4bfa7f790d5b235e565c27501823012a50fafad9
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 /**
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
101 *
102 * @param dap The DAP
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
105 */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108 uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110 if (new_ap != dap->ap_current) {
111 dap->ap_current = new_ap;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
114 */
115 dap->ap_bank_value = -1;
116 dap->ap_csw_value = -1;
117 dap->ap_tar_value = -1;
118 }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124 dap->apcsw[dap->ap_current >> 24];
125
126 if (csw != dap->ap_csw_value) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129 if (retval != ERROR_OK)
130 return retval;
131 dap->ap_csw_value = csw;
132 }
133 return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138 if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141 if (retval != ERROR_OK)
142 return retval;
143 dap->ap_tar_value = tar;
144 }
145 return ERROR_OK;
146 }
147
148 /**
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
151 *
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
156 *
157 * @todo Rename to reflect it being specifically a MEM-AP function.
158 *
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
164 *
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
166 */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169 int retval;
170 retval = dap_setup_accessport_csw(dap, csw);
171 if (retval != ERROR_OK)
172 return retval;
173 retval = dap_setup_accessport_tar(dap, tar);
174 if (retval != ERROR_OK)
175 return retval;
176 return ERROR_OK;
177 }
178
179 /**
180 * Asynchronous (queued) read of a word from memory or a system register.
181 *
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
187 *
188 * @return ERROR_OK for success. Otherwise a fault code.
189 */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191 uint32_t *value)
192 {
193 int retval;
194
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
197 */
198 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199 address & 0xFFFFFFF0);
200 if (retval != ERROR_OK)
201 return retval;
202
203 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
209 *
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
214 *
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
217 */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219 uint32_t *value)
220 {
221 int retval;
222
223 retval = mem_ap_read_u32(dap, address, value);
224 if (retval != ERROR_OK)
225 return retval;
226
227 return dap_run(dap);
228 }
229
230 /**
231 * Asynchronous (queued) write of a word to memory or a system register.
232 *
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242 uint32_t value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
248 */
249 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250 address & 0xFFFFFFF0);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255 value);
256 }
257
258 /**
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
266 *
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
268 */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270 uint32_t value)
271 {
272 int retval = mem_ap_write_u32(dap, address, value);
273
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(dap);
278 }
279
280 /**
281 * Synchronous write of a block of memory, using a specific access size.
282 *
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
291 */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293 uint32_t address, bool addrinc)
294 {
295 size_t nbytes = size * count;
296 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297 uint32_t csw_size;
298 int retval;
299
300 if (size == 4)
301 csw_size = CSW_32BIT;
302 else if (size == 2)
303 csw_size = CSW_16BIT;
304 else if (size == 1)
305 csw_size = CSW_8BIT;
306 else
307 return ERROR_TARGET_UNALIGNED_ACCESS;
308
309 retval = dap_setup_accessport_tar(dap, address);
310 if (retval != ERROR_OK)
311 return retval;
312
313 while (nbytes > 0) {
314 uint32_t this_size = size;
315
316 /* Select packed transfer if possible */
317 if (addrinc && dap->packed_transfers && nbytes >= 4
318 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
319 this_size = 4;
320 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
321 } else {
322 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
323 }
324
325 if (retval != ERROR_OK)
326 break;
327
328 /* How many source bytes each transfer will consume, and their location in the DRW,
329 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
330 uint32_t outvalue = 0;
331 switch (this_size) {
332 case 4:
333 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
334 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
335 case 2:
336 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
337 case 1:
338 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
339 }
340
341 nbytes -= this_size;
342
343 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
344 if (retval != ERROR_OK)
345 break;
346
347 /* Rewrite TAR if it wrapped */
348 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
349 retval = dap_setup_accessport_tar(dap, address);
350 if (retval != ERROR_OK)
351 break;
352 }
353 }
354
355 /* REVISIT: Might want to have a queued version of this function that does not run. */
356 if (retval == ERROR_OK)
357 retval = dap_run(dap);
358
359 if (retval != ERROR_OK) {
360 uint32_t tar;
361 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
362 && dap_run(dap) == ERROR_OK)
363 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
364 else
365 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
366 }
367
368 return retval;
369 }
370
371 /**
372 * Synchronous read of a block of memory, using a specific access size.
373 *
374 * @param dap The DAP connected to the MEM-AP.
375 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
376 * @param size Which access size to use, in bytes. 1, 2 or 4.
377 * @param count The number of reads to do (in size units, not bytes).
378 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
379 * @param addrinc Whether the target address should be increased after each read or not. This
380 * should normally be true, except when reading from e.g. a FIFO.
381 * @return ERROR_OK on success, otherwise an error code.
