ARM: remove 'armv4_5_common_s' migration #define
[openocd.git] / src / target / arm7_9_common.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2008 by Hongtao Zheng *
12 * hontor@126.com *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program; if not, write to the *
26 * Free Software Foundation, Inc., *
27 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
28 ***************************************************************************/
29 #ifdef HAVE_CONFIG_H
30 #include "config.h"
31 #endif
32
33 #include "breakpoints.h"
34 #include "embeddedice.h"
35 #include "target_request.h"
36 #include "etm.h"
37 #include "time_support.h"
38 #include "arm_simulator.h"
39 #include "algorithm.h"
40 #include "register.h"
41
42
43 /**
44 * @file
45 * Hold common code supporting the ARM7 and ARM9 core generations.
46 *
47 * While the ARM core implementations evolved substantially during these
48 * two generations, they look quite similar from the JTAG perspective.
49 * Both have similar debug facilities, based on the same two scan chains
50 * providing access to the core and to an EmbeddedICE module. Both can
51 * support similar ETM and ETB modules, for tracing. And both expose
52 * what could be viewed as "ARM Classic", with multiple processor modes,
53 * shadowed registers, and support for the Thumb instruction set.
54 *
55 * Processor differences include things like presence or absence of MMU
56 * and cache, pipeline sizes, use of a modified Harvard Architecure
57 * (with separate instruction and data busses from the CPU), support
58 * for cpu clock gating during idle, and more.
59 */
60
61 static int arm7_9_debug_entry(struct target *target);
62
63 /**
64 * Clear watchpoints for an ARM7/9 target.
65 *
66 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
67 * @return JTAG error status after executing queue
68 */
69 static int arm7_9_clear_watchpoints(struct arm7_9_common *arm7_9)
70 {
71 LOG_DEBUG("-");
72 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
73 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
74 arm7_9->sw_breakpoint_count = 0;
75 arm7_9->sw_breakpoints_added = 0;
76 arm7_9->wp0_used = 0;
77 arm7_9->wp1_used = arm7_9->wp1_used_default;
78 arm7_9->wp_available = arm7_9->wp_available_max;
79
80 return jtag_execute_queue();
81 }
82
83 /**
84 * Assign a watchpoint to one of the two available hardware comparators in an
85 * ARM7 or ARM9 target.
86 *
87 * @param arm7_9 Pointer to the common struct for an ARM7/9 target
88 * @param breakpoint Pointer to the breakpoint to be used as a watchpoint
89 */
90 static void arm7_9_assign_wp(struct arm7_9_common *arm7_9, struct breakpoint *breakpoint)
91 {
92 if (!arm7_9->wp0_used)
93 {
94 arm7_9->wp0_used = 1;
95 breakpoint->set = 1;
96 arm7_9->wp_available--;
97 }
98 else if (!arm7_9->wp1_used)
99 {
100 arm7_9->wp1_used = 1;
101 breakpoint->set = 2;
102 arm7_9->wp_available--;
103 }
104 else
105 {
106 LOG_ERROR("BUG: no hardware comparator available");
107 }
108 LOG_DEBUG("BPID: %d (0x%08" PRIx32 ") using hw wp: %d",
109 breakpoint->unique_id,
110 breakpoint->address,
111 breakpoint->set );
112 }
113
114 /**
115 * Setup an ARM7/9 target's embedded ICE registers for software breakpoints.
116 *
117 * @param arm7_9 Pointer to common struct for ARM7/9 targets
118 * @return Error codes if there is a problem finding a watchpoint or the result
119 * of executing the JTAG queue
120 */
121 static int arm7_9_set_software_breakpoints(struct arm7_9_common *arm7_9)
122 {
123 if (arm7_9->sw_breakpoints_added)
124 {
125 return ERROR_OK;
126 }
127 if (arm7_9->wp_available < 1)
128 {
129 LOG_WARNING("can't enable sw breakpoints with no watchpoint unit available");
130 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
131 }
132 arm7_9->wp_available--;
133
134 /* pick a breakpoint unit */
135 if (!arm7_9->wp0_used)
136 {
137 arm7_9->sw_breakpoints_added = 1;
138 arm7_9->wp0_used = 3;
139 } else if (!arm7_9->wp1_used)
140 {
141 arm7_9->sw_breakpoints_added = 2;
142 arm7_9->wp1_used = 3;
143 }
144 else
145 {
146 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
147 return ERROR_FAIL;
148 }
149
150 if (arm7_9->sw_breakpoints_added == 1)
151 {
152 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], arm7_9->arm_bkpt);
153 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0x0);
154 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffffu);
155 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
156 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
157 }
158 else if (arm7_9->sw_breakpoints_added == 2)
159 {
160 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], arm7_9->arm_bkpt);
161 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0x0);
162 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0xffffffffu);
163 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
164 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
165 }
166 else
167 {
168 LOG_ERROR("BUG: both watchpoints used, but wp_available >= 1");
169 return ERROR_FAIL;
170 }
171 LOG_DEBUG("SW BP using hw wp: %d",
172 arm7_9->sw_breakpoints_added );
173
174 return jtag_execute_queue();
175 }
176
177 /**
178 * Setup the common pieces for an ARM7/9 target after reset or on startup.
179 *
180 * @param target Pointer to an ARM7/9 target to setup
181 * @return Result of clearing the watchpoints on the target
182 */
183 int arm7_9_setup(struct target *target)
184 {
185 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
186
187 return arm7_9_clear_watchpoints(arm7_9);
188 }
189
190 /**
191 * Set either a hardware or software breakpoint on an ARM7/9 target. The
192 * breakpoint is set up even if it is already set. Some actions, e.g. reset,
193 * might have erased the values in Embedded ICE.
194 *
195 * @param target Pointer to the target device to set the breakpoints on
196 * @param breakpoint Pointer to the breakpoint to be set
197 * @return For hardware breakpoints, this is the result of executing the JTAG
198 * queue. For software breakpoints, this will be the status of the
199 * required memory reads and writes
200 */
201 int arm7_9_set_breakpoint(struct target *target, struct breakpoint *breakpoint)
202 {
203 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
204 int retval = ERROR_OK;
205
206 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32 ", Type: %d" ,
207 breakpoint->unique_id,
208 breakpoint->address,
209 breakpoint->type);
210
211 if (target->state != TARGET_HALTED)
212 {
213 LOG_WARNING("target not halted");
214 return ERROR_TARGET_NOT_HALTED;
215 }
216
217 if (breakpoint->type == BKPT_HARD)
218 {
219 /* either an ARM (4 byte) or Thumb (2 byte) breakpoint */
220 uint32_t mask = (breakpoint->length == 4) ? 0x3u : 0x1u;
221
222 /* reassign a hw breakpoint */
223 if (breakpoint->set == 0)
224 {
225 arm7_9_assign_wp(arm7_9, breakpoint);
226 }
227
228 if (breakpoint->set == 1)
229 {
230 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], breakpoint->address);
231 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
232 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffffu);
233 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
234 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
235 }
236 else if (breakpoint->set == 2)
237 {
238 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], breakpoint->address);
239 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
240 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffffu);
241 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
242 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
243 }
244 else
245 {
246 LOG_ERROR("BUG: no hardware comparator available");
247 return ERROR_OK;
248 }
249
250 retval = jtag_execute_queue();
251 }
252 else if (breakpoint->type == BKPT_SOFT)
253 {
254 /* did we already set this breakpoint? */
255 if (breakpoint->set)
256 return ERROR_OK;
257
258 if (breakpoint->length == 4)
259 {
260 uint32_t verify = 0xffffffff;
261 /* keep the original instruction in target endianness */
262 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
263 {
264 return retval;
265 }
266 /* write the breakpoint instruction in target endianness (arm7_9->arm_bkpt is host endian) */
267 if ((retval = target_write_u32(target, breakpoint->address, arm7_9->arm_bkpt)) != ERROR_OK)
268 {
269 return retval;
270 }
271
272 if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK)
273 {
274 return retval;
275 }
276 if (verify != arm7_9->arm_bkpt)
277 {
278 LOG_ERROR("Unable to set 32 bit software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
279 return ERROR_OK;
280 }
281 }
282 else
283 {
284 uint16_t verify = 0xffff;
285 /* keep the original instruction in target endianness */
286 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
287 {
288 return retval;
289 }
290 /* write the breakpoint instruction in target endianness (arm7_9->thumb_bkpt is host endian) */
291 if ((retval = target_write_u16(target, breakpoint->address, arm7_9->thumb_bkpt)) != ERROR_OK)
292 {
293 return retval;
294 }
295
296 if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK)
297 {
298 return retval;
299 }
300 if (verify != arm7_9->thumb_bkpt)
301 {
302 LOG_ERROR("Unable to set thumb software breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address);
303 return ERROR_OK;
304 }
305 }
306
307 if ((retval = arm7_9_set_software_breakpoints(arm7_9)) != ERROR_OK)
308 return retval;
309
310 arm7_9->sw_breakpoint_count++;
311
312 breakpoint->set = 1;
313 }
314
315 return retval;
316 }
317
318 /**
319 * Unsets an existing breakpoint on an ARM7/9 target. If it is a hardware
320 * breakpoint, the watchpoint used will be freed and the Embedded ICE registers
321 * will be updated. Otherwise, the software breakpoint will be restored to its
322 * original instruction if it hasn't already been modified.
323 *
324 * @param target Pointer to ARM7/9 target to unset the breakpoint from
325 * @param breakpoint Pointer to breakpoint to be unset
326 * @return For hardware breakpoints, this is the result of executing the JTAG
327 * queue. For software breakpoints, this will be the status of the
328 * required memory reads and writes
329 */
330 int arm7_9_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
331 {
332 int retval = ERROR_OK;
333 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
334
335 LOG_DEBUG("BPID: %d, Address: 0x%08" PRIx32,
336 breakpoint->unique_id,
337 breakpoint->address );
338
339 if (!breakpoint->set)
340 {
341 LOG_WARNING("breakpoint not set");
342 return ERROR_OK;
343 }
344
345 if (breakpoint->type == BKPT_HARD)
346 {
347 LOG_DEBUG("BPID: %d Releasing hw wp: %d",
348 breakpoint->unique_id,
349 breakpoint->set );
350 if (breakpoint->set == 1)
351 {
352 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
353 arm7_9->wp0_used = 0;
354 arm7_9->wp_available++;
355 }
356 else if (breakpoint->set == 2)
357 {
358 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
359 arm7_9->wp1_used = 0;
360 arm7_9->wp_available++;
361 }
362 retval = jtag_execute_queue();
363 breakpoint->set = 0;
364 }
365 else
366 {
367 /* restore original instruction (kept in target endianness) */
368 if (breakpoint->length == 4)
369 {
370 uint32_t current_instr;
371 /* check that user program as not modified breakpoint instruction */
372 if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)&current_instr)) != ERROR_OK)
373 {
374 return retval;
375 }
376 if (current_instr == arm7_9->arm_bkpt)
377 if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK)
378 {
379 return retval;
380 }
381 }
382 else
383 {
384 uint16_t current_instr;
385 /* check that user program as not modified breakpoint instruction */
386 if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)&current_instr)) != ERROR_OK)
387 {
388 return retval;
389 }
390 if (current_instr == arm7_9->thumb_bkpt)
391 if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK)
392 {
393 return retval;
394 }
395 }
396
397 if (--arm7_9->sw_breakpoint_count==0)
398 {
399 /* We have removed the last sw breakpoint, clear the hw breakpoint we used to implement it */
400 if (arm7_9->sw_breakpoints_added == 1)
401 {
402 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0);
403 }
404 else if (arm7_9->sw_breakpoints_added == 2)
405 {
406 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0);
407 }
408 }
409
410 breakpoint->set = 0;
411 }
412
413 return retval;
414 }
415
416 /**
417 * Add a breakpoint to an ARM7/9 target. This makes sure that there are no
418 * dangling breakpoints and that the desired breakpoint can be added.
