 {
2117 uint32_t tmp_cpsr;
2118
2119 /* change processor mode (mask T bit) */
2120 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2121 tmp_cpsr |= mode;
2122 tmp_cpsr &= ~0x20;
2123 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2124 }
2125
2126 if ((num >= 0) && (num <= 15))
2127 {
2128 /* read a normal core register */
2129 reg_p[num] = &value;
2130
2131 arm7_9->read_core_regs(target, 1 << num, reg_p);
2132 }
2133 else
2134 {
2135 /* read a program status register
2136 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2137 */
2138 arm7_9->read_xpsr(target, &value, areg->mode != ARM_MODE_ANY);
2139 }
2140
2141 if ((retval = jtag_execute_queue()) != ERROR_OK)
2142 {
2143 return retval;
2144 }
2145
2146 r->valid = 1;
2147 r->dirty = 0;
2148 buf_set_u32(r->value, 0, 32, value);
2149
2150 if ((mode != ARM_MODE_ANY)
2151 && (mode != armv4_5->core_mode)
2152 && (areg->mode != ARM_MODE_ANY)) {
2153 /* restore processor mode (mask T bit) */
2154 arm7_9->write_xpsr_im8(target,
2155 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2156 & ~0x20, 0, 0);
2157 }
2158
2159 return ERROR_OK;
2160 }
2161
2162 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2163 int num, enum arm_mode mode, uint32_t value)
2164 {
2165 uint32_t reg[16];
2166 struct arm_reg *areg = r->arch_info;
2167 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2168 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2169
2170 if (!is_arm_mode(armv4_5->core_mode))
2171 return ERROR_FAIL;
2172 if ((num < 0) || (num > 16))
2173 return ERROR_INVALID_ARGUMENTS;
2174
2175 if ((mode != ARM_MODE_ANY)
2176 && (mode != armv4_5->core_mode)
2177 && (areg->mode != ARM_MODE_ANY)) {
2178 uint32_t tmp_cpsr;
2179
2180 /* change processor mode (mask T bit) */
2181 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2182 tmp_cpsr |= mode;
2183 tmp_cpsr &= ~0x20;
2184 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2185 }
2186
2187 if ((num >= 0) && (num <= 15))
2188 {
2189 /* write a normal core register */
2190 reg[num] = value;
2191
2192 arm7_9->write_core_regs(target, 1 << num, reg);
2193 }
2194 else
2195 {
2196 /* write a program status register
2197 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2198 */
2199 int spsr = (areg->mode != ARM_MODE_ANY);
2200
2201 /* if we're writing the CPSR, mask the T bit */
2202 if (!spsr)
2203 value &= ~0x20;
2204
2205 arm7_9->write_xpsr(target, value, spsr);
2206 }
2207
2208 r->valid = 1;
2209 r->dirty = 0;
2210
2211 if ((mode != ARM_MODE_ANY)
2212 && (mode != armv4_5->core_mode)
2213 && (areg->mode != ARM_MODE_ANY)) {
2214 /* restore processor mode (mask T bit) */
2215 arm7_9->write_xpsr_im8(target,
2216 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2217 & ~0x20, 0, 0);
2218 }
2219
2220 return jtag_execute_queue();
2221 }
2222
2223 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2224 {
2225 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2226 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2227 uint32_t reg[16];
2228 uint32_t num_accesses = 0;
2229 int thisrun_accesses;
2230 int i;
2231 uint32_t cpsr;
2232 int retval;
2233 int last_reg = 0;
2234
2235 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2236
2237 if (target->state != TARGET_HALTED)
2238 {
2239 LOG_WARNING("target not halted");
2240 return ERROR_TARGET_NOT_HALTED;
2241 }
2242
2243 /* sanitize arguments */
2244 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2245 return ERROR_INVALID_ARGUMENTS;
2246
2247 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2248 return ERROR_TARGET_UNALIGNED_ACCESS;
2249
2250 /* load the base register with the address of the first word */
2251 reg[0] = address;
2252 arm7_9->write_core_regs(target, 0x1, reg);
