arm_adi_v5: fix regression from 4553abf9064fe3c0e4ea2ed29a1d2217df74ff5f
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
28 ***************************************************************************/
29
30 /**
31 * @file
32 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
33 * debugging architecture. Compared with previous versions, this includes
34 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
35 * transport, and focusses on memory mapped resources as defined by the
36 * CoreSight architecture.
37 *
38 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
39 * basic components: a Debug Port (DP) transporting messages to and from a
40 * debugger, and an Access Port (AP) accessing resources. Three types of DP
41 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
42 * One uses only SWD for communication, and is called SW-DP. The third can
43 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
44 * is used to access memory mapped resources and is called a MEM-AP. Also a
45 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
46 *
47 * This programming interface allows DAP pipelined operations through a
48 * transaction queue. This primarily affects AP operations (such as using
49 * a MEM-AP to access memory or registers). If the current transaction has
50 * not finished by the time the next one must begin, and the ORUNDETECT bit
51 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
52 * further AP operations will fail. There are two basic methods to avoid
53 * such overrun errors. One involves polling for status instead of using
54 * transaction piplining. The other involves adding delays to ensure the
55 * AP has enough time to complete one operation before starting the next
56 * one. (For JTAG these delays are controlled by memaccess_tck.)
57 */
58
59 /*
60 * Relevant specifications from ARM include:
61 *
62 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
63 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
64 *
65 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
66 * Cortex-M3(tm) TRM, ARM DDI 0337G
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 #include "jtag/interface.h"
74 #include "arm.h"
75 #include "arm_adi_v5.h"
76 #include <helper/jep106.h>
77 #include <helper/time_support.h>
78 #include <helper/list.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
98 {
99 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
100 ap->csw_default;
101
102 if (csw != ap->csw_value) {
103 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
104 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
105 if (retval != ERROR_OK)
106 return retval;
107 ap->csw_value = csw;
108 }
109 return ERROR_OK;
110 }
111
112 static int mem_ap_setup_tar(struct adiv5_ap *ap, uint32_t tar)
113 {
114 if (!ap->tar_valid || tar != ap->tar_value) {
115 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
116 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, tar);
117 if (retval != ERROR_OK)
118 return retval;
119 ap->tar_value = tar;
120 ap->tar_valid = true;
121 }
122 return ERROR_OK;
123 }
124
125 static int mem_ap_read_tar(struct adiv5_ap *ap, uint32_t *tar)
126 {
127 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, tar);
128 if (retval != ERROR_OK) {
129 ap->tar_valid = false;
130 return retval;
131 }
132
133 retval = dap_run(ap->dap);
134 if (retval != ERROR_OK) {
135 ap->tar_valid = false;
136 return retval;
137 }
138
139 ap->tar_value = *tar;
140 ap->tar_valid = true;
141 return ERROR_OK;
142 }
143
144 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
145 {
146 switch (ap->csw_value & CSW_ADDRINC_MASK) {
147 case CSW_ADDRINC_SINGLE:
148 switch (ap->csw_value & CSW_SIZE_MASK) {
149 case CSW_8BIT:
150 return 1;
151 case CSW_16BIT:
152 return 2;
153 case CSW_32BIT:
154 return 4;
155 }
156 case CSW_ADDRINC_PACKED:
157 return 4;
158 }
159 return 0;
160 }
161
162 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
163 */
164 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
165 {
166 if (!ap->tar_valid)
167 return;
168
169 uint32_t inc = mem_ap_get_tar_increment(ap);
170 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
171 ap->tar_valid = false;
172 else
173 ap->tar_value += inc;
174 }
175
176 /**
177 * Queue transactions setting up transfer parameters for the
178 * currently selected MEM-AP.
179 *
180 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
181 * initiate data reads or writes using memory or peripheral addresses.
182 * If the CSW is configured for it, the TAR may be automatically
183 * incremented after each transfer.
184 *
185 * @param ap The MEM-AP.
186 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
187 * matches the cached value, the register is not changed.
188 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
189 * matches the cached address, the register is not changed.
190 *
191 * @return ERROR_OK if the transaction was properly queued, else a fault code.
192 */
193 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, uint32_t tar)
194 {
195 int retval;
196 retval = mem_ap_setup_csw(ap, csw);
197 if (retval != ERROR_OK)
198 return retval;
199 retval = mem_ap_setup_tar(ap, tar);
200 if (retval != ERROR_OK)
201 return retval;
202 return ERROR_OK;
203 }
204
205 /**
206 * Asynchronous (queued) read of a word from memory or a system register.
207 *
208 * @param ap The MEM-AP to access.
209 * @param address Address of the 32-bit word to read; it must be
210 * readable by the currently selected MEM-AP.
211 * @param value points to where the word will be stored when the
212 * transaction queue is flushed (assuming no errors).
213 *
214 * @return ERROR_OK for success. Otherwise a fault code.
215 */
216 int mem_ap_read_u32(struct adiv5_ap *ap, uint32_t address,
217 uint32_t *value)
218 {
219 int retval;
220
221 /* Use banked addressing (REG_BDx) to avoid some link traffic
222 * (updating TAR) when reading several consecutive addresses.
223 */
224 retval = mem_ap_setup_transfer(ap,
225 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
226 address & 0xFFFFFFF0);
227 if (retval != ERROR_OK)
228 return retval;
229
230 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
231 }
232
233 /**
234 * Synchronous read of a word from memory or a system register.
235 * As a side effect, this flushes any queued transactions.
236 *
237 * @param ap The MEM-AP to access.
238 * @param address Address of the 32-bit word to read; it must be
239 * readable by the currently selected MEM-AP.
240 * @param value points to where the result will be stored.
241 *
242 * @return ERROR_OK for success; *value holds the result.
243 * Otherwise a fault code.
244 */
245 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, uint32_t address,
246 uint32_t *value)
247 {
248 int retval;
249
250 retval = mem_ap_read_u32(ap, address, value);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_run(ap->dap);
255 }
256
257 /**
258 * Asynchronous (queued) write of a word to memory or a system register.
259 *
260 * @param ap The MEM-AP to access.
