target: constify structures
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * This program is free software; you can redistribute it and/or modify *
17 * it under the terms of the GNU General Public License as published by *
18 * the Free Software Foundation; either version 2 of the License, or *
19 * (at your option) any later version. *
20 * *
21 * This program is distributed in the hope that it will be useful, *
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
24 * GNU General Public License for more details. *
25 * *
26 * You should have received a copy of the GNU General Public License *
27 * along with this program; if not, write to the *
28 * Free Software Foundation, Inc., *
29 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focusses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction piplining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include <helper/time_support.h>
79
80 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
81
82 /*
83 uint32_t tar_block_size(uint32_t address)
84 Return the largest block starting at address that does not cross a tar block size alignment boundary
85 */
86 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
87 {
88 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
89 }
90
91 /***************************************************************************
92 * *
93 * DP and MEM-AP register access through APACC and DPACC *
94 * *
95 ***************************************************************************/
96
97 /**
98 * Select one of the APs connected to the specified DAP. The
99 * selection is implicitly used with future AP transactions.
100 * This is a NOP if the specified AP is already selected.
101 *
102 * @param dap The DAP
103 * @param apsel Number of the AP to (implicitly) use with further
104 * transactions. This normally identifies a MEM-AP.
105 */
106 void dap_ap_select(struct adiv5_dap *dap, uint8_t ap)
107 {
108 uint32_t new_ap = (ap << 24) & 0xFF000000;
109
110 if (new_ap != dap->ap_current) {
111 dap->ap_current = new_ap;
112 /* Switching AP invalidates cached values.
113 * Values MUST BE UPDATED BEFORE AP ACCESS.
114 */
115 dap->ap_bank_value = -1;
116 dap->ap_csw_value = -1;
117 dap->ap_tar_value = -1;
118 }
119 }
120
121 static int dap_setup_accessport_csw(struct adiv5_dap *dap, uint32_t csw)
122 {
123 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT |
124 dap->apcsw[dap->ap_current >> 24];
125
126 if (csw != dap->ap_csw_value) {
127 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
128 int retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
129 if (retval != ERROR_OK)
130 return retval;
131 dap->ap_csw_value = csw;
132 }
133 return ERROR_OK;
134 }
135
136 static int dap_setup_accessport_tar(struct adiv5_dap *dap, uint32_t tar)
137 {
138 if (tar != dap->ap_tar_value || dap->ap_csw_value & CSW_ADDRINC_MASK) {
139 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
140 int retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
141 if (retval != ERROR_OK)
142 return retval;
143 dap->ap_tar_value = tar;
144 }
145 return ERROR_OK;
146 }
147
148 /**
149 * Queue transactions setting up transfer parameters for the
150 * currently selected MEM-AP.
151 *
152 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
153 * initiate data reads or writes using memory or peripheral addresses.
154 * If the CSW is configured for it, the TAR may be automatically
155 * incremented after each transfer.
156 *
157 * @todo Rename to reflect it being specifically a MEM-AP function.
158 *
159 * @param dap The DAP connected to the MEM-AP.
160 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
161 * matches the cached value, the register is not changed.
162 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
163 * matches the cached address, the register is not changed.
164 *
165 * @return ERROR_OK if the transaction was properly queued, else a fault code.
166 */
167 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
168 {
169 int retval;
170 retval = dap_setup_accessport_csw(dap, csw);
171 if (retval != ERROR_OK)
172 return retval;
173 retval = dap_setup_accessport_tar(dap, tar);
174 if (retval != ERROR_OK)
175 return retval;
176 return ERROR_OK;
177 }
178
179 /**
180 * Asynchronous (queued) read of a word from memory or a system register.
181 *
182 * @param dap The DAP connected to the MEM-AP performing the read.
183 * @param address Address of the 32-bit word to read; it must be
184 * readable by the currently selected MEM-AP.
185 * @param value points to where the word will be stored when the
186 * transaction queue is flushed (assuming no errors).
187 *
188 * @return ERROR_OK for success. Otherwise a fault code.
189 */
190 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
191 uint32_t *value)
192 {
193 int retval;
194
195 /* Use banked addressing (REG_BDx) to avoid some link traffic
196 * (updating TAR) when reading several consecutive addresses.
197 */
198 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
199 address & 0xFFFFFFF0);
200 if (retval != ERROR_OK)
201 return retval;
202
203 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
204 }
205
206 /**
207 * Synchronous read of a word from memory or a system register.
208 * As a side effect, this flushes any queued transactions.
209 *
210 * @param dap The DAP connected to the MEM-AP performing the read.
211 * @param address Address of the 32-bit word to read; it must be
212 * readable by the currently selected MEM-AP.
213 * @param value points to where the result will be stored.
214 *
215 * @return ERROR_OK for success; *value holds the result.
216 * Otherwise a fault code.
217 */
218 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
219 uint32_t *value)
220 {
221 int retval;
222
223 retval = mem_ap_read_u32(dap, address, value);
224 if (retval != ERROR_OK)
225 return retval;
226
227 return dap_run(dap);
228 }
229
230 /**
231 * Asynchronous (queued) write of a word to memory or a system register.
232 *
233 * @param dap The DAP connected to the MEM-AP.
234 * @param address Address to be written; it must be writable by
235 * the currently selected MEM-AP.
236 * @param value Word that will be written to the address when transaction
237 * queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
242 uint32_t value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when writing several consecutive addresses.
248 */
249 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
250 address & 0xFFFFFFF0);
251 if (retval != ERROR_OK)
252 return retval;
253
254 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
255 value);
256 }
257
258 /**
259 * Synchronous write of a word to memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param dap The DAP connected to the MEM-AP.
263 * @param address Address to be written; it must be writable by
264 * the currently selected MEM-AP.
265 * @param value Word that will be written.
266 *
267 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
268 */
269 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
270 uint32_t value)
271 {
272 int retval = mem_ap_write_u32(dap, address, value);
273
274 if (retval != ERROR_OK)
275 return retval;
276
277 return dap_run(dap);
278 }
279
280 /**
281 * Synchronous write of a block of memory, using a specific access size.
282 *
283 * @param dap The DAP connected to the MEM-AP.
284 * @param buffer The data buffer to write. No particular alignment is assumed.
285 * @param size Which access size to use, in bytes. 1, 2 or 4.
286 * @param count The number of writes to do (in size units, not bytes).