2253
2254 int j = 0;
2255
2256 switch (size)
2257 {
2258 case 4:
2259 while (num_accesses < count)
2260 {
2261 uint32_t reg_list;
2262 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2263 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2264
2265 if (last_reg <= thisrun_accesses)
2266 last_reg = thisrun_accesses;
2267
2268 arm7_9->load_word_regs(target, reg_list);
2269
2270 /* fast memory reads are only safe when the target is running
2271 * from a sufficiently high clock (32 kHz is usually too slow)
2272 */
2273 if (arm7_9->fast_memory_access)
2274 retval = arm7_9_execute_fast_sys_speed(target);
2275 else
2276 retval = arm7_9_execute_sys_speed(target);
2277 if (retval != ERROR_OK)
2278 return retval;
2279
2280 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2281
2282 /* advance buffer, count number of accesses */
2283 buffer += thisrun_accesses * 4;
2284 num_accesses += thisrun_accesses;
2285
2286 if ((j++%1024) == 0)
2287 {
2288 keep_alive();
2289 }
2290 }
2291 break;
2292 case 2:
2293 while (num_accesses < count)
2294 {
2295 uint32_t reg_list;
2296 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2297 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2298
2299 for (i = 1; i <= thisrun_accesses; i++)
2300 {
2301 if (i > last_reg)
2302 last_reg = i;
2303 arm7_9->load_hword_reg(target, i);
2304 /* fast memory reads are only safe when the target is running
2305 * from a sufficiently high clock (32 kHz is usually too slow)
2306 */
2307 if (arm7_9->fast_memory_access)
2308 retval = arm7_9_execute_fast_sys_speed(target);
2309 else
2310 retval = arm7_9_execute_sys_speed(target);
2311 if (retval != ERROR_OK)
2312 {
2313 return retval;
2314 }
2315
2316 }
2317
2318 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2319
2320 /* advance buffer, count number of accesses */
2321 buffer += thisrun_accesses * 2;
2322 num_accesses += thisrun_accesses;
2323
2324 if ((j++%1024) == 0)
2325 {
2326 keep_alive();
2327 }
2328 }
2329 break;
2330 case 1:
2331 while (num_accesses < count)
2332 {
2333 uint32_t reg_list;
2334 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2335 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2336
2337 for (i = 1; i <= thisrun_accesses; i++)
2338 {
2339 if (i > last_reg)
2340 last_reg = i;
2341 arm7_9->load_byte_reg(target, i);
2342 /* fast memory reads are only safe when the target is running
2343 * from a sufficiently high clock (32 kHz is usually too slow)
2344 */
2345 if (arm7_9->fast_memory_access)
2346 retval = arm7_9_execute_fast_sys_speed(target);
2347 else
2348 retval = arm7_9_execute_sys_speed(target);
2349 if (retval != ERROR_OK)
2350 {
2351 return retval;
2352 }
2353 }
2354
2355 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2356
2357 /* advance buffer, count number of accesses */
2358 buffer += thisrun_accesses * 1;
2359 num_accesses += thisrun_accesses;
2360
2361 if ((j++%1024) == 0)
2362 {
2363 keep_alive();
2364 }
2365 }
2366 break;
2367 }
2368
2369 if (!is_arm_mode(armv4_5->core_mode))
2370 return ERROR_FAIL;
2371
2372 for (i = 0; i <= last_reg; i++) {
2373 struct reg *r = arm_reg_current(armv4_5, i);
2374
2375 r->dirty = r->valid;
2376 }
2377
2378 arm7_9->read_xpsr(target, &cpsr, 0);
2379 if ((retval = jtag_execute_queue()) != ERROR_OK)
2380 {
2381 LOG_ERROR("JTAG error while reading cpsr");
2382 return ERROR_TARGET_DATA_ABORT;
2383 }
2384
2385 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2386 {
2387 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2388
2389 arm7_9->write_xpsr_im8(target,
2390 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2391 & ~0x20, 0, 0);
2392
2393 return ERROR_TARGET_DATA_ABORT;
2394 }
2395
2396 return ERROR_OK;
2397 }
2398