419 *
420 * @param target Pointer to the target ARM7/9 device to add a breakpoint to
421 * @param breakpoint Pointer to the breakpoint to be added
422 * @return An error status if there is a problem adding the breakpoint or the
423 * result of setting the breakpoint
424 */
425 int arm7_9_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
426 {
427 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
428
429 if (target->state != TARGET_HALTED)
430 {
431 LOG_WARNING("target not halted");
432 return ERROR_TARGET_NOT_HALTED;
433 }
434
435 if (arm7_9->breakpoint_count == 0)
436 {
437 /* make sure we don't have any dangling breakpoints. This is vital upon
438 * GDB connect/disconnect
439 */
440 arm7_9_clear_watchpoints(arm7_9);
441 }
442
443 if ((breakpoint->type == BKPT_HARD) && (arm7_9->wp_available < 1))
444 {
445 LOG_INFO("no watchpoint unit available for hardware breakpoint");
446 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
447 }
448
449 if ((breakpoint->length != 2) && (breakpoint->length != 4))
450 {
451 LOG_INFO("only breakpoints of two (Thumb) or four (ARM) bytes length supported");
452 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
453 }
454
455 if (breakpoint->type == BKPT_HARD)
456 {
457 arm7_9_assign_wp(arm7_9, breakpoint);
458 }
459
460 arm7_9->breakpoint_count++;
461
462 return arm7_9_set_breakpoint(target, breakpoint);
463 }
464
465 /**
466 * Removes a breakpoint from an ARM7/9 target. This will make sure there are no
467 * dangling breakpoints and updates available watchpoints if it is a hardware
468 * breakpoint.
469 *
470 * @param target Pointer to the target to have a breakpoint removed
471 * @param breakpoint Pointer to the breakpoint to be removed
472 * @return Error status if there was a problem unsetting the breakpoint or the
473 * watchpoints could not be cleared
474 */
475 int arm7_9_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
476 {
477 int retval = ERROR_OK;
478 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
479
480 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
481 {
482 return retval;
483 }
484
485 if (breakpoint->type == BKPT_HARD)
486 arm7_9->wp_available++;
487
488 arm7_9->breakpoint_count--;
489 if (arm7_9->breakpoint_count == 0)
490 {
491 /* make sure we don't have any dangling breakpoints */
492 if ((retval = arm7_9_clear_watchpoints(arm7_9)) != ERROR_OK)
493 {
494 return retval;
495 }
496 }
497
498 return ERROR_OK;
499 }
500
501 /**
502 * Sets a watchpoint for an ARM7/9 target in one of the watchpoint units. It is
503 * considered a bug to call this function when there are no available watchpoint
504 * units.
505 *
506 * @param target Pointer to an ARM7/9 target to set a watchpoint on
507 * @param watchpoint Pointer to the watchpoint to be set
508 * @return Error status if watchpoint set fails or the result of executing the
509 * JTAG queue
510 */
511 int arm7_9_set_watchpoint(struct target *target, struct watchpoint *watchpoint)
512 {
513 int retval = ERROR_OK;
514 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
515 int rw_mask = 1;
516 uint32_t mask;
517
518 mask = watchpoint->length - 1;
519
520 if (target->state != TARGET_HALTED)
521 {
522 LOG_WARNING("target not halted");
523 return ERROR_TARGET_NOT_HALTED;
524 }
525
526 if (watchpoint->rw == WPT_ACCESS)
527 rw_mask = 0;
528 else
529 rw_mask = 1;
530
531 if (!arm7_9->wp0_used)
532 {
533 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], watchpoint->address);
534 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], mask);
535 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], watchpoint->mask);
536 if (watchpoint->mask != 0xffffffffu)
537 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_VALUE], watchpoint->value);
538 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
539 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
540
541 if ((retval = jtag_execute_queue()) != ERROR_OK)
542 {
543 return retval;
544 }
545 watchpoint->set = 1;
546 arm7_9->wp0_used = 2;
547 }
548 else if (!arm7_9->wp1_used)
549 {
550 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], watchpoint->address);
551 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], mask);
552 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], watchpoint->mask);
553 if (watchpoint->mask != 0xffffffffu)
554 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_VALUE], watchpoint->value);
555 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], 0xff & ~EICE_W_CTRL_nOPC & ~rw_mask);
556 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE | EICE_W_CTRL_nOPC | (watchpoint->rw & 1));
557
558 if ((retval = jtag_execute_queue()) != ERROR_OK)
559 {
560 return retval;
561 }
562 watchpoint->set = 2;
563 arm7_9->wp1_used = 2;
564 }
565 else
566 {
567 LOG_ERROR("BUG: no hardware comparator available");
568 return ERROR_OK;
569 }
570
571 return ERROR_OK;
572 }
573
574 /**
575 * Unset an existing watchpoint and clear the used watchpoint unit.
576 *
577 * @param target Pointer to the target to have the watchpoint removed
578 * @param watchpoint Pointer to the watchpoint to be removed
579 * @return Error status while trying to unset the watchpoint or the result of
580 * executing the JTAG queue
581 */
582 int arm7_9_unset_watchpoint(struct target *target, struct watchpoint *watchpoint)
583 {
584 int retval = ERROR_OK;
585 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
586
587 if (target->state != TARGET_HALTED)
588 {
589 LOG_WARNING("target not halted");
590 return ERROR_TARGET_NOT_HALTED;
591 }
592
593 if (!watchpoint->set)
594 {
595 LOG_WARNING("breakpoint not set");
596 return ERROR_OK;
597 }
598
599 if (watchpoint->set == 1)
600 {
601 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
602 if ((retval = jtag_execute_queue()) != ERROR_OK)
603 {
604 return retval;
605 }
606 arm7_9->wp0_used = 0;
607 }
608 else if (watchpoint->set == 2)
609 {
610 embeddedice_set_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
611 if ((retval = jtag_execute_queue()) != ERROR_OK)
612 {
613 return retval;
614 }
615 arm7_9->wp1_used = 0;
616 }
617 watchpoint->set = 0;
618
619 return ERROR_OK;
620 }
621
622 /**
623 * Add a watchpoint to an ARM7/9 target. If there are no watchpoint units
624 * available, an error response is returned.
625 *
626 * @param target Pointer to the ARM7/9 target to add a watchpoint to
627 * @param watchpoint Pointer to the watchpoint to be added
628 * @return Error status while trying to add the watchpoint
629 */
630 int arm7_9_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
631 {
632 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
633
634 if (target->state != TARGET_HALTED)
635 {
636 LOG_WARNING("target not halted");
637 return ERROR_TARGET_NOT_HALTED;
638 }
639
640 if (arm7_9->wp_available < 1)
641 {
642 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
643 }
644
645 if ((watchpoint->length != 1) && (watchpoint->length != 2) && (watchpoint->length != 4))
646 {
647 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
648 }
649
650 arm7_9->wp_available--;
651
652 return ERROR_OK;
653 }
654
655 /**
656 * Remove a watchpoint from an ARM7/9 target. The watchpoint will be unset and
657 * the used watchpoint unit will be reopened.
658 *
659 * @param target Pointer to the target to remove a watchpoint from
660 * @param watchpoint Pointer to the watchpoint to be removed
661 * @return Result of trying to unset the watchpoint
662 */
663 int arm7_9_remove_watchpoint(struct target *target, struct watchpoint *watchpoint)
664 {
665 int retval = ERROR_OK;
666 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
667
668 if (watchpoint->set)
669 {
670 if ((retval = arm7_9_unset_watchpoint(target, watchpoint)) != ERROR_OK)
671 {
672 return retval;
673 }
674 }
675
676 arm7_9->wp_available++;
677
678 return ERROR_OK;
679 }
680
681 /**
682 * Restarts the target by sending a RESTART instruction and moving the JTAG
683 * state to IDLE. This includes a timeout waiting for DBGACK and SYSCOMP to be
684 * asserted by the processor.
685 *
686 * @param target Pointer to target to issue commands to
687 * @return Error status if there is a timeout or a problem while executing the
688 * JTAG queue
689 */
690 int arm7_9_execute_sys_speed(struct target *target)
691 {
692 int retval;
693 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
694 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
695 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
696
697 /* set RESTART instruction */
698 jtag_set_end_state(TAP_IDLE);
699 if (arm7_9->need_bypass_before_restart) {
700 arm7_9->need_bypass_before_restart = 0;
701 arm_jtag_set_instr(jtag_info, 0xf, NULL);
702 }
703 arm_jtag_set_instr(jtag_info, 0x4, NULL);
704
705 long long then = timeval_ms();
706 int timeout;
707 while (!(timeout = ((timeval_ms()-then) > 1000)))
708 {
709 /* read debug status register */
710 embeddedice_read_reg(dbg_stat);
711 if ((retval = jtag_execute_queue()) != ERROR_OK)
712 return retval;
713 if ((buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
714 && (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_SYSCOMP, 1)))
715 break;
716 if (debug_level >= 3)
717 {
718 alive_sleep(100);
719 } else
720 {
721 keep_alive();
722 }
723 }
724 if (timeout)
725 {
726 LOG_ERROR("timeout waiting for SYSCOMP & DBGACK, last DBG_STATUS: %" PRIx32 "", buf_get_u32(dbg_stat->value, 0, dbg_stat->size));
727 return ERROR_TARGET_TIMEOUT;
728 }
729
730 return ERROR_OK;
731 }
732
733 /**
734 * Restarts the target by sending a RESTART instruction and moving the JTAG
735 * state to IDLE. This validates that DBGACK and SYSCOMP are set without
736 * waiting until they are.
737 *
738 * @param target Pointer to the target to issue commands to
739 * @return Always ERROR_OK
740 */
741 int arm7_9_execute_fast_sys_speed(struct target *target)
742 {
743 static int set = 0;
744 static uint8_t check_value[4], check_mask[4];
745
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
748 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
749
750 /* set RESTART instruction */
751 jtag_set_end_state(TAP_IDLE);
752 if (arm7_9->need_bypass_before_restart) {
753 arm7_9->need_bypass_before_restart = 0;
754 arm_jtag_set_instr(jtag_info, 0xf, NULL);
755 }
756 arm_jtag_set_instr(jtag_info, 0x4, NULL);
757
758 if (!set)
759 {
760 /* check for DBGACK and SYSCOMP set (others don't care) */
761
762 /* NB! These are constants that must be available until after next jtag_execute() and
763 * we evaluate the values upon first execution in lieu of setting up these constants
764 * during early setup.
765 * */
766 buf_set_u32(check_value, 0, 32, 0x9);
767 buf_set_u32(check_mask, 0, 32, 0x9);
768 set = 1;
769 }
770
771 /* read debug status register */
772 embeddedice_read_reg_w_check(dbg_stat, check_value, check_mask);
773
774 return ERROR_OK;
775 }
776
777 /**
778 * Get some data from the ARM7/9 target.
