arm_adi_v5: update coresight class names
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "jtag/swd.h"
79 #include "transport/transport.h"
80 #include <helper/jep106.h>
81 #include <helper/time_support.h>
82 #include <helper/list.h>
83 #include <helper/jim-nvp.h>
84
85 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
86
87 /*
88 uint32_t tar_block_size(uint32_t address)
89 Return the largest block starting at address that does not cross a tar block size alignment boundary
90 */
91 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
92 {
93 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
94 }
95
96 /***************************************************************************
97 * *
98 * DP and MEM-AP register access through APACC and DPACC *
99 * *
100 ***************************************************************************/
101
102 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
103 {
104 csw |= ap->csw_default;
105
106 if (csw != ap->csw_value) {
107 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
108 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
109 if (retval != ERROR_OK) {
110 ap->csw_value = 0;
111 return retval;
112 }
113 ap->csw_value = csw;
114 }
115 return ERROR_OK;
116 }
117
118 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
119 {
120 if (!ap->tar_valid || tar != ap->tar_value) {
121 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
122 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
123 if (retval == ERROR_OK && is_64bit_ap(ap)) {
124 /* See if bits 63:32 of tar is different from last setting */
125 if ((ap->tar_value >> 32) != (tar >> 32))
126 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
127 }
128 if (retval != ERROR_OK) {
129 ap->tar_valid = false;
130 return retval;
131 }
132 ap->tar_value = tar;
133 ap->tar_valid = true;
134 }
135 return ERROR_OK;
136 }
137
138 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
139 {
140 uint32_t lower;
141 uint32_t upper = 0;
142
143 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
144 if (retval == ERROR_OK && is_64bit_ap(ap))
145 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
146
147 if (retval != ERROR_OK) {
148 ap->tar_valid = false;
149 return retval;
150 }
151
152 retval = dap_run(ap->dap);
153 if (retval != ERROR_OK) {
154 ap->tar_valid = false;
155 return retval;
156 }
157
158 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
159
160 ap->tar_value = *tar;
161 ap->tar_valid = true;
162 return ERROR_OK;
163 }
164
165 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
166 {
167 switch (ap->csw_value & CSW_ADDRINC_MASK) {
168 case CSW_ADDRINC_SINGLE:
169 switch (ap->csw_value & CSW_SIZE_MASK) {
170 case CSW_8BIT:
171 return 1;
172 case CSW_16BIT:
173 return 2;
174 case CSW_32BIT:
175 return 4;
176 default:
177 return 0;
178 }
179 case CSW_ADDRINC_PACKED:
180 return 4;
181 }
182 return 0;
183 }
184
185 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
186 */
187 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
188 {
189 if (!ap->tar_valid)
190 return;
191
192 uint32_t inc = mem_ap_get_tar_increment(ap);
193 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
194 ap->tar_valid = false;
195 else
196 ap->tar_value += inc;
197 }
198
199 /**
200 * Queue transactions setting up transfer parameters for the
201 * currently selected MEM-AP.
202 *
203 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
204 * initiate data reads or writes using memory or peripheral addresses.
205 * If the CSW is configured for it, the TAR may be automatically
206 * incremented after each transfer.
207 *
208 * @param ap The MEM-AP.
209 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
210 * matches the cached value, the register is not changed.
211 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
212 * matches the cached address, the register is not changed.
213 *
214 * @return ERROR_OK if the transaction was properly queued, else a fault code.
215 */
216 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
217 {
218 int retval;
219 retval = mem_ap_setup_csw(ap, csw);
220 if (retval != ERROR_OK)
221 return retval;
222 retval = mem_ap_setup_tar(ap, tar);
223 if (retval != ERROR_OK)
224 return retval;
225 return ERROR_OK;
226 }
227
228 /**
229 * Asynchronous (queued) read of a word from memory or a system register.
230 *
231 * @param ap The MEM-AP to access.
232 * @param address Address of the 32-bit word to read; it must be
233 * readable by the currently selected MEM-AP.
234 * @param value points to where the word will be stored when the
235 * transaction queue is flushed (assuming no errors).
236 *
237 * @return ERROR_OK for success. Otherwise a fault code.
238 */
239 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
240 uint32_t *value)
241 {
242 int retval;
243
244 /* Use banked addressing (REG_BDx) to avoid some link traffic
245 * (updating TAR) when reading several consecutive addresses.
246 */
247 retval = mem_ap_setup_transfer(ap,
248 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
249 address & 0xFFFFFFFFFFFFFFF0ull);
250 if (retval != ERROR_OK)
251 return retval;
252
253 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
254 }
255
256 /**
257 * Synchronous read of a word from memory or a system register.
258 * As a side effect, this flushes any queued transactions.
259 *
260 * @param ap The MEM-AP to access.
261 * @param address Address of the 32-bit word to read; it must be
262 * readable by the currently selected MEM-AP.
263 * @param value points to where the result will be stored.
264 *
265 * @return ERROR_OK for success; *value holds the result.
266 * Otherwise a fault code.
267 */
268 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
269 uint32_t *value)
270 {
271 int retval;
272
273 retval = mem_ap_read_u32(ap, address, value);
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(ap->dap);
278 }
279
280 /**
281 * Asynchronous (queued) write of a word to memory or a system register.
282 *
283 * @param ap The MEM-AP to access.
284 * @param address Address to be written; it must be writable by
285 * the currently selected MEM-AP.
286 * @param value Word that will be written to the address when transaction
287 * queue is flushed (assuming no errors).
288 *
289 * @return ERROR_OK for success. Otherwise a fault code.
290 */
291 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
292 uint32_t value)
293 {
294 int retval;
295
296 /* Use banked addressing (REG_BDx) to avoid some link traffic
297 * (updating TAR) when writing several consecutive addresses.
298 */
299 retval = mem_ap_setup_transfer(ap,
300 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
301 address & 0xFFFFFFFFFFFFFFF0ull);
302 if (retval != ERROR_OK)
303 return retval;
304
305 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
306 value);
307 }
308
309 /**
310 * Synchronous write of a word to memory or a system register.
311 * As a side effect, this flushes any queued transactions.
312 *
313 * @param ap The MEM-AP to access.
314 * @param address Address to be written; it must be writable by
315 * the currently selected MEM-AP.
316 * @param value Word that will be written.
317 *
318 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
319 */
320 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
321 uint32_t value)
322 {
323 int retval = mem_ap_write_u32(ap, address, value);
324
325 if (retval != ERROR_OK)
326 return retval;
327
328 return dap_run(ap->dap);
329 }
330
331 /**
332 * Synchronous write of a block of memory, using a specific access size.
333 *
334 * @param ap The MEM-AP to access.
335 * @param buffer The data buffer to write. No particular alignment is assumed.
336 * @param size Which access size to use, in bytes. 1, 2 or 4.
337 * @param count The number of writes to do (in size units, not bytes).
338 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
339 * @param addrinc Whether the target address should be increased for each write or not. This
340 * should normally be true, except when writing to e.g. a FIFO.
341 * @return ERROR_OK on success, otherwise an error code.