261 * @param address Address to be written; it must be writable by
262 * the currently selected MEM-AP.
263 * @param value Word that will be written to the address when transaction
264 * queue is flushed (assuming no errors).
265 *
266 * @return ERROR_OK for success. Otherwise a fault code.
267 */
268 int mem_ap_write_u32(struct adiv5_ap *ap, uint32_t address,
269 uint32_t value)
270 {
271 int retval;
272
273 /* Use banked addressing (REG_BDx) to avoid some link traffic
274 * (updating TAR) when writing several consecutive addresses.
275 */
276 retval = mem_ap_setup_transfer(ap,
277 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
278 address & 0xFFFFFFF0);
279 if (retval != ERROR_OK)
280 return retval;
281
282 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
283 value);
284 }
285
286 /**
287 * Synchronous write of a word to memory or a system register.
288 * As a side effect, this flushes any queued transactions.
289 *
290 * @param ap The MEM-AP to access.
291 * @param address Address to be written; it must be writable by
292 * the currently selected MEM-AP.
293 * @param value Word that will be written.
294 *
295 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
296 */
297 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, uint32_t address,
298 uint32_t value)
299 {
300 int retval = mem_ap_write_u32(ap, address, value);
301
302 if (retval != ERROR_OK)
303 return retval;
304
305 return dap_run(ap->dap);
306 }
307
308 /**
309 * Synchronous write of a block of memory, using a specific access size.
310 *
311 * @param ap The MEM-AP to access.
312 * @param buffer The data buffer to write. No particular alignment is assumed.
313 * @param size Which access size to use, in bytes. 1, 2 or 4.
314 * @param count The number of writes to do (in size units, not bytes).
315 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
316 * @param addrinc Whether the target address should be increased for each write or not. This
317 * should normally be true, except when writing to e.g. a FIFO.
318 * @return ERROR_OK on success, otherwise an error code.
319 */
320 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
321 uint32_t address, bool addrinc)
322 {
323 struct adiv5_dap *dap = ap->dap;
324 size_t nbytes = size * count;
325 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
326 uint32_t csw_size;
327 uint32_t addr_xor;
328 int retval;
329
330 /* TI BE-32 Quirks mode:
331 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
332 * size write address bytes written in order
333 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
334 * 2 TAR ^ 2 (val >> 8), (val)
335 * 1 TAR ^ 3 (val)
336 * For example, if you attempt to write a single byte to address 0, the processor
337 * will actually write a byte to address 3.
338 *
339 * To make writes of size < 4 work as expected, we xor a value with the address before
340 * setting the TAP, and we set the TAP after every transfer rather then relying on
341 * address increment. */
342
343 if (size == 4) {
344 csw_size = CSW_32BIT;
345 addr_xor = 0;
346 } else if (size == 2) {
347 csw_size = CSW_16BIT;
348 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
349 } else if (size == 1) {
350 csw_size = CSW_8BIT;
351 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
352 } else {
353 return ERROR_TARGET_UNALIGNED_ACCESS;
354 }
355
356 if (ap->unaligned_access_bad && (address % size != 0))
357 return ERROR_TARGET_UNALIGNED_ACCESS;
358
359 while (nbytes > 0) {
360 uint32_t this_size = size;
361
362 /* Select packed transfer if possible */
363 if (addrinc && ap->packed_transfers && nbytes >= 4
364 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
365 this_size = 4;
366 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
367 } else {
368 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
369 }
370
371 if (retval != ERROR_OK)
372 break;
373
374 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
375 if (retval != ERROR_OK)
376 return retval;
377
378 /* How many source bytes each transfer will consume, and their location in the DRW,
379 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
380 uint32_t outvalue = 0;
381 uint32_t drw_byte_idx = address;
382 if (dap->ti_be_32_quirks) {
383 switch (this_size) {
384 case 4:
385 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
386 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
387 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
388 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
389 break;
390 case 2:
391 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
392 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
393 break;
394 case 1:
395 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
396 break;
397 }
398 } else {
399 switch (this_size) {
400 case 4:
401 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
402 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
403 /* fallthrough */
404 case 2:
405 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
406 /* fallthrough */
407 case 1:
408 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
409 }
410 }
411
412 nbytes -= this_size;
413
414 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
415 if (retval != ERROR_OK)
416 break;
417
418 mem_ap_update_tar_cache(ap);
419 if (addrinc)
420 address += this_size;
421 }
422
423 /* REVISIT: Might want to have a queued version of this function that does not run. */
424 if (retval == ERROR_OK)
425 retval = dap_run(dap);
426
427 if (retval != ERROR_OK) {
428 uint32_t tar;
429 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
430 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
431 else
432 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
433 }
434
435 return retval;
436 }
437
438 /**
439 * Synchronous read of a block of memory, using a specific access size.
440 *
441 * @param ap The MEM-AP to access.
442 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
443 * @param size Which access size to use, in bytes. 1, 2 or 4.
444 * @param count The number of reads to do (in size units, not bytes).
445 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
446 * @param addrinc Whether the target address should be increased after each read or not. This
447 * should normally be true, except when reading from e.g. a FIFO.
448 * @return ERROR_OK on success, otherwise an error code.
449 */
450 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
451 uint32_t adr, bool addrinc)
452 {
453 struct adiv5_dap *dap = ap->dap;
454 size_t nbytes = size * count;
455 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
456 uint32_t csw_size;
457 uint32_t address = adr;
458 int retval;
459
460 /* TI BE-32 Quirks mode:
461 * Reads on big-endian TMS570 behave strangely differently than writes.
462 * They read from the physical address requested, but with DRW byte-reversed.
