arm_adi_v5: describe Class 0x9 Device Architecture register
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931
932 __attribute__((unused))
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 */
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
973 {
974 int ap_num;
975
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
978
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
981
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
985
986 retval = dap_run(dap);
987
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
990 */
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
995
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
998 }
999 }
1000
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1003 }
1004
1005 int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1007 {
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1011
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 }
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 }
1029
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1033
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1037
1038 return ERROR_OK;
1039 }
1040
1041 int dap_lookup_cs_component(struct adiv5_ap *ap,
1042 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
1043 {
1044 uint32_t romentry, entry_offset = 0, devtype;
1045 target_addr_t component_base;
1046 int retval;
1047
1048 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1049 *addr = 0;
1050
1051 do {
1052 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1053 entry_offset, &romentry);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1058
1059 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1060 uint32_t c_cid1;
1061 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1062 if (retval != ERROR_OK) {
1063 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1064 ", the corresponding core might be turned off", component_base);
1065 return retval;
1066 }
1067 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1068 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1069 retval = dap_lookup_cs_component(ap, component_base,
1070 type, addr, idx);
1071 if (retval == ERROR_OK)
1072 break;
1073 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1074 return retval;
1075 }
1076
1077 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1081 if (!*idx) {
1082 *addr = component_base;
1083 break;
1084 } else
1085 (*idx)--;
1086 }
1087 }
1088 entry_offset += 4;
1089 } while ((romentry > 0) && (entry_offset < 0xf00));
1090
1091 if (!*addr)
1092 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1093
1094 return ERROR_OK;
1095 }
1096
1097 static int dap_read_part_id(struct adiv5_ap *ap, target_addr_t component_base, uint32_t *cid, uint64_t *pid)
1098 {
1099 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1100 assert(ap && cid && pid);
1101
1102 uint32_t cid0, cid1, cid2, cid3;
1103 uint32_t pid0, pid1, pid2, pid3, pid4;
1104 int retval;
1105
1106 /* IDs are in last 4K section */
1107 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1108 if (retval != ERROR_OK)
1109 return retval;
1110 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1111 if (retval != ERROR_OK)
1112 return retval;
1113 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1114 if (retval != ERROR_OK)
1115 return retval;
1116 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1117 if (retval != ERROR_OK)
1118 return retval;
1119 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1120 if (retval != ERROR_OK)
1121 return retval;
1122 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1123 if (retval != ERROR_OK)
1124 return retval;
1125 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1126 if (retval != ERROR_OK)
1127 return retval;
1128 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1129 if (retval != ERROR_OK)
1130 return retval;
1131 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1132 if (retval != ERROR_OK)
1133 return retval;
1134
1135 retval = dap_run(ap->dap);
1136 if (retval != ERROR_OK)
1137 return retval;
1138
1139 *cid = (cid3 & 0xff) << 24
1140 | (cid2 & 0xff) << 16
1141 | (cid1 & 0xff) << 8
1142 | (cid0 & 0xff);
1143 *pid = (uint64_t)(pid4 & 0xff) << 32
1144 | (pid3 & 0xff) << 24
1145 | (pid2 & 0xff) << 16
1146 | (pid1 & 0xff) << 8
1147 | (pid0 & 0xff);
1148
1149 return ERROR_OK;
1150 }
1151
1152 /* Part number interpretations are from Cortex
1153 * core specs, the CoreSight components TRM
1154 * (ARM DDI 0314H), CoreSight System Design
1155 * Guide (ARM DGI 0012D) and ETM specs; also
1156 * from chip observation (e.g. TI SDTI).