779 *
780 * @param target Pointer to the ARM7/9 target to read data from
781 * @param size The number of 32bit words to be read
782 * @param buffer Pointer to the buffer that will hold the data
783 * @return The result of receiving data from the Embedded ICE unit
784 */
785 int arm7_9_target_request_data(struct target *target, uint32_t size, uint8_t *buffer)
786 {
787 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
788 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
789 uint32_t *data;
790 int retval = ERROR_OK;
791 uint32_t i;
792
793 data = malloc(size * (sizeof(uint32_t)));
794
795 retval = embeddedice_receive(jtag_info, data, size);
796
797 /* return the 32-bit ints in the 8-bit array */
798 for (i = 0; i < size; i++)
799 {
800 h_u32_to_le(buffer + (i * 4), data[i]);
801 }
802
803 free(data);
804
805 return retval;
806 }
807
808 /**
809 * Handles requests to an ARM7/9 target. If debug messaging is enabled, the
810 * target is running and the DCC control register has the W bit high, this will
811 * execute the request on the target.
812 *
813 * @param priv Void pointer expected to be a struct target pointer
814 * @return ERROR_OK unless there are issues with the JTAG queue or when reading
815 * from the Embedded ICE unit
816 */
817 int arm7_9_handle_target_request(void *priv)
818 {
819 int retval = ERROR_OK;
820 struct target *target = priv;
821 if (!target_was_examined(target))
822 return ERROR_OK;
823 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
824 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
825 struct reg *dcc_control = &arm7_9->eice_cache->reg_list[EICE_COMMS_CTRL];
826
827 if (!target->dbg_msg_enabled)
828 return ERROR_OK;
829
830 if (target->state == TARGET_RUNNING)
831 {
832 /* read DCC control register */
833 embeddedice_read_reg(dcc_control);
834 if ((retval = jtag_execute_queue()) != ERROR_OK)
835 {
836 return retval;
837 }
838
839 /* check W bit */
840 if (buf_get_u32(dcc_control->value, 1, 1) == 1)
841 {
842 uint32_t request;
843
844 if ((retval = embeddedice_receive(jtag_info, &request, 1)) != ERROR_OK)
845 {
846 return retval;
847 }
848 if ((retval = target_request(target, request)) != ERROR_OK)
849 {
850 return retval;
851 }
852 }
853 }
854
855 return ERROR_OK;
856 }
857
858 /**
859 * Polls an ARM7/9 target for its current status. If DBGACK is set, the target
860 * is manipulated to the right halted state based on its current state. This is
861 * what happens:
862 *
863 * <table>
864 * <tr><th > State</th><th > Action</th></tr>
865 * <tr><td > TARGET_RUNNING | TARGET_RESET</td><td > Enters debug mode. If TARGET_RESET, pc may be checked</td></tr>
866 * <tr><td > TARGET_UNKNOWN</td><td > Warning is logged</td></tr>
867 * <tr><td > TARGET_DEBUG_RUNNING</td><td > Enters debug mode</td></tr>
868 * <tr><td > TARGET_HALTED</td><td > Nothing</td></tr>
869 * </table>
870 *
871 * If the target does not end up in the halted state, a warning is produced. If
872 * DBGACK is cleared, then the target is expected to either be running or
873 * running in debug.
874 *
875 * @param target Pointer to the ARM7/9 target to poll
876 * @return ERROR_OK or an error status if a command fails
877 */
878 int arm7_9_poll(struct target *target)
879 {
880 int retval;
881 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
882 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
883
884 /* read debug status register */
885 embeddedice_read_reg(dbg_stat);
886 if ((retval = jtag_execute_queue()) != ERROR_OK)
887 {
888 return retval;
889 }
890
891 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1))
892 {
893 /* LOG_DEBUG("DBGACK set, dbg_state->value: 0x%x", buf_get_u32(dbg_stat->value, 0, 32));*/
894 if (target->state == TARGET_UNKNOWN)
895 {
896 /* Starting OpenOCD with target in debug-halt */
897 target->state = TARGET_RUNNING;
898 LOG_DEBUG("DBGACK already set during server startup.");
899 }
900 if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET))
901 {
902 int check_pc = 0;
903 if (target->state == TARGET_RESET)
904 {
905 if (target->reset_halt)
906 {
907 enum reset_types jtag_reset_config = jtag_get_reset_config();
908 if ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
909 {
910 check_pc = 1;
911 }
912 }
913 }
914
915 target->state = TARGET_HALTED;
916
917 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
918 return retval;
919
920 if (check_pc)
921 {
922 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
923 uint32_t t=*((uint32_t *)reg->value);
924 if (t != 0)
925 {
926 LOG_ERROR("PC was not 0. Does this target need srst_pulls_trst?");
927 }
928 }
929
930 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
931 {
932 return retval;
933 }
934 }
935 if (target->state == TARGET_DEBUG_RUNNING)
936 {
937 target->state = TARGET_HALTED;
938 if ((retval = arm7_9_debug_entry(target)) != ERROR_OK)
939 return retval;
940
941 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED)) != ERROR_OK)
942 {
943 return retval;
944 }
945 }
946 if (target->state != TARGET_HALTED)
947 {
948 LOG_WARNING("DBGACK set, but the target did not end up in the halted state %d", target->state);
949 }
950 }
951 else
952 {
953 if (target->state != TARGET_DEBUG_RUNNING)
954 target->state = TARGET_RUNNING;
955 }
956
957 return ERROR_OK;
958 }
959
960 /**
961 * Asserts the reset (SRST) on an ARM7/9 target. Some -S targets (ARM966E-S in
962 * the STR912 isn't affected, ARM926EJ-S in the LPC3180 and AT91SAM9260 is
963 * affected) completely stop the JTAG clock while the core is held in reset
964 * (SRST). It isn't possible to program the halt condition once reset is
965 * asserted, hence a hook that allows the target to set up its reset-halt
966 * condition is setup prior to asserting reset.
967 *
968 * @param target Pointer to an ARM7/9 target to assert reset on
969 * @return ERROR_FAIL if the JTAG device does not have SRST, otherwise ERROR_OK
970 */
971 int arm7_9_assert_reset(struct target *target)
972 {
973 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
974
975 LOG_DEBUG("target->state: %s",
976 target_state_name(target));
977
978 enum reset_types jtag_reset_config = jtag_get_reset_config();
979 if (!(jtag_reset_config & RESET_HAS_SRST))
980 {
981 LOG_ERROR("Can't assert SRST");
982 return ERROR_FAIL;
983 }
984
985 /* At this point trst has been asserted/deasserted once. We would
986 * like to program EmbeddedICE while SRST is asserted, instead of
987 * depending on SRST to leave that module alone. However, many CPUs
988 * gate the JTAG clock while SRST is asserted; or JTAG may need
989 * clock stability guarantees (adaptive clocking might help).
990 *
991 * So we assume JTAG access during SRST is off the menu unless it's
992 * been specifically enabled.
993 */
994 bool srst_asserted = false;
995
996 if (((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0)
997 && (jtag_reset_config & RESET_SRST_NO_GATING))
998 {
999 jtag_add_reset(0, 1);
1000 srst_asserted = true;
1001 }
1002
1003 if (target->reset_halt)
1004 {
1005 /*
1006 * Some targets do not support communication while SRST is asserted. We need to
1007 * set up the reset vector catch here.
1008 *
1009 * If TRST is asserted, then these settings will be reset anyway, so setting them
1010 * here is harmless.
1011 */
1012 if (arm7_9->has_vector_catch)
1013 {
1014 /* program vector catch register to catch reset vector */
1015 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH], 0x1);
1016
1017 /* extra runtest added as issues were found with certain ARM9 cores (maybe more) - AT91SAM9260 and STR9 */
1018 jtag_add_runtest(1, jtag_get_end_state());
1019 }
1020 else
1021 {
1022 /* program watchpoint unit to match on reset vector address */
1023 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE], 0x0);
1024 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0x3);
1025 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1026 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1027 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1028 }
1029 }
1030
1031 /* here we should issue an SRST only, but we may have to assert TRST as well */
1032 if (jtag_reset_config & RESET_SRST_PULLS_TRST)
1033 {
1034 jtag_add_reset(1, 1);
1035 } else if (!srst_asserted)
1036 {
1037 jtag_add_reset(0, 1);
1038 }
1039
1040 target->state = TARGET_RESET;
1041 jtag_add_sleep(50000);
1042
1043 register_cache_invalidate(arm7_9->armv4_5_common.core_cache);
1044
1045 if ((target->reset_halt) && ((jtag_reset_config & RESET_SRST_PULLS_TRST) == 0))
1046 {
1047 /* debug entry was already prepared in arm7_9_assert_reset() */
1048 target->debug_reason = DBG_REASON_DBGRQ;
1049 }
1050
1051 return ERROR_OK;
1052 }
1053
1054 /**
1055 * Deassert the reset (SRST) signal on an ARM7/9 target. If SRST pulls TRST
1056 * and the target is being reset into a halt, a warning will be triggered
1057 * because it is not possible to reset into a halted mode in this case. The
1058 * target is halted using the target's functions.
1059 *
1060 * @param target Pointer to the target to have the reset deasserted
1061 * @return ERROR_OK or an error from polling or halting the target
1062 */
1063 int arm7_9_deassert_reset(struct target *target)
1064 {
1065 int retval = ERROR_OK;
1066 LOG_DEBUG("target->state: %s",
1067 target_state_name(target));
1068
1069 /* deassert reset lines */
1070 jtag_add_reset(0, 0);
1071
1072 enum reset_types jtag_reset_config = jtag_get_reset_config();
1073 if (target->reset_halt && (jtag_reset_config & RESET_SRST_PULLS_TRST) != 0)
1074 {
1075 LOG_WARNING("srst pulls trst - can not reset into halted mode. Issuing halt after reset.");
1076 /* set up embedded ice registers again */
1077 if ((retval = target_examine_one(target)) != ERROR_OK)
1078 return retval;
1079
1080 if ((retval = target_poll(target)) != ERROR_OK)
1081 {
1082 return retval;
1083 }
1084
1085 if ((retval = target_halt(target)) != ERROR_OK)
1086 {
1087 return retval;
1088 }
1089
1090 }
1091 return retval;
1092 }
1093
1094 /**
1095 * Clears the halt condition for an ARM7/9 target. If it isn't coming out of
1096 * reset and if DBGRQ is used, it is progammed to be deasserted. If the reset
1097 * vector catch was used, it is restored. Otherwise, the control value is
1098 * restored and the watchpoint unit is restored if it was in use.
1099 *
1100 * @param target Pointer to the ARM7/9 target to have halt cleared
1101 * @return Always ERROR_OK
1102 */
1103 int arm7_9_clear_halt(struct target *target)
1104 {
1105 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1106 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1107
1108 /* we used DBGRQ only if we didn't come out of reset */
1109 if (!arm7_9->debug_entry_from_reset && arm7_9->use_dbgrq)
1110 {
1111 /* program EmbeddedICE Debug Control Register to deassert DBGRQ
1112 */
1113 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1114 embeddedice_store_reg(dbg_ctrl);
1115 }
1116 else
1117 {
1118 if (arm7_9->debug_entry_from_reset && arm7_9->has_vector_catch)
1119 {
1120 /* if we came out of reset, and vector catch is supported, we used
1121 * vector catch to enter debug state
1122 * restore the register in that case
1123 */
1124 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_VEC_CATCH]);
1125 }
1126 else
1127 {
1128 /* restore registers if watchpoint unit 0 was in use
1129 */
1130 if (arm7_9->wp0_used)
1131 {
1132 if (arm7_9->debug_entry_from_reset)
1133 {
1134 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_VALUE]);
1135 }
1136 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1137 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
1138 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
1139 }
1140 /* control value always has to be restored, as it was either disabled,
1141 * or enabled with possibly different bits
1142 */
1143 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
1144 }
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 /**
1151 * Issue a software reset and halt to an ARM7/9 target. The target is halted
1152 * and then there is a wait until the processor shows the halt. This wait can
1153 * timeout and results in an error being returned. The software reset involves
1154 * clearing the halt, updating the debug control register, changing to ARM mode,
1155 * reset of the program counter, and reset of all of the registers.