382 */
383 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
384 uint32_t adr, bool addrinc)
385 {
386 size_t nbytes = size * count;
387 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
388 uint32_t csw_size;
389 uint32_t address = adr;
390 int retval;
391
392 if (size == 4)
393 csw_size = CSW_32BIT;
394 else if (size == 2)
395 csw_size = CSW_16BIT;
396 else if (size == 1)
397 csw_size = CSW_8BIT;
398 else
399 return ERROR_TARGET_UNALIGNED_ACCESS;
400
401 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
402 * over-allocation if packed transfers are going to be used, but determining the real need at
403 * this point would be messy. */
404 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
405 uint32_t *read_ptr = read_buf;
406 if (read_buf == NULL) {
407 LOG_ERROR("Failed to allocate read buffer");
408 return ERROR_FAIL;
409 }
410
411 retval = dap_setup_accessport_tar(dap, address);
412 if (retval != ERROR_OK) {
413 free(read_buf);
414 return retval;
415 }
416
417 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
418 * useful bytes it contains, and their location in the word, depends on the type of transfer
419 * and alignment. */
420 while (nbytes > 0) {
421 uint32_t this_size = size;
422
423 /* Select packed transfer if possible */
424 if (addrinc && dap->packed_transfers && nbytes >= 4
425 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
426 this_size = 4;
427 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
428 } else {
429 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
430 }
431 if (retval != ERROR_OK)
432 break;
433
434 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
435 if (retval != ERROR_OK)
436 break;
437
438 nbytes -= this_size;
439 address += this_size;
440
441 /* Rewrite TAR if it wrapped */
442 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
443 retval = dap_setup_accessport_tar(dap, address);
444 if (retval != ERROR_OK)
445 break;
446 }
447 }
448
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 /* Restore state */
453 address = adr;
454 nbytes = size * count;
455 read_ptr = read_buf;
456
457 /* If something failed, read TAR to find out how much data was successfully read, so we can
458 * at least give the caller what we have. */
459 if (retval != ERROR_OK) {
460 uint32_t tar;
461 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
462 && dap_run(dap) == ERROR_OK) {
463 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
464 if (nbytes > tar - address)
465 nbytes = tar - address;
466 } else {
467 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
468 nbytes = 0;
469 }
470 }
471
472 /* Replay loop to populate caller's buffer from the correct word and byte lane */
473 while (nbytes > 0) {
474 uint32_t this_size = size;
475
476 if (addrinc && dap->packed_transfers && nbytes >= 4
477 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
478 this_size = 4;
479 }
480
481 switch (this_size) {
482 case 4:
483 *buffer++ = *read_ptr >> 8 * (address++ & 3);
484 *buffer++ = *read_ptr >> 8 * (address++ & 3);
485 case 2:
486 *buffer++ = *read_ptr >> 8 * (address++ & 3);
487 case 1:
488 *buffer++ = *read_ptr >> 8 * (address++ & 3);
489 }
490
491 read_ptr++;
492 nbytes -= this_size;
493 }
494
495 free(read_buf);
496 return retval;
497 }
498
499 /*--------------------------------------------------------------------*/
500 /* Wrapping function with selection of AP */
501 /*--------------------------------------------------------------------*/
502 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
503 uint32_t address, uint32_t *value)
504 {
505 dap_ap_select(swjdp, ap);
506 return mem_ap_read_u32(swjdp, address, value);
507 }
508
509 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
510 uint32_t address, uint32_t value)
511 {
512 dap_ap_select(swjdp, ap);
513 return mem_ap_write_u32(swjdp, address, value);
514 }
515
516 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
517 uint32_t address, uint32_t *value)
518 {
519 dap_ap_select(swjdp, ap);
520 return mem_ap_read_atomic_u32(swjdp, address, value);
521 }
522
523 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
524 uint32_t address, uint32_t value)
525 {
526 dap_ap_select(swjdp, ap);
527 return mem_ap_write_atomic_u32(swjdp, address, value);
528 }
529
530 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
531 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
532 {
533 dap_ap_select(swjdp, ap);
534 return mem_ap_read(swjdp, buffer, size, count, address, true);
535 }
536
537 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
538 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
539 {
540 dap_ap_select(swjdp, ap);
541 return mem_ap_write(swjdp, buffer, size, count, address, true);
542 }
543
544 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
545 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
546 {
547 dap_ap_select(swjdp, ap);
548 return mem_ap_read(swjdp, buffer, size, count, address, false);
549 }
550
551 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
552 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
553 {
554 dap_ap_select(swjdp, ap);
555 return mem_ap_write(swjdp, buffer, size, count, address, false);
556 }
557
558 #define MDM_REG_STAT 0x00
559 #define MDM_REG_CTRL 0x04
560 #define MDM_REG_ID 0xfc
561
562 #define MDM_STAT_FMEACK (1<<0)
563 #define MDM_STAT_FREADY (1<<1)