342 */
343 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
344 target_addr_t address, bool addrinc)
345 {
346 struct adiv5_dap *dap = ap->dap;
347 size_t nbytes = size * count;
348 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
349 uint32_t csw_size;
350 target_addr_t addr_xor;
351 int retval = ERROR_OK;
352
353 /* TI BE-32 Quirks mode:
354 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
355 * size write address bytes written in order
356 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
357 * 2 TAR ^ 2 (val >> 8), (val)
358 * 1 TAR ^ 3 (val)
359 * For example, if you attempt to write a single byte to address 0, the processor
360 * will actually write a byte to address 3.
361 *
362 * To make writes of size < 4 work as expected, we xor a value with the address before
363 * setting the TAP, and we set the TAP after every transfer rather then relying on
364 * address increment. */
365
366 if (size == 4) {
367 csw_size = CSW_32BIT;
368 addr_xor = 0;
369 } else if (size == 2) {
370 csw_size = CSW_16BIT;
371 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
372 } else if (size == 1) {
373 csw_size = CSW_8BIT;
374 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
375 } else {
376 return ERROR_TARGET_UNALIGNED_ACCESS;
377 }
378
379 if (ap->unaligned_access_bad && (address % size != 0))
380 return ERROR_TARGET_UNALIGNED_ACCESS;
381
382 while (nbytes > 0) {
383 uint32_t this_size = size;
384
385 /* Select packed transfer if possible */
386 if (addrinc && ap->packed_transfers && nbytes >= 4
387 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
388 this_size = 4;
389 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
390 } else {
391 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
392 }
393
394 if (retval != ERROR_OK)
395 break;
396
397 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
398 if (retval != ERROR_OK)
399 return retval;
400
401 /* How many source bytes each transfer will consume, and their location in the DRW,
402 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
403 uint32_t outvalue = 0;
404 uint32_t drw_byte_idx = address;
405 if (dap->ti_be_32_quirks) {
406 switch (this_size) {
407 case 4:
408 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
409 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
412 break;
413 case 2:
414 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
415 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
416 break;
417 case 1:
418 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
419 break;
420 }
421 } else {
422 switch (this_size) {
423 case 4:
424 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
425 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
426 /* fallthrough */
427 case 2:
428 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
429 /* fallthrough */
430 case 1:
431 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
432 }
433 }
434
435 nbytes -= this_size;
436
437 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
440
441 mem_ap_update_tar_cache(ap);
442 if (addrinc)
443 address += this_size;
444 }
445
446 /* REVISIT: Might want to have a queued version of this function that does not run. */
447 if (retval == ERROR_OK)
448 retval = dap_run(dap);
449
450 if (retval != ERROR_OK) {
451 target_addr_t tar;
452 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
453 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
454 else
455 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
456 }
457
458 return retval;
459 }
460
461 /**
462 * Synchronous read of a block of memory, using a specific access size.
463 *
464 * @param ap The MEM-AP to access.
465 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
466 * @param size Which access size to use, in bytes. 1, 2 or 4.
467 * @param count The number of reads to do (in size units, not bytes).
468 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
469 * @param addrinc Whether the target address should be increased after each read or not. This
470 * should normally be true, except when reading from e.g. a FIFO.
471 * @return ERROR_OK on success, otherwise an error code.
472 */
473 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
474 target_addr_t adr, bool addrinc)
475 {
476 struct adiv5_dap *dap = ap->dap;
477 size_t nbytes = size * count;
478 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
479 uint32_t csw_size;
480 target_addr_t address = adr;
481 int retval = ERROR_OK;
482
483 /* TI BE-32 Quirks mode:
484 * Reads on big-endian TMS570 behave strangely differently than writes.
485 * They read from the physical address requested, but with DRW byte-reversed.
486 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
487 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
488 * so avoid them. */
489
490 if (size == 4)
491 csw_size = CSW_32BIT;
492 else if (size == 2)
493 csw_size = CSW_16BIT;
494 else if (size == 1)
495 csw_size = CSW_8BIT;
496 else
497 return ERROR_TARGET_UNALIGNED_ACCESS;
498
499 if (ap->unaligned_access_bad && (adr % size != 0))
500 return ERROR_TARGET_UNALIGNED_ACCESS;
501
502 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
503 * over-allocation if packed transfers are going to be used, but determining the real need at
504 * this point would be messy. */
505 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
506 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
507 uint32_t *read_ptr = read_buf;
508 if (!read_buf) {
509 LOG_ERROR("Failed to allocate read buffer");
510 return ERROR_FAIL;
511 }
512
513 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
514 * useful bytes it contains, and their location in the word, depends on the type of transfer
515 * and alignment. */
516 while (nbytes > 0) {
517 uint32_t this_size = size;
518
519 /* Select packed transfer if possible */
520 if (addrinc && ap->packed_transfers && nbytes >= 4
521 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
522 this_size = 4;
523 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
524 } else {
525 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
526 }
527 if (retval != ERROR_OK)
528 break;
529
530 retval = mem_ap_setup_tar(ap, address);
531 if (retval != ERROR_OK)
532 break;
533
534 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
535 if (retval != ERROR_OK)
536 break;
537
538 nbytes -= this_size;
539 if (addrinc)
540 address += this_size;
541
542 mem_ap_update_tar_cache(ap);
543 }
544
545 if (retval == ERROR_OK)
546 retval = dap_run(dap);
547
548 /* Restore state */
549 address = adr;
550 nbytes = size * count;
551 read_ptr = read_buf;
552
553 /* If something failed, read TAR to find out how much data was successfully read, so we can
554 * at least give the caller what we have. */
555 if (retval != ERROR_OK) {
556 target_addr_t tar;
557 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
558 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
559 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
560 if (nbytes > tar - address)
561 nbytes = tar - address;
562 } else {
563 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
564 nbytes = 0;
565 }
566 }
567
568 /* Replay loop to populate caller's buffer from the correct word and byte lane */
569 while (nbytes > 0) {
570 uint32_t this_size = size;
571
572 if (addrinc && ap->packed_transfers && nbytes >= 4
573 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
574 this_size = 4;
575 }
576
577 if (dap->ti_be_32_quirks) {
578 switch (this_size) {
579 case 4:
580 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
581 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
582 /* fallthrough */
583 case 2:
584 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
585 /* fallthrough */
586 case 1:
587 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
588 }
589 } else {
590 switch (this_size) {
591 case 4:
592 *buffer++ = *read_ptr >> 8 * (address++ & 3);
593 *buffer++ = *read_ptr >> 8 * (address++ & 3);
594 /* fallthrough */
595 case 2:
596 *buffer++ = *read_ptr >> 8 * (address++ & 3);
597 /* fallthrough */
598 case 1:
599 *buffer++ = *read_ptr >> 8 * (address++ & 3);
600 }
601 }
602
603 read_ptr++;
604 nbytes -= this_size;
605 }
606
607 free(read_buf);
608 return retval;
609 }
610
611 int mem_ap_read_buf(struct adiv5_ap *ap,
612 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
613 {
614 return mem_ap_read(ap, buffer, size, count, address, true);
615 }
616
617 int mem_ap_write_buf(struct adiv5_ap *ap,
618 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
619 {
620 return mem_ap_write(ap, buffer, size, count, address, true);
621 }
622
623 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
624 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
625 {
626 return mem_ap_read(ap, buffer, size, count, address, false);
627 }
628
629 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
630 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
631 {
632 return mem_ap_write(ap, buffer, size, count, address, false);
633 }
634
635 /*--------------------------------------------------------------------------*/
636
637
638 #define DAP_POWER_DOMAIN_TIMEOUT (10)
639
640 /*--------------------------------------------------------------------------*/
641
642 /**
643 * Invalidate cached DP select and cached TAR and CSW of all APs
644 */
645 void dap_invalidate_cache(struct adiv5_dap *dap)
646 {
647 dap->select = DP_SELECT_INVALID;
648 dap->last_read = NULL;
649
650 int i;
651 for (i = 0; i <= DP_APSEL_MAX; i++) {
652 /* force csw and tar write on the next mem-ap access */
653 dap->ap[i].tar_valid = false;
654 dap->ap[i].csw_value = 0;
655 }
656 }
657
658 /**
659 * Initialize a DAP. This sets up the power domains, prepares the DP
660 * for further use and activates overrun checking.