1156 *
1157 * @param target Pointer to the ARM7/9 target to be reset and halted by software
1158 * @return Error status if any of the commands fail, otherwise ERROR_OK
1159 */
1160 int arm7_9_soft_reset_halt(struct target *target)
1161 {
1162 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1163 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1164 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1165 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1166 int i;
1167 int retval;
1168
1169 /* FIX!!! replace some of this code with tcl commands
1170 *
1171 * halt # the halt command is synchronous
1172 * armv4_5 core_state arm
1173 *
1174 */
1175
1176 if ((retval = target_halt(target)) != ERROR_OK)
1177 return retval;
1178
1179 long long then = timeval_ms();
1180 int timeout;
1181 while (!(timeout = ((timeval_ms()-then) > 1000)))
1182 {
1183 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) != 0)
1184 break;
1185 embeddedice_read_reg(dbg_stat);
1186 if ((retval = jtag_execute_queue()) != ERROR_OK)
1187 return retval;
1188 if (debug_level >= 3)
1189 {
1190 alive_sleep(100);
1191 } else
1192 {
1193 keep_alive();
1194 }
1195 }
1196 if (timeout)
1197 {
1198 LOG_ERROR("Failed to halt CPU after 1 sec");
1199 return ERROR_TARGET_TIMEOUT;
1200 }
1201 target->state = TARGET_HALTED;
1202
1203 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1204 * ensure that DBGRQ is cleared
1205 */
1206 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1207 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1208 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1209 embeddedice_store_reg(dbg_ctrl);
1210
1211 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1212 {
1213 return retval;
1214 }
1215
1216 /* if the target is in Thumb state, change to ARM state */
1217 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1218 {
1219 uint32_t r0_thumb, pc_thumb;
1220 LOG_DEBUG("target entered debug from Thumb state, changing to ARM");
1221 /* Entered debug from Thumb mode */
1222 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1223 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1224 }
1225
1226 /* REVISIT likewise for bit 5 -- switch Jazelle-to-ARM */
1227
1228 /* all register content is now invalid */
1229 register_cache_invalidate(armv4_5->core_cache);
1230
1231 /* SVC, ARM state, IRQ and FIQ disabled */
1232 uint32_t cpsr;
1233
1234 cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 32);
1235 cpsr &= ~0xff;
1236 cpsr |= 0xd3;
1237 arm_set_cpsr(armv4_5, cpsr);
1238 armv4_5->cpsr->dirty = 1;
1239
1240 /* start fetching from 0x0 */
1241 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0);
1242 armv4_5->core_cache->reg_list[15].dirty = 1;
1243 armv4_5->core_cache->reg_list[15].valid = 1;
1244
1245 /* reset registers */
1246 for (i = 0; i <= 14; i++)
1247 {
1248 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, 0xffffffff);
1249 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 1;
1250 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1251 }
1252
1253 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
1254 {
1255 return retval;
1256 }
1257
1258 return ERROR_OK;
1259 }
1260
1261 /**
1262 * Halt an ARM7/9 target. This is accomplished by either asserting the DBGRQ
1263 * line or by programming a watchpoint to trigger on any address. It is
1264 * considered a bug to call this function while the target is in the
1265 * TARGET_RESET state.
1266 *
1267 * @param target Pointer to the ARM7/9 target to be halted
1268 * @return Always ERROR_OK
1269 */
1270 int arm7_9_halt(struct target *target)
1271 {
1272 if (target->state == TARGET_RESET)
1273 {
1274 LOG_ERROR("BUG: arm7/9 does not support halt during reset. This is handled in arm7_9_assert_reset()");
1275 return ERROR_OK;
1276 }
1277
1278 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1279 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1280
1281 LOG_DEBUG("target->state: %s",
1282 target_state_name(target));
1283
1284 if (target->state == TARGET_HALTED)
1285 {
1286 LOG_DEBUG("target was already halted");
1287 return ERROR_OK;
1288 }
1289
1290 if (target->state == TARGET_UNKNOWN)
1291 {
1292 LOG_WARNING("target was in unknown state when halt was requested");
1293 }
1294
1295 if (arm7_9->use_dbgrq)
1296 {
1297 /* program EmbeddedICE Debug Control Register to assert DBGRQ
1298 */
1299 if (arm7_9->set_special_dbgrq) {
1300 arm7_9->set_special_dbgrq(target);
1301 } else {
1302 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 1);
1303 embeddedice_store_reg(dbg_ctrl);
1304 }
1305 }
1306 else
1307 {
1308 /* program watchpoint unit to match on any address
1309 */
1310 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1311 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1312 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1313 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1314 }
1315
1316 target->debug_reason = DBG_REASON_DBGRQ;
1317
1318 return ERROR_OK;
1319 }
1320
1321 /**
1322 * Handle an ARM7/9 target's entry into debug mode. The halt is cleared on the
1323 * ARM. The JTAG queue is then executed and the reason for debug entry is
1324 * examined. Once done, the target is verified to be halted and the processor
1325 * is forced into ARM mode. The core registers are saved for the current core
1326 * mode and the program counter (register 15) is updated as needed. The core
1327 * registers and CPSR and SPSR are saved for restoration later.
1328 *
1329 * @param target Pointer to target that is entering debug mode
1330 * @return Error code if anything fails, otherwise ERROR_OK
1331 */
1332 static int arm7_9_debug_entry(struct target *target)
1333 {
1334 int i;
1335 uint32_t context[16];
1336 uint32_t* context_p[16];
1337 uint32_t r0_thumb, pc_thumb;
1338 uint32_t cpsr, cpsr_mask = 0;
1339 int retval;
1340 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1341 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1342 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
1343 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1344
1345 #ifdef _DEBUG_ARM7_9_
1346 LOG_DEBUG("-");
1347 #endif
1348
1349 /* program EmbeddedICE Debug Control Register to assert DBGACK and INTDIS
1350 * ensure that DBGRQ is cleared
1351 */
1352 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
1353 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGRQ, 1, 0);
1354 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 1);
1355 embeddedice_store_reg(dbg_ctrl);
1356
1357 if ((retval = arm7_9_clear_halt(target)) != ERROR_OK)
1358 {
1359 return retval;
1360 }
1361
1362 if ((retval = jtag_execute_queue()) != ERROR_OK)
1363 {
1364 return retval;
1365 }
1366
1367 if ((retval = arm7_9->examine_debug_reason(target)) != ERROR_OK)
1368 return retval;
1369
1370
1371 if (target->state != TARGET_HALTED)
1372 {
1373 LOG_WARNING("target not halted");
1374 return ERROR_TARGET_NOT_HALTED;
1375 }
1376
1377 /* if the target is in Thumb state, change to ARM state */
1378 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_ITBIT, 1))
1379 {
1380 LOG_DEBUG("target entered debug from Thumb state");
1381 /* Entered debug from Thumb mode */
1382 armv4_5->core_state = ARMV4_5_STATE_THUMB;
1383 cpsr_mask = 1 << 5;
1384 arm7_9->change_to_arm(target, &r0_thumb, &pc_thumb);
1385 LOG_DEBUG("r0_thumb: 0x%8.8" PRIx32
1386 ", pc_thumb: 0x%8.8" PRIx32, r0_thumb, pc_thumb);
1387 } else if (buf_get_u32(dbg_stat->value, 5, 1)) {
1388 /* \todo Get some vaguely correct handling of Jazelle, if
1389 * anyone ever uses it and full info becomes available.
1390 * See ARM9EJS TRM B.7.1 for how to switch J->ARM; and
1391 * B.7.3 for the reverse. That'd be the bare minimum...
1392 */
1393 LOG_DEBUG("target entered debug from Jazelle state");
1394 armv4_5->core_state = ARMV4_5_STATE_JAZELLE;
1395 cpsr_mask = 1 << 24;
1396 LOG_ERROR("Jazelle debug entry -- BROKEN!");
1397 } else {
1398 LOG_DEBUG("target entered debug from ARM state");
1399 /* Entered debug from ARM mode */
1400 armv4_5->core_state = ARMV4_5_STATE_ARM;
1401 }
1402
1403 for (i = 0; i < 16; i++)
1404 context_p[i] = &context[i];
1405 /* save core registers (r0 - r15 of current core mode) */
1406 arm7_9->read_core_regs(target, 0xffff, context_p);
1407
1408 arm7_9->read_xpsr(target, &cpsr, 0);
1409
1410 if ((retval = jtag_execute_queue()) != ERROR_OK)
1411 return retval;
1412
1413 /* Sync our CPSR copy with J or T bits EICE reported, but
1414 * which we then erased by putting the core into ARM mode.
1415 */
1416 arm_set_cpsr(armv4_5, cpsr | cpsr_mask);
1417
1418 if (!is_arm_mode(armv4_5->core_mode))
1419 {
1420 target->state = TARGET_UNKNOWN;
1421 LOG_ERROR("cpsr contains invalid mode value - communication failure");
1422 return ERROR_TARGET_FAILURE;
1423 }
1424
1425 LOG_DEBUG("target entered debug state in %s mode",
1426 arm_mode_name(armv4_5->core_mode));
1427
1428 if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1429 {
1430 LOG_DEBUG("thumb state, applying fixups");
1431 context[0] = r0_thumb;
1432 context[15] = pc_thumb;
1433 } else if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1434 {
1435 /* adjust value stored by STM */
1436 context[15] -= 3 * 4;
1437 }
1438
1439 if ((target->debug_reason != DBG_REASON_DBGRQ) || (!arm7_9->use_dbgrq))
1440 context[15] -= 3 * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1441 else
1442 context[15] -= arm7_9->dbgreq_adjust_pc * ((armv4_5->core_state == ARMV4_5_STATE_ARM) ? 4 : 2);
1443
1444 for (i = 0; i <= 15; i++)
1445 {
1446 LOG_DEBUG("r%i: 0x%8.8" PRIx32 "", i, context[i]);
1447 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).value, 0, 32, context[i]);
1448 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = 0;
1449 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid = 1;
1450 }
1451
1452 LOG_DEBUG("entered debug state at PC 0x%" PRIx32 "", context[15]);
1453
1454 /* exceptions other than USR & SYS have a saved program status register */
1455 if ((armv4_5->core_mode != ARMV4_5_MODE_USR) && (armv4_5->core_mode != ARMV4_5_MODE_SYS))
1456 {
1457 uint32_t spsr;
1458 arm7_9->read_xpsr(target, &spsr, 1);
1459 if ((retval = jtag_execute_queue()) != ERROR_OK)
1460 {
1461 return retval;
1462 }
1463 buf_set_u32(ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).value, 0, 32, spsr);
1464 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).dirty = 0;
1465 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 16).valid = 1;
1466 }
1467
1468 /* r0 and r15 (pc) have to be restored later */
1469 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid;
1470 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 15).valid;
1471
1472 if ((retval = jtag_execute_queue()) != ERROR_OK)
1473 return retval;
1474
1475 if (arm7_9->post_debug_entry)
1476 arm7_9->post_debug_entry(target);
1477
1478 return ERROR_OK;
1479 }
1480
1481 /**
1482 * Validate the full context for an ARM7/9 target in all processor modes. If
1483 * there are any invalid registers for the target, they will all be read. This
1484 * includes the PSR.