287 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
288 * @param addrinc Whether the target address should be increased for each write or not. This
289 * should normally be true, except when writing to e.g. a FIFO.
290 * @return ERROR_OK on success, otherwise an error code.
291 */
292 int mem_ap_write(struct adiv5_dap *dap, const uint8_t *buffer, uint32_t size, uint32_t count,
293 uint32_t address, bool addrinc)
294 {
295 size_t nbytes = size * count;
296 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
297 uint32_t csw_size;
298 uint32_t addr_xor;
299 int retval;
300
301 /* TI BE-32 Quirks mode:
302 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
303 * size write address bytes written in order
304 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
305 * 2 TAR ^ 2 (val >> 8), (val)
306 * 1 TAR ^ 3 (val)
307 * For example, if you attempt to write a single byte to address 0, the processor
308 * will actually write a byte to address 3.
309 *
310 * To make writes of size < 4 work as expected, we xor a value with the address before
311 * setting the TAP, and we set the TAP after every transfer rather then relying on
312 * address increment. */
313
314 if (size == 4) {
315 csw_size = CSW_32BIT;
316 addr_xor = 0;
317 } else if (size == 2) {
318 csw_size = CSW_16BIT;
319 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
320 } else if (size == 1) {
321 csw_size = CSW_8BIT;
322 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
323 } else {
324 return ERROR_TARGET_UNALIGNED_ACCESS;
325 }
326
327 if (dap->unaligned_access_bad && (address % size != 0))
328 return ERROR_TARGET_UNALIGNED_ACCESS;
329
330 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
331 if (retval != ERROR_OK)
332 return retval;
333
334 while (nbytes > 0) {
335 uint32_t this_size = size;
336
337 /* Select packed transfer if possible */
338 if (addrinc && dap->packed_transfers && nbytes >= 4
339 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
340 this_size = 4;
341 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
342 } else {
343 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
344 }
345
346 if (retval != ERROR_OK)
347 break;
348
349 /* How many source bytes each transfer will consume, and their location in the DRW,
350 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
351 uint32_t outvalue = 0;
352 if (dap->ti_be_32_quirks) {
353 switch (this_size) {
354 case 4:
355 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
356 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
357 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
358 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (address++ & 3) ^ addr_xor);
359 break;
360 case 2:
361 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
362 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (address++ & 3) ^ addr_xor);
363 break;
364 case 1:
365 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (address++ & 3) ^ addr_xor);
366 break;
367 }
368 } else {
369 switch (this_size) {
370 case 4:
371 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
372 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
373 case 2:
374 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
375 case 1:
376 outvalue |= (uint32_t)*buffer++ << 8 * (address++ & 3);
377 }
378 }
379
380 nbytes -= this_size;
381
382 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
383 if (retval != ERROR_OK)
384 break;
385
386 /* Rewrite TAR if it wrapped or we're xoring addresses */
387 if (addrinc && (addr_xor || (address % dap->tar_autoincr_block < size && nbytes > 0))) {
388 retval = dap_setup_accessport_tar(dap, address ^ addr_xor);
389 if (retval != ERROR_OK)
390 break;
391 }
392 }
393
394 /* REVISIT: Might want to have a queued version of this function that does not run. */
395 if (retval == ERROR_OK)
396 retval = dap_run(dap);
397
398 if (retval != ERROR_OK) {
399 uint32_t tar;
400 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
401 && dap_run(dap) == ERROR_OK)
402 LOG_ERROR("Failed to write memory at 0x%08"PRIx32, tar);
403 else
404 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
405 }
406
407 return retval;
408 }
409
410 /**
411 * Synchronous read of a block of memory, using a specific access size.
412 *
413 * @param dap The DAP connected to the MEM-AP.
414 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
415 * @param size Which access size to use, in bytes. 1, 2 or 4.
416 * @param count The number of reads to do (in size units, not bytes).
417 * @param address Address to be read; it must be readable by the currently selected MEM-AP.
418 * @param addrinc Whether the target address should be increased after each read or not. This
419 * should normally be true, except when reading from e.g. a FIFO.
420 * @return ERROR_OK on success, otherwise an error code.
421 */
422 int mem_ap_read(struct adiv5_dap *dap, uint8_t *buffer, uint32_t size, uint32_t count,
423 uint32_t adr, bool addrinc)
424 {
425 size_t nbytes = size * count;
426 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
427 uint32_t csw_size;
428 uint32_t address = adr;
429 int retval;
430
431 /* TI BE-32 Quirks mode:
432 * Reads on big-endian TMS570 behave strangely differently than writes.
433 * They read from the physical address requested, but with DRW byte-reversed.