661 *
662 * @param dap The DAP being initialized.
663 */
664 int dap_dp_init(struct adiv5_dap *dap)
665 {
666 int retval;
667
668 LOG_DEBUG("%s", adiv5_dap_name(dap));
669
670 dap->do_reconnect = false;
671 dap_invalidate_cache(dap);
672
673 /*
674 * Early initialize dap->dp_ctrl_stat.
675 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
676 * fails and sets the sticky error, it will trigger the clearing
677 * of the sticky. Without this initialization system and debug power
678 * would be disabled while clearing the sticky error bit.
679 */
680 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
681
682 /*
683 * This write operation clears the sticky error bit in jtag mode only and
684 * is ignored in swd mode. It also powers-up system and debug domains in
685 * both jtag and swd modes, if not done before.
686 */
687 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
688 if (retval != ERROR_OK)
689 return retval;
690
691 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
692 if (retval != ERROR_OK)
693 return retval;
694
695 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
696 if (retval != ERROR_OK)
697 return retval;
698
699 /* Check that we have debug power domains activated */
700 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
701 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
702 CDBGPWRUPACK, CDBGPWRUPACK,
703 DAP_POWER_DOMAIN_TIMEOUT);
704 if (retval != ERROR_OK)
705 return retval;
706
707 if (!dap->ignore_syspwrupack) {
708 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
709 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
710 CSYSPWRUPACK, CSYSPWRUPACK,
711 DAP_POWER_DOMAIN_TIMEOUT);
712 if (retval != ERROR_OK)
713 return retval;
714 }
715
716 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
717 if (retval != ERROR_OK)
718 return retval;
719
720 /* With debug power on we can activate OVERRUN checking */
721 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
722 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
723 if (retval != ERROR_OK)
724 return retval;
725 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
726 if (retval != ERROR_OK)
727 return retval;
728
729 retval = dap_run(dap);
730 if (retval != ERROR_OK)
731 return retval;
732
733 return retval;
734 }
735
736 /**
737 * Initialize a DAP or do reconnect if DAP is not accessible.
738 *
739 * @param dap The DAP being initialized.
740 */
741 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
742 {
743 LOG_DEBUG("%s", adiv5_dap_name(dap));
744
745 /*
746 * Early initialize dap->dp_ctrl_stat.
747 * In jtag mode only, if the following atomic reads fail and set the
748 * sticky error, it will trigger the clearing of the sticky. Without this
749 * initialization system and debug power would be disabled while clearing
750 * the sticky error bit.
751 */
752 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
753
754 dap->do_reconnect = false;
755
756 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
757 if (dap->do_reconnect) {
758 /* dap connect calls dap_dp_init() after transport dependent initialization */
759 return dap->ops->connect(dap);
760 } else {
761 return dap_dp_init(dap);
762 }
763 }
764
765 /**
766 * Initialize a DAP. This sets up the power domains, prepares the DP
767 * for further use, and arranges to use AP #0 for all AP operations
768 * until dap_ap-select() changes that policy.
769 *
770 * @param ap The MEM-AP being initialized.
771 */
772 int mem_ap_init(struct adiv5_ap *ap)
773 {
774 /* check that we support packed transfers */
775 uint32_t csw, cfg;
776 int retval;
777 struct adiv5_dap *dap = ap->dap;
778
779 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
780 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
781 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
782 if (retval != ERROR_OK)
783 return retval;
784
785 retval = dap_run(dap);
786 if (retval != ERROR_OK)
787 return retval;
788
789 ap->cfg_reg = cfg;
790 ap->tar_valid = false;
791 ap->csw_value = 0; /* force csw and tar write */
792 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
793 if (retval != ERROR_OK)
794 return retval;
795
796 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
797 if (retval != ERROR_OK)
798 return retval;
799
800 retval = dap_run(dap);
801 if (retval != ERROR_OK)
802 return retval;
803
804 if (csw & CSW_ADDRINC_PACKED)
805 ap->packed_transfers = true;
806 else
807 ap->packed_transfers = false;
808
809 /* Packed transfers on TI BE-32 processors do not work correctly in
810 * many cases. */
811 if (dap->ti_be_32_quirks)
812 ap->packed_transfers = false;
813
814 LOG_DEBUG("MEM_AP Packed Transfers: %s",
815 ap->packed_transfers ? "enabled" : "disabled");
816
817 /* The ARM ADI spec leaves implementation-defined whether unaligned
818 * memory accesses work, only work partially, or cause a sticky error.
819 * On TI BE-32 processors, reads seem to return garbage in some bytes
820 * and unaligned writes seem to cause a sticky error.
821 * TODO: it would be nice to have a way to detect whether unaligned
822 * operations are supported on other processors. */
823 ap->unaligned_access_bad = dap->ti_be_32_quirks;
824
825 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
826 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
827
828 return ERROR_OK;
829 }
830
831 /**
832 * Put the debug link into SWD mode, if the target supports it.
833 * The link's initial mode may be either JTAG (for example,
834 * with SWJ-DP after reset) or SWD.
835 *
836 * Note that targets using the JTAG-DP do not support SWD, and that
837 * some targets which could otherwise support it may have been
838 * configured to disable SWD signaling
839 *
840 * @param dap The DAP used
841 * @return ERROR_OK or else a fault code.
842 */
843 int dap_to_swd(struct adiv5_dap *dap)
844 {
845 LOG_DEBUG("Enter SWD mode");
846
847 return dap_send_sequence(dap, JTAG_TO_SWD);
848 }
849
850 /**
851 * Put the debug link into JTAG mode, if the target supports it.
852 * The link's initial mode may be either SWD or JTAG.
853 *
854 * Note that targets implemented with SW-DP do not support JTAG, and
855 * that some targets which could otherwise support it may have been
856 * configured to disable JTAG signaling
857 *
858 * @param dap The DAP used
859 * @return ERROR_OK or else a fault code.
860 */
861 int dap_to_jtag(struct adiv5_dap *dap)
862 {
863 LOG_DEBUG("Enter JTAG mode");
864
865 return dap_send_sequence(dap, SWD_TO_JTAG);
866 }
867
868 /* CID interpretation -- see ARM IHI 0029E table B2-7
869 * and ARM IHI 0031E table D1-2.