2399 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2400 {
2401 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2402 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2403 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2404
2405 uint32_t reg[16];
2406 uint32_t num_accesses = 0;
2407 int thisrun_accesses;
2408 int i;
2409 uint32_t cpsr;
2410 int retval;
2411 int last_reg = 0;
2412
2413 #ifdef _DEBUG_ARM7_9_
2414 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2415 #endif
2416
2417 if (target->state != TARGET_HALTED)
2418 {
2419 LOG_WARNING("target not halted");
2420 return ERROR_TARGET_NOT_HALTED;
2421 }
2422
2423 /* sanitize arguments */
2424 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2425 return ERROR_INVALID_ARGUMENTS;
2426
2427 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2428 return ERROR_TARGET_UNALIGNED_ACCESS;
2429
2430 /* load the base register with the address of the first word */
2431 reg[0] = address;
2432 arm7_9->write_core_regs(target, 0x1, reg);
2433
2434 /* Clear DBGACK, to make sure memory fetches work as expected */
2435 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2436 embeddedice_store_reg(dbg_ctrl);
2437
2438 switch (size)
2439 {
2440 case 4:
2441 while (num_accesses < count)
2442 {
2443 uint32_t reg_list;
2444 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2445 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2446
2447 for (i = 1; i <= thisrun_accesses; i++)
2448 {
2449 if (i > last_reg)
2450 last_reg = i;
2451 reg[i] = target_buffer_get_u32(target, buffer);
2452 buffer += 4;
2453 }
2454
2455 arm7_9->write_core_regs(target, reg_list, reg);
2456
2457 arm7_9->store_word_regs(target, reg_list);
2458
2459 /* fast memory writes are only safe when the target is running
2460 * from a sufficiently high clock (32 kHz is usually too slow)
2461 */
2462 if (arm7_9->fast_memory_access)
2463 retval = arm7_9_execute_fast_sys_speed(target);
2464 else
2465 retval = arm7_9_execute_sys_speed(target);
2466 if (retval != ERROR_OK)
2467 {
2468 return retval;
2469 }
2470
2471 num_accesses += thisrun_accesses;
2472 }
2473 break;
2474 case 2:
2475 while (num_accesses < count)
2476 {
2477 uint32_t reg_list;
2478 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2479 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2480
2481 for (i = 1; i <= thisrun_accesses; i++)
2482 {
2483 if (i > last_reg)
2484 last_reg = i;
2485 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2486 buffer += 2;
2487 }
2488
2489 arm7_9->write_core_regs(target, reg_list, reg);
2490
2491 for (i = 1; i <= thisrun_accesses; i++)
2492 {
2493 arm7_9->store_hword_reg(target, i);
2494
2495 /* fast memory writes are only safe when the target is running
2496 * from a sufficiently high clock (32 kHz is usually too slow)
2497 */
2498 if (arm7_9->fast_memory_access)
2499 retval = arm7_9_execute_fast_sys_speed(target);
2500 else
2501 retval = arm7_9_execute_sys_speed(target);
2502 if (retval != ERROR_OK)
2503 {
2504 return retval;
2505 }
2506 }
2507
2508 num_accesses += thisrun_accesses;
2509 }
2510 break;
2511 case 1:
2512 while (num_accesses < count)
2513 {
2514 uint32_t reg_list;
2515 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2516 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2517
2518 for (i = 1; i <= thisrun_accesses; i++)
2519 {
2520 if (i > last_reg)
2521 last_reg = i;
2522 reg[i] = *buffer++ & 0xff;
2523 }
2524
2525 arm7_9->write_core_regs(target, reg_list, reg);
2526
2527 for (i = 1; i <= thisrun_accesses; i++)
2528 {
2529 arm7_9->store_byte_reg(target, i);
2530 /* fast memory writes are only safe when the target is running
2531 * from a sufficiently high clock (32 kHz is usually too slow)