564 #define MDM_STAT_SYSSEC (1<<2)
565 #define MDM_STAT_SYSRES (1<<3)
566 #define MDM_STAT_FMEEN (1<<5)
567 #define MDM_STAT_BACKDOOREN (1<<6)
568 #define MDM_STAT_LPEN (1<<7)
569 #define MDM_STAT_VLPEN (1<<8)
570 #define MDM_STAT_LLSMODEXIT (1<<9)
571 #define MDM_STAT_VLLSXMODEXIT (1<<10)
572 #define MDM_STAT_CORE_HALTED (1<<16)
573 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
574 #define MDM_STAT_CORESLEEPING (1<<18)
575
576 #define MEM_CTRL_FMEIP (1<<0)
577 #define MEM_CTRL_DBG_DIS (1<<1)
578 #define MEM_CTRL_DBG_REQ (1<<2)
579 #define MEM_CTRL_SYS_RES_REQ (1<<3)
580 #define MEM_CTRL_CORE_HOLD_RES (1<<4)
581 #define MEM_CTRL_VLLSX_DBG_REQ (1<<5)
582 #define MEM_CTRL_VLLSX_DBG_ACK (1<<6)
583 #define MEM_CTRL_VLLSX_STAT_ACK (1<<7)
584
585 #define MDM_ACCESS_TIMEOUT 3000 /* ms */
586
587 /**
588 *
589 */
590 int dap_syssec_kinetis_mdmap(struct adiv5_dap *dap)
591 {
592 uint32_t val;
593 int retval;
594 int timeout = 0;
595 enum reset_types jtag_reset_config = jtag_get_reset_config();
596
597 dap_ap_select(dap, 1);
598
599 /* first check mdm-ap id register */
600 retval = dap_queue_ap_read(dap, MDM_REG_ID, &val);
601 if (retval != ERROR_OK)
602 return retval;
603 dap_run(dap);
604
605 if (val != 0x001C0000) {
606 LOG_DEBUG("id doesn't match %08" PRIX32 " != 0x001C0000", val);
607 dap_ap_select(dap, 0);
608 return ERROR_FAIL;
609 }
610
611 /* read and parse status register
612 * it's important that the device is out of
613 * reset here
614 */
615 while (1) {
616 if (timeout++ > MDM_ACCESS_TIMEOUT) {
617 LOG_DEBUG("MDMAP : flash ready timeout");
618 return ERROR_FAIL;
619 }
620 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
621 if (retval != ERROR_OK)
622 return retval;
623 dap_run(dap);
624
625 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
626 if (val & MDM_STAT_FREADY)
627 break;
628 alive_sleep(1);
629 }
630
631 if ((val & MDM_STAT_SYSSEC)) {
632 LOG_DEBUG("MDMAP: system is secured, masserase needed");
633
634 if (!(val & MDM_STAT_FMEEN))
635 LOG_DEBUG("MDMAP: masserase is disabled");
636 else {
637 /* we need to assert reset */
638 if (jtag_reset_config & RESET_HAS_SRST) {
639 /* default to asserting srst */
640 adapter_assert_reset();
641 } else {
642 LOG_DEBUG("SRST not configured");
643 dap_ap_select(dap, 0);
644 return ERROR_FAIL;
645 }
646 timeout = 0;
647 while (1) {
648 if (timeout++ > MDM_ACCESS_TIMEOUT) {
649 LOG_DEBUG("MDMAP : flash ready timeout");
650 return ERROR_FAIL;
651 }
652 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, MEM_CTRL_FMEIP);
653 if (retval != ERROR_OK)
654 return retval;
655 dap_run(dap);
656 /* read status register and wait for ready */
657 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
658 if (retval != ERROR_OK)
659 return retval;
660 dap_run(dap);
661 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
662
663 if ((val & 1))
664 break;
665 alive_sleep(1);
666 }
667 timeout = 0;
668 while (1) {
669 if (timeout++ > MDM_ACCESS_TIMEOUT) {
670 LOG_DEBUG("MDMAP : flash ready timeout");
671 return ERROR_FAIL;
672 }
673 retval = dap_queue_ap_write(dap, MDM_REG_CTRL, 0);
674 if (retval != ERROR_OK)
675 return retval;
676 dap_run(dap);
677 /* read status register */
678 retval = dap_queue_ap_read(dap, MDM_REG_STAT, &val);
679 if (retval != ERROR_OK)
680 return retval;
681 dap_run(dap);
682 LOG_DEBUG("MDM_REG_STAT %08" PRIX32, val);
683 /* read control register and wait for ready */
684 retval = dap_queue_ap_read(dap, MDM_REG_CTRL, &val);
685 if (retval != ERROR_OK)
686 return retval;
687 dap_run(dap);
688 LOG_DEBUG("MDM_REG_CTRL %08" PRIX32, val);
689
690 if (val == 0x00)
691 break;
692 alive_sleep(1);
693 }
694 }
695 }
696
697 dap_ap_select(dap, 0);
698
699 return ERROR_OK;
700 }
701
702 /** */
703 struct dap_syssec_filter {
704 /** */
705 uint32_t idcode;
706 /** */
707 int (*dap_init)(struct adiv5_dap *dap);
708 };
709
710 /** */
711 static struct dap_syssec_filter dap_syssec_filter_data[] = {
712 { 0x4BA00477, dap_syssec_kinetis_mdmap }
713 };
714
715 /**
716 *
717 */
718 int dap_syssec(struct adiv5_dap *dap)
719 {
720 unsigned int i;
721 struct jtag_tap *tap;
722
723 for (i = 0; i < sizeof(dap_syssec_filter_data); i++) {
724 tap = dap->jtag_info->tap;
725
726 while (tap != NULL) {
727 if (tap->hasidcode && (dap_syssec_filter_data[i].idcode == tap->idcode)) {
728 LOG_DEBUG("DAP: mdmap_init for idcode: %08" PRIx32, tap->idcode);
729 dap_syssec_filter_data[i].dap_init(dap);
730 }
731 tap = tap->next_tap;
732 }
733 }
734
735 return ERROR_OK;
736 }
737
738 /*--------------------------------------------------------------------------*/
739
740
741 /* FIXME don't import ... just initialize as
742 * part of DAP transport setup
743 */
744 extern const struct dap_ops jtag_dp_ops;
745
746 /*--------------------------------------------------------------------------*/
747
748 /**
749 * Initialize a DAP. This sets up the power domains, prepares the DP
750 * for further use, and arranges to use AP #0 for all AP operations
751 * until dap_ap-select() changes that policy.
752 *
753 * @param dap The DAP being initialized.
754 *
755 * @todo Rename this. We also need an initialization scheme which account
756 * for SWD transports not just JTAG; that will need to address differences
757 * in layering. (JTAG is useful without any debug target; but not SWD.)