870 *
871 * From 2009/11/25 commit 21378f58b604:
872 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
873 * Let's keep it as is, for the time being
874 */
875 static const char *class_description[16] = {
876 [0x0] = "Generic verification component",
877 [0x1] = "ROM table",
878 [0x2] = "Reserved",
879 [0x3] = "Reserved",
880 [0x4] = "Reserved",
881 [0x5] = "Reserved",
882 [0x6] = "Reserved",
883 [0x7] = "Reserved",
884 [0x8] = "Reserved",
885 [0x9] = "CoreSight component",
886 [0xA] = "Reserved",
887 [0xB] = "Peripheral Test Block",
888 [0xC] = "Reserved",
889 [0xD] = "OptimoDE DESS", /* see above */
890 [0xE] = "Generic IP component",
891 [0xF] = "CoreLink, PrimeCell or System component",
892 };
893
894 static bool is_dap_cid_ok(uint32_t cid)
895 {
896 return (cid & 0xffff0fff) == 0xb105000d;
897 }
898
899 /*
900 * This function checks the ID for each access port to find the requested Access Port type
901 */
902 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
903 {
904 int ap_num;
905
906 /* Maximum AP number is 255 since the SELECT register is 8 bits */
907 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
908
909 /* read the IDR register of the Access Port */
910 uint32_t id_val = 0;
911
912 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
913 if (retval != ERROR_OK)
914 return retval;
915
916 retval = dap_run(dap);
917
918 /* IDR bits:
919 * 31-28 : Revision
920 * 27-24 : JEDEC bank (0x4 for ARM)
921 * 23-17 : JEDEC code (0x3B for ARM)
922 * 16-13 : Class (0b1000=Mem-AP)
923 * 12-8 : Reserved
924 * 7-4 : AP Variant (non-zero for JTAG-AP)
925 * 3-0 : AP Type (0=JTAG-AP 1=AHB-AP 2=APB-AP 4=AXI-AP)
926 */
927
928 /* Reading register for a non-existent AP should not cause an error,
929 * but just to be sure, try to continue searching if an error does happen.
930 */
931 if ((retval == ERROR_OK) && /* Register read success */
932 ((id_val & IDR_JEP106) == IDR_JEP106_ARM) && /* Jedec codes match */
933 ((id_val & IDR_TYPE) == type_to_find)) { /* type matches*/
934
935 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
936 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
937 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
938 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
939 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
940 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
941 ap_num, id_val);
942
943 *ap_out = &dap->ap[ap_num];
944 return ERROR_OK;
945 }
946 }
947
948 LOG_DEBUG("No %s found",
949 (type_to_find == AP_TYPE_AHB3_AP) ? "AHB3-AP" :
950 (type_to_find == AP_TYPE_AHB5_AP) ? "AHB5-AP" :
951 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
952 (type_to_find == AP_TYPE_AXI_AP) ? "AXI-AP" :
953 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
954 return ERROR_FAIL;
955 }
956
957 int dap_get_debugbase(struct adiv5_ap *ap,
958 target_addr_t *dbgbase, uint32_t *apid)
959 {
960 struct adiv5_dap *dap = ap->dap;
961 int retval;
962 uint32_t baseptr_upper, baseptr_lower;
963
964 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
965 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
966 if (retval != ERROR_OK)
967 return retval;
968 }
969 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
970 if (retval != ERROR_OK)
971 return retval;
972 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
973 if (retval != ERROR_OK)
974 return retval;
975 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
976 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
977 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
978 if (retval != ERROR_OK)
979 return retval;
980 }
981
982 retval = dap_run(dap);
983 if (retval != ERROR_OK)
984 return retval;
985
986 if (!is_64bit_ap(ap))
987 baseptr_upper = 0;
988 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
989
990 return ERROR_OK;
991 }
992
993 int dap_lookup_cs_component(struct adiv5_ap *ap,
994 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
995 {
996 uint32_t romentry, entry_offset = 0, devtype;
997 target_addr_t component_base;
998 int retval;
999
1000 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1001 *addr = 0;
1002
1003 do {
1004 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1005 entry_offset, &romentry);
1006 if (retval != ERROR_OK)
1007 return retval;
1008
1009 component_base = dbgbase + (target_addr_t)(romentry & 0xFFFFF000);
1010
1011 if (romentry & 0x1) {
1012 uint32_t c_cid1;
1013 retval = mem_ap_read_atomic_u32(ap, component_base | 0xff4, &c_cid1);
1014 if (retval != ERROR_OK) {
1015 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1016 ", the corresponding core might be turned off", component_base);
1017 return retval;
1018 }
1019 if (((c_cid1 >> 4) & 0x0f) == 1) {
1020 retval = dap_lookup_cs_component(ap, component_base,
1021 type, addr, idx);
1022 if (retval == ERROR_OK)
1023 break;
1024 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1025 return retval;
1026 }
1027
1028 retval = mem_ap_read_atomic_u32(ap, component_base | 0xfcc, &devtype);
1029 if (retval != ERROR_OK)
1030 return retval;
1031 if ((devtype & 0xff) == type) {
1032 if (!*idx) {
1033 *addr = component_base;
1034 break;
1035 } else
1036 (*idx)--;
1037 }
1038 }
1039 entry_offset += 4;
1040 } while ((romentry > 0) && (entry_offset < 0xf00));
1041
1042 if (!*addr)
1043 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1044
1045 return ERROR_OK;
1046 }
1047
1048 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1049 {
1050 assert((component_base & 0xFFF) == 0);
1051 assert(ap && cid && pid);
1052
1053 uint32_t cid0, cid1, cid2, cid3;
1054 uint32_t pid0, pid1, pid2, pid3, pid4;
1055 int retval;
1056
1057 /* IDs are in last 4K section */
1058 retval = mem_ap_read_u32(ap, component_base + 0xFE0, &pid0);
1059 if (retval != ERROR_OK)
1060 return retval;
1061 retval = mem_ap_read_u32(ap, component_base + 0xFE4, &pid1);
1062 if (retval != ERROR_OK)
1063 return retval;
1064 retval = mem_ap_read_u32(ap, component_base + 0xFE8, &pid2);
1065 if (retval != ERROR_OK)
1066 return retval;
1067 retval = mem_ap_read_u32(ap, component_base + 0xFEC, &pid3);
1068 if (retval != ERROR_OK)
1069 return retval;
1070 retval = mem_ap_read_u32(ap, component_base + 0xFD0, &pid4);
1071 if (retval != ERROR_OK)
1072 return retval;
1073 retval = mem_ap_read_u32(ap, component_base + 0xFF0, &cid0);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 retval = mem_ap_read_u32(ap, component_base + 0xFF4, &cid1);
1077 if (retval != ERROR_OK)
1078 return retval;
1079 retval = mem_ap_read_u32(ap, component_base + 0xFF8, &cid2);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 retval = mem_ap_read_u32(ap, component_base + 0xFFC, &cid3);
1083 if (retval != ERROR_OK)
1084 return retval;
1085
1086 retval = dap_run(ap->dap);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 *cid = (cid3 & 0xff) << 24
1091 | (cid2 & 0xff) << 16
1092 | (cid1 & 0xff) << 8
1093 | (cid0 & 0xff);
1094 *pid = (uint64_t)(pid4 & 0xff) << 32
1095 | (pid3 & 0xff) << 24
1096 | (pid2 & 0xff) << 16
1097 | (pid1 & 0xff) << 8
1098 | (pid0 & 0xff);
1099
1100 return ERROR_OK;
1101 }
1102
1103 /* The designer identity code is encoded as:
1104 * bits 11:8 : JEP106 Bank (number of continuation codes), only valid when bit 7 is 1.