434 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
435 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
436 * so avoid them. */
437
438 if (size == 4)
439 csw_size = CSW_32BIT;
440 else if (size == 2)
441 csw_size = CSW_16BIT;
442 else if (size == 1)
443 csw_size = CSW_8BIT;
444 else
445 return ERROR_TARGET_UNALIGNED_ACCESS;
446
447 if (dap->unaligned_access_bad && (adr % size != 0))
448 return ERROR_TARGET_UNALIGNED_ACCESS;
449
450 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
451 * over-allocation if packed transfers are going to be used, but determining the real need at
452 * this point would be messy. */
453 uint32_t *read_buf = malloc(count * sizeof(uint32_t));
454 uint32_t *read_ptr = read_buf;
455 if (read_buf == NULL) {
456 LOG_ERROR("Failed to allocate read buffer");
457 return ERROR_FAIL;
458 }
459
460 retval = dap_setup_accessport_tar(dap, address);
461 if (retval != ERROR_OK) {
462 free(read_buf);
463 return retval;
464 }
465
466 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
467 * useful bytes it contains, and their location in the word, depends on the type of transfer
468 * and alignment. */
469 while (nbytes > 0) {
470 uint32_t this_size = size;
471
472 /* Select packed transfer if possible */
473 if (addrinc && dap->packed_transfers && nbytes >= 4
474 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
475 this_size = 4;
476 retval = dap_setup_accessport_csw(dap, csw_size | CSW_ADDRINC_PACKED);
477 } else {
478 retval = dap_setup_accessport_csw(dap, csw_size | csw_addrincr);
479 }
480 if (retval != ERROR_OK)
481 break;
482
483 retval = dap_queue_ap_read(dap, AP_REG_DRW, read_ptr++);
484 if (retval != ERROR_OK)
485 break;
486
487 nbytes -= this_size;
488 address += this_size;
489
490 /* Rewrite TAR if it wrapped */
491 if (addrinc && address % dap->tar_autoincr_block < size && nbytes > 0) {
492 retval = dap_setup_accessport_tar(dap, address);
493 if (retval != ERROR_OK)
494 break;
495 }
496 }
497
498 if (retval == ERROR_OK)
499 retval = dap_run(dap);
500
501 /* Restore state */
502 address = adr;
503 nbytes = size * count;
504 read_ptr = read_buf;
505
506 /* If something failed, read TAR to find out how much data was successfully read, so we can
507 * at least give the caller what we have. */
508 if (retval != ERROR_OK) {
509 uint32_t tar;
510 if (dap_queue_ap_read(dap, AP_REG_TAR, &tar) == ERROR_OK
511 && dap_run(dap) == ERROR_OK) {
512 LOG_ERROR("Failed to read memory at 0x%08"PRIx32, tar);
513 if (nbytes > tar - address)
514 nbytes = tar - address;
515 } else {
516 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
517 nbytes = 0;
518 }
519 }
520
521 /* Replay loop to populate caller's buffer from the correct word and byte lane */
522 while (nbytes > 0) {
523 uint32_t this_size = size;
524
525 if (addrinc && dap->packed_transfers && nbytes >= 4
526 && max_tar_block_size(dap->tar_autoincr_block, address) >= 4) {
527 this_size = 4;
528 }
529
530 if (dap->ti_be_32_quirks) {
531 switch (this_size) {
532 case 4:
533 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
534 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
535 case 2:
536 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
537 case 1:
538 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
539 }
540 } else {
541 switch (this_size) {
542 case 4:
543 *buffer++ = *read_ptr >> 8 * (address++ & 3);
544 *buffer++ = *read_ptr >> 8 * (address++ & 3);
545 case 2:
546 *buffer++ = *read_ptr >> 8 * (address++ & 3);
547 case 1:
548 *buffer++ = *read_ptr >> 8 * (address++ & 3);
549 }
550 }
551
552 read_ptr++;
553 nbytes -= this_size;
554 }
555
556 free(read_buf);
557 return retval;
558 }
559
560 /*--------------------------------------------------------------------*/
561 /* Wrapping function with selection of AP */
562 /*--------------------------------------------------------------------*/
563 int mem_ap_sel_read_u32(struct adiv5_dap *swjdp, uint8_t ap,
564 uint32_t address, uint32_t *value)
565 {
566 dap_ap_select(swjdp, ap);
567 return mem_ap_read_u32(swjdp, address, value);
568 }
569
570 int mem_ap_sel_write_u32(struct adiv5_dap *swjdp, uint8_t ap,
571 uint32_t address, uint32_t value)
572 {
573 dap_ap_select(swjdp, ap);
574 return mem_ap_write_u32(swjdp, address, value);
575 }
576
577 int mem_ap_sel_read_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
578 uint32_t address, uint32_t *value)
579 {
580 dap_ap_select(swjdp, ap);
581 return mem_ap_read_atomic_u32(swjdp, address, value);
582 }
583
584 int mem_ap_sel_write_atomic_u32(struct adiv5_dap *swjdp, uint8_t ap,
585 uint32_t address, uint32_t value)
586 {
587 dap_ap_select(swjdp, ap);
588 return mem_ap_write_atomic_u32(swjdp, address, value);
589 }
590
591 int mem_ap_sel_read_buf(struct adiv5_dap *swjdp, uint8_t ap,
592 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
593 {
594 dap_ap_select(swjdp, ap);
595 return mem_ap_read(swjdp, buffer, size, count, address, true);
596 }
597
598 int mem_ap_sel_write_buf(struct adiv5_dap *swjdp, uint8_t ap,
599 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
600 {
601 dap_ap_select(swjdp, ap);
602 return mem_ap_write(swjdp, buffer, size, count, address, true);
603 }
604
605 int mem_ap_sel_read_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
606 uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
607 {
608 dap_ap_select(swjdp, ap);
609 return mem_ap_read(swjdp, buffer, size, count, address, false);
610 }
611
612 int mem_ap_sel_write_buf_noincr(struct adiv5_dap *swjdp, uint8_t ap,
613 const uint8_t *buffer, uint32_t size, uint32_t count, uint32_t address)
614 {
615 dap_ap_select(swjdp, ap);
616 return mem_ap_write(swjdp, buffer, size, count, address, false);
617 }
618
619 /*--------------------------------------------------------------------------*/
620
621
622 #define DAP_POWER_DOMAIN_TIMEOUT (10)
623
624 /* FIXME don't import ... just initialize as
625 * part of DAP transport setup
626 */
627 extern const struct dap_ops jtag_dp_ops;
628
629 /*--------------------------------------------------------------------------*/
630
631 /**
632 * Initialize a DAP. This sets up the power domains, prepares the DP
633 * for further use, and arranges to use AP #0 for all AP operations
634 * until dap_ap-select() changes that policy.
635 *
636 * @param dap The DAP being initialized.
637 *
638 * @todo Rename this. We also need an initialization scheme which account
639 * for SWD transports not just JTAG; that will need to address differences
640 * in layering. (JTAG is useful without any debug target; but not SWD.)
641 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
642 */
643 int ahbap_debugport_init(struct adiv5_dap *dap)
644 {
645 int retval;
646
647 LOG_DEBUG(" ");
648
649 /* JTAG-DP or SWJ-DP, in JTAG mode
650 * ... for SWD mode this is patched as part
651 * of link switchover
652 */
653 if (!dap->ops)
654 dap->ops = &jtag_dp_ops;
655
656 /* Default MEM-AP setup.
657 *
658 * REVISIT AP #0 may be an inappropriate default for this.
659 * Should we probe, or take a hint from the caller?
660 * Presumably we can ignore the possibility of multiple APs.