1485 *
1486 * @param target Pointer to the ARM7/9 target to capture the full context from
1487 * @return Error if the target is not halted, has an invalid core mode, or if
1488 * the JTAG queue fails to execute
1489 */
1490 int arm7_9_full_context(struct target *target)
1491 {
1492 int i;
1493 int retval;
1494 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1495 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1496
1497 LOG_DEBUG("-");
1498
1499 if (target->state != TARGET_HALTED)
1500 {
1501 LOG_WARNING("target not halted");
1502 return ERROR_TARGET_NOT_HALTED;
1503 }
1504
1505 if (!is_arm_mode(armv4_5->core_mode))
1506 return ERROR_FAIL;
1507
1508 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1509 * SYS shares registers with User, so we don't touch SYS
1510 */
1511 for (i = 0; i < 6; i++)
1512 {
1513 uint32_t mask = 0;
1514 uint32_t* reg_p[16];
1515 int j;
1516 int valid = 1;
1517
1518 /* check if there are invalid registers in the current mode
1519 */
1520 for (j = 0; j <= 16; j++)
1521 {
1522 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1523 valid = 0;
1524 }
1525
1526 if (!valid)
1527 {
1528 uint32_t tmp_cpsr;
1529
1530 /* change processor mode (and mask T bit) */
1531 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8)
1532 & 0xe0;
1533 tmp_cpsr |= armv4_5_number_to_mode(i);
1534 tmp_cpsr &= ~0x20;
1535 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1536
1537 for (j = 0; j < 15; j++)
1538 {
1539 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid == 0)
1540 {
1541 reg_p[j] = (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).value;
1542 mask |= 1 << j;
1543 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).valid = 1;
1544 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j).dirty = 0;
1545 }
1546 }
1547
1548 /* if only the PSR is invalid, mask is all zeroes */
1549 if (mask)
1550 arm7_9->read_core_regs(target, mask, reg_p);
1551
1552 /* check if the PSR has to be read */
1553 if (ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid == 0)
1554 {
1555 arm7_9->read_xpsr(target, (uint32_t*)ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).value, 1);
1556 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).valid = 1;
1557 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16).dirty = 0;
1558 }
1559 }
1560 }
1561
1562 /* restore processor mode (mask T bit) */
1563 arm7_9->write_xpsr_im8(target,
1564 buf_get_u32(armv4_5->cpsr->value, 0, 8) & ~0x20,
1565 0, 0);
1566
1567 if ((retval = jtag_execute_queue()) != ERROR_OK)
1568 {
1569 return retval;
1570 }
1571 return ERROR_OK;
1572 }
1573
1574 /**
1575 * Restore the processor context on an ARM7/9 target. The full processor
1576 * context is analyzed to see if any of the registers are dirty on this end, but
1577 * have a valid new value. If this is the case, the processor is changed to the
1578 * appropriate mode and the new register values are written out to the
1579 * processor. If there happens to be a dirty register with an invalid value, an
1580 * error will be logged.
1581 *
1582 * @param target Pointer to the ARM7/9 target to have its context restored
1583 * @return Error status if the target is not halted or the core mode in the
1584 * armv4_5 struct is invalid.
1585 */
1586 int arm7_9_restore_context(struct target *target)
1587 {
1588 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1589 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1590 struct reg *reg;
1591 struct arm_reg *reg_arch_info;
1592 enum armv4_5_mode current_mode = armv4_5->core_mode;
1593 int i, j;
1594 int dirty;
1595 int mode_change;
1596
1597 LOG_DEBUG("-");
1598
1599 if (target->state != TARGET_HALTED)
1600 {
1601 LOG_WARNING("target not halted");
1602 return ERROR_TARGET_NOT_HALTED;
1603 }
1604
1605 if (arm7_9->pre_restore_context)
1606 arm7_9->pre_restore_context(target);
1607
1608 if (!is_arm_mode(armv4_5->core_mode))
1609 return ERROR_FAIL;
1610
1611 /* iterate through processor modes (User, FIQ, IRQ, SVC, ABT, UND)
1612 * SYS shares registers with User, so we don't touch SYS
1613 */
1614 for (i = 0; i < 6; i++)
1615 {
1616 LOG_DEBUG("examining %s mode",
1617 arm_mode_name(armv4_5->core_mode));
1618 dirty = 0;
1619 mode_change = 0;
1620 /* check if there are dirty registers in the current mode
1621 */
1622 for (j = 0; j <= 16; j++)
1623 {
1624 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1625 reg_arch_info = reg->arch_info;
1626 if (reg->dirty == 1)
1627 {
1628 if (reg->valid == 1)
1629 {
1630 dirty = 1;
1631 LOG_DEBUG("examining dirty reg: %s", reg->name);
1632 if ((reg_arch_info->mode != ARMV4_5_MODE_ANY)
1633 && (reg_arch_info->mode != current_mode)
1634 && !((reg_arch_info->mode == ARMV4_5_MODE_USR) && (armv4_5->core_mode == ARMV4_5_MODE_SYS))
1635 && !((reg_arch_info->mode == ARMV4_5_MODE_SYS) && (armv4_5->core_mode == ARMV4_5_MODE_USR)))
1636 {
1637 mode_change = 1;
1638 LOG_DEBUG("require mode change");
1639 }
1640 }
1641 else
1642 {
1643 LOG_ERROR("BUG: dirty register '%s', but no valid data", reg->name);
1644 }
1645 }
1646 }
1647
1648 if (dirty)
1649 {
1650 uint32_t mask = 0x0;
1651 int num_regs = 0;
1652 uint32_t regs[16];
1653
1654 if (mode_change)
1655 {
1656 uint32_t tmp_cpsr;
1657
1658 /* change processor mode (mask T bit) */
1659 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value,
1660 0, 8) & 0xe0;
1661 tmp_cpsr |= armv4_5_number_to_mode(i);
1662 tmp_cpsr &= ~0x20;
1663 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1664 current_mode = armv4_5_number_to_mode(i);
1665 }
1666
1667 for (j = 0; j <= 14; j++)
1668 {
1669 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), j);
1670 reg_arch_info = reg->arch_info;
1671
1672
1673 if (reg->dirty == 1)
1674 {
1675 regs[j] = buf_get_u32(reg->value, 0, 32);
1676 mask |= 1 << j;
1677 num_regs++;
1678 reg->dirty = 0;
1679 reg->valid = 1;
1680 LOG_DEBUG("writing register %i mode %s "
1681 "with value 0x%8.8" PRIx32, j,
1682 arm_mode_name(armv4_5->core_mode),
1683 regs[j]);
1684 }
1685 }
1686
1687 if (mask)
1688 {
1689 arm7_9->write_core_regs(target, mask, regs);
1690 }
1691
1692 reg = &ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5_number_to_mode(i), 16);
1693 reg_arch_info = reg->arch_info;
1694 if ((reg->dirty) && (reg_arch_info->mode != ARMV4_5_MODE_ANY))
1695 {
1696 LOG_DEBUG("writing SPSR of mode %i with value 0x%8.8" PRIx32 "", i, buf_get_u32(reg->value, 0, 32));
1697 arm7_9->write_xpsr(target, buf_get_u32(reg->value, 0, 32), 1);
1698 }
1699 }
1700 }
1701
1702 if (!armv4_5->cpsr->dirty && (armv4_5->core_mode != current_mode))
1703 {
1704 /* restore processor mode (mask T bit) */
1705 uint32_t tmp_cpsr;
1706
1707 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
1708 tmp_cpsr |= armv4_5_number_to_mode(i);
1709 tmp_cpsr &= ~0x20;
1710 LOG_DEBUG("writing lower 8 bit of cpsr with value 0x%2.2x", (unsigned)(tmp_cpsr));
1711 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
1712 }
1713 else if (armv4_5->cpsr->dirty)
1714 {
1715 /* CPSR has been changed, full restore necessary (mask T bit) */
1716 LOG_DEBUG("writing cpsr with value 0x%8.8" PRIx32,
1717 buf_get_u32(armv4_5->cpsr->value, 0, 32));
1718 arm7_9->write_xpsr(target,
1719 buf_get_u32(armv4_5->cpsr->value, 0, 32)
1720 & ~0x20, 0);
1721 armv4_5->cpsr->dirty = 0;
1722 armv4_5->cpsr->valid = 1;
1723 }
1724
1725 /* restore PC */
1726 LOG_DEBUG("writing PC with value 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1727 arm7_9->write_pc(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1728 armv4_5->core_cache->reg_list[15].dirty = 0;
1729
1730 if (arm7_9->post_restore_context)
1731 arm7_9->post_restore_context(target);
1732
1733 return ERROR_OK;
1734 }
1735
1736 /**
1737 * Restart the core of an ARM7/9 target. A RESTART command is sent to the
1738 * instruction register and the JTAG state is set to TAP_IDLE causing a core
1739 * restart.
1740 *
1741 * @param target Pointer to the ARM7/9 target to be restarted
1742 * @return Result of executing the JTAG queue
1743 */
1744 int arm7_9_restart_core(struct target *target)
1745 {
1746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1747 struct arm_jtag *jtag_info = &arm7_9->jtag_info;
1748
1749 /* set RESTART instruction */
1750 jtag_set_end_state(TAP_IDLE);
1751 if (arm7_9->need_bypass_before_restart) {
1752 arm7_9->need_bypass_before_restart = 0;
1753 arm_jtag_set_instr(jtag_info, 0xf, NULL);
1754 }
1755 arm_jtag_set_instr(jtag_info, 0x4, NULL);
1756
1757 jtag_add_runtest(1, jtag_set_end_state(TAP_IDLE));
1758 return jtag_execute_queue();
1759 }
1760
1761 /**
1762 * Enable the watchpoints on an ARM7/9 target. The target's watchpoints are
1763 * iterated through and are set on the target if they aren't already set.
1764 *
1765 * @param target Pointer to the ARM7/9 target to enable watchpoints on
1766 */
1767 void arm7_9_enable_watchpoints(struct target *target)
1768 {
1769 struct watchpoint *watchpoint = target->watchpoints;
1770
1771 while (watchpoint)
1772 {
1773 if (watchpoint->set == 0)
1774 arm7_9_set_watchpoint(target, watchpoint);
1775 watchpoint = watchpoint->next;
1776 }
1777 }
1778
1779 /**
1780 * Enable the breakpoints on an ARM7/9 target. The target's breakpoints are
1781 * iterated through and are set on the target.