463 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
464 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
465 * so avoid them. */
466
467 if (size == 4)
468 csw_size = CSW_32BIT;
469 else if (size == 2)
470 csw_size = CSW_16BIT;
471 else if (size == 1)
472 csw_size = CSW_8BIT;
473 else
474 return ERROR_TARGET_UNALIGNED_ACCESS;
475
476 if (ap->unaligned_access_bad && (adr % size != 0))
477 return ERROR_TARGET_UNALIGNED_ACCESS;
478
479 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
480 * over-allocation if packed transfers are going to be used, but determining the real need at
481 * this point would be messy. */
482 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
483 uint32_t *read_ptr = read_buf;
484 if (read_buf == NULL) {
485 LOG_ERROR("Failed to allocate read buffer");
486 return ERROR_FAIL;
487 }
488
489 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
490 * useful bytes it contains, and their location in the word, depends on the type of transfer
491 * and alignment. */
492 while (nbytes > 0) {
493 uint32_t this_size = size;
494
495 /* Select packed transfer if possible */
496 if (addrinc && ap->packed_transfers && nbytes >= 4
497 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
498 this_size = 4;
499 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
500 } else {
501 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
502 }
503 if (retval != ERROR_OK)
504 break;
505
506 retval = mem_ap_setup_tar(ap, address);
507 if (retval != ERROR_OK)
508 break;
509
510 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
511 if (retval != ERROR_OK)
512 break;
513
514 nbytes -= this_size;
515 if (addrinc)
516 address += this_size;
517
518 mem_ap_update_tar_cache(ap);
519 }
520
521 if (retval == ERROR_OK)
522 retval = dap_run(dap);
523
524 /* Restore state */
525 address = adr;
526 nbytes = size * count;
527 read_ptr = read_buf;
528
529 /* If something failed, read TAR to find out how much data was successfully read, so we can
530 * at least give the caller what we have. */
531 if (retval != ERROR_OK) {
532 uint32_t tar;
533 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
534 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
535 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
536 if (nbytes > tar - address)
537 nbytes = tar - address;
538 } else {
539 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
540 nbytes = 0;
541 }
542 }
543
544 /* Replay loop to populate caller's buffer from the correct word and byte lane */
545 while (nbytes > 0) {
546 uint32_t this_size = size;
547
548 if (addrinc && ap->packed_transfers && nbytes >= 4
549 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
550 this_size = 4;
551 }
552
553 if (dap->ti_be_32_quirks) {
554 switch (this_size) {
555 case 4:
556 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
557 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
558 /* fallthrough */
559 case 2:
560 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
561 /* fallthrough */
562 case 1:
563 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
564 }
565 } else {
566 switch (this_size) {
567 case 4:
568 *buffer++ = *read_ptr >> 8 * (address++ & 3);
569 *buffer++ = *read_ptr >> 8 * (address++ & 3);
570 /* fallthrough */
571 case 2:
572 *buffer++ = *read_ptr >> 8 * (address++ & 3);
573 /* fallthrough */
574 case 1:
575 *buffer++ = *read_ptr >> 8 * (address++ & 3);
576 }
577 }
578
579 read_ptr++;
580 nbytes -= this_size;
581 }
582
583 free(read_buf);
584 return retval;
585 }
586
587 int mem_ap_read_buf(struct adiv5_ap *ap,
588 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
589 {
590 return mem_ap_read(ap, buffer, size, count, address, true);
591 }
592
593 int mem_ap_write_buf(struct adiv5_ap *ap,
594 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
595 {
596 return mem_ap_write(ap, buffer, size, count, address, true);
597 }
598
599 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
600 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
601 {
602 return mem_ap_read(ap, buffer, size, count, address, false);
603 }
604
605 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
606 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608 return mem_ap_write(ap, buffer, size, count, address, false);
609 }
610
611 /*--------------------------------------------------------------------------*/
612
613
614 #define DAP_POWER_DOMAIN_TIMEOUT (10)
615
616 /* FIXME don't import ... just initialize as
617 * part of DAP transport setup
618 */
619 extern const struct dap_ops jtag_dp_ops;
620
621 /*--------------------------------------------------------------------------*/
622
623 /**
624 * Create a new DAP
625 */
626 struct adiv5_dap *dap_init(void)
627 {
628 struct adiv5_dap *dap = calloc(1, sizeof(struct adiv5_dap));
629 int i;
630 /* Set up with safe defaults */
631 for (i = 0; i <= 255; i++) {
632 dap->ap[i].dap = dap;
633 dap->ap[i].ap_num = i;
634 /* memaccess_tck max is 255 */
635 dap->ap[i].memaccess_tck = 255;
636 /* Number of bits for tar autoincrement, impl. dep. at least 10 */
637 dap->ap[i].tar_autoincr_block = (1<<10);
638 }
639 INIT_LIST_HEAD(&dap->cmd_journal);
640 return dap;
641 }
642
643 /**
644 * Invalidate cached DP select and cached TAR and CSW of all APs
645 */
646 void dap_invalidate_cache(struct adiv5_dap *dap)
647 {
648 dap->select = DP_SELECT_INVALID;
649 dap->last_read = NULL;
650
651 int i;
652 for (i = 0; i <= 255; i++) {
653 /* force csw and tar write on the next mem-ap access */
654 dap->ap[i].tar_valid = false;
655 dap->ap[i].csw_value = 0;
656 }
657 }
658
659 /**
660 * Initialize a DAP. This sets up the power domains, prepares the DP
661 * for further use and activates overrun checking.
662 *
663 * @param dap The DAP being initialized.
664 */
665 int dap_dp_init(struct adiv5_dap *dap)
666 {
667 int retval;
668
669 LOG_DEBUG(" ");
670 /* JTAG-DP or SWJ-DP, in JTAG mode
671 * ... for SWD mode this is patched as part
672 * of link switchover
673 * FIXME: This should already be setup by the respective transport specific DAP creation.
674 */
675 if (!dap->ops)
676 dap->ops = &jtag_dp_ops;
677
678 dap_invalidate_cache(dap);
679
680 for (size_t i = 0; i < 30; i++) {
681 /* DP initialization */
682
683 retval = dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
684 if (retval == ERROR_OK)
685 break;
686 }
687
688 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
689 if (retval != ERROR_OK)
690 return retval;
691
692 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
693 if (retval != ERROR_OK)
694 return retval;
695
696 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
710 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
711 CSYSPWRUPACK, CSYSPWRUPACK,
712 DAP_POWER_DOMAIN_TIMEOUT);
713 if (retval != ERROR_OK)
714 return retval;
715
716 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
717 if (retval != ERROR_OK)
718 return retval;
719
720 /* With debug power on we can activate OVERRUN checking */
721 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
722 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
723 if (retval != ERROR_OK)
724 return retval;
725 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
726 if (retval != ERROR_OK)
727 return retval;
728
729 retval = dap_run(dap);
730 if (retval != ERROR_OK)
731 return retval;
732
733 return retval;
734 }
735
736 /**
737 * Initialize a DAP. This sets up the power domains, prepares the DP
738 * for further use, and arranges to use AP #0 for all AP operations
739 * until dap_ap-select() changes that policy.