758 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
759 */
760 int ahbap_debugport_init(struct adiv5_dap *dap)
761 {
762 uint32_t ctrlstat;
763 int cnt = 0;
764 int retval;
765
766 LOG_DEBUG(" ");
767
768 /* JTAG-DP or SWJ-DP, in JTAG mode
769 * ... for SWD mode this is patched as part
770 * of link switchover
771 */
772 if (!dap->ops)
773 dap->ops = &jtag_dp_ops;
774
775 /* Default MEM-AP setup.
776 *
777 * REVISIT AP #0 may be an inappropriate default for this.
778 * Should we probe, or take a hint from the caller?
779 * Presumably we can ignore the possibility of multiple APs.
780 */
781 dap->ap_current = !0;
782 dap_ap_select(dap, 0);
783
784 /* DP initialization */
785
786 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
787 if (retval != ERROR_OK)
788 return retval;
789
790 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
791 if (retval != ERROR_OK)
792 return retval;
793
794 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
795 if (retval != ERROR_OK)
796 return retval;
797
798 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
799 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
800 if (retval != ERROR_OK)
801 return retval;
802
803 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
804 if (retval != ERROR_OK)
805 return retval;
806 retval = dap_run(dap);
807 if (retval != ERROR_OK)
808 return retval;
809
810 /* Check that we have debug power domains activated */
811 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10)) {
812 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
813 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
814 if (retval != ERROR_OK)
815 return retval;
816 retval = dap_run(dap);
817 if (retval != ERROR_OK)
818 return retval;
819 alive_sleep(10);
820 }
821
822 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10)) {
823 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
824 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
825 if (retval != ERROR_OK)
826 return retval;
827 retval = dap_run(dap);
828 if (retval != ERROR_OK)
829 return retval;
830 alive_sleep(10);
831 }
832
833 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
834 if (retval != ERROR_OK)
835 return retval;
836 /* With debug power on we can activate OVERRUN checking */
837 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
838 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
839 if (retval != ERROR_OK)
840 return retval;
841 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
842 if (retval != ERROR_OK)
843 return retval;
844
845 dap_syssec(dap);
846
847 /* check that we support packed transfers */
848 uint32_t csw;
849
850 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
851 if (retval != ERROR_OK)
852 return retval;
853
854 retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
855 if (retval != ERROR_OK)
856 return retval;
857
858 retval = dap_run(dap);
859 if (retval != ERROR_OK)
860 return retval;
861
862 if (csw & CSW_ADDRINC_PACKED)
863 dap->packed_transfers = true;
864 else
865 dap->packed_transfers = false;
866
867 LOG_DEBUG("MEM_AP Packed Transfers: %s",
868 dap->packed_transfers ? "enabled" : "disabled");
869
870 return ERROR_OK;
871 }
872
873 /* CID interpretation -- see ARM IHI 0029B section 3
874 * and ARM IHI 0031A table 13-3.
875 */
876 static const char *class_description[16] = {
877 "Reserved", "ROM table", "Reserved", "Reserved",
878 "Reserved", "Reserved", "Reserved", "Reserved",
879 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
880 "Reserved", "OptimoDE DESS",
881 "Generic IP component", "PrimeCell or System component"
882 };
883
884 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
885 {
886 return cid3 == 0xb1 && cid2 == 0x05
887 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
888 }
889
890 /*
891 * This function checks the ID for each access port to find the requested Access Port type
892 */
893 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
894 {
895 int ap;
896
897 /* Maximum AP number is 255 since the SELECT register is 8 bits */
898 for (ap = 0; ap <= 255; ap++) {
899
900 /* read the IDR register of the Access Port */
901 uint32_t id_val = 0;
902 dap_ap_select(dap, ap);
903
904 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
905 if (retval != ERROR_OK)
906 return retval;
907
908 retval = dap_run(dap);
909
910 /* IDR bits:
911 * 31-28 : Revision
912 * 27-24 : JEDEC bank (0x4 for ARM)
913 * 23-17 : JEDEC code (0x3B for ARM)
914 * 16 : Mem-AP
915 * 15-8 : Reserved
916 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
917 */
918
919 /* Reading register for a non-existant AP should not cause an error,
920 * but just to be sure, try to continue searching if an error does happen.