1782 *
1783 * @param target Pointer to the ARM7/9 target to enable breakpoints on
1784 */
1785 void arm7_9_enable_breakpoints(struct target *target)
1786 {
1787 struct breakpoint *breakpoint = target->breakpoints;
1788
1789 /* set any pending breakpoints */
1790 while (breakpoint)
1791 {
1792 arm7_9_set_breakpoint(target, breakpoint);
1793 breakpoint = breakpoint->next;
1794 }
1795 }
1796
1797 int arm7_9_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
1798 {
1799 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1800 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1801 struct breakpoint *breakpoint = target->breakpoints;
1802 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
1803 int err, retval = ERROR_OK;
1804
1805 LOG_DEBUG("-");
1806
1807 if (target->state != TARGET_HALTED)
1808 {
1809 LOG_WARNING("target not halted");
1810 return ERROR_TARGET_NOT_HALTED;
1811 }
1812
1813 if (!debug_execution)
1814 {
1815 target_free_all_working_areas(target);
1816 }
1817
1818 /* current = 1: continue on current pc, otherwise continue at <address> */
1819 if (!current)
1820 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
1821
1822 uint32_t current_pc;
1823 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1824
1825 /* the front-end may request us not to handle breakpoints */
1826 if (handle_breakpoints)
1827 {
1828 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
1829 {
1830 LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 " (id: %d)", breakpoint->address, breakpoint->unique_id );
1831 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
1832 {
1833 return retval;
1834 }
1835
1836 /* calculate PC of next instruction */
1837 uint32_t next_pc;
1838 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
1839 {
1840 uint32_t current_opcode;
1841 target_read_u32(target, current_pc, &current_opcode);
1842 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
1843 return retval;
1844 }
1845
1846 LOG_DEBUG("enable single-step");
1847 arm7_9->enable_single_step(target, next_pc);
1848
1849 target->debug_reason = DBG_REASON_SINGLESTEP;
1850
1851 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1852 {
1853 return retval;
1854 }
1855
1856 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1857 arm7_9->branch_resume(target);
1858 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1859 {
1860 arm7_9->branch_resume_thumb(target);
1861 }
1862 else
1863 {
1864 LOG_ERROR("unhandled core state");
1865 return ERROR_FAIL;
1866 }
1867
1868 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1869 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1870 err = arm7_9_execute_sys_speed(target);
1871
1872 LOG_DEBUG("disable single-step");
1873 arm7_9->disable_single_step(target);
1874
1875 if (err != ERROR_OK)
1876 {
1877 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1878 {
1879 return retval;
1880 }
1881 target->state = TARGET_UNKNOWN;
1882 return err;
1883 }
1884
1885 arm7_9_debug_entry(target);
1886 LOG_DEBUG("new PC after step: 0x%8.8" PRIx32 "", buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32));
1887
1888 LOG_DEBUG("set breakpoint at 0x%8.8" PRIx32 "", breakpoint->address);
1889 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
1890 {
1891 return retval;
1892 }
1893 }
1894 }
1895
1896 /* enable any pending breakpoints and watchpoints */
1897 arm7_9_enable_breakpoints(target);
1898 arm7_9_enable_watchpoints(target);
1899
1900 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
1901 {
1902 return retval;
1903 }
1904
1905 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
1906 {
1907 arm7_9->branch_resume(target);
1908 }
1909 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
1910 {
1911 arm7_9->branch_resume_thumb(target);
1912 }
1913 else
1914 {
1915 LOG_ERROR("unhandled core state");
1916 return ERROR_FAIL;
1917 }
1918
1919 /* deassert DBGACK and INTDIS */
1920 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
1921 /* INTDIS only when we really resume, not during debug execution */
1922 if (!debug_execution)
1923 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_INTDIS, 1, 0);
1924 embeddedice_write_reg(dbg_ctrl, buf_get_u32(dbg_ctrl->value, 0, dbg_ctrl->size));
1925
1926 if ((retval = arm7_9_restart_core(target)) != ERROR_OK)
1927 {
1928 return retval;
1929 }
1930
1931 target->debug_reason = DBG_REASON_NOTHALTED;
1932
1933 if (!debug_execution)
1934 {
1935 /* registers are now invalid */
1936 register_cache_invalidate(armv4_5->core_cache);
1937 target->state = TARGET_RUNNING;
1938 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
1939 {
1940 return retval;
1941 }
1942 }
1943 else
1944 {
1945 target->state = TARGET_DEBUG_RUNNING;
1946 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED)) != ERROR_OK)
1947 {
1948 return retval;
1949 }
1950 }
1951
1952 LOG_DEBUG("target resumed");
1953
1954 return ERROR_OK;
1955 }
1956
1957 void arm7_9_enable_eice_step(struct target *target, uint32_t next_pc)
1958 {
1959 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1960 struct arm *armv4_5 = &arm7_9->armv4_5_common;
1961 uint32_t current_pc;
1962 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
1963
1964 if (next_pc != current_pc)
1965 {
1966 /* setup an inverse breakpoint on the current PC
1967 * - comparator 1 matches the current address
1968 * - rangeout from comparator 1 is connected to comparator 0 rangein
1969 * - comparator 0 matches any address, as long as rangein is low */
1970 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1971 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1972 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1973 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], ~(EICE_W_CTRL_RANGE | EICE_W_CTRL_nOPC) & 0xff);
1974 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], current_pc);
1975 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1976 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1977 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], 0x0);
1978 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1979 }
1980 else
1981 {
1982 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK], 0xffffffff);
1983 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK], 0xffffffff);
1984 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE], 0x0);
1985 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK], 0xff);
1986 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE], next_pc);
1987 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK], 0);
1988 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK], 0xffffffff);
1989 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE], EICE_W_CTRL_ENABLE);
1990 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK], ~EICE_W_CTRL_nOPC & 0xff);
1991 }
1992 }
1993
1994 void arm7_9_disable_eice_step(struct target *target)
1995 {
1996 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1997
1998 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_ADDR_MASK]);
1999 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_DATA_MASK]);
2000 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_VALUE]);
2001 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W0_CONTROL_MASK]);
2002 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_VALUE]);
2003 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_ADDR_MASK]);
2004 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_DATA_MASK]);
2005 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_MASK]);
2006 embeddedice_store_reg(&arm7_9->eice_cache->reg_list[EICE_W1_CONTROL_VALUE]);
2007 }
2008
2009 int arm7_9_step(struct target *target, int current, uint32_t address, int handle_breakpoints)
2010 {
2011 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2012 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2013 struct breakpoint *breakpoint = NULL;
2014 int err, retval;
2015
2016 if (target->state != TARGET_HALTED)
2017 {
2018 LOG_WARNING("target not halted");
2019 return ERROR_TARGET_NOT_HALTED;
2020 }
2021
2022 /* current = 1: continue on current pc, otherwise continue at <address> */
2023 if (!current)
2024 buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, address);
2025
2026 uint32_t current_pc;
2027 current_pc = buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32);
2028
2029 /* the front-end may request us not to handle breakpoints */
2030 if (handle_breakpoints)
2031 if ((breakpoint = breakpoint_find(target, buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32))))
2032 if ((retval = arm7_9_unset_breakpoint(target, breakpoint)) != ERROR_OK)
2033 {
2034 return retval;
2035 }
2036
2037 target->debug_reason = DBG_REASON_SINGLESTEP;
2038
2039 /* calculate PC of next instruction */
2040 uint32_t next_pc;
2041 if ((retval = arm_simulate_step(target, &next_pc)) != ERROR_OK)
2042 {
2043 uint32_t current_opcode;
2044 target_read_u32(target, current_pc, &current_opcode);
2045 LOG_ERROR("Couldn't calculate PC of next instruction, current opcode was 0x%8.8" PRIx32 "", current_opcode);
2046 return retval;
2047 }
2048
2049 if ((retval = arm7_9_restore_context(target)) != ERROR_OK)
2050 {
2051 return retval;
2052 }
2053
2054 arm7_9->enable_single_step(target, next_pc);
2055
2056 if (armv4_5->core_state == ARMV4_5_STATE_ARM)
2057 {
2058 arm7_9->branch_resume(target);
2059 }
2060 else if (armv4_5->core_state == ARMV4_5_STATE_THUMB)
2061 {
2062 arm7_9->branch_resume_thumb(target);
2063 }
2064 else
2065 {
2066 LOG_ERROR("unhandled core state");
2067 return ERROR_FAIL;
2068 }
2069
2070 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_RESUMED)) != ERROR_OK)
2071 {
2072 return retval;
2073 }
2074
2075 err = arm7_9_execute_sys_speed(target);
2076 arm7_9->disable_single_step(target);
2077
2078 /* registers are now invalid */
2079 register_cache_invalidate(armv4_5->core_cache);
2080
2081 if (err != ERROR_OK)
2082 {
2083 target->state = TARGET_UNKNOWN;
2084 } else {
2085 arm7_9_debug_entry(target);
2086 if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK)
2087 {
2088 return retval;
2089 }
2090 LOG_DEBUG("target stepped");
2091 }
2092
2093 if (breakpoint)
2094 if ((retval = arm7_9_set_breakpoint(target, breakpoint)) != ERROR_OK)
2095 {
2096 return retval;
2097 }
2098
2099 return err;
2100 }
2101
2102 static int arm7_9_read_core_reg(struct target *target, struct reg *r,
2103 int num, enum armv4_5_mode mode)
2104 {
2105 uint32_t* reg_p[16];
2106 uint32_t value;
2107 int retval;
2108 struct arm_reg *areg = r->arch_info;
2109 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2110 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2111
2112 if (!is_arm_mode(armv4_5->core_mode))
2113 return ERROR_FAIL;
2114 if ((num < 0) || (num > 16))
2115 return ERROR_INVALID_ARGUMENTS;
2116
2117 if ((mode != ARMV4_5_MODE_ANY)
2118 && (mode != armv4_5->core_mode)
2119 && (areg->mode != ARMV4_5_MODE_ANY))
2120 {
2121 uint32_t tmp_cpsr;
2122
2123 /* change processor mode (mask T bit) */