740 *
741 * @param ap The MEM-AP being initialized.
742 */
743 int mem_ap_init(struct adiv5_ap *ap)
744 {
745 /* check that we support packed transfers */
746 uint32_t csw, cfg;
747 int retval;
748 struct adiv5_dap *dap = ap->dap;
749
750 ap->tar_valid = false;
751 ap->csw_value = 0; /* force csw and tar write */
752 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
753 if (retval != ERROR_OK)
754 return retval;
755
756 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
757 if (retval != ERROR_OK)
758 return retval;
759
760 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
761 if (retval != ERROR_OK)
762 return retval;
763
764 retval = dap_run(dap);
765 if (retval != ERROR_OK)
766 return retval;
767
768 if (csw & CSW_ADDRINC_PACKED)
769 ap->packed_transfers = true;
770 else
771 ap->packed_transfers = false;
772
773 /* Packed transfers on TI BE-32 processors do not work correctly in
774 * many cases. */
775 if (dap->ti_be_32_quirks)
776 ap->packed_transfers = false;
777
778 LOG_DEBUG("MEM_AP Packed Transfers: %s",
779 ap->packed_transfers ? "enabled" : "disabled");
780
781 /* The ARM ADI spec leaves implementation-defined whether unaligned
782 * memory accesses work, only work partially, or cause a sticky error.
783 * On TI BE-32 processors, reads seem to return garbage in some bytes
784 * and unaligned writes seem to cause a sticky error.
785 * TODO: it would be nice to have a way to detect whether unaligned
786 * operations are supported on other processors. */
787 ap->unaligned_access_bad = dap->ti_be_32_quirks;
788
789 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
790 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
791
792 return ERROR_OK;
793 }
794
795 /* CID interpretation -- see ARM IHI 0029B section 3
796 * and ARM IHI 0031A table 13-3.
797 */
798 static const char *class_description[16] = {
799 "Reserved", "ROM table", "Reserved", "Reserved",
800 "Reserved", "Reserved", "Reserved", "Reserved",
801 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
802 "Reserved", "OptimoDE DESS",
803 "Generic IP component", "PrimeCell or System component"
804 };
805
806 static bool is_dap_cid_ok(uint32_t cid)
807 {
808 return (cid & 0xffff0fff) == 0xb105000d;
809 }
810
811 /*
812 * This function checks the ID for each access port to find the requested Access Port type
813 */
814 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
815 {
816 int ap_num;
817
818 /* Maximum AP number is 255 since the SELECT register is 8 bits */
819 for (ap_num = 0; ap_num <= 255; ap_num++) {
820
821 /* read the IDR register of the Access Port */
822 uint32_t id_val = 0;
823
824 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
825 if (retval != ERROR_OK)
826 return retval;
827
828 retval = dap_run(dap);
829
830 /* IDR bits:
831 * 31-28 : Revision
832 * 27-24 : JEDEC bank (0x4 for ARM)
833 * 23-17 : JEDEC code (0x3B for ARM)
834 * 16-13 : Class (0b1000=Mem-AP)
835 * 12-8 : Reserved
836 * 7-4 : AP Variant (non-zero for JTAG-AP)
837 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
838 */
839
840 /* Reading register for a non-existant AP should not cause an error,
841 * but just to be sure, try to continue searching if an error does happen.
842 */
843 if ((retval == ERROR_OK) && /* Register read success */
844 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
845 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
846
847 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
848 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
849 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
850 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
851 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
852 ap_num, id_val);
853
854 *ap_out = &dap->ap[ap_num];
855 return ERROR_OK;
856 }
857 }
858
859 LOG_DEBUG("No %s found",
860 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
861 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
862 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
863 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
864 return ERROR_FAIL;
865 }
866
867 int dap_get_debugbase(struct adiv5_ap *ap,
868 uint32_t *dbgbase, uint32_t *apid)
869 {
870 struct adiv5_dap *dap = ap->dap;
871 int retval;
872
873 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, dbgbase);
874 if (retval != ERROR_OK)
875 return retval;
876 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
877 if (retval != ERROR_OK)
878 return retval;
879 retval = dap_run(dap);
880 if (retval != ERROR_OK)
881 return retval;
882
883 return ERROR_OK;
884 }
885
886 int dap_lookup_cs_component(struct adiv5_ap *ap,
887 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
888 {
889 uint32_t romentry, entry_offset = 0, component_base, devtype;
890 int retval;
891
892 *addr = 0;
893
894 do {
895 retval = mem_ap_read_atomic_u32(ap, (dbgbase&0xFFFFF000) |
896 entry_offset, &romentry);
897 if (retval != ERROR_OK)
898 return retval;
899
900 component_base = (dbgbase & 0xFFFFF000)
901 + (romentry & 0xFFFFF000);
902
903 if (romentry & 0x1) {
904 uint32_t c_cid1;
905 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
906 if (retval != ERROR_OK) {
907 LOG_ERROR("Can't read component with base address 0x%" PRIx32
908 ", the corresponding core might be turned off", component_base);
909 return retval;
910 }
911 if (((c_cid1 >> 4) & 0x0f) == 1) {
912 retval = dap_lookup_cs_component(ap, component_base,
913 type, addr, idx);
914 if (retval == ERROR_OK)
915 break;
916 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
917 return retval;
918 }
919
920 retval = mem_ap_read_atomic_u32(ap,
921 (component_base & 0xfffff000) | 0xfcc,
922 &devtype);
923 if (retval != ERROR_OK)
924 return retval;
925 if ((devtype & 0xff) == type) {
926 if (!*idx) {
927 *addr = component_base;
928 break;
929 } else
930 (*idx)--;
931 }
932 }
933 entry_offset += 4;
934 } while (romentry > 0);
935
936 if (!*addr)
937 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
938
939 return ERROR_OK;
940 }
941
942 static int dap_read_part_id(struct adiv5_ap *ap, uint32_t component_base, uint32_t *cid, uint64_t *pid)
943 {
944 assert((component_base & 0xFFF) == 0);
945 assert(ap != NULL && cid != NULL && pid != NULL);
946
947 uint32_t cid0, cid1, cid2, cid3;
948 uint32_t pid0, pid1, pid2, pid3, pid4;
949 int retval;
950
951 /* IDs are in last 4K section */
952 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
953 if (retval != ERROR_OK)
954 return retval;
955 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
956 if (retval != ERROR_OK)
957 return retval;
958 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
962 if (retval != ERROR_OK)
963 return retval;
964 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
965 if (retval != ERROR_OK)
966 return retval;
967 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
968 if (retval != ERROR_OK)
969 return retval;
970 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
971 if (retval != ERROR_OK)
972 return retval;
973 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
974 if (retval != ERROR_OK)
975 return retval;
976 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