2532 */
2533 if (arm7_9->fast_memory_access)
2534 retval = arm7_9_execute_fast_sys_speed(target);
2535 else
2536 retval = arm7_9_execute_sys_speed(target);
2537 if (retval != ERROR_OK)
2538 {
2539 return retval;
2540 }
2541
2542 }
2543
2544 num_accesses += thisrun_accesses;
2545 }
2546 break;
2547 }
2548
2549 /* Re-Set DBGACK */
2550 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2551 embeddedice_store_reg(dbg_ctrl);
2552
2553 if (!is_arm_mode(armv4_5->core_mode))
2554 return ERROR_FAIL;
2555
2556 for (i = 0; i <= last_reg; i++) {
2557 struct reg *r = arm_reg_current(armv4_5, i);
2558
2559 r->dirty = r->valid;
2560 }
2561
2562 arm7_9->read_xpsr(target, &cpsr, 0);
2563 if ((retval = jtag_execute_queue()) != ERROR_OK)
2564 {
2565 LOG_ERROR("JTAG error while reading cpsr");
2566 return ERROR_TARGET_DATA_ABORT;
2567 }
2568
2569 if (((cpsr & 0x1f) == ARM_MODE_ABT) && (armv4_5->core_mode != ARM_MODE_ABT))
2570 {
2571 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2572
2573 arm7_9->write_xpsr_im8(target,
2574 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2575 & ~0x20, 0, 0);
2576
2577 return ERROR_TARGET_DATA_ABORT;
2578 }
2579
2580 return ERROR_OK;
2581 }
2582
2583 static int dcc_count;
2584 static uint8_t *dcc_buffer;
2585
2586 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2587 {
2588 int retval = ERROR_OK;
2589 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2590
2591 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2592 return retval;
2593
2594 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2595 int count = dcc_count;
2596 uint8_t *buffer = dcc_buffer;
2597 if (count > 2)
2598 {
2599 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2600 * core function repeated. */
2601 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2602 buffer += 4;
2603
2604 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2605 uint8_t reg_addr = ice_reg->addr & 0x1f;
2606 struct jtag_tap *tap;
2607 tap = ice_reg->jtag_info->tap;
2608
2609 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2610 buffer += (count-2)*4;
2611
2612 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2613 } else
2614 {
2615 int i;
2616 for (i = 0; i < count; i++)
2617 {
2618 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2619 buffer += 4;
2620 }
2621 }
2622
2623 if ((retval = target_halt(target))!= ERROR_OK)
2624 {
2625 return retval;
2626 }
2627 return target_wait_state(target, TARGET_HALTED, 500);
2628 }
2629
2630 static const uint32_t dcc_code[] =
2631 {
2632 /* r0 == input, points to memory buffer
2633 * r1 == scratch
2634 */
2635
2636 /* spin until DCC control (c0) reports data arrived */
2637 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2638 0xe3110001, /* tst r1, #1 */
2639 0x0afffffc, /* bne w */
2640
2641 /* read word from DCC (c1), write to memory */
2642 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2643 0xe4801004, /* str r1, [r0], #4 */
2644
2645 /* repeat */
2646 0xeafffff9 /* b w */
2647 };
2648
2649 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2650 {
2651 int retval;
2652 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2653 int i;
2654
2655 if (!arm7_9->dcc_downloads)
2656 return target_write_memory(target, address, 4, count, buffer);
2657
2658 /* regrab previously allocated working_area, or allocate a new one */
2659 if (!arm7_9->dcc_working_area)
2660 {
2661 uint8_t dcc_code_buf[6 * 4];
2662
2663 /* make sure we have a working area */
2664 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2665 {
2666 LOG_INFO("no working area available, falling back to memory writes");
2667 return target_write_memory(target, address, 4, count, buffer);
2668 }
2669
2670 /* copy target instructions to target endianness */