2124 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2125 tmp_cpsr |= mode;
2126 tmp_cpsr &= ~0x20;
2127 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2128 }
2129
2130 if ((num >= 0) && (num <= 15))
2131 {
2132 /* read a normal core register */
2133 reg_p[num] = &value;
2134
2135 arm7_9->read_core_regs(target, 1 << num, reg_p);
2136 }
2137 else
2138 {
2139 /* read a program status register
2140 * if the register mode is MODE_ANY, we read the cpsr, otherwise a spsr
2141 */
2142 arm7_9->read_xpsr(target, &value, areg->mode != ARMV4_5_MODE_ANY);
2143 }
2144
2145 if ((retval = jtag_execute_queue()) != ERROR_OK)
2146 {
2147 return retval;
2148 }
2149
2150 r->valid = 1;
2151 r->dirty = 0;
2152 buf_set_u32(r->value, 0, 32, value);
2153
2154 if ((mode != ARMV4_5_MODE_ANY)
2155 && (mode != armv4_5->core_mode)
2156 && (areg->mode != ARMV4_5_MODE_ANY)) {
2157 /* restore processor mode (mask T bit) */
2158 arm7_9->write_xpsr_im8(target,
2159 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2160 & ~0x20, 0, 0);
2161 }
2162
2163 return ERROR_OK;
2164 }
2165
2166 static int arm7_9_write_core_reg(struct target *target, struct reg *r,
2167 int num, enum armv4_5_mode mode, uint32_t value)
2168 {
2169 uint32_t reg[16];
2170 struct arm_reg *areg = r->arch_info;
2171 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2172 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2173
2174 if (!is_arm_mode(armv4_5->core_mode))
2175 return ERROR_FAIL;
2176 if ((num < 0) || (num > 16))
2177 return ERROR_INVALID_ARGUMENTS;
2178
2179 if ((mode != ARMV4_5_MODE_ANY)
2180 && (mode != armv4_5->core_mode)
2181 && (areg->mode != ARMV4_5_MODE_ANY)) {
2182 uint32_t tmp_cpsr;
2183
2184 /* change processor mode (mask T bit) */
2185 tmp_cpsr = buf_get_u32(armv4_5->cpsr->value, 0, 8) & 0xE0;
2186 tmp_cpsr |= mode;
2187 tmp_cpsr &= ~0x20;
2188 arm7_9->write_xpsr_im8(target, tmp_cpsr & 0xff, 0, 0);
2189 }
2190
2191 if ((num >= 0) && (num <= 15))
2192 {
2193 /* write a normal core register */
2194 reg[num] = value;
2195
2196 arm7_9->write_core_regs(target, 1 << num, reg);
2197 }
2198 else
2199 {
2200 /* write a program status register
2201 * if the register mode is MODE_ANY, we write the cpsr, otherwise a spsr
2202 */
2203 int spsr = (areg->mode != ARMV4_5_MODE_ANY);
2204
2205 /* if we're writing the CPSR, mask the T bit */
2206 if (!spsr)
2207 value &= ~0x20;
2208
2209 arm7_9->write_xpsr(target, value, spsr);
2210 }
2211
2212 r->valid = 1;
2213 r->dirty = 0;
2214
2215 if ((mode != ARMV4_5_MODE_ANY)
2216 && (mode != armv4_5->core_mode)
2217 && (areg->mode != ARMV4_5_MODE_ANY)) {
2218 /* restore processor mode (mask T bit) */
2219 arm7_9->write_xpsr_im8(target,
2220 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2221 & ~0x20, 0, 0);
2222 }
2223
2224 return jtag_execute_queue();
2225 }
2226
2227 int arm7_9_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2228 {
2229 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2230 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2231 uint32_t reg[16];
2232 uint32_t num_accesses = 0;
2233 int thisrun_accesses;
2234 int i;
2235 uint32_t cpsr;
2236 int retval;
2237 int last_reg = 0;
2238
2239 LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count);
2240
2241 if (target->state != TARGET_HALTED)
2242 {
2243 LOG_WARNING("target not halted");
2244 return ERROR_TARGET_NOT_HALTED;
2245 }
2246
2247 /* sanitize arguments */
2248 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2249 return ERROR_INVALID_ARGUMENTS;
2250
2251 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2252 return ERROR_TARGET_UNALIGNED_ACCESS;
2253
2254 /* load the base register with the address of the first word */
2255 reg[0] = address;
2256 arm7_9->write_core_regs(target, 0x1, reg);
2257
2258 int j = 0;
2259
2260 switch (size)
2261 {
2262 case 4:
2263 while (num_accesses < count)
2264 {
2265 uint32_t reg_list;
2266 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2267 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2268
2269 if (last_reg <= thisrun_accesses)
2270 last_reg = thisrun_accesses;
2271
2272 arm7_9->load_word_regs(target, reg_list);
2273
2274 /* fast memory reads are only safe when the target is running
2275 * from a sufficiently high clock (32 kHz is usually too slow)
2276 */
2277 if (arm7_9->fast_memory_access)
2278 retval = arm7_9_execute_fast_sys_speed(target);
2279 else
2280 retval = arm7_9_execute_sys_speed(target);
2281 if (retval != ERROR_OK)
2282 return retval;
2283
2284 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 4);
2285
2286 /* advance buffer, count number of accesses */
2287 buffer += thisrun_accesses * 4;
2288 num_accesses += thisrun_accesses;
2289
2290 if ((j++%1024) == 0)
2291 {
2292 keep_alive();
2293 }
2294 }
2295 break;
2296 case 2:
2297 while (num_accesses < count)
2298 {
2299 uint32_t reg_list;
2300 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2301 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2302
2303 for (i = 1; i <= thisrun_accesses; i++)
2304 {
2305 if (i > last_reg)
2306 last_reg = i;
2307 arm7_9->load_hword_reg(target, i);
2308 /* fast memory reads are only safe when the target is running
2309 * from a sufficiently high clock (32 kHz is usually too slow)
2310 */
2311 if (arm7_9->fast_memory_access)
2312 retval = arm7_9_execute_fast_sys_speed(target);
2313 else
2314 retval = arm7_9_execute_sys_speed(target);
2315 if (retval != ERROR_OK)
2316 {
2317 return retval;
2318 }
2319
2320 }
2321
2322 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 2);
2323
2324 /* advance buffer, count number of accesses */
2325 buffer += thisrun_accesses * 2;
2326 num_accesses += thisrun_accesses;
2327
2328 if ((j++%1024) == 0)
2329 {
2330 keep_alive();
2331 }
2332 }
2333 break;
2334 case 1:
2335 while (num_accesses < count)
2336 {
2337 uint32_t reg_list;
2338 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2339 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2340
2341 for (i = 1; i <= thisrun_accesses; i++)
2342 {
2343 if (i > last_reg)
2344 last_reg = i;
2345 arm7_9->load_byte_reg(target, i);
2346 /* fast memory reads are only safe when the target is running
2347 * from a sufficiently high clock (32 kHz is usually too slow)
2348 */
2349 if (arm7_9->fast_memory_access)
2350 retval = arm7_9_execute_fast_sys_speed(target);
2351 else
2352 retval = arm7_9_execute_sys_speed(target);
2353 if (retval != ERROR_OK)
2354 {
2355 return retval;
2356 }
2357 }
2358
2359 arm7_9->read_core_regs_target_buffer(target, reg_list, buffer, 1);
2360
2361 /* advance buffer, count number of accesses */
2362 buffer += thisrun_accesses * 1;
2363 num_accesses += thisrun_accesses;
2364
2365 if ((j++%1024) == 0)
2366 {
2367 keep_alive();
2368 }
2369 }
2370 break;
2371 default:
2372 LOG_ERROR("BUG: we shouldn't get here");
2373 exit(-1);
2374 break;
2375 }
2376
2377 if (!is_arm_mode(armv4_5->core_mode))
2378 return ERROR_FAIL;
2379
2380 for (i = 0; i <= last_reg; i++)
2381 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2382
2383 arm7_9->read_xpsr(target, &cpsr, 0);
2384 if ((retval = jtag_execute_queue()) != ERROR_OK)
2385 {
2386 LOG_ERROR("JTAG error while reading cpsr");
2387 return ERROR_TARGET_DATA_ABORT;
2388 }
2389
2390 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2391 {
2392 LOG_WARNING("memory read caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2393
2394 arm7_9->write_xpsr_im8(target,
2395 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2396 & ~0x20, 0, 0);
2397
2398 return ERROR_TARGET_DATA_ABORT;
2399 }
2400
2401 return ERROR_OK;
2402 }
2403
2404 int arm7_9_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
2405 {
2406 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2407 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2408 struct reg *dbg_ctrl = &arm7_9->eice_cache->reg_list[EICE_DBG_CTRL];
2409
2410 uint32_t reg[16];
2411 uint32_t num_accesses = 0;
2412 int thisrun_accesses;
2413 int i;
2414 uint32_t cpsr;
2415 int retval;
2416 int last_reg = 0;
2417
2418 #ifdef _DEBUG_ARM7_9_
2419 LOG_DEBUG("address: 0x%8.8x, size: 0x%8.8x, count: 0x%8.8x", address, size, count);
2420 #endif
2421
2422 if (target->state != TARGET_HALTED)
2423 {
2424 LOG_WARNING("target not halted");
2425 return ERROR_TARGET_NOT_HALTED;
2426 }
2427
2428 /* sanitize arguments */
2429 if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer))
2430 return ERROR_INVALID_ARGUMENTS;
2431
2432 if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u)))
2433 return ERROR_TARGET_UNALIGNED_ACCESS;
2434
2435 /* load the base register with the address of the first word */
2436 reg[0] = address;
2437 arm7_9->write_core_regs(target, 0x1, reg);
2438
2439 /* Clear DBGACK, to make sure memory fetches work as expected */
2440 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 0);
2441 embeddedice_store_reg(dbg_ctrl);
2442
2443 switch (size)
2444 {
2445 case 4:
2446 while (num_accesses < count)
2447 {
2448 uint32_t reg_list;
2449 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2450 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2451
2452 for (i = 1; i <= thisrun_accesses; i++)
2453 {
2454 if (i > last_reg)
2455 last_reg = i;
2456 reg[i] = target_buffer_get_u32(target, buffer);
2457 buffer += 4;
2458 }
2459
2460 arm7_9->write_core_regs(target, reg_list, reg);
2461
2462 arm7_9->store_word_regs(target, reg_list);
2463
2464 /* fast memory writes are only safe when the target is running
2465 * from a sufficiently high clock (32 kHz is usually too slow)
2466 */
2467 if (arm7_9->fast_memory_access)
2468 retval = arm7_9_execute_fast_sys_speed(target);
2469 else
2470 retval = arm7_9_execute_sys_speed(target);
2471 if (retval != ERROR_OK)
2472 {
2473 return retval;
2474 }
2475
2476 num_accesses += thisrun_accesses;
2477 }
2478 break;
2479 case 2:
2480 while (num_accesses < count)
2481 {
2482 uint32_t reg_list;
2483 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2484 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2485
2486 for (i = 1; i <= thisrun_accesses; i++)
2487 {
2488 if (i > last_reg)
2489 last_reg = i;
2490 reg[i] = target_buffer_get_u16(target, buffer) & 0xffff;
2491 buffer += 2;
2492 }
2493
2494 arm7_9->write_core_regs(target, reg_list, reg);
2495
2496 for (i = 1; i <= thisrun_accesses; i++)
2497 {
2498 arm7_9->store_hword_reg(target, i);
2499
2500 /* fast memory writes are only safe when the target is running
2501 * from a sufficiently high clock (32 kHz is usually too slow)
2502 */
2503 if (arm7_9->fast_memory_access)
2504 retval = arm7_9_execute_fast_sys_speed(target);
2505 else
2506 retval = arm7_9_execute_sys_speed(target);
2507 if (retval != ERROR_OK)
2508 {
2509 return retval;
2510 }
2511 }
2512
2513 num_accesses += thisrun_accesses;
2514 }
2515 break;
2516 case 1:
2517 while (num_accesses < count)
2518 {
2519 uint32_t reg_list;
2520 thisrun_accesses = ((count - num_accesses) >= 14) ? 14 : (count - num_accesses);
2521 reg_list = (0xffff >> (15 - thisrun_accesses)) & 0xfffe;