977 if (retval != ERROR_OK)
978 return retval;
979
980 retval = dap_run(ap->dap);
981 if (retval != ERROR_OK)
982 return retval;
983
984 *cid = (cid3 & 0xff) << 24
985 | (cid2 & 0xff) << 16
986 | (cid1 & 0xff) << 8
987 | (cid0 & 0xff);
988 *pid = (uint64_t)(pid4 & 0xff) << 32
989 | (pid3 & 0xff) << 24
990 | (pid2 & 0xff) << 16
991 | (pid1 & 0xff) << 8
992 | (pid0 & 0xff);
993
994 return ERROR_OK;
995 }
996
997 /* The designer identity code is encoded as:
998 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
999 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1000 * a legacy ASCII Identity Code.
1001 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1002 * JEP106 is a standard available from jedec.org
1003 */
1004
1005 /* Part number interpretations are from Cortex
1006 * core specs, the CoreSight components TRM
1007 * (ARM DDI 0314H), CoreSight System Design
1008 * Guide (ARM DGI 0012D) and ETM specs; also
1009 * from chip observation (e.g. TI SDTI).
1010 */
1011
1012 /* The legacy code only used the part number field to identify CoreSight peripherals.
1013 * This meant that the same part number from two different manufacturers looked the same.
1014 * It is desirable for all future additions to identify with both part number and JEP106.
1015 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1016 */
1017
1018 #define ANY_ID 0x1000
1019
1020 #define ARM_ID 0x4BB
1021
1022 static const struct {
1023 uint16_t designer_id;
1024 uint16_t part_num;
1025 const char *type;
1026 const char *full;
1027 } dap_partnums[] = {
1028 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1029 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1030 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1031 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1032 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1033 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1034 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1035 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1036 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1037 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1038 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1039 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1040 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1041 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1042 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1043 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1044 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1045 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1046 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1047 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1048 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1049 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1050 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1051 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1052 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1053 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1054 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1055 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1056 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1057 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1058 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1059 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1060 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1061 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1062 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1063 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1064 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1065 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1066 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1067 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1068 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1069 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1070 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1071 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1072 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1073 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1074 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1075 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1076 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1077 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1078 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1079 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1080 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1081 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1082 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1083 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1084 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1085 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1086 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1087 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1088 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1089 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitoring Unit)", },
1090 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1091 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1092 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1093 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1094 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1095 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1096 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1097 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1098 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1099 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1100 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1101 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1102 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1103 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1104 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1105 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1106 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1107 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1108 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1109 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1110 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1111 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1112 /* legacy comment: 0x113: what? */
1113 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1114 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1115 };
1116
1117 static int dap_rom_display(struct command_context *cmd_ctx,
1118 struct adiv5_ap *ap, uint32_t dbgbase, int depth)
1119 {
1120 int retval;
1121 uint64_t pid;
1122 uint32_t cid;
1123 char tabs[16] = "";
1124
1125 if (depth > 16) {
1126 command_print(cmd_ctx, "\tTables too deep");
1127 return ERROR_FAIL;
1128 }
1129
1130 if (depth)
1131 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1132
1133 uint32_t base_addr = dbgbase & 0xFFFFF000;
1134 command_print(cmd_ctx, "\t\tComponent base address 0x%08" PRIx32, base_addr);