1105 * bit 7 : Set when bits 6:0 represent a JEP106 ID and cleared when bits 6:0 represent
1106 * a legacy ASCII Identity Code.
1107 * bits 6:0 : JEP106 Identity Code (without parity) or legacy ASCII code according to bit 7.
1108 * JEP106 is a standard available from jedec.org
1109 */
1110
1111 /* Part number interpretations are from Cortex
1112 * core specs, the CoreSight components TRM
1113 * (ARM DDI 0314H), CoreSight System Design
1114 * Guide (ARM DGI 0012D) and ETM specs; also
1115 * from chip observation (e.g. TI SDTI).
1116 */
1117
1118 /* The legacy code only used the part number field to identify CoreSight peripherals.
1119 * This meant that the same part number from two different manufacturers looked the same.
1120 * It is desirable for all future additions to identify with both part number and JEP106.
1121 * "ANY_ID" is a wildcard (any JEP106) only to preserve legacy behavior for legacy entries.
1122 */
1123
1124 #define ANY_ID 0x1000
1125
1126 #define ARM_ID 0x4BB
1127
1128 static const struct {
1129 uint16_t designer_id;
1130 uint16_t part_num;
1131 const char *type;
1132 const char *full;
1133 } dap_partnums[] = {
1134 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1135 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1136 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1137 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1138 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1139 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1140 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1141 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1142 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1143 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1144 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1145 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1146 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1147 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1148 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1149 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1150 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1151 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1152 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1153 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1154 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1155 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1156 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1157 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1158 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1159 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1160 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1161 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1162 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1163 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1164 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1165 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1166 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1167 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1168 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1169 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1170 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1171 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1172 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1173 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1174 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1175 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1176 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1177 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1178 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1179 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1180 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1181 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1182 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1183 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1184 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1185 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1186 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1187 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1188 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1189 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1190 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1191 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1192 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1193 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1194 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1195 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1196 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1197 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1198 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1199 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1200 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1201 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1202 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1203 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1204 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1205 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1206 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1207 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1208 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1209 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1210 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1211 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1212 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1213 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1214 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1215 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1216 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1217 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1218 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1219 { 0x097, 0x9af, "MSP432 ROM", "(ROM Table)" },
1220 { 0x09f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1221 { 0x0c1, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1222 { 0x0c1, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1223 { 0x0c1, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1224 { 0x0E5, 0x000, "SHARC+/Blackfin+", "", },
1225 { 0x0F0, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1226 { 0x1bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1227 { 0x1bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1228 { 0x1bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1229 { 0x1bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1230 { 0x3eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1231 { 0x3eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1232 { 0x3eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1233 { 0x3eb, 0x302, "Denver Debug", "(Debug Unit)", },
1234 { 0x3eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1235 /* legacy comment: 0x113: what? */
1236 { ANY_ID, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1237 { ANY_ID, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1238 };
1239
1240 static int dap_rom_display(struct command_invocation *cmd,
1241 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1242 {
1243 int retval;
1244 uint64_t pid;
1245 uint32_t cid;
1246 char tabs[16] = "";
1247
1248 if (depth > 16) {
1249 command_print(cmd, "\tTables too deep");
1250 return ERROR_FAIL;
1251 }
1252
1253 if (depth)
1254 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1255
1256 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1257 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1258