661 */
662 dap->ap_current = !0;
663 dap_ap_select(dap, 0);
664 dap->last_read = NULL;
665
666 /* DP initialization */
667
668 dap->dp_bank_value = 0;
669
670 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
671 if (retval != ERROR_OK)
672 return retval;
673
674 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
675 if (retval != ERROR_OK)
676 return retval;
677
678 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
679 if (retval != ERROR_OK)
680 return retval;
681
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
684 if (retval != ERROR_OK)
685 return retval;
686
687 /* Check that we have debug power domains activated */
688 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
689 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
690 CDBGPWRUPACK, CDBGPWRUPACK,
691 DAP_POWER_DOMAIN_TIMEOUT);
692 if (retval != ERROR_OK)
693 return retval;
694
695 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
696 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
697 CSYSPWRUPACK, CSYSPWRUPACK,
698 DAP_POWER_DOMAIN_TIMEOUT);
699 if (retval != ERROR_OK)
700 return retval;
701
702 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
703 if (retval != ERROR_OK)
704 return retval;
705 /* With debug power on we can activate OVERRUN checking */
706 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
707 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
708 if (retval != ERROR_OK)
709 return retval;
710 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
711 if (retval != ERROR_OK)
712 return retval;
713
714 /* check that we support packed transfers */
715 uint32_t csw, cfg;
716
717 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
718 if (retval != ERROR_OK)
719 return retval;
720
721 retval = dap_queue_ap_read(dap, AP_REG_CSW, &csw);
722 if (retval != ERROR_OK)
723 return retval;
724
725 retval = dap_queue_ap_read(dap, AP_REG_CFG, &cfg);
726 if (retval != ERROR_OK)
727 return retval;
728
729 retval = dap_run(dap);
730 if (retval != ERROR_OK)
731 return retval;
732
733 if (csw & CSW_ADDRINC_PACKED)
734 dap->packed_transfers = true;
735 else
736 dap->packed_transfers = false;
737
738 /* Packed transfers on TI BE-32 processors do not work correctly in
739 * many cases. */
740 if (dap->ti_be_32_quirks)
741 dap->packed_transfers = false;
742
743 LOG_DEBUG("MEM_AP Packed Transfers: %s",
744 dap->packed_transfers ? "enabled" : "disabled");
745
746 /* The ARM ADI spec leaves implementation-defined whether unaligned
747 * memory accesses work, only work partially, or cause a sticky error.
748 * On TI BE-32 processors, reads seem to return garbage in some bytes
749 * and unaligned writes seem to cause a sticky error.
750 * TODO: it would be nice to have a way to detect whether unaligned
751 * operations are supported on other processors. */
752 dap->unaligned_access_bad = dap->ti_be_32_quirks;
753
754 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
755 !!(cfg & 0x04), !!(cfg & 0x02), !!(cfg & 0x01));
756
757 return ERROR_OK;
758 }
759
760 /* CID interpretation -- see ARM IHI 0029B section 3
761 * and ARM IHI 0031A table 13-3.
762 */
763 static const char *class_description[16] = {
764 "Reserved", "ROM table", "Reserved", "Reserved",
765 "Reserved", "Reserved", "Reserved", "Reserved",
766 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
767 "Reserved", "OptimoDE DESS",
768 "Generic IP component", "PrimeCell or System component"
769 };
770
771 static bool is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
772 {
773 return cid3 == 0xb1 && cid2 == 0x05
774 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
775 }
776
777 /*
778 * This function checks the ID for each access port to find the requested Access Port type
779 */
780 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, uint8_t *ap_num_out)
781 {
782 int ap;
783
784 /* Maximum AP number is 255 since the SELECT register is 8 bits */
785 for (ap = 0; ap <= 255; ap++) {
786
787 /* read the IDR register of the Access Port */
788 uint32_t id_val = 0;
789 dap_ap_select(dap, ap);
790
791 int retval = dap_queue_ap_read(dap, AP_REG_IDR, &id_val);
792 if (retval != ERROR_OK)
793 return retval;
794
795 retval = dap_run(dap);
796
797 /* IDR bits:
798 * 31-28 : Revision
799 * 27-24 : JEDEC bank (0x4 for ARM)
800 * 23-17 : JEDEC code (0x3B for ARM)
801 * 16 : Mem-AP
802 * 15-8 : Reserved
803 * 7-0 : AP Identity (1=AHB-AP 2=APB-AP 0x10=JTAG-AP)
804 */
805
806 /* Reading register for a non-existant AP should not cause an error,
807 * but just to be sure, try to continue searching if an error does happen.
808 */
809 if ((retval == ERROR_OK) && /* Register read success */
810 ((id_val & 0x0FFF0000) == 0x04770000) && /* Jedec codes match */
811 ((id_val & 0xFF) == type_to_find)) { /* type matches*/
812
813 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
814 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
815 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
816 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown",
817 ap, id_val);
818
819 *ap_num_out = ap;
820 return ERROR_OK;
821 }
822 }
823
824 LOG_DEBUG("No %s found",
825 (type_to_find == AP_TYPE_AHB_AP) ? "AHB-AP" :
826 (type_to_find == AP_TYPE_APB_AP) ? "APB-AP" :
827 (type_to_find == AP_TYPE_JTAG_AP) ? "JTAG-AP" : "Unknown");
828 return ERROR_FAIL;
829 }
830
831 int dap_get_debugbase(struct adiv5_dap *dap, int ap,
832 uint32_t *dbgbase, uint32_t *apid)
833 {
834 uint32_t ap_old;