2671 for (i = 0; i < 6; i++)
2672 {
2673 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2674 }
2675
2676 /* write DCC code to working area */
2677 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2678 {
2679 return retval;
2680 }
2681 }
2682
2683 struct arm_algorithm armv4_5_info;
2684 struct reg_param reg_params[1];
2685
2686 armv4_5_info.common_magic = ARM_COMMON_MAGIC;
2687 armv4_5_info.core_mode = ARM_MODE_SVC;
2688 armv4_5_info.core_state = ARM_STATE_ARM;
2689
2690 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2691
2692 buf_set_u32(reg_params[0].value, 0, 32, address);
2693
2694 dcc_count = count;
2695 dcc_buffer = buffer;
2696 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2697 arm7_9->dcc_working_area->address,
2698 arm7_9->dcc_working_area->address + 6*4,
2699 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2700
2701 if (retval == ERROR_OK)
2702 {
2703 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2704 if (endaddress != (address + count*4))
2705 {
2706 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2707 retval = ERROR_FAIL;
2708 }
2709 }
2710
2711 destroy_reg_param(&reg_params[0]);
2712
2713 return retval;
2714 }
2715
2716 /**
2717 * Perform per-target setup that requires JTAG access.
2718 */
2719 int arm7_9_examine(struct target *target)
2720 {
2721 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2722 int retval;
2723
2724 if (!target_was_examined(target)) {
2725 struct reg_cache *t, **cache_p;
2726
2727 t = embeddedice_build_reg_cache(target, arm7_9);
2728 if (t == NULL)
2729 return ERROR_FAIL;
2730
2731 cache_p = register_get_last_cache_p(&target->reg_cache);
2732 (*cache_p) = t;
2733 arm7_9->eice_cache = (*cache_p);
2734
2735 if (arm7_9->armv4_5_common.etm)
2736 (*cache_p)->next = etm_build_reg_cache(target,
2737 &arm7_9->jtag_info,
2738 arm7_9->armv4_5_common.etm);
2739
2740 target_set_examined(target);
2741 }
2742
2743 retval = embeddedice_setup(target);
2744 if (retval == ERROR_OK)
2745 retval = arm7_9_setup(target);
2746 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2747 retval = etm_setup(target);
2748 return retval;
2749 }
2750
2751
2752 int arm7_9_check_reset(struct target *target)
2753 {
2754 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2755
2756 if (get_target_reset_nag() && !arm7_9->dcc_downloads)
2757 {
2758 LOG_WARNING("NOTE! DCC downloads have not been enabled, defaulting to slow memory writes. Type 'help dcc'.");
2759 }
2760
2761 if (get_target_reset_nag() && (target->working_area_size == 0))
2762 {
2763 LOG_WARNING("NOTE! Severe performance degradation without working memory enabled.");
2764 }
2765
2766 if (get_target_reset_nag() && !arm7_9->fast_memory_access)
2767 {
2768 LOG_WARNING("NOTE! Severe performance degradation without fast memory access enabled. Type 'help fast'.");
2769 }
2770
2771 return ERROR_OK;
2772 }
2773
2774 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2775 {
2776 struct target *target = get_current_target(CMD_CTX);
2777 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2778
2779 if (!is_arm7_9(arm7_9))
2780 {
2781 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2782 return ERROR_TARGET_INVALID;
2783 }
2784
2785 if (CMD_ARGC > 0)
2786 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2787
2788 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2789
2790 return ERROR_OK;
2791 }
2792
2793 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2794 {
2795 struct target *target = get_current_target(CMD_CTX);
2796 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2797
2798 if (!is_arm7_9(arm7_9))
2799 {
2800 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2801 return ERROR_TARGET_INVALID;
2802 }