1259 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1260 if (retval != ERROR_OK) {
1261 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1262 return ERROR_OK; /* Don't abort recursion */
1263 }
1264
1265 if (!is_dap_cid_ok(cid)) {
1266 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1267 return ERROR_OK; /* Don't abort recursion */
1268 }
1269
1270 /* component may take multiple 4K pages */
1271 uint32_t size = (pid >> 36) & 0xf;
1272 if (size > 0)
1273 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1274
1275 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1276
1277 uint8_t class = (cid >> 12) & 0xf;
1278 uint16_t part_num = pid & 0xfff;
1279 uint16_t designer_id = ((pid >> 32) & 0xf) << 8 | ((pid >> 12) & 0xff);
1280
1281 if (designer_id & 0x80) {
1282 /* JEP106 code */
1283 command_print(cmd, "\t\tDesigner is 0x%03" PRIx16 ", %s",
1284 designer_id, jep106_manufacturer(designer_id >> 8, designer_id & 0x7f));
1285 } else {
1286 /* Legacy ASCII ID, clear invalid bits */
1287 designer_id &= 0x7f;
1288 command_print(cmd, "\t\tDesigner ASCII code 0x%02" PRIx16 ", %s",
1289 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1290 }
1291
1292 /* default values to be overwritten upon finding a match */
1293 const char *type = "Unrecognized";
1294 const char *full = "";
1295
1296 /* search dap_partnums[] array for a match */
1297 for (unsigned entry = 0; entry < ARRAY_SIZE(dap_partnums); entry++) {
1298
1299 if ((dap_partnums[entry].designer_id != designer_id) && (dap_partnums[entry].designer_id != ANY_ID))
1300 continue;
1301
1302 if (dap_partnums[entry].part_num != part_num)
1303 continue;
1304
1305 type = dap_partnums[entry].type;
1306 full = dap_partnums[entry].full;
1307 break;
1308 }
1309
1310 command_print(cmd, "\t\tPart is 0x%" PRIx16", %s %s", part_num, type, full);
1311 command_print(cmd, "\t\tComponent class is 0x%" PRIx8 ", %s", class, class_description[class]);
1312
1313 if (class == 1) { /* ROM Table */
1314 uint32_t memtype;
1315 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &memtype);
1316 if (retval != ERROR_OK)
1317 return retval;
1318
1319 if (memtype & 0x01)
1320 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1321 else
1322 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1323
1324 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1325 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1326 uint32_t romentry;
1327 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1328 if (retval != ERROR_OK)
1329 return retval;
1330 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1331 tabs, entry_offset, romentry);
1332 if (romentry & 0x01) {
1333 /* Recurse. "romentry" is signed */
1334 retval = dap_rom_display(cmd, ap, base_addr + (int32_t)(romentry & 0xFFFFF000), depth + 1);
1335 if (retval != ERROR_OK)
1336 return retval;
1337 } else if (romentry != 0) {
1338 command_print(cmd, "\t\tComponent not present");
1339 } else {
1340 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1341 break;
1342 }
1343 }
1344 } else if (class == 9) { /* CoreSight component */
1345 const char *major = "Reserved", *subtype = "Reserved";
1346
1347 uint32_t devtype;
1348 retval = mem_ap_read_atomic_u32(ap, base_addr | 0xFCC, &devtype);
1349 if (retval != ERROR_OK)
1350 return retval;
1351 unsigned minor = (devtype >> 4) & 0x0f;
1352 switch (devtype & 0x0f) {
1353 case 0:
1354 major = "Miscellaneous";
1355 switch (minor) {
1356 case 0:
1357 subtype = "other";
1358 break;
1359 case 4:
1360 subtype = "Validation component";
1361 break;
1362 }
1363 break;
1364 case 1:
1365 major = "Trace Sink";
1366 switch (minor) {
1367 case 0:
1368 subtype = "other";
1369 break;
1370 case 1:
1371 subtype = "Port";
1372 break;
1373 case 2:
1374 subtype = "Buffer";
1375 break;
1376 case 3:
1377 subtype = "Router";
1378 break;
1379 }
1380 break;
1381 case 2:
1382 major = "Trace Link";
1383 switch (minor) {
1384 case 0:
1385 subtype = "other";
1386 break;
1387 case 1:
1388 subtype = "Funnel, router";
1389 break;
1390 case 2:
1391 subtype = "Filter";
1392 break;
1393 case 3:
1394 subtype = "FIFO, buffer";
1395 break;
1396 }
1397 break;
1398 case 3:
1399 major = "Trace Source";
1400 switch (minor) {
1401 case 0:
1402 subtype = "other";
1403 break;
1404 case 1:
1405 subtype = "Processor";
1406 break;
1407 case 2:
1408 subtype = "DSP";
1409 break;
1410 case 3:
1411 subtype = "Engine/Coprocessor";
1412 break;
1413 case 4:
1414 subtype = "Bus";
1415 break;
1416 case 6:
1417 subtype = "Software";
1418 break;
1419 }
1420 break;
1421 case 4:
1422 major = "Debug Control";
1423 switch (minor) {
1424 case 0:
1425 subtype = "other";
1426 break;
1427 case 1:
1428 subtype = "Trigger Matrix";
1429 break;
1430 case 2:
1431 subtype = "Debug Auth";
1432 break;
1433 case 3:
1434 subtype = "Power Requestor";
1435 break;
1436 }
1437 break;
1438 case 5:
1439 major = "Debug Logic";
1440 switch (minor) {
1441 case 0:
1442 subtype = "other";
1443 break;
1444 case 1:
1445 subtype = "Processor";
1446 break;
1447 case 2:
1448 subtype = "DSP";
1449 break;
1450 case 3:
1451 subtype = "Engine/Coprocessor";
1452 break;
1453 case 4:
1454 subtype = "Bus";
1455 break;
1456 case 5:
1457 subtype = "Memory";
1458 break;
1459 }
1460 break;
1461 case 6:
1462 major = "Performance Monitor";
1463 switch (minor) {
1464 case 0:
1465 subtype = "other";
1466 break;
1467 case 1:
1468 subtype = "Processor";
1469 break;
1470 case 2:
1471 subtype = "DSP";
1472 break;
1473 case 3:
1474 subtype = "Engine/Coprocessor";
1475 break;
1476 case 4:
1477 subtype = "Bus";
1478 break;
1479 case 5:
1480 subtype = "Memory";
1481 break;
1482 }
1483 break;
1484 }
1485 command_print(cmd, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1486 (uint8_t)(devtype & 0xff),
1487 major, subtype);
1488 /* REVISIT also show 0xfc8 DevId */
1489 }
1490
1491 return ERROR_OK;
1492 }
1493
1494 int dap_info_command(struct command_invocation *cmd,
1495 struct adiv5_ap *ap)
1496 {
1497 int retval;
1498 uint32_t apid;
1499 target_addr_t dbgbase;
1500 target_addr_t dbgaddr;
1501 uint8_t mem_ap;
1502
1503 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1504 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1505 if (retval != ERROR_OK)
1506 return retval;
1507
1508 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1509 if (apid == 0) {
1510 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1511 return ERROR_FAIL;
1512 }
1513
1514 switch (apid & (IDR_JEP106 | IDR_TYPE)) {
1515 case IDR_JEP106_ARM | AP_TYPE_JTAG_AP:
1516 command_print(cmd, "\tType is JTAG-AP");
1517 break;
1518 case IDR_JEP106_ARM | AP_TYPE_AHB3_AP:
1519 command_print(cmd, "\tType is MEM-AP AHB3");
1520 break;
1521 case IDR_JEP106_ARM | AP_TYPE_AHB5_AP:
1522 command_print(cmd, "\tType is MEM-AP AHB5");
1523 break;
1524 case IDR_JEP106_ARM | AP_TYPE_APB_AP:
1525 command_print(cmd, "\tType is MEM-AP APB");
1526 break;
1527 case IDR_JEP106_ARM | AP_TYPE_AXI_AP:
1528 command_print(cmd, "\tType is MEM-AP AXI");
1529 break;
1530 default:
1531 command_print(cmd, "\tUnknown AP type");
1532 break;
1533 }
1534
1535 /* NOTE: a MEM-AP may have a single CoreSight component that's
1536 * not a ROM table ... or have no such components at all.
1537 */
1538 mem_ap = (apid & IDR_CLASS) == AP_CLASS_MEM_AP;
1539 if (mem_ap) {
1540 if (is_64bit_ap(ap))
1541 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1542 else
1543 dbgaddr = 0xFFFFFFFFul;
1544
1545 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1546
1547 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1548 command_print(cmd, "\tNo ROM table present");
1549 } else {
1550 if (dbgbase & 0x01)
1551 command_print(cmd, "\tValid ROM table present");
1552 else