1135
1136 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1137 if (retval != ERROR_OK) {
1138 command_print(cmd_ctx, "\t\tCan't read component, the corresponding core might be turned off");
1139 return ERROR_OK; /* Don't abort recursion */
1140 }
1141
1142 if (!is_dap_cid_ok(cid)) {
1143 command_print(cmd_ctx, "\t\tInvalid CID 0x%08" PRIx32, cid);
1144 return ERROR_OK; /* Don't abort recursion */
1145 }
1146
1147 /* component may take multiple 4K pages */
1148 uint32_t size = (pid >> 36) & 0xf;
1149 if (size > 0)
1150 command_print(cmd_ctx, "\t\tStart address 0x%08" PRIx32, (uint32_t)(base_addr - 0x1000 * size));
1151
1152 command_print(cmd_ctx, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1153
1154 uint8_t class = (cid >> 12) & 0xf;
1155 uint16_t part_num = pid & 0xfff;
1156 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1157
1158 if (designer_id & 0x80) {
1159 /* JEP106 code */
1160 command_print(cmd_ctx, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1161 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1162 } else {
1163 /* Legacy ASCII ID, clear invalid bits */
1164 designer_id &= 0x7f;
1165 command_print(cmd_ctx, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1166 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1167 }
1168
1169 /* default values to be overwritten upon finding a match */
1170 const char *type = "Unrecognized";
1171 const char *full = "";
1172
1173 /* search dap_partnums[] array for a match */
1174 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1175
1176 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1177 continue;
1178
1179 if (dap_partnums[entry].part_num != part_num)
1180 continue;
1181
1182 type = dap_partnums[entry].type;
1183 full = dap_partnums[entry].full;
1184 break;
1185 }
1186
1187 command_print(cmd_ctx, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1188 command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1189
1190 if (class == 1) { /* ROM Table */
1191 uint32_t memtype;
1192 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1193 if (retval != ERROR_OK)
1194 return retval;
1195
1196 if (memtype & 0x01)
1197 command_print(cmd_ctx, "\t\tMEMTYPE system memory present on bus");
1198 else
1199 command_print(cmd_ctx, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1200
1201 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1202 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1203 uint32_t romentry;
1204 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1205 if (retval != ERROR_OK)
1206 return retval;
1207 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1208 tabs, entry_offset, romentry);
1209 if (romentry & 0x01) {
1210 /* Recurse */
1211 retval = dap_rom_display(cmd_ctx, ap, base_addr + (romentry & 0xFFFFF000), depth + 1);
1212 if (retval != ERROR_OK)
1213 return retval;
1214 } else if (romentry != 0) {
1215 command_print(cmd_ctx, "\t\tComponent not present");
1216 } else {
1217 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1218 break;
1219 }
1220 }
1221 } else if (class == 9) { /* CoreSight component */
1222 const char *major = "Reserved", *subtype = "Reserved";
1223
1224 uint32_t devtype;
1225 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1226 if (retval != ERROR_OK)
1227 return retval;
1228 unsigned minor = (devtype >> 4) & 0x0f;
1229 switch (devtype & 0x0f) {
1230 case 0:
1231 major = "Miscellaneous";
1232 switch (minor) {
1233 case 0:
1234 subtype = "other";
1235 break;
1236 case 4:
1237 subtype = "Validation component";
1238 break;
1239 }
1240 break;
1241 case 1:
1242 major = "Trace Sink";
1243 switch (minor) {
1244 case 0:
1245 subtype = "other";
1246 break;
1247 case 1:
1248 subtype = "Port";
1249 break;
1250 case 2:
1251 subtype = "Buffer";
1252 break;
1253 case 3:
1254 subtype = "Router";
1255 break;
1256 }
1257 break;
1258 case 2:
1259 major = "Trace Link";
1260 switch (minor) {
1261 case 0:
1262 subtype = "other";
1263 break;
1264 case 1:
1265 subtype = "Funnel, router";
1266 break;
1267 case 2:
1268 subtype = "Filter";
1269 break;
1270 case 3:
1271 subtype = "FIFO, buffer";
1272 break;
1273 }
1274 break;
1275 case 3:
1276 major = "Trace Source";
1277 switch (minor) {
1278 case 0:
1279 subtype = "other";
1280 break;
1281 case 1:
1282 subtype = "Processor";
1283 break;
1284 case 2:
1285 subtype = "DSP";
1286 break;
1287 case 3:
1288 subtype = "Engine/Coprocessor";
1289 break;
1290 case 4:
1291 subtype = "Bus";
1292 break;
1293 case 6:
1294 subtype = "Software";
1295 break;
1296 }
1297 break;
1298 case 4:
1299 major = "Debug Control";
1300 switch (minor) {
1301 case 0:
1302 subtype = "other";
1303 break;
1304 case 1:
1305 subtype = "Trigger Matrix";
1306 break;
1307 case 2:
1308 subtype = "Debug Auth";
1309 break;
1310 case 3:
1311 subtype = "Power Requestor";
1312 break;
1313 }
1314 break;
1315 case 5:
1316 major = "Debug Logic";
1317 switch (minor) {
1318 case 0:
1319 subtype = "other";
1320 break;
1321 case 1:
1322 subtype = "Processor";
1323 break;
1324 case 2:
1325 subtype = "DSP";
1326 break;
1327 case 3:
1328 subtype = "Engine/Coprocessor";
1329 break;
1330 case 4:
1331 subtype = "Bus";
1332 break;
1333 case 5:
1334 subtype = "Memory";
1335 break;
1336 }
1337 break;
1338 case 6:
1339 major = "Perfomance Monitor";
1340 switch (minor) {
1341 case 0:
1342 subtype = "other";
1343 break;
1344 case 1:
1345 subtype = "Processor";
1346 break;
1347 case 2:
1348 subtype = "DSP";
1349 break;
1350 case 3:
1351 subtype = "Engine/Coprocessor";
1352 break;
1353 case 4:
1354 subtype = "Bus";
1355 break;
1356 case 5:
1357 subtype = "Memory";
1358 break;
1359 }
1360 break;
1361 }
1362 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1363 (uint8_t)(devtype & 0xff),
1364 major, subtype);
1365 /* REVISIT also show 0xfc8 DevId */
1366 }
1367
1368 return ERROR_OK;
1369 }
1370
1371 static int dap_info_command(struct command_context *cmd_ctx,
1372 struct adiv5_ap *ap)
1373 {
1374 int retval;
1375 uint32_t dbgbase, apid;
1376 uint8_t mem_ap;
1377
1378 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1379 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1380 if (retval != ERROR_OK)
1381 return retval;
1382
1383 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1384 if (apid == 0) {
1385 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap->ap_num);
1386 return ERROR_FAIL;
1387 }
1388
1389 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1390 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1391 command_print(cmd_ctx, "\tType is JTAG-AP");
1392 break;
1393 case IDR_JEP106_ARM | AP_TYPE_AHB_AP:
1394 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1395 break;
1396 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1397 command_print(cmd_ctx, "\tType is MEM-AP APB");
1398 break;
1399 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1400 command_print(cmd_ctx, "\tType is MEM-AP AXI");
1401 break;
1402 default:
1403 command_print(cmd_ctx, "\tUnknown AP type");
1404 break;
1405 }
1406
1407 /* NOTE: a MEM-AP may have a single CoreSight component that's
1408 * not a ROM table ... or have no such components at all.