835 int retval;
836
837 /* AP address is in bits 31:24 of DP_SELECT */
838 if (ap >= 256)
839 return ERROR_COMMAND_SYNTAX_ERROR;
840
841 ap_old = dap->ap_current;
842 dap_ap_select(dap, ap);
843
844 retval = dap_queue_ap_read(dap, AP_REG_BASE, dbgbase);
845 if (retval != ERROR_OK)
846 return retval;
847 retval = dap_queue_ap_read(dap, AP_REG_IDR, apid);
848 if (retval != ERROR_OK)
849 return retval;
850 retval = dap_run(dap);
851 if (retval != ERROR_OK)
852 return retval;
853
854 dap_ap_select(dap, ap_old);
855
856 return ERROR_OK;
857 }
858
859 int dap_lookup_cs_component(struct adiv5_dap *dap, int ap,
860 uint32_t dbgbase, uint8_t type, uint32_t *addr, int32_t *idx)
861 {
862 uint32_t ap_old;
863 uint32_t romentry, entry_offset = 0, component_base, devtype;
864 int retval;
865
866 if (ap >= 256)
867 return ERROR_COMMAND_SYNTAX_ERROR;
868
869 *addr = 0;
870 ap_old = dap->ap_current;
871 dap_ap_select(dap, ap);
872
873 do {
874 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) |
875 entry_offset, &romentry);
876 if (retval != ERROR_OK)
877 return retval;
878
879 component_base = (dbgbase & 0xFFFFF000)
880 + (romentry & 0xFFFFF000);
881
882 if (romentry & 0x1) {
883 uint32_t c_cid1;
884 retval = mem_ap_read_atomic_u32(dap, component_base | 0xff4, &c_cid1);
885 if (retval != ERROR_OK) {
886 LOG_ERROR("Can't read component with base address 0x%" PRIx32
887 ", the corresponding core might be turned off", component_base);
888 return retval;
889 }
890 if (((c_cid1 >> 4) & 0x0f) == 1) {
891 retval = dap_lookup_cs_component(dap, ap, component_base,
892 type, addr, idx);
893 if (retval == ERROR_OK)
894 break;
895 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
896 return retval;
897 }
898
899 retval = mem_ap_read_atomic_u32(dap,
900 (component_base & 0xfffff000) | 0xfcc,
901 &devtype);
902 if (retval != ERROR_OK)
903 return retval;
904 if ((devtype & 0xff) == type) {
905 if (!*idx) {
906 *addr = component_base;
907 break;
908 } else
909 (*idx)--;
910 }
911 }
912 entry_offset += 4;
913 } while (romentry > 0);
914
915 dap_ap_select(dap, ap_old);
916
917 if (!*addr)
918 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
919
920 return ERROR_OK;
921 }
922
923 static int dap_rom_display(struct command_context *cmd_ctx,
924 struct adiv5_dap *dap, int ap, uint32_t dbgbase, int depth)
925 {
926 int retval;
927 uint32_t cid0, cid1, cid2, cid3, memtype, romentry;
928 uint16_t entry_offset;
929 char tabs[7] = "";
930
931 if (depth > 16) {
932 command_print(cmd_ctx, "\tTables too deep");
933 return ERROR_FAIL;
934 }
935
936 if (depth)
937 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
938
939 /* bit 16 of apid indicates a memory access port */
940 if (dbgbase & 0x02)
941 command_print(cmd_ctx, "\t%sValid ROM table present", tabs);
942 else
943 command_print(cmd_ctx, "\t%sROM table in legacy format", tabs);
944
945 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
946 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
947 if (retval != ERROR_OK)
948 return retval;
949 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
950 if (retval != ERROR_OK)
951 return retval;
952 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
953 if (retval != ERROR_OK)
954 return retval;
955 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
956 if (retval != ERROR_OK)
957 return retval;
958 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_run(dap);
962 if (retval != ERROR_OK)
963 return retval;
964
965 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
966 command_print(cmd_ctx, "\t%sCID3 0x%02x"
967 ", CID2 0x%02x"
968 ", CID1 0x%02x"
969 ", CID0 0x%02x",
970 tabs,
971 (unsigned)cid3, (unsigned)cid2,
972 (unsigned)cid1, (unsigned)cid0);
973 if (memtype & 0x01)
974 command_print(cmd_ctx, "\t%sMEMTYPE system memory present on bus", tabs);
975 else
976 command_print(cmd_ctx, "\t%sMEMTYPE system memory not present: dedicated debug bus", tabs);
977
978 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
979 for (entry_offset = 0; ; entry_offset += 4) {
980 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
981 if (retval != ERROR_OK)
982 return retval;
983 command_print(cmd_ctx, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
984 tabs, entry_offset, romentry);
985 if (romentry & 0x01) {
986 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
987 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
988 uint32_t component_base;
989 unsigned part_num;
990 const char *type, *full;
991
992 component_base = (dbgbase & 0xFFFFF000) + (romentry & 0xFFFFF000);
993
994 /* IDs are in last 4K section */
995 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE0, &c_pid0);
996 if (retval != ERROR_OK) {
997 command_print(cmd_ctx, "\t%s\tCan't read component with base address 0x%" PRIx32
998 ", the corresponding core might be turned off", tabs, component_base);
999 continue;
1000 }
1001 c_pid0 &= 0xff;
1002 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE4, &c_pid1);
1003 if (retval != ERROR_OK)
1004 return retval;
1005 c_pid1 &= 0xff;
1006 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFE8, &c_pid2);
1007 if (retval != ERROR_OK)
1008 return retval;
1009 c_pid2 &= 0xff;
1010 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFEC, &c_pid3);
1011 if (retval != ERROR_OK)
1012 return retval;
1013 c_pid3 &= 0xff;
1014 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFD0, &c_pid4);
1015 if (retval != ERROR_OK)