921 */
922 if ((retval == ERROR_OK) && /* Register read success */
923 ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
924 ((id_val & 0xFF) == type_to_find)) { /* type matches*/
925
926 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
927 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
928 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
929 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
930 ap, id_val);
931
932 *ap_num_out = ap;
933 return ERROR_OK;
934 }
935 }
936
937 LOG_DEBUG("No %s found",
938 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
939 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
940 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
941 return ERROR_FAIL;
942 }
943
944 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
945 uint32_t *out_dbgbase, uint32_t *out_apid)
946 {
947 uint32_t ap_old;
948 int retval;
949 uint32_t dbgbase, apid;
950
951 /* AP address is in bits 31:24 of DP_SELECT */
952 if (ap >= 256)
953 return ERROR_COMMAND_SYNTAX_ERROR;
954
955 ap_old = dap->ap_current;
956 dap_ap_select(dap, ap);
957
958 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
962 if (retval != ERROR_OK)
963 return retval;
964 retval = dap_run(dap);
965 if (retval != ERROR_OK)
966 return retval;
967
968 /* Excavate the device ID code */
969 struct jtag_tap *tap = dap->jtag_info->tap;
970 while (tap != NULL) {
971 if (tap->hasidcode)
972 break;
973 tap = tap->next_tap;
974 }
975 if (tap == NULL || !tap->hasidcode)
976 return ERROR_OK;
977
978 dap_ap_select(dap, ap_old);
979
980 /* The asignment happens only here to prevent modification of these
981 * values before they are certain. */
982 *out_dbgbase = dbgbase;
983 *out_apid = apid;
984
985 return ERROR_OK;
986 }
987
988 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
989 uint32_t dbgbase, uint8_t type, uint32_t *addr)
990 {
991 uint32_t ap_old;
992 uint32_t romentry, entry_offset = 0, component_base, devtype;
993 int retval = ERROR_FAIL;
994
995 if (ap >= 256)
996 return ERROR_COMMAND_SYNTAX_ERROR;
997
998 ap_old = dap->ap_current;
999 dap_ap_select(dap, ap);
1000
1001 do {
1002 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
1003 entry_offset, &romentry);
1004 if (retval != ERROR_OK)
1005 return retval;
1006
1007 component_base = (dbgbase & 0xFFFFF000)
1008 + (romentry & 0xFFFFF000);
1009
1010 if (romentry & 0x1) {
1011 retval = mem_ap_read_atomic_u32(dap,
1012 (component_base & 0xfffff000) | 0xfcc,
1013 &devtype);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 if ((devtype & 0xff) == type) {
1017 *addr = component_base;
1018 retval = ERROR_OK;
1019 break;
1020 }
1021 }
1022 entry_offset += 4;
1023 } while (romentry > 0);
1024
1025 dap_ap_select(dap, ap_old);
1026
1027 return retval;
1028 }
1029
1030 static int dap_rom_display(struct command_context *cmd_ctx,
1031 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
1032 {
1033 int retval;
1034 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
1035 uint16_t entry_offset;
1036 char tabs[7] = "";
1037
1038 if (depth > 16) {
1039 command_print(cmd_ctx, "\tTables too deep");
1040 return ERROR_FAIL;
1041 }
1042
1043 if (depth)
1044 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1045
1046 /* bit 16 of apid indicates a memory access port */
1047 if (dbgbase & 0x02)
1048 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
1049 else
1050 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
1051
1052 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1053 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1057 if (retval != ERROR_OK)
1058 return retval;
1059 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1060 if (retval != ERROR_OK)
1061 return retval;
1062 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1063 if (retval != ERROR_OK)
1064 return retval;
1065 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1066 if (retval != ERROR_OK)
1067 return retval;
1068 retval = dap_run(dap);
1069 if (retval != ERROR_OK)
1070 return retval;
1071
1072 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1073 command_print(cmd_ctx, "\t%sCID3 0x%02x"
1074 ", CID2 0x%02x"
1075 ", CID1 0x%02x"
1076 ", CID0 0x%02x",
1077 tabs,
1078 (unsigned)cid3, (unsigned)cid2,
1079 (unsigned)cid1, (unsigned)cid0);
1080 if (memtype & 0x01)
1081 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
1082 else
1083 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
1084
1085 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1086 for (entry_offset = 0; ; entry_offset += 4) {
1087 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1088 if (retval != ERROR_OK)
1089 return retval;
1090 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1091 tabs, entry_offset, romentry);
1092 if (romentry & 0x01) {
1093 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1094 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1095 uint32_t component_base;
1096 unsigned part_num;
1097 char *type, *full;
1098
1099 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
1100
1101 /* IDs are in last 4K section */
1102 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
1103 if (retval != ERROR_OK) {
1104 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