1553 command_print(cmd, "\tROM table in legacy format");
1554
1555 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1556 }
1557 }
1558
1559 return ERROR_OK;
1560 }
1561
1562 enum adiv5_cfg_param {
1563 CFG_DAP,
1564 CFG_AP_NUM,
1565 CFG_BASEADDR,
1566 CFG_CTIBASE, /* DEPRECATED */
1567 };
1568
1569 static const struct jim_nvp nvp_config_opts[] = {
1570 { .name = "-dap", .value = CFG_DAP },
1571 { .name = "-ap-num", .value = CFG_AP_NUM },
1572 { .name = "-baseaddr", .value = CFG_BASEADDR },
1573 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1574 { .name = NULL, .value = -1 }
1575 };
1576
1577 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1578 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1579 {
1580 if (!goi->argc)
1581 return JIM_OK;
1582
1583 Jim_SetEmptyResult(goi->interp);
1584
1585 struct jim_nvp *n;
1586 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1587 goi->argv[0], &n);
1588 if (e != JIM_OK)
1589 return JIM_CONTINUE;
1590
1591 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1592 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1593 return JIM_CONTINUE;
1594
1595 e = jim_getopt_obj(goi, NULL);
1596 if (e != JIM_OK)
1597 return e;
1598
1599 switch (n->value) {
1600 case CFG_DAP:
1601 if (goi->isconfigure) {
1602 Jim_Obj *o_t;
1603 struct adiv5_dap *dap;
1604 e = jim_getopt_obj(goi, &o_t);
1605 if (e != JIM_OK)
1606 return e;
1607 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1608 if (!dap) {
1609 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1610 return JIM_ERR;
1611 }
1612 if (*dap_p && *dap_p != dap) {
1613 Jim_SetResultString(goi->interp,
1614 "DAP assignment cannot be changed!", -1);
1615 return JIM_ERR;
1616 }
1617 *dap_p = dap;
1618 } else {
1619 if (goi->argc)
1620 goto err_no_param;
1621 if (!*dap_p) {
1622 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1623 return JIM_ERR;
1624 }
1625 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1626 }
1627 break;
1628
1629 case CFG_AP_NUM:
1630 if (goi->isconfigure) {
1631 jim_wide ap_num;
1632 e = jim_getopt_wide(goi, &ap_num);
1633 if (e != JIM_OK)
1634 return e;
1635 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1636 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1637 return JIM_ERR;
1638 }
1639 *ap_num_p = ap_num;
1640 } else {
1641 if (goi->argc)
1642 goto err_no_param;
1643 if (*ap_num_p == DP_APSEL_INVALID) {
1644 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1645 return JIM_ERR;
1646 }
1647 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1648 }
1649 break;
1650
1651 case CFG_CTIBASE:
1652 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1653 /* fall through */
1654 case CFG_BASEADDR:
1655 if (goi->isconfigure) {
1656 jim_wide base;
1657 e = jim_getopt_wide(goi, &base);
1658 if (e != JIM_OK)
1659 return e;
1660 *base_p = (uint32_t)base;
1661 } else {
1662 if (goi->argc)
1663 goto err_no_param;
1664 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1665 }
1666 break;
1667 };
1668
1669 return JIM_OK;
1670
1671 err_no_param:
1672 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1673 return JIM_ERR;
1674 }
1675
1676 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1677 {
1678 struct adiv5_private_config *pc;
1679 int e;
1680
1681 pc = (struct adiv5_private_config *)target->private_config;
1682 if (!pc) {
1683 pc = calloc(1, sizeof(struct adiv5_private_config));
1684 pc->ap_num = DP_APSEL_INVALID;
1685 target->private_config = pc;
1686 }
1687
1688 target->has_dap = true;
1689
1690 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1691 if (e != JIM_OK)
1692 return e;
1693
1694 if (pc->dap && !target->dap_configured) {
1695 if (target->tap_configured) {
1696 pc->dap = NULL;
1697 Jim_SetResultString(goi->interp,
1698 "-chain-position and -dap configparams are mutually exclusive!", -1);
1699 return JIM_ERR;
1700 }
1701 target->tap = pc->dap->tap;
1702 target->dap_configured = true;
1703 }
1704
1705 return JIM_OK;
1706 }
1707
1708 int adiv5_verify_config(struct adiv5_private_config *pc)
1709 {
1710 if (!pc)
1711 return ERROR_FAIL;
1712
1713 if (!pc->dap)
1714 return ERROR_FAIL;
1715
1716 return ERROR_OK;
1717 }
1718
1719 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1720 struct jim_getopt_info *goi)
1721 {
1722 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1723 }
1724
1725 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1726 {
1727 p->dap = NULL;
1728 p->ap_num = DP_APSEL_INVALID;
1729 p->base = 0;
1730 return ERROR_OK;
1731 }
1732
1733 COMMAND_HANDLER(handle_dap_info_command)
1734 {
1735 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1736 uint32_t apsel;
1737
1738 switch (CMD_ARGC) {
1739 case 0:
1740 apsel = dap->apsel;
1741 break;
1742 case 1:
1743 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1744 if (apsel > DP_APSEL_MAX) {
1745 command_print(CMD, "Invalid AP number");
1746 return ERROR_COMMAND_ARGUMENT_INVALID;
1747 }
1748 break;
1749 default:
1750 return ERROR_COMMAND_SYNTAX_ERROR;
1751 }
1752
1753 return dap_info_command(CMD, &dap->ap[apsel]);
1754 }
1755
1756 COMMAND_HANDLER(dap_baseaddr_command)
1757 {
1758 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1759 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1760 struct adiv5_ap *ap;
1761 target_addr_t baseaddr;
1762 int retval;
1763
1764 baseaddr_upper = 0;
1765
1766 switch (CMD_ARGC) {
1767 case 0:
1768 apsel = dap->apsel;
1769 break;
1770 case 1:
1771 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1772 /* AP address is in bits 31:24 of DP_SELECT */
1773 if (apsel > DP_APSEL_MAX) {
1774 command_print(CMD, "Invalid AP number");
1775 return ERROR_COMMAND_ARGUMENT_INVALID;
1776 }
1777 break;
1778 default:
1779 return ERROR_COMMAND_SYNTAX_ERROR;
1780 }
1781
1782 /* NOTE: assumes we're talking to a MEM-AP, which
1783 * has a base address. There are other kinds of AP,
1784 * though they're not common for now. This should
1785 * use the ID register to verify it's a MEM-AP.
1786 */
1787
1788 ap = dap_ap(dap, apsel);
1789 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1790
1791 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1792 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1793
1794 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1795 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1796 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1797 }
1798
1799 if (retval == ERROR_OK)
1800 retval = dap_run(dap);
1801 if (retval != ERROR_OK)
1802 return retval;
1803
1804 if (is_64bit_ap(ap)) {
1805 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1806 command_print(CMD, "0x%016" PRIx64, baseaddr);
1807 } else
1808 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1809
1810 return ERROR_OK;
1811 }
1812
1813 COMMAND_HANDLER(dap_memaccess_command)
1814 {
1815 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1816 uint32_t memaccess_tck;
1817
1818 switch (CMD_ARGC) {
1819 case 0:
1820 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1821 break;
1822 case 1:
1823 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1824 break;
1825 default:
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827 }
1828 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1829
1830 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1831 dap->ap[dap->apsel].memaccess_tck);
1832
1833 return ERROR_OK;
1834 }
1835
1836 COMMAND_HANDLER(dap_apsel_command)
1837 {
1838 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1839 uint32_t apsel;
1840
1841 switch (CMD_ARGC) {
1842 case 0:
1843 command_print(CMD, "%" PRIu32, dap->apsel);
1844 return ERROR_OK;
1845 case 1:
1846 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1847 /* AP address is in bits 31:24 of DP_SELECT */
1848 if (apsel > DP_APSEL_MAX) {