1016 return retval;
1017 c_pid4 &= 0xff;
1018
1019 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF0, &c_cid0);
1020 if (retval != ERROR_OK)
1021 return retval;
1022 c_cid0 &= 0xff;
1023 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF4, &c_cid1);
1024 if (retval != ERROR_OK)
1025 return retval;
1026 c_cid1 &= 0xff;
1027 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFF8, &c_cid2);
1028 if (retval != ERROR_OK)
1029 return retval;
1030 c_cid2 &= 0xff;
1031 retval = mem_ap_read_atomic_u32(dap, component_base + 0xFFC, &c_cid3);
1032 if (retval != ERROR_OK)
1033 return retval;
1034 c_cid3 &= 0xff;
1035
1036 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32 ", "
1037 "start address 0x%" PRIx32, component_base,
1038 /* component may take multiple 4K pages */
1039 (uint32_t)(component_base - 0x1000*(c_pid4 >> 4)));
1040 command_print(cmd_ctx, "\t\tComponent class is 0x%" PRIx8 ", %s",
1041 (uint8_t)((c_cid1 >> 4) & 0xf),
1042 /* See ARM IHI 0029B Table 3-3 */
1043 class_description[(c_cid1 >> 4) & 0xf]);
1044
1045 /* CoreSight component? */
1046 if (((c_cid1 >> 4) & 0x0f) == 9) {
1047 uint32_t devtype;
1048 unsigned minor;
1049 const char *major = "Reserved", *subtype = "Reserved";
1050
1051 retval = mem_ap_read_atomic_u32(dap,
1052 (component_base & 0xfffff000) | 0xfcc,
1053 &devtype);
1054 if (retval != ERROR_OK)
1055 return retval;
1056 minor = (devtype >> 4) & 0x0f;
1057 switch (devtype & 0x0f) {
1058 case 0:
1059 major = "Miscellaneous";
1060 switch (minor) {
1061 case 0:
1062 subtype = "other";
1063 break;
1064 case 4:
1065 subtype = "Validation component";
1066 break;
1067 }
1068 break;
1069 case 1:
1070 major = "Trace Sink";
1071 switch (minor) {
1072 case 0:
1073 subtype = "other";
1074 break;
1075 case 1:
1076 subtype = "Port";
1077 break;
1078 case 2:
1079 subtype = "Buffer";
1080 break;
1081 case 3:
1082 subtype = "Router";
1083 break;
1084 }
1085 break;
1086 case 2:
1087 major = "Trace Link";
1088 switch (minor) {
1089 case 0:
1090 subtype = "other";
1091 break;
1092 case 1:
1093 subtype = "Funnel, router";
1094 break;
1095 case 2:
1096 subtype = "Filter";
1097 break;
1098 case 3:
1099 subtype = "FIFO, buffer";
1100 break;
1101 }
1102 break;
1103 case 3:
1104 major = "Trace Source";
1105 switch (minor) {
1106 case 0:
1107 subtype = "other";
1108 break;
1109 case 1:
1110 subtype = "Processor";
1111 break;
1112 case 2:
1113 subtype = "DSP";
1114 break;
1115 case 3:
1116 subtype = "Engine/Coprocessor";
1117 break;
1118 case 4:
1119 subtype = "Bus";
1120 break;
1121 case 6:
1122 subtype = "Software";
1123 break;
1124 }
1125 break;
1126 case 4:
1127 major = "Debug Control";
1128 switch (minor) {
1129 case 0:
1130 subtype = "other";
1131 break;
1132 case 1:
1133 subtype = "Trigger Matrix";
1134 break;
1135 case 2:
1136 subtype = "Debug Auth";
1137 break;
1138 case 3:
1139 subtype = "Power Requestor";
1140 break;
1141 }
1142 break;
1143 case 5:
1144 major = "Debug Logic";
1145 switch (minor) {
1146 case 0:
1147 subtype = "other";
1148 break;
1149 case 1:
1150 subtype = "Processor";
1151 break;
1152 case 2:
1153 subtype = "DSP";
1154 break;
1155 case 3:
1156 subtype = "Engine/Coprocessor";
1157 break;
1158 case 4:
1159 subtype = "Bus";
1160 break;
1161 case 5:
1162 subtype = "Memory";
1163 break;
1164 }
1165 break;
1166 case 6:
1167 major = "Perfomance Monitor";
1168 switch (minor) {
1169 case 0:
1170 subtype = "other";
1171 break;
1172 case 1:
1173 subtype = "Processor";
1174 break;
1175 case 2:
1176 subtype = "DSP";
1177 break;
1178 case 3:
1179 subtype = "Engine/Coprocessor";
1180 break;
1181 case 4:
1182 subtype = "Bus";
1183 break;
1184 case 5:
1185 subtype = "Memory";
1186 break;
1187 }
1188 break;
1189 }
1190 command_print(cmd_ctx, "\t\tType is 0x%02" PRIx8 ", %s, %s",
1191 (uint8_t)(devtype & 0xff),
1192 major, subtype);
1193 /* REVISIT also show 0xfc8 DevId */
1194 }
1195
1196 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1197 command_print(cmd_ctx,
1198 "\t\tCID3 0%02x"
1199 ", CID2 0%02x"
1200 ", CID1 0%02x"
1201 ", CID0 0%02x",
1202 (int)c_cid3,
1203 (int)c_cid2,
1204 (int)c_cid1,
1205 (int)c_cid0);
1206 command_print(cmd_ctx,
1207 "\t\tPeripheral ID[4..0] = hex "
1208 "%02x %02x %02x %02x %02x",
1209 (int)c_pid4, (int)c_pid3, (int)c_pid2,
1210 (int)c_pid1, (int)c_pid0);
1211
1212 /* Part number interpretations are from Cortex
1213 * core specs, the CoreSight components TRM
1214 * (ARM DDI 0314H), CoreSight System Design
1215 * Guide (ARM DGI 0012D) and ETM specs; also
1216 * from chip observation (e.g. TI SDTI).
1217 */
1218 part_num = (c_pid0 & 0xff);
1219 part_num |= (c_pid1 & 0x0f) << 8;
1220 switch (part_num) {
1221 case 0x000:
1222 type = "Cortex-M3 NVIC";
1223 full = "(Interrupt Controller)";
1224 break;
1225 case 0x001:
1226 type = "Cortex-M3 ITM";
1227 full = "(Instrumentation Trace Module)";
1228 break;
1229 case 0x002:
1230 type = "Cortex-M3 DWT";
1231 full = "(Data Watchpoint and Trace)";
1232 break;
1233 case 0x003:
1234 type = "Cortex-M3 FBP";
1235 full = "(Flash Patch and Breakpoint)";
1236 break;
1237 case 0x00c:
1238 type = "Cortex-M4 SCS";
1239 full = "(System Control Space)";
1240 break;
1241 case 0x00d:
1242 type = "CoreSight ETM11";
1243 full = "(Embedded Trace)";
1244 break;
1245 /* case 0x113: what? */
1246 case 0x120: /* from OMAP3 memmap */
1247 type = "TI SDTI";
1248 full = "(System Debug Trace Interface)";
1249 break;
1250 case 0x343: /* from OMAP3 memmap */