1105 ", the corresponding core might be turned off", tabs, component_base);
1106 continue;
1107 }
1108 c_pid0 &= 0xff;
1109 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1110 if (retval != ERROR_OK)
1111 return retval;
1112 c_pid1 &= 0xff;
1113 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1114 if (retval != ERROR_OK)
1115 return retval;
1116 c_pid2 &= 0xff;
1117 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1118 if (retval != ERROR_OK)
1119 return retval;
1120 c_pid3 &= 0xff;
1121 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1122 if (retval != ERROR_OK)
1123 return retval;
1124 c_pid4 &= 0xff;
1125
1126 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1127 if (retval != ERROR_OK)
1128 return retval;
1129 c_cid0 &= 0xff;
1130 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1131 if (retval != ERROR_OK)
1132 return retval;
1133 c_cid1 &= 0xff;
1134 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1135 if (retval != ERROR_OK)
1136 return retval;
1137 c_cid2 &= 0xff;
1138 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1139 if (retval != ERROR_OK)
1140 return retval;
1141 c_cid3 &= 0xff;
1142
1143 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1144 "start address 0x%" PRIx32, component_base,
1145 /* component may take multiple 4K pages */
1146 (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1147 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1148 (c_cid1 >> 4) & 0xf,
1149 /* See ARM IHI 0029B Table 3-3 */
1150 class_description[(c_cid1 >> 4) & 0xf]);
1151
1152 /* CoreSight component? */
1153 if (((c_cid1 >> 4) & 0x0f) == 9) {
1154 uint32_t devtype;
1155 unsigned minor;
1156 char *major = "Reserved", *subtype = "Reserved";
1157
1158 retval = mem_ap_read_atomic_u32(dap,
1159 (component_base & 0xfffff000) | 0xfcc,
1160 &devtype);
1161 if (retval != ERROR_OK)
1162 return retval;
1163 minor = (devtype >> 4) & 0x0f;
1164 switch (devtype & 0x0f) {
1165 case 0:
1166 major = "Miscellaneous";
1167 switch (minor) {
1168 case 0:
1169 subtype = "other";
1170 break;
1171 case 4:
1172 subtype = "Validation component";
1173 break;
1174 }
1175 break;
1176 case 1:
1177 major = "Trace Sink";
1178 switch (minor) {
1179 case 0:
1180 subtype = "other";
1181 break;
1182 case 1:
1183 subtype = "Port";
1184 break;
1185 case 2:
1186 subtype = "Buffer";
1187 break;
1188 }
1189 break;
1190 case 2:
1191 major = "Trace Link";
1192 switch (minor) {
1193 case 0:
1194 subtype = "other";
1195 break;
1196 case 1:
1197 subtype = "Funnel, router";
1198 break;
1199 case 2:
1200 subtype = "Filter";
1201 break;
1202 case 3:
1203 subtype = "FIFO, buffer";
1204 break;
1205 }
1206 break;
1207 case 3:
1208 major = "Trace Source";
1209 switch (minor) {
1210 case 0:
1211 subtype = "other";
1212 break;
1213 case 1:
1214 subtype = "Processor";
1215 break;
1216 case 2:
1217 subtype = "DSP";
1218 break;
1219 case 3:
1220 subtype = "Engine/Coprocessor";
1221 break;
1222 case 4:
1223 subtype = "Bus";
1224 break;
1225 }
1226 break;
1227 case 4:
1228 major = "Debug Control";
1229 switch (minor) {
1230 case 0:
1231 subtype = "other";
1232 break;
1233 case 1:
1234 subtype = "Trigger Matrix";
1235 break;
1236 case 2:
1237 subtype = "Debug Auth";
1238 break;
1239 }
1240 break;
1241 case 5:
1242 major = "Debug Logic";
1243 switch (minor) {
1244 case 0:
1245 subtype = "other";
1246 break;
1247 case 1:
1248 subtype = "Processor";
1249 break;
1250 case 2:
1251 subtype = "DSP";
1252 break;
1253 case 3:
1254 subtype = "Engine/Coprocessor";
1255 break;
1256 }
1257 break;
1258 }
1259 command_print(cmd_ctx, "\t\tType is 0x%02x, %s, %s",
1260 devtype & 0xff,
1261 major, subtype);
1262 /* REVISIT also show 0xfc8 DevId */
1263 }
1264
1265 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1266 command_print(cmd_ctx,
1267 "\t\tCID3 0%02x"
1268 ", CID2 0%02x"
1269 ", CID1 0%02x"
1270 ", CID0 0%02x",
1271 (int)c_cid3,
1272 (int)c_cid2,
1273 (int)c_cid1,
1274 (int)c_cid0);
1275 command_print(cmd_ctx,
1276 "\t\tPeripheral ID[4..0] = hex "
1277 "%02x %02x %02x %02x %02x",
1278 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1279 (int)c_pid1, (int)c_pid0);
1280
1281 /* Part number interpretations are from Cortex
1282 * core specs, the CoreSight components TRM
1283 * (ARM DDI 0314H), CoreSight System Design
1284 * Guide (ARM DGI 0012D) and ETM specs; also
1285 * from chip observation (e.g. TI SDTI).
1286 */
1287 part_num = (c_pid0 & 0xff);
1288 part_num |= (c_pid1 & 0x0f) << 8;
1289 switch (part_num) {
1290 case 0x000:
1291 type = "Cortex-M3 NVIC";
1292 full = "(Interrupt Controller)";
1293 break;
1294 case 0x001:
1295 type = "Cortex-M3 ITM";
1296 full = "(Instrumentation Trace Module)";
1297 break;
1298 case 0x002:
1299 type = "Cortex-M3 DWT";
1300 full = "(Data Watchpoint and Trace)";
1301 break;
1302 case 0x003:
1303 type = "Cortex-M3 FBP";
1304 full = "(Flash Patch and Breakpoint)";
1305 break;
1306 case 0x00c:
1307 type = "Cortex-M4 SCS";
1308 full = "(System Control Space)";
1309 break;
1310 case 0x00d:
1311 type = "CoreSight ETM11";
1312 full = "(Embedded Trace)";
1313 break;
1314 /* case 0x113: what? */
1315 case 0x120: /* from OMAP3 memmap */
1316 type = "TI SDTI";
1317 full = "(System Debug Trace Interface)";