2522
2523 for (i = 1; i <= thisrun_accesses; i++)
2524 {
2525 if (i > last_reg)
2526 last_reg = i;
2527 reg[i] = *buffer++ & 0xff;
2528 }
2529
2530 arm7_9->write_core_regs(target, reg_list, reg);
2531
2532 for (i = 1; i <= thisrun_accesses; i++)
2533 {
2534 arm7_9->store_byte_reg(target, i);
2535 /* fast memory writes are only safe when the target is running
2536 * from a sufficiently high clock (32 kHz is usually too slow)
2537 */
2538 if (arm7_9->fast_memory_access)
2539 retval = arm7_9_execute_fast_sys_speed(target);
2540 else
2541 retval = arm7_9_execute_sys_speed(target);
2542 if (retval != ERROR_OK)
2543 {
2544 return retval;
2545 }
2546
2547 }
2548
2549 num_accesses += thisrun_accesses;
2550 }
2551 break;
2552 default:
2553 LOG_ERROR("BUG: we shouldn't get here");
2554 exit(-1);
2555 break;
2556 }
2557
2558 /* Re-Set DBGACK */
2559 buf_set_u32(dbg_ctrl->value, EICE_DBG_CONTROL_DBGACK, 1, 1);
2560 embeddedice_store_reg(dbg_ctrl);
2561
2562 if (!is_arm_mode(armv4_5->core_mode))
2563 return ERROR_FAIL;
2564
2565 for (i = 0; i <= last_reg; i++)
2566 ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, i).valid;
2567
2568 arm7_9->read_xpsr(target, &cpsr, 0);
2569 if ((retval = jtag_execute_queue()) != ERROR_OK)
2570 {
2571 LOG_ERROR("JTAG error while reading cpsr");
2572 return ERROR_TARGET_DATA_ABORT;
2573 }
2574
2575 if (((cpsr & 0x1f) == ARMV4_5_MODE_ABT) && (armv4_5->core_mode != ARMV4_5_MODE_ABT))
2576 {
2577 LOG_WARNING("memory write caused data abort (address: 0x%8.8" PRIx32 ", size: 0x%" PRIx32 ", count: 0x%" PRIx32 ")", address, size, count);
2578
2579 arm7_9->write_xpsr_im8(target,
2580 buf_get_u32(armv4_5->cpsr->value, 0, 8)
2581 & ~0x20, 0, 0);
2582
2583 return ERROR_TARGET_DATA_ABORT;
2584 }
2585
2586 return ERROR_OK;
2587 }
2588
2589 static int dcc_count;
2590 static uint8_t *dcc_buffer;
2591
2592 static int arm7_9_dcc_completion(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info)
2593 {
2594 int retval = ERROR_OK;
2595 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2596
2597 if ((retval = target_wait_state(target, TARGET_DEBUG_RUNNING, 500)) != ERROR_OK)
2598 return retval;
2599
2600 int little = target->endianness == TARGET_LITTLE_ENDIAN;
2601 int count = dcc_count;
2602 uint8_t *buffer = dcc_buffer;
2603 if (count > 2)
2604 {
2605 /* Handle first & last using standard embeddedice_write_reg and the middle ones w/the
2606 * core function repeated. */
2607 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2608 buffer += 4;
2609
2610 struct embeddedice_reg *ice_reg = arm7_9->eice_cache->reg_list[EICE_COMMS_DATA].arch_info;
2611 uint8_t reg_addr = ice_reg->addr & 0x1f;
2612 struct jtag_tap *tap;
2613 tap = ice_reg->jtag_info->tap;
2614
2615 embeddedice_write_dcc(tap, reg_addr, buffer, little, count-2);
2616 buffer += (count-2)*4;
2617
2618 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2619 } else
2620 {
2621 int i;
2622 for (i = 0; i < count; i++)
2623 {
2624 embeddedice_write_reg(&arm7_9->eice_cache->reg_list[EICE_COMMS_DATA], fast_target_buffer_get_u32(buffer, little));
2625 buffer += 4;
2626 }
2627 }
2628
2629 if ((retval = target_halt(target))!= ERROR_OK)
2630 {
2631 return retval;
2632 }
2633 return target_wait_state(target, TARGET_HALTED, 500);
2634 }
2635
2636 static const uint32_t dcc_code[] =
2637 {
2638 /* r0 == input, points to memory buffer
2639 * r1 == scratch
2640 */
2641
2642 /* spin until DCC control (c0) reports data arrived */
2643 0xee101e10, /* w: mrc p14, #0, r1, c0, c0 */
2644 0xe3110001, /* tst r1, #1 */
2645 0x0afffffc, /* bne w */
2646
2647 /* read word from DCC (c1), write to memory */
2648 0xee111e10, /* mrc p14, #0, r1, c1, c0 */
2649 0xe4801004, /* str r1, [r0], #4 */
2650
2651 /* repeat */
2652 0xeafffff9 /* b w */
2653 };
2654
2655 int armv4_5_run_algorithm_inner(struct target *target, int num_mem_params, struct mem_param *mem_params, int num_reg_params, struct reg_param *reg_params, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info, int (*run_it)(struct target *target, uint32_t exit_point, int timeout_ms, void *arch_info));
2656
2657 int arm7_9_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer)
2658 {
2659 int retval;
2660 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2661 int i;
2662
2663 if (!arm7_9->dcc_downloads)
2664 return target_write_memory(target, address, 4, count, buffer);
2665
2666 /* regrab previously allocated working_area, or allocate a new one */
2667 if (!arm7_9->dcc_working_area)
2668 {
2669 uint8_t dcc_code_buf[6 * 4];
2670
2671 /* make sure we have a working area */
2672 if (target_alloc_working_area(target, 24, &arm7_9->dcc_working_area) != ERROR_OK)
2673 {
2674 LOG_INFO("no working area available, falling back to memory writes");
2675 return target_write_memory(target, address, 4, count, buffer);
2676 }
2677
2678 /* copy target instructions to target endianness */
2679 for (i = 0; i < 6; i++)
2680 {
2681 target_buffer_set_u32(target, dcc_code_buf + i*4, dcc_code[i]);
2682 }
2683
2684 /* write DCC code to working area */
2685 if ((retval = target_write_memory(target, arm7_9->dcc_working_area->address, 4, 6, dcc_code_buf)) != ERROR_OK)
2686 {
2687 return retval;
2688 }
2689 }
2690
2691 struct armv4_5_algorithm armv4_5_info;
2692 struct reg_param reg_params[1];
2693
2694 armv4_5_info.common_magic = ARMV4_5_COMMON_MAGIC;
2695 armv4_5_info.core_mode = ARMV4_5_MODE_SVC;
2696 armv4_5_info.core_state = ARMV4_5_STATE_ARM;
2697
2698 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
2699
2700 buf_set_u32(reg_params[0].value, 0, 32, address);
2701
2702 dcc_count = count;
2703 dcc_buffer = buffer;
2704 retval = armv4_5_run_algorithm_inner(target, 0, NULL, 1, reg_params,
2705 arm7_9->dcc_working_area->address, arm7_9->dcc_working_area->address + 6*4, 20*1000, &armv4_5_info, arm7_9_dcc_completion);
2706
2707 if (retval == ERROR_OK)
2708 {
2709 uint32_t endaddress = buf_get_u32(reg_params[0].value, 0, 32);
2710 if (endaddress != (address + count*4))
2711 {
2712 LOG_ERROR("DCC write failed, expected end address 0x%08" PRIx32 " got 0x%0" PRIx32 "", (address + count*4), endaddress);
2713 retval = ERROR_FAIL;
2714 }
2715 }
2716
2717 destroy_reg_param(&reg_params[0]);
2718
2719 return retval;
2720 }
2721
2722 /**
2723 * Perform per-target setup that requires JTAG access.
2724 */
2725 int arm7_9_examine(struct target *target)
2726 {
2727 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2728 int retval;
2729
2730 if (!target_was_examined(target)) {
2731 struct reg_cache *t, **cache_p;
2732
2733 t = embeddedice_build_reg_cache(target, arm7_9);
2734 if (t == NULL)
2735 return ERROR_FAIL;
2736
2737 cache_p = register_get_last_cache_p(&target->reg_cache);
2738 (*cache_p) = t;
2739 arm7_9->eice_cache = (*cache_p);
2740
2741 if (arm7_9->armv4_5_common.etm)
2742 (*cache_p)->next = etm_build_reg_cache(target,
2743 &arm7_9->jtag_info,
2744 arm7_9->armv4_5_common.etm);
2745
2746 target_set_examined(target);
2747 }
2748
2749 retval = embeddedice_setup(target);
2750 if (retval == ERROR_OK)
2751 retval = arm7_9_setup(target);
2752 if (retval == ERROR_OK && arm7_9->armv4_5_common.etm)
2753 retval = etm_setup(target);
2754 return retval;
2755 }
2756
2757 COMMAND_HANDLER(handle_arm7_9_dbgrq_command)
2758 {
2759 struct target *target = get_current_target(CMD_CTX);
2760 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2761
2762 if (!is_arm7_9(arm7_9))
2763 {
2764 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2765 return ERROR_TARGET_INVALID;
2766 }
2767
2768 if (CMD_ARGC > 0)
2769 COMMAND_PARSE_ENABLE(CMD_ARGV[0],arm7_9->use_dbgrq);
2770
2771 command_print(CMD_CTX, "use of EmbeddedICE dbgrq instead of breakpoint for target halt %s", (arm7_9->use_dbgrq) ? "enabled" : "disabled");
2772
2773 return ERROR_OK;
2774 }
2775
2776 COMMAND_HANDLER(handle_arm7_9_fast_memory_access_command)
2777 {
2778 struct target *target = get_current_target(CMD_CTX);
2779 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2780
2781 if (!is_arm7_9(arm7_9))
2782 {
2783 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2784 return ERROR_TARGET_INVALID;
2785 }
2786
2787 if (CMD_ARGC > 0)
2788 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->fast_memory_access);
2789
2790 command_print(CMD_CTX, "fast memory access is %s", (arm7_9->fast_memory_access) ? "enabled" : "disabled");
2791
2792 return ERROR_OK;
2793 }
2794
2795 COMMAND_HANDLER(handle_arm7_9_dcc_downloads_command)
2796 {
2797 struct target *target = get_current_target(CMD_CTX);
2798 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
2799
2800 if (!is_arm7_9(arm7_9))
2801 {
2802 command_print(CMD_CTX, "current target isn't an ARM7/ARM9 target");
2803 return ERROR_TARGET_INVALID;
2804 }
2805
2806 if (CMD_ARGC > 0)
2807 COMMAND_PARSE_ENABLE(CMD_ARGV[0], arm7_9->dcc_downloads);
2808
2809 command_print(CMD_CTX, "dcc downloads are %s", (arm7_9->dcc_downloads) ? "enabled" : "disabled");
2810
2811 return ERROR_OK;
2812 }
2813
2814 int arm7_9_init_arch_info(struct target *target, struct arm7_9_common *arm7_9)
2815 {
2816 int retval = ERROR_OK;
2817 struct arm *armv4_5 = &arm7_9->armv4_5_common;
2818
2819 arm7_9->common_magic = ARM7_9_COMMON_MAGIC;
2820
2821 if ((retval = arm_jtag_setup_connection(&arm7_9->jtag_info)) != ERROR_OK)
2822 return retval;
2823
2824 /* caller must have allocated via calloc(), so everything's zeroed */
2825
2826 arm7_9->wp_available_max = 2;
2827
2828 arm7_9->fast_memory_access = false;
2829 arm7_9->dcc_downloads = false;
2830
2831 armv4_5->arch_info = arm7_9;
2832 armv4_5->read_core_reg = arm7_9_read_core_reg;
2833 armv4_5->write_core_reg = arm7_9_write_core_reg;
2834 armv4_5->full_context = arm7_9_full_context;
2835
2836 if ((retval = armv4_5_init_arch_info(target, armv4_5)) != ERROR_OK)
2837 return retval;
2838
2839 return target_register_timer_callback(arm7_9_handle_target_request,
2840 1, 1, target);
2841 }
2842
2843 int arm7_9_register_commands(struct command_context *cmd_ctx)
2844 {
2845 struct command *arm7_9_cmd;
2846
2847 arm7_9_cmd = register_command(cmd_ctx, NULL, "arm7_9",
2848 NULL, COMMAND_ANY, "arm7/9 specific commands");
2849
2850 register_command(cmd_ctx, arm7_9_cmd, "dbgrq",
2851 handle_arm7_9_dbgrq_command, COMMAND_ANY,
2852 "use EmbeddedICE dbgrq instead of breakpoint "
2853 "for target halt requests <enable | disable>");
2854 register_command(cmd_ctx, arm7_9_cmd, "fast_memory_access",
2855 handle_arm7_9_fast_memory_access_command, COMMAND_ANY,
2856 "use fast memory accesses instead of slower "
2857 "but potentially safer accesses <enable | disable>");
2858 register_command(cmd_ctx, arm7_9_cmd, "dcc_downloads",
2859 handle_arm7_9_dcc_downloads_command, COMMAND_ANY,
2860 "use DCC downloads for larger memory writes <enable | disable>");
2861
2862 armv4_5_register_commands(cmd_ctx);
2863
2864 etm_register_commands(cmd_ctx);
2865
2866 return ERROR_OK;
2867 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)