1849 command_print(CMD, "Invalid AP number");
1850 return ERROR_COMMAND_ARGUMENT_INVALID;
1851 }
1852 break;
1853 default:
1854 return ERROR_COMMAND_SYNTAX_ERROR;
1855 }
1856
1857 dap->apsel = apsel;
1858 return ERROR_OK;
1859 }
1860
1861 COMMAND_HANDLER(dap_apcsw_command)
1862 {
1863 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1864 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1865 uint32_t csw_val, csw_mask;
1866
1867 switch (CMD_ARGC) {
1868 case 0:
1869 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1870 dap->apsel, apcsw);
1871 return ERROR_OK;
1872 case 1:
1873 if (strcmp(CMD_ARGV[0], "default") == 0)
1874 csw_val = CSW_AHB_DEFAULT;
1875 else
1876 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1877
1878 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1879 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1880 return ERROR_COMMAND_ARGUMENT_INVALID;
1881 }
1882 apcsw = csw_val;
1883 break;
1884 case 2:
1885 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1886 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1887 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1888 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1889 return ERROR_COMMAND_ARGUMENT_INVALID;
1890 }
1891 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1892 break;
1893 default:
1894 return ERROR_COMMAND_SYNTAX_ERROR;
1895 }
1896 dap->ap[dap->apsel].csw_default = apcsw;
1897
1898 return 0;
1899 }
1900
1901
1902
1903 COMMAND_HANDLER(dap_apid_command)
1904 {
1905 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1906 uint32_t apsel, apid;
1907 int retval;
1908
1909 switch (CMD_ARGC) {
1910 case 0:
1911 apsel = dap->apsel;
1912 break;
1913 case 1:
1914 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1915 /* AP address is in bits 31:24 of DP_SELECT */
1916 if (apsel > DP_APSEL_MAX) {
1917 command_print(CMD, "Invalid AP number");
1918 return ERROR_COMMAND_ARGUMENT_INVALID;
1919 }
1920 break;
1921 default:
1922 return ERROR_COMMAND_SYNTAX_ERROR;
1923 }
1924
1925 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1926 if (retval != ERROR_OK)
1927 return retval;
1928 retval = dap_run(dap);
1929 if (retval != ERROR_OK)
1930 return retval;
1931
1932 command_print(CMD, "0x%8.8" PRIx32, apid);
1933
1934 return retval;
1935 }
1936
1937 COMMAND_HANDLER(dap_apreg_command)
1938 {
1939 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1940 uint32_t apsel, reg, value;
1941 struct adiv5_ap *ap;
1942 int retval;
1943
1944 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1945 return ERROR_COMMAND_SYNTAX_ERROR;
1946
1947 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1948 /* AP address is in bits 31:24 of DP_SELECT */
1949 if (apsel > DP_APSEL_MAX) {
1950 command_print(CMD, "Invalid AP number");
1951 return ERROR_COMMAND_ARGUMENT_INVALID;
1952 }
1953
1954 ap = dap_ap(dap, apsel);
1955
1956 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1957 if (reg >= 256 || (reg & 3)) {
1958 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1959 return ERROR_COMMAND_ARGUMENT_INVALID;
1960 }
1961
1962 if (CMD_ARGC == 3) {
1963 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
1964 switch (reg) {
1965 case MEM_AP_REG_CSW:
1966 ap->csw_value = 0; /* invalid, in case write fails */
1967 retval = dap_queue_ap_write(ap, reg, value);
1968 if (retval == ERROR_OK)
1969 ap->csw_value = value;
1970 break;
1971 case MEM_AP_REG_TAR:
1972 retval = dap_queue_ap_write(ap, reg, value);
1973 if (retval == ERROR_OK)
1974 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
1975 else {
1976 /* To track independent writes to TAR and TAR64, two tar_valid flags */
1977 /* should be used. To keep it simple, tar_valid is only invalidated on a */
1978 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
1979 /* if tar_valid is false. */
1980 ap->tar_valid = false;
1981 }
1982 break;
1983 case MEM_AP_REG_TAR64:
1984 retval = dap_queue_ap_write(ap, reg, value);
1985 if (retval == ERROR_OK)
1986 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
1987 else {
1988 /* See above comment for the MEM_AP_REG_TAR failed write case */
1989 ap->tar_valid = false;
1990 }
1991 break;
1992 default:
1993 retval = dap_queue_ap_write(ap, reg, value);
1994 break;
1995 }
1996 } else {
1997 retval = dap_queue_ap_read(ap, reg, &value);
1998 }
1999 if (retval == ERROR_OK)
2000 retval = dap_run(dap);
2001
2002 if (retval != ERROR_OK)
2003 return retval;
2004
2005 if (CMD_ARGC == 2)
2006 command_print(CMD, "0x%08" PRIx32, value);
2007
2008 return retval;
2009 }
2010
2011 COMMAND_HANDLER(dap_dpreg_command)
2012 {
2013 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2014 uint32_t reg, value;
2015 int retval;
2016
2017 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2018 return ERROR_COMMAND_SYNTAX_ERROR;
2019
2020 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2021 if (reg >= 256 || (reg & 3)) {
2022 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2023 return ERROR_COMMAND_ARGUMENT_INVALID;
2024 }
2025
2026 if (CMD_ARGC == 2) {
2027 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2028 retval = dap_queue_dp_write(dap, reg, value);
2029 } else {
2030 retval = dap_queue_dp_read(dap, reg, &value);
2031 }
2032 if (retval == ERROR_OK)
2033 retval = dap_run(dap);
2034
2035 if (retval != ERROR_OK)
2036 return retval;
2037
2038 if (CMD_ARGC == 1)
2039 command_print(CMD, "0x%08" PRIx32, value);
2040
2041 return retval;
2042 }
2043
2044 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2045 {
2046 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2047 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2048 "TI BE-32 quirks mode");
2049 }
2050
2051 const struct command_registration dap_instance_commands[] = {
2052 {
2053 .name = "info",
2054 .handler = handle_dap_info_command,
2055 .mode = COMMAND_EXEC,
2056 .help = "display ROM table for MEM-AP "
2057 "(default currently selected AP)",
2058 .usage = "[ap_num]",
2059 },
2060 {
2061 .name = "apsel",
2062 .handler = dap_apsel_command,
2063 .mode = COMMAND_ANY,
2064 .help = "Set the currently selected AP (default 0) "
2065 "and display the result",
2066 .usage = "[ap_num]",
2067 },
2068 {
2069 .name = "apcsw",
2070 .handler = dap_apcsw_command,
2071 .mode = COMMAND_ANY,
2072 .help = "Set CSW default bits",
2073 .usage = "[value [mask]]",
2074 },
2075
2076 {
2077 .name = "apid",
2078 .handler = dap_apid_command,
2079 .mode = COMMAND_EXEC,
2080 .help = "return ID register from AP "
2081 "(default currently selected AP)",
2082 .usage = "[ap_num]",
2083 },
2084 {
2085 .name = "apreg",
2086 .handler = dap_apreg_command,
2087 .mode = COMMAND_EXEC,
2088 .help = "read/write a register from AP "
2089 "(reg is byte address of a word register, like 0 4 8...)",
2090 .usage = "ap_num reg [value]",
2091 },
2092 {
2093 .name = "dpreg",
2094 .handler = dap_dpreg_command,
2095 .mode = COMMAND_EXEC,
2096 .help = "read/write a register from DP "
2097 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2098 .usage = "reg [value]",
2099 },
2100 {
2101 .name = "baseaddr",
2102 .handler = dap_baseaddr_command,
2103 .mode = COMMAND_EXEC,
2104 .help = "return debug base address from MEM-AP "
2105 "(default currently selected AP)",
2106 .usage = "[ap_num]",
2107 },
2108 {
2109 .name = "memaccess",
2110 .handler = dap_memaccess_command,
2111 .mode = COMMAND_EXEC,
2112 .help = "set/get number of extra tck for MEM-AP memory "
2113 "bus access [0-255]",
2114 .usage = "[cycles]",
2115 },
2116 {
2117 .name = "ti_be_32_quirks",
2118 .handler = dap_ti_be_32_quirks_command,
2119 .mode = COMMAND_CONFIG,
2120 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2121 .usage = "[enable]",
2122 },
2123 COMMAND_REGISTRATION_DONE
2124 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)