1318 break;
1319 case 0x343: /* from OMAP3 memmap */
1320 type = "TI DAPCTL";
1321 full = "";
1322 break;
1323 case 0x906:
1324 type = "Coresight CTI";
1325 full = "(Cross Trigger)";
1326 break;
1327 case 0x907:
1328 type = "Coresight ETB";
1329 full = "(Trace Buffer)";
1330 break;
1331 case 0x908:
1332 type = "Coresight CSTF";
1333 full = "(Trace Funnel)";
1334 break;
1335 case 0x910:
1336 type = "CoreSight ETM9";
1337 full = "(Embedded Trace)";
1338 break;
1339 case 0x912:
1340 type = "Coresight TPIU";
1341 full = "(Trace Port Interface Unit)";
1342 break;
1343 case 0x913:
1344 type = "Coresight ITM";
1345 full = "(Instrumentation Trace Macrocell)";
1346 break;
1347 case 0x921:
1348 type = "Cortex-A8 ETM";
1349 full = "(Embedded Trace)";
1350 break;
1351 case 0x922:
1352 type = "Cortex-A8 CTI";
1353 full = "(Cross Trigger)";
1354 break;
1355 case 0x923:
1356 type = "Cortex-M3 TPIU";
1357 full = "(Trace Port Interface Unit)";
1358 break;
1359 case 0x924:
1360 type = "Cortex-M3 ETM";
1361 full = "(Embedded Trace)";
1362 break;
1363 case 0x925:
1364 type = "Cortex-M4 ETM";
1365 full = "(Embedded Trace)";
1366 break;
1367 case 0x930:
1368 type = "Cortex-R4 ETM";
1369 full = "(Embedded Trace)";
1370 break;
1371 case 0x950:
1372 type = "CoreSight Component";
1373 full = "(unidentified Cortex-A9 component)";
1374 break;
1375 case 0x9a0:
1376 type = "CoreSight PMU";
1377 full = "(Performance Monitoring Unit)";
1378 break;
1379 case 0x9a1:
1380 type = "Cortex-M4 TPUI";
1381 full = "(Trace Port Interface Unit)";
1382 break;
1383 case 0xc08:
1384 type = "Cortex-A8 Debug";
1385 full = "(Debug Unit)";
1386 break;
1387 case 0xc09:
1388 type = "Cortex-A9 Debug";
1389 full = "(Debug Unit)";
1390 break;
1391 default:
1392 type = "-*- unrecognized -*-";
1393 full = "";
1394 break;
1395 }
1396 command_print(cmd_ctx, "\t\tPart is %s %s",
1397 type, full);
1398
1399 /* ROM Table? */
1400 if (((c_cid1 >> 4) & 0x0f) == 1) {
1401 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1402 if (retval != ERROR_OK)
1403 return retval;
1404 }
1405 } else {
1406 if (romentry)
1407 command_print(cmd_ctx, "\t\tComponent not present");
1408 else
1409 break;
1410 }
1411 }
1412 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1413 return ERROR_OK;
1414 }
1415
1416 static int dap_info_command(struct command_context *cmd_ctx,
1417 struct adiv5_dap *dap, int ap)
1418 {
1419 int retval;
1420 uint32_t dbgbase = 0, apid = 0; /* Silence gcc by initializing */
1421 int romtable_present = 0;
1422 uint8_t mem_ap;
1423 uint32_t ap_old;
1424
1425 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1426 if (retval != ERROR_OK)
1427 return retval;
1428
1429 ap_old = dap->ap_current;
1430 dap_ap_select(dap, ap);
1431
1432 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1433 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1434 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1435 if (apid) {
1436 switch (apid&0x0F) {
1437 case 0:
1438 command_print(cmd_ctx, "\tType is JTAG-AP");
1439 break;
1440 case 1:
1441 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1442 break;
1443 case 2:
1444 command_print(cmd_ctx, "\tType is MEM-AP APB");
1445 break;
1446 default:
1447 command_print(cmd_ctx, "\tUnknown AP type");
1448 break;
1449 }
1450
1451 /* NOTE: a MEM-AP may have a single CoreSight component that's
1452 * not a ROM table ... or have no such components at all.
1453 */
1454 if (mem_ap)
1455 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1456 } else
1457 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1458
1459 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1460 if (romtable_present) {
1461 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1462 } else
1463 command_print(cmd_ctx, "\tNo ROM table present");
1464 dap_ap_select(dap, ap_old);
1465
1466 return ERROR_OK;
1467 }
1468
1469 COMMAND_HANDLER(handle_dap_info_command)
1470 {
1471 struct target *target = get_current_target(CMD_CTX);
1472 struct arm *arm = target_to_arm(target);
1473 struct adiv5_dap *dap = arm->dap;
1474 uint32_t apsel;
1475
1476 switch (CMD_ARGC) {
1477 case 0:
1478 apsel = dap->apsel;
1479 break;
1480 case 1:
1481 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1482 break;
1483 default:
1484 return ERROR_COMMAND_SYNTAX_ERROR;
1485 }
1486
1487 return dap_info_command(CMD_CTX, dap, apsel);
1488 }
1489
1490 COMMAND_HANDLER(dap_baseaddr_command)
1491 {
1492 struct target *target = get_current_target(CMD_CTX);
1493 struct arm *arm = target_to_arm(target);
1494 struct adiv5_dap *dap = arm->dap;
1495
1496 uint32_t apsel, baseaddr;
1497 int retval;
1498
1499 switch (CMD_ARGC) {
1500 case 0:
1501 apsel = dap->apsel;
1502 break;
1503 case 1:
1504 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1505 /* AP address is in bits 31:24 of DP_SELECT */
1506 if (apsel >= 256)
1507 return ERROR_COMMAND_SYNTAX_ERROR;
1508 break;
1509 default:
1510 return ERROR_COMMAND_SYNTAX_ERROR;
1511 }
1512
1513 dap_ap_select(dap, apsel);
1514
1515 /* NOTE: assumes we're talking to a MEM-AP, which
1516 * has a base address. There are other kinds of AP,
1517 * though they're not common for now. This should
1518 * use the ID register to verify it's a MEM-AP.