1251 type = "TI DAPCTL";
1252 full = "";
1253 break;
1254 case 0x906:
1255 type = "Coresight CTI";
1256 full = "(Cross Trigger)";
1257 break;
1258 case 0x907:
1259 type = "Coresight ETB";
1260 full = "(Trace Buffer)";
1261 break;
1262 case 0x908:
1263 type = "Coresight CSTF";
1264 full = "(Trace Funnel)";
1265 break;
1266 case 0x910:
1267 type = "CoreSight ETM9";
1268 full = "(Embedded Trace)";
1269 break;
1270 case 0x912:
1271 type = "Coresight TPIU";
1272 full = "(Trace Port Interface Unit)";
1273 break;
1274 case 0x913:
1275 type = "Coresight ITM";
1276 full = "(Instrumentation Trace Macrocell)";
1277 break;
1278 case 0x917:
1279 type = "Coresight HTM";
1280 full = "(AHB Trace Macrocell)";
1281 break;
1282 case 0x920:
1283 type = "CoreSight ETM11";
1284 full = "(Embedded Trace)";
1285 break;
1286 case 0x921:
1287 type = "Cortex-A8 ETM";
1288 full = "(Embedded Trace)";
1289 break;
1290 case 0x922:
1291 type = "Cortex-A8 CTI";
1292 full = "(Cross Trigger)";
1293 break;
1294 case 0x923:
1295 type = "Cortex-M3 TPIU";
1296 full = "(Trace Port Interface Unit)";
1297 break;
1298 case 0x924:
1299 type = "Cortex-M3 ETM";
1300 full = "(Embedded Trace)";
1301 break;
1302 case 0x925:
1303 type = "Cortex-M4 ETM";
1304 full = "(Embedded Trace)";
1305 break;
1306 case 0x930:
1307 type = "Cortex-R4 ETM";
1308 full = "(Embedded Trace)";
1309 break;
1310 case 0x950:
1311 type = "CoreSight Component";
1312 full = "(unidentified Cortex-A9 component)";
1313 break;
1314 case 0x962:
1315 type = "CoreSight STM";
1316 full = "(System Trace Macrocell)";
1317 break;
1318 case 0x9a0:
1319 type = "CoreSight PMU";
1320 full = "(Performance Monitoring Unit)";
1321 break;
1322 case 0x9a1:
1323 type = "Cortex-M4 TPUI";
1324 full = "(Trace Port Interface Unit)";
1325 break;
1326 case 0xc08:
1327 type = "Cortex-A8 Debug";
1328 full = "(Debug Unit)";
1329 break;
1330 case 0xc09:
1331 type = "Cortex-A9 Debug";
1332 full = "(Debug Unit)";
1333 break;
1334 default:
1335 type = "-*- unrecognized -*-";
1336 full = "";
1337 break;
1338 }
1339 command_print(cmd_ctx, "\t\tPart is %s %s",
1340 type, full);
1341
1342 /* ROM Table? */
1343 if (((c_cid1 >> 4) & 0x0f) == 1) {
1344 retval = dap_rom_display(cmd_ctx, dap, ap, component_base, depth + 1);
1345 if (retval != ERROR_OK)
1346 return retval;
1347 }
1348 } else {
1349 if (romentry)
1350 command_print(cmd_ctx, "\t\tComponent not present");
1351 else
1352 break;
1353 }
1354 }
1355 command_print(cmd_ctx, "\t%s\tEnd of ROM table", tabs);
1356 return ERROR_OK;
1357 }
1358
1359 static int dap_info_command(struct command_context *cmd_ctx,
1360 struct adiv5_dap *dap, int ap)
1361 {
1362 int retval;
1363 uint32_t dbgbase, apid;
1364 int romtable_present = 0;
1365 uint8_t mem_ap;
1366 uint32_t ap_old;
1367
1368 retval = dap_get_debugbase(dap, ap, &dbgbase, &apid);
1369 if (retval != ERROR_OK)
1370 return retval;
1371
1372 ap_old = dap->ap_current;
1373 dap_ap_select(dap, ap);
1374
1375 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1376 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1377 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1378 if (apid) {
1379 switch (apid&0x0F) {
1380 case 0:
1381 command_print(cmd_ctx, "\tType is JTAG-AP");
1382 break;
1383 case 1:
1384 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1385 break;
1386 case 2:
1387 command_print(cmd_ctx, "\tType is MEM-AP APB");
1388 break;
1389 default:
1390 command_print(cmd_ctx, "\tUnknown AP type");
1391 break;
1392 }
1393
1394 /* NOTE: a MEM-AP may have a single CoreSight component that's
1395 * not a ROM table ... or have no such components at all.
1396 */
1397 if (mem_ap)
1398 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32, dbgbase);
1399 } else
1400 command_print(cmd_ctx, "No AP found at this ap 0x%x", ap);
1401
1402 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1403 if (romtable_present) {
1404 dap_rom_display(cmd_ctx, dap, ap, dbgbase, 0);
1405 } else
1406 command_print(cmd_ctx, "\tNo ROM table present");
1407 dap_ap_select(dap, ap_old);
1408
1409 return ERROR_OK;
1410 }
1411
1412 COMMAND_HANDLER(handle_dap_info_command)
1413 {
1414 struct target *target = get_current_target(CMD_CTX);
1415 struct arm *arm = target_to_arm(target);
1416 struct adiv5_dap *dap = arm->dap;
1417 uint32_t apsel;
1418
1419 switch (CMD_ARGC) {
1420 case 0:
1421 apsel = dap->apsel;
1422 break;
1423 case 1:
1424 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1425 break;
1426 default:
1427 return ERROR_COMMAND_SYNTAX_ERROR;
1428 }
1429
1430 return dap_info_command(CMD_CTX, dap, apsel);
1431 }
1432
1433 COMMAND_HANDLER(dap_baseaddr_command)
1434 {
1435 struct target *target = get_current_target(CMD_CTX);
1436 struct arm *arm = target_to_arm(target);
1437 struct adiv5_dap *dap = arm->dap;
1438
1439 uint32_t apsel, baseaddr;
1440 int retval;
1441
1442 switch (CMD_ARGC) {
1443 case 0:
1444 apsel = dap->apsel;
1445 break;
1446 case 1:
1447 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1448 /* AP address is in bits 31:24 of DP_SELECT */
1449 if (apsel >= 256)
1450 return ERROR_COMMAND_SYNTAX_ERROR;
1451 break;
1452 default:
1453 return ERROR_COMMAND_SYNTAX_ERROR;
1454 }
1455
1456 dap_ap_select(dap, apsel);
1457
1458 /* NOTE: assumes we're talking to a MEM-AP, which
1459 * has a base address. There are other kinds of AP,
1460 * though they're not common for now. This should
1461 * use the ID register to verify it's a MEM-AP.