1409 */
1410 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1411 if (mem_ap) {
1412 command_print(cmd_ctx, "MEM-AP BASE 0x%8.8" PRIx32, dbgbase);
1413
1414 if (dbgbase == 0xFFFFFFFF || (dbgbase & 0x3) == 0x2) {
1415 command_print(cmd_ctx, "\tNo ROM table present");
1416 } else {
1417 if (dbgbase & 0x01)
1418 command_print(cmd_ctx, "\tValid ROM table present");
1419 else
1420 command_print(cmd_ctx, "\tROM table in legacy format");
1421
1422 dap_rom_display(cmd_ctx, ap, dbgbase & 0xFFFFF000, 0);
1423 }
1424 }
1425
1426 return ERROR_OK;
1427 }
1428
1429 int adiv5_jim_configure(struct target *target, Jim_GetOptInfo *goi)
1430 {
1431 struct adiv5_private_config *pc;
1432 const char *arg;
1433 jim_wide ap_num;
1434 int e;
1435
1436 /* check if argv[0] is for us */
1437 arg = Jim_GetString(goi->argv[0], NULL);
1438 if (strcmp(arg, "-ap-num"))
1439 return JIM_CONTINUE;
1440
1441 e = Jim_GetOpt_String(goi, &arg, NULL);
1442 if (e != JIM_OK)
1443 return e;
1444
1445 if (goi->argc == 0) {
1446 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-ap-num ?ap-number? ...");
1447 return JIM_ERR;
1448 }
1449
1450 e = Jim_GetOpt_Wide(goi, &ap_num);
1451 if (e != JIM_OK)
1452 return e;
1453
1454 if (target->private_config == NULL) {
1455 pc = calloc(1, sizeof(struct adiv5_private_config));
1456 target->private_config = pc;
1457 pc->ap_num = ap_num;
1458 }
1459
1460
1461 return JIM_OK;
1462 }
1463
1464 COMMAND_HANDLER(handle_dap_info_command)
1465 {
1466 struct target *target = get_current_target(CMD_CTX);
1467 struct arm *arm = target_to_arm(target);
1468 struct adiv5_dap *dap = arm->dap;
1469 uint32_t apsel;
1470
1471 switch (CMD_ARGC) {
1472 case 0:
1473 apsel = dap->apsel;
1474 break;
1475 case 1:
1476 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1477 if (apsel >= 256)
1478 return ERROR_COMMAND_SYNTAX_ERROR;
1479 break;
1480 default:
1481 return ERROR_COMMAND_SYNTAX_ERROR;
1482 }
1483
1484 return dap_info_command(CMD_CTX, &dap->ap[apsel]);
1485 }
1486
1487 COMMAND_HANDLER(dap_baseaddr_command)
1488 {
1489 struct target *target = get_current_target(CMD_CTX);
1490 struct arm *arm = target_to_arm(target);
1491 struct adiv5_dap *dap = arm->dap;
1492
1493 uint32_t apsel, baseaddr;
1494 int retval;
1495
1496 switch (CMD_ARGC) {
1497 case 0:
1498 apsel = dap->apsel;
1499 break;
1500 case 1:
1501 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1502 /* AP address is in bits 31:24 of DP_SELECT */
1503 if (apsel >= 256)
1504 return ERROR_COMMAND_SYNTAX_ERROR;
1505 break;
1506 default:
1507 return ERROR_COMMAND_SYNTAX_ERROR;
1508 }
1509
1510 /* NOTE: assumes we're talking to a MEM-AP, which
1511 * has a base address. There are other kinds of AP,
1512 * though they're not common for now. This should
1513 * use the ID register to verify it's a MEM-AP.
1514 */
1515 retval = dap_queue_ap_read(dap_ap(dap, apsel), MEM_AP_REG_BASE, &baseaddr);
1516 if (retval != ERROR_OK)
1517 return retval;
1518 retval = dap_run(dap);
1519 if (retval != ERROR_OK)
1520 return retval;
1521
1522 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1523
1524 return retval;
1525 }
1526
1527 COMMAND_HANDLER(dap_memaccess_command)
1528 {
1529 struct target *target = get_current_target(CMD_CTX);
1530 struct arm *arm = target_to_arm(target);
1531 struct adiv5_dap *dap = arm->dap;
1532
1533 uint32_t memaccess_tck;
1534
1535 switch (CMD_ARGC) {
1536 case 0:
1537 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1538 break;
1539 case 1:
1540 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1541 break;
1542 default:
1543 return ERROR_COMMAND_SYNTAX_ERROR;
1544 }
1545 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1546
1547 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1548 dap->ap[dap->apsel].memaccess_tck);
1549
1550 return ERROR_OK;
1551 }
1552
1553 COMMAND_HANDLER(dap_apsel_command)
1554 {
1555 struct target *target = get_current_target(CMD_CTX);
1556 struct arm *arm = target_to_arm(target);
1557 struct adiv5_dap *dap = arm->dap;
1558
1559 uint32_t apsel, apid;
1560 int retval;
1561
1562 switch (CMD_ARGC) {
1563 case 0:
1564 apsel = dap->apsel;
1565 break;
1566 case 1:
1567 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1568 /* AP address is in bits 31:24 of DP_SELECT */
1569 if (apsel >= 256)
1570 return ERROR_COMMAND_SYNTAX_ERROR;
1571 break;
1572 default:
1573 return ERROR_COMMAND_SYNTAX_ERROR;
1574 }
1575
1576 dap->apsel = apsel;
1577
1578 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1579 if (retval != ERROR_OK)
1580 return retval;
1581 retval = dap_run(dap);
1582 if (retval != ERROR_OK)
1583 return retval;
1584
1585 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1586 apsel, apid);
1587
1588 return retval;
1589 }
1590
1591 COMMAND_HANDLER(dap_apcsw_command)
1592 {
1593 struct target *target = get_current_target(CMD_CTX);
1594 struct arm *arm = target_to_arm(target);
1595 struct adiv5_dap *dap = arm->dap;
1596
1597 uint32_t apcsw = dap->ap[dap->apsel].csw_default, sprot = 0;
1598
1599 switch (CMD_ARGC) {
1600 case 0:
1601 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1602 (dap->apsel), apcsw);
1603 break;
1604 case 1:
1605 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1606 /* AP address is in bits 31:24 of DP_SELECT */
1607 if (sprot > 1)
1608 return ERROR_COMMAND_SYNTAX_ERROR;
1609 if (sprot)
1610 apcsw |= CSW_SPROT;
1611 else
1612 apcsw &= ~CSW_SPROT;
1613 break;
1614 default:
1615 return ERROR_COMMAND_SYNTAX_ERROR;
1616 }
1617 dap->ap[dap->apsel].csw_default = apcsw;
1618
1619 return 0;
1620 }
1621
1622
1623
1624 COMMAND_HANDLER(dap_apid_command)
1625 {
1626 struct target *target = get_current_target(CMD_CTX);
1627 struct arm *arm = target_to_arm(target);
1628 struct adiv5_dap *dap = arm->dap;
1629
1630 uint32_t apsel, apid;
1631 int retval;
1632
1633 switch (CMD_ARGC) {
1634 case 0:
1635 apsel = dap->apsel;
1636 break;
1637 case 1:
1638 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1639 /* AP address is in bits 31:24 of DP_SELECT */
1640 if (apsel >= 256)
1641 return ERROR_COMMAND_SYNTAX_ERROR;
1642 break;
1643 default:
1644 return ERROR_COMMAND_SYNTAX_ERROR;
1645 }
1646
1647 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1648 if (retval != ERROR_OK)
1649 return retval;
1650 retval = dap_run(dap);
1651 if (retval != ERROR_OK)
1652 return retval;
1653
1654 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1655
1656 return retval;
1657 }
1658
1659 COMMAND_HANDLER(dap_apreg_command)
1660 {
1661 struct target *target = get_current_target(CMD_CTX);
1662 struct arm *arm = target_to_arm(target);
1663 struct adiv5_dap *dap = arm->dap;
1664
1665 uint32_t apsel, reg, value;
1666 int retval;
1667
1668 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1669 return ERROR_COMMAND_SYNTAX_ERROR;
1670
1671 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1672 /* AP address is in bits 31:24 of DP_SELECT */
1673 if (apsel >= 256)
1674 return ERROR_COMMAND_SYNTAX_ERROR;
1675
1676 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1677 if (reg >= 256 || (reg & 3))
1678 return ERROR_COMMAND_SYNTAX_ERROR;
1679
1680 if (CMD_ARGC == 3) {
1681 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1682 retval = dap_queue_ap_write(dap_ap(dap, apsel), reg, value);
1683 } else {
1684 retval = dap_queue_ap_read(dap_ap(dap, apsel), reg, &value);
1685 }
1686 if (retval == ERROR_OK)
1687 retval = dap_run(dap);
1688
1689 if (retval != ERROR_OK)
1690 return retval;
1691
1692 if (CMD_ARGC == 2)
1693 command_print(CMD_CTX, "0x%08" PRIx32, value);
1694
1695 return retval;
1696 }
1697
1698 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1699 {
1700 struct target *target = get_current_target(CMD_CTX);
1701 struct arm *arm = target_to_arm(target);
1702 struct adiv5_dap *dap = arm->dap;
1703
1704 uint32_t enable = dap->ti_be_32_quirks;
1705
1706 switch (CMD_ARGC) {
1707 case 0:
1708 break;
1709 case 1:
1710 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1711 if (enable > 1)
1712 return ERROR_COMMAND_SYNTAX_ERROR;
1713 break;
1714 default:
1715 return ERROR_COMMAND_SYNTAX_ERROR;
1716 }
1717 dap->ti_be_32_quirks = enable;
1718 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1719 enable ? "enabled" : "disabled");
1720
1721 return 0;
1722 }
1723
1724 static const struct command_registration dap_commands[] = {
1725 {
1726 .name = "info",
1727 .handler = handle_dap_info_command,
1728 .mode = COMMAND_EXEC,
1729 .help = "display ROM table for MEM-AP "
1730 "(default currently selected AP)",
1731 .usage = "[ap_num]",
1732 },
1733 {
1734 .name = "apsel",
1735 .handler = dap_apsel_command,
1736 .mode = COMMAND_EXEC,
1737 .help = "Set the currently selected AP (default 0) "
1738 "and display the result",
1739 .usage = "[ap_num]",
1740 },
1741 {
1742 .name = "apcsw",
1743 .handler = dap_apcsw_command,
1744 .mode = COMMAND_EXEC,
1745 .help = "Set csw access bit ",
1746 .usage = "[sprot]",
1747 },
1748
1749 {
1750 .name = "apid",
1751 .handler = dap_apid_command,
1752 .mode = COMMAND_EXEC,
1753 .help = "return ID register from AP "
1754 "(default currently selected AP)",
1755 .usage = "[ap_num]",
1756 },
1757 {
1758 .name = "apreg",
1759 .handler = dap_apreg_command,
1760 .mode = COMMAND_EXEC,
1761 .help = "read/write a register from AP "
1762 "(reg is byte address of a word register, like 0 4 8...)",
1763 .usage = "ap_num reg [value]",
1764 },
1765 {
1766 .name = "baseaddr",
1767 .handler = dap_baseaddr_command,
1768 .mode = COMMAND_EXEC,
1769 .help = "return debug base address from MEM-AP "
1770 "(default currently selected AP)",
1771 .usage = "[ap_num]",
1772 },
1773 {
1774 .name = "memaccess",
1775 .handler = dap_memaccess_command,
1776 .mode = COMMAND_EXEC,
1777 .help = "set/get number of extra tck for MEM-AP memory "
1778 "bus access [0-255]",
1779 .usage = "[cycles]",
1780 },
1781 {
1782 .name = "ti_be_32_quirks",
1783 .handler = dap_ti_be_32_quirks_command,
1784 .mode = COMMAND_CONFIG,
1785 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1786 .usage = "[enable]",
1787 },
1788 COMMAND_REGISTRATION_DONE
1789 };
1790
1791 const struct command_registration dap_command_handlers[] = {
1792 {
1793 .name = "dap",
1794 .mode = COMMAND_EXEC,
1795 .help = "DAP command group",
1796 .usage = "",
1797 .chain = dap_commands,
1798 },
1799 COMMAND_REGISTRATION_DONE
1800 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)