2803
2804 if (CMD_ARGC > 0)
2805 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2806
2807 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2808
2809 return ERROR_OK;
2810 }
2811
2812 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2813 {
2814 struct target *target = get_current_target(CMD_CTX);
2815 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2816
2817 if (!is_arm7_9(arm7_9))
2818 {
2819 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2820 return ERROR_TARGET_INVALID;
2821 }
2822
2823 if (CMD_ARGC > 0)
2824 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2825
2826 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2827
2828 return ERROR_OK;
2829 }
2830
2831 int arm7_9_setup_semihosting(struct target *target, int enable)
2832 {
2833 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2834
2835 if (!is_arm7_9(arm7_9))
2836 {
2837 LOG_USER("current target isn't an ARM7/ARM9 target");
2838 return ERROR_TARGET_INVALID;
2839 }
2840
2841 if (arm7_9->has_vector_catch) {
2842 struct reg *vector_catch = &arm7_9->eice_cache
2843 ->reg_list[EICE_VEC_CATCH];
2844
2845 if (!vector_catch->valid)
2846 embeddedice_read_reg(vector_catch);
2847 buf_set_u32(vector_catch->value, 2, 1, enable);
2848 embeddedice_store_reg(vector_catch);
2849 } else {
2850 /* TODO: allow optional high vectors and/or BKPT_HARD */
2851 if (enable)
2852 breakpoint_add(target, 8, 4, BKPT_SOFT);
2853 else
2854 breakpoint_remove(target, 8);
2855 }
2856
2857 return ERROR_OK;
2858 }
2859
2860 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2861 {
2862 int retval = ERROR_OK;
2863 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2864
2865 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2866
2867 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2868 return retval;
2869
2870 /* caller must have allocated via calloc(), so everything's zeroed */
2871
2872 arm7_9->wp_available_max = 2;
2873
2874 arm7_9->fast_memory_access = false;
2875 arm7_9->dcc_downloads = false;
2876
2877 armv4_5->arch_info = arm7_9;
2878 armv4_5->read_core_reg = arm7_9_read_core_reg;
2879 armv4_5->write_core_reg = arm7_9_write_core_reg;
2880 armv4_5->full_context = arm7_9_full_context;
2881 armv4_5->setup_semihosting = arm7_9_setup_semihosting;
2882
2883 retval = arm_init_arch_info(target, armv4_5);
2884 if (retval != ERROR_OK)
2885 return retval;
2886
2887 return target_register_timer_callback(arm7_9_handle_target_request,
2888 1, 1, target);
2889 }
2890
2891 static const struct command_registration arm7_9_any_command_handlers[] = {
2892 {
2893 "dbgrq",
2894 .handler = handle_arm7_9_dbgrq_command,
2895 .mode = COMMAND_ANY,
2896 .usage = "['enable'|'disable']",
2897 .help = "use EmbeddedICE dbgrq instead of breakpoint "
2898 "for target halt requests",
2899 },
2900 {
2901 "fast_memory_access",
2902 .handler = handle_arm7_9_fast_memory_access_command,
2903 .mode = COMMAND_ANY,
2904 .usage = "['enable'|'disable']",
2905 .help = "use fast memory accesses instead of slower "
2906 "but potentially safer accesses",
2907 },
2908 {
2909 "dcc_downloads",
2910 .handler = handle_arm7_9_dcc_downloads_command,
2911 .mode = COMMAND_ANY,
2912 .usage = "['enable'|'disable']",
2913 .help = "use DCC downloads for larger memory writes",
2914 },
2915 COMMAND_REGISTRATION_DONE
2916 };
2917 const struct command_registration arm7_9_command_handlers[] = {
2918 {
2919 .chain = arm_command_handlers,
2920 },
2921 {
2922 .chain = etm_command_handlers,
2923 },
2924 {
2925 .name = "arm7_9",
2926 .mode = COMMAND_ANY,
2927 .help = "arm7/9 specific commands",
2928 .chain = arm7_9_any_command_handlers,
2929 },
2930 COMMAND_REGISTRATION_DONE
2931 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)