1519 */
1520 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1521 if (retval != ERROR_OK)
1522 return retval;
1523 retval = dap_run(dap);
1524 if (retval != ERROR_OK)
1525 return retval;
1526
1527 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1528
1529 return retval;
1530 }
1531
1532 COMMAND_HANDLER(dap_memaccess_command)
1533 {
1534 struct target *target = get_current_target(CMD_CTX);
1535 struct arm *arm = target_to_arm(target);
1536 struct adiv5_dap *dap = arm->dap;
1537
1538 uint32_t memaccess_tck;
1539
1540 switch (CMD_ARGC) {
1541 case 0:
1542 memaccess_tck = dap->memaccess_tck;
1543 break;
1544 case 1:
1545 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1546 break;
1547 default:
1548 return ERROR_COMMAND_SYNTAX_ERROR;
1549 }
1550 dap->memaccess_tck = memaccess_tck;
1551
1552 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1553 dap->memaccess_tck);
1554
1555 return ERROR_OK;
1556 }
1557
1558 COMMAND_HANDLER(dap_apsel_command)
1559 {
1560 struct target *target = get_current_target(CMD_CTX);
1561 struct arm *arm = target_to_arm(target);
1562 struct adiv5_dap *dap = arm->dap;
1563
1564 uint32_t apsel, apid;
1565 int retval;
1566
1567 switch (CMD_ARGC) {
1568 case 0:
1569 apsel = 0;
1570 break;
1571 case 1:
1572 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1573 /* AP address is in bits 31:24 of DP_SELECT */
1574 if (apsel >= 256)
1575 return ERROR_COMMAND_SYNTAX_ERROR;
1576 break;
1577 default:
1578 return ERROR_COMMAND_SYNTAX_ERROR;
1579 }
1580
1581 dap->apsel = apsel;
1582 dap_ap_select(dap, apsel);
1583
1584 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1585 if (retval != ERROR_OK)
1586 return retval;
1587 retval = dap_run(dap);
1588 if (retval != ERROR_OK)
1589 return retval;
1590
1591 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1592 apsel, apid);
1593
1594 return retval;
1595 }
1596
1597 COMMAND_HANDLER(dap_apcsw_command)
1598 {
1599 struct target *target = get_current_target(CMD_CTX);
1600 struct arm *arm = target_to_arm(target);
1601 struct adiv5_dap *dap = arm->dap;
1602
1603 uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1604
1605 switch (CMD_ARGC) {
1606 case 0:
1607 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1608 (dap->apsel), apcsw);
1609 break;
1610 case 1:
1611 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1612 /* AP address is in bits 31:24 of DP_SELECT */
1613 if (sprot > 1)
1614 return ERROR_COMMAND_SYNTAX_ERROR;
1615 if (sprot)
1616 apcsw |= CSW_SPROT;
1617 else
1618 apcsw &= ~CSW_SPROT;
1619 break;
1620 default:
1621 return ERROR_COMMAND_SYNTAX_ERROR;
1622 }
1623 dap->apcsw[dap->apsel] = apcsw;
1624
1625 return 0;
1626 }
1627
1628
1629
1630 COMMAND_HANDLER(dap_apid_command)
1631 {
1632 struct target *target = get_current_target(CMD_CTX);
1633 struct arm *arm = target_to_arm(target);
1634 struct adiv5_dap *dap = arm->dap;
1635
1636 uint32_t apsel, apid;
1637 int retval;
1638
1639 switch (CMD_ARGC) {
1640 case 0:
1641 apsel = dap->apsel;
1642 break;
1643 case 1:
1644 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1645 /* AP address is in bits 31:24 of DP_SELECT */
1646 if (apsel >= 256)
1647 return ERROR_COMMAND_SYNTAX_ERROR;
1648 break;
1649 default:
1650 return ERROR_COMMAND_SYNTAX_ERROR;
1651 }
1652
1653 dap_ap_select(dap, apsel);
1654
1655 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1656 if (retval != ERROR_OK)
1657 return retval;
1658 retval = dap_run(dap);
1659 if (retval != ERROR_OK)
1660 return retval;
1661
1662 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1663
1664 return retval;
1665 }
1666
1667 static const struct command_registration dap_commands[] = {
1668 {
1669 .name = "info",
1670 .handler = handle_dap_info_command,
1671 .mode = COMMAND_EXEC,
1672 .help = "display ROM table for MEM-AP "
1673 "(default currently selected AP)",
1674 .usage = "[ap_num]",
1675 },
1676 {
1677 .name = "apsel",
1678 .handler = dap_apsel_command,
1679 .mode = COMMAND_EXEC,
1680 .help = "Set the currently selected AP (default 0) "
1681 "and display the result",
1682 .usage = "[ap_num]",
1683 },
1684 {
1685 .name = "apcsw",
1686 .handler = dap_apcsw_command,
1687 .mode = COMMAND_EXEC,
1688 .help = "Set csw access bit ",
1689 .usage = "[sprot]",
1690 },
1691
1692 {
1693 .name = "apid",
1694 .handler = dap_apid_command,
1695 .mode = COMMAND_EXEC,
1696 .help = "return ID register from AP "
1697 "(default currently selected AP)",
1698 .usage = "[ap_num]",
1699 },
1700 {
1701 .name = "baseaddr",
1702 .handler = dap_baseaddr_command,
1703 .mode = COMMAND_EXEC,
1704 .help = "return debug base address from MEM-AP "
1705 "(default currently selected AP)",
1706 .usage = "[ap_num]",
1707 },
1708 {
1709 .name = "memaccess",
1710 .handler = dap_memaccess_command,
1711 .mode = COMMAND_EXEC,
1712 .help = "set/get number of extra tck for MEM-AP memory "
1713 "bus access [0-255]",
1714 .usage = "[cycles]",
1715 },
1716 COMMAND_REGISTRATION_DONE
1717 };
1718
1719 const struct command_registration dap_command_handlers[] = {
1720 {
1721 .name = "dap",
1722 .mode = COMMAND_EXEC,
1723 .help = "DAP command group",
1724 .usage = "",
1725 .chain = dap_commands,
1726 },
1727 COMMAND_REGISTRATION_DONE
1728 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)