1462 */
1463 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1464 if (retval != ERROR_OK)
1465 return retval;
1466 retval = dap_run(dap);
1467 if (retval != ERROR_OK)
1468 return retval;
1469
1470 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1471
1472 return retval;
1473 }
1474
1475 COMMAND_HANDLER(dap_memaccess_command)
1476 {
1477 struct target *target = get_current_target(CMD_CTX);
1478 struct arm *arm = target_to_arm(target);
1479 struct adiv5_dap *dap = arm->dap;
1480
1481 uint32_t memaccess_tck;
1482
1483 switch (CMD_ARGC) {
1484 case 0:
1485 memaccess_tck = dap->memaccess_tck;
1486 break;
1487 case 1:
1488 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1489 break;
1490 default:
1491 return ERROR_COMMAND_SYNTAX_ERROR;
1492 }
1493 dap->memaccess_tck = memaccess_tck;
1494
1495 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1496 dap->memaccess_tck);
1497
1498 return ERROR_OK;
1499 }
1500
1501 COMMAND_HANDLER(dap_apsel_command)
1502 {
1503 struct target *target = get_current_target(CMD_CTX);
1504 struct arm *arm = target_to_arm(target);
1505 struct adiv5_dap *dap = arm->dap;
1506
1507 uint32_t apsel, apid;
1508 int retval;
1509
1510 switch (CMD_ARGC) {
1511 case 0:
1512 apsel = 0;
1513 break;
1514 case 1:
1515 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1516 /* AP address is in bits 31:24 of DP_SELECT */
1517 if (apsel >= 256)
1518 return ERROR_COMMAND_SYNTAX_ERROR;
1519 break;
1520 default:
1521 return ERROR_COMMAND_SYNTAX_ERROR;
1522 }
1523
1524 dap->apsel = apsel;
1525 dap_ap_select(dap, apsel);
1526
1527 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1528 if (retval != ERROR_OK)
1529 return retval;
1530 retval = dap_run(dap);
1531 if (retval != ERROR_OK)
1532 return retval;
1533
1534 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1535 apsel, apid);
1536
1537 return retval;
1538 }
1539
1540 COMMAND_HANDLER(dap_apcsw_command)
1541 {
1542 struct target *target = get_current_target(CMD_CTX);
1543 struct arm *arm = target_to_arm(target);
1544 struct adiv5_dap *dap = arm->dap;
1545
1546 uint32_t apcsw = dap->apcsw[dap->apsel], sprot = 0;
1547
1548 switch (CMD_ARGC) {
1549 case 0:
1550 command_print(CMD_CTX, "apsel %" PRIi32 " selected, csw 0x%8.8" PRIx32,
1551 (dap->apsel), apcsw);
1552 break;
1553 case 1:
1554 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], sprot);
1555 /* AP address is in bits 31:24 of DP_SELECT */
1556 if (sprot > 1)
1557 return ERROR_COMMAND_SYNTAX_ERROR;
1558 if (sprot)
1559 apcsw |= CSW_SPROT;
1560 else
1561 apcsw &= ~CSW_SPROT;
1562 break;
1563 default:
1564 return ERROR_COMMAND_SYNTAX_ERROR;
1565 }
1566 dap->apcsw[dap->apsel] = apcsw;
1567
1568 return 0;
1569 }
1570
1571
1572
1573 COMMAND_HANDLER(dap_apid_command)
1574 {
1575 struct target *target = get_current_target(CMD_CTX);
1576 struct arm *arm = target_to_arm(target);
1577 struct adiv5_dap *dap = arm->dap;
1578
1579 uint32_t apsel, apid;
1580 int retval;
1581
1582 switch (CMD_ARGC) {
1583 case 0:
1584 apsel = dap->apsel;
1585 break;
1586 case 1:
1587 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1588 /* AP address is in bits 31:24 of DP_SELECT */
1589 if (apsel >= 256)
1590 return ERROR_COMMAND_SYNTAX_ERROR;
1591 break;
1592 default:
1593 return ERROR_COMMAND_SYNTAX_ERROR;
1594 }
1595
1596 dap_ap_select(dap, apsel);
1597
1598 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1599 if (retval != ERROR_OK)
1600 return retval;
1601 retval = dap_run(dap);
1602 if (retval != ERROR_OK)
1603 return retval;
1604
1605 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1606
1607 return retval;
1608 }
1609
1610 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
1611 {
1612 struct target *target = get_current_target(CMD_CTX);
1613 struct arm *arm = target_to_arm(target);
1614 struct adiv5_dap *dap = arm->dap;
1615
1616 uint32_t enable = dap->ti_be_32_quirks;
1617
1618 switch (CMD_ARGC) {
1619 case 0:
1620 break;
1621 case 1:
1622 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], enable);
1623 if (enable > 1)
1624 return ERROR_COMMAND_SYNTAX_ERROR;
1625 break;
1626 default:
1627 return ERROR_COMMAND_SYNTAX_ERROR;
1628 }
1629 dap->ti_be_32_quirks = enable;
1630 command_print(CMD_CTX, "TI BE-32 quirks mode %s",
1631 enable ? "enabled" : "disabled");
1632
1633 return 0;
1634 }
1635
1636 static const struct command_registration dap_commands[] = {
1637 {
1638 .name = "info",
1639 .handler = handle_dap_info_command,
1640 .mode = COMMAND_EXEC,
1641 .help = "display ROM table for MEM-AP "
1642 "(default currently selected AP)",
1643 .usage = "[ap_num]",
1644 },
1645 {
1646 .name = "apsel",
1647 .handler = dap_apsel_command,
1648 .mode = COMMAND_EXEC,
1649 .help = "Set the currently selected AP (default 0) "
1650 "and display the result",
1651 .usage = "[ap_num]",
1652 },
1653 {
1654 .name = "apcsw",
1655 .handler = dap_apcsw_command,
1656 .mode = COMMAND_EXEC,
1657 .help = "Set csw access bit ",
1658 .usage = "[sprot]",
1659 },
1660
1661 {
1662 .name = "apid",
1663 .handler = dap_apid_command,
1664 .mode = COMMAND_EXEC,
1665 .help = "return ID register from AP "
1666 "(default currently selected AP)",
1667 .usage = "[ap_num]",
1668 },
1669 {
1670 .name = "baseaddr",
1671 .handler = dap_baseaddr_command,
1672 .mode = COMMAND_EXEC,
1673 .help = "return debug base address from MEM-AP "
1674 "(default currently selected AP)",
1675 .usage = "[ap_num]",
1676 },
1677 {
1678 .name = "memaccess",
1679 .handler = dap_memaccess_command,
1680 .mode = COMMAND_EXEC,
1681 .help = "set/get number of extra tck for MEM-AP memory "
1682 "bus access [0-255]",
1683 .usage = "[cycles]",
1684 },
1685 {
1686 .name = "ti_be_32_quirks",
1687 .handler = dap_ti_be_32_quirks_command,
1688 .mode = COMMAND_CONFIG,
1689 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
1690 .usage = "[enable]",
1691 },
1692 COMMAND_REGISTRATION_DONE
1693 };
1694
1695 const struct command_registration dap_command_handlers[] = {
1696 {
1697 .name = "dap",
1698 .mode = COMMAND_EXEC,
1699 .help = "DAP command group",
1700 .usage = "",
1701 .chain = dap_commands,
1702 },
1703 COMMAND_REGISTRATION_DONE
1704 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)