1157 */
1158
1159 static const struct dap_part_nums {
1160 uint16_t designer_id;
1161 uint16_t part_num;
1162 const char *type;
1163 const char *full;
1164 } dap_part_nums[] = {
1165 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1166 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1167 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1168 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1169 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1170 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1171 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1172 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1173 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1174 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1175 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1176 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1177 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1178 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1179 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1180 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1181 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1182 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1183 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1184 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1185 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1186 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1187 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1188 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1189 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1190 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1191 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1192 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1193 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1194 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1195 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1196 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1197 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1198 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1199 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1200 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1201 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1202 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1203 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1204 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1205 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1206 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1207 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1208 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1209 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1210 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1211 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1212 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1213 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1214 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1215 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1216 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1217 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1218 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1219 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1220 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1221 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1222 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1223 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1224 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1225 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1226 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1227 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1228 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1229 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1230 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1231 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1232 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1233 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1234 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1235 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1236 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1237 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1238 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1239 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1240 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1241 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1242 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1243 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1244 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1245 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1246 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1247 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1248 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1249 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1250 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1251 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1252 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1253 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1254 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1255 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1256 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1257 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1258 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1259 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1260 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1261 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1262 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1263 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1264 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1265 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1266 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1267 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1268 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1269 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1270 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1271 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1272 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1273 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1274 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1275 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1276 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1277 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1278 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1279 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1280 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1281 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1282 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1283 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1284 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1285 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1286 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1287 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1288 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1289 };
1290
1291 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1292 {
1293 static const struct dap_part_nums unknown = {
1294 .type = "Unrecognized",
1295 .full = "",
1296 };
1297
1298 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1299 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1300 return &dap_part_nums[i];
1301
1302 return &unknown;
1303 }
1304
1305 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1306 {
1307 const char *major = "Reserved", *subtype = "Reserved";
1308 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1309 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1310 switch (devtype_major) {
1311 case 0:
1312 major = "Miscellaneous";
1313 switch (minor) {
1314 case 0:
1315 subtype = "other";
1316 break;
1317 case 4:
1318 subtype = "Validation component";
1319 break;
1320 }
1321 break;
1322 case 1:
1323 major = "Trace Sink";
1324 switch (minor) {
1325 case 0:
1326 subtype = "other";
1327 break;
1328 case 1:
1329 subtype = "Port";
1330 break;
1331 case 2:
1332 subtype = "Buffer";
1333 break;
1334 case 3:
1335 subtype = "Router";
1336 break;
1337 }
1338 break;
1339 case 2:
1340 major = "Trace Link";
1341 switch (minor) {
1342 case 0:
1343 subtype = "other";
1344 break;
1345 case 1:
1346 subtype = "Funnel, router";
1347 break;
1348 case 2:
1349 subtype = "Filter";
1350 break;
1351 case 3:
1352 subtype = "FIFO, buffer";
1353 break;
1354 }
1355 break;
1356 case 3:
1357 major = "Trace Source";
1358 switch (minor) {
1359 case 0:
1360 subtype = "other";
1361 break;
1362 case 1:
1363 subtype = "Processor";
1364 break;
1365 case 2:
1366 subtype = "DSP";
1367 break;
1368 case 3:
1369 subtype = "Engine/Coprocessor";
1370 break;
1371 case 4:
1372 subtype = "Bus";
1373 break;
1374 case 6:
1375 subtype = "Software";
1376 break;
1377 }
1378 break;
1379 case 4:
1380 major = "Debug Control";
1381 switch (minor) {
1382 case 0:
1383 subtype = "other";
1384 break;
1385 case 1:
1386 subtype = "Trigger Matrix";
1387 break;
1388 case 2:
1389 subtype = "Debug Auth";
1390 break;
1391 case 3:
1392 subtype = "Power Requestor";
1393 break;
1394 }
1395 break;
1396 case 5:
1397 major = "Debug Logic";
1398 switch (minor) {
1399 case 0:
1400 subtype = "other";
1401 break;
1402 case 1:
1403 subtype = "Processor";
1404 break;
1405 case 2:
1406 subtype = "DSP";
1407 break;
1408 case 3:
1409 subtype = "Engine/Coprocessor";
1410 break;
1411 case 4:
1412 subtype = "Bus";
1413 break;
1414 case 5:
1415 subtype = "Memory";
1416 break;
1417 }
1418 break;
1419 case 6:
1420 major = "Performance Monitor";
1421 switch (minor) {
1422 case 0:
1423 subtype = "other";
1424 break;
1425 case 1:
1426 subtype = "Processor";
1427 break;
1428 case 2:
1429 subtype = "DSP";
1430 break;
1431 case 3:
1432 subtype = "Engine/Coprocessor";
1433 break;
1434 case 4:
1435 subtype = "Bus";
1436 break;
1437 case 5:
1438 subtype = "Memory";
1439 break;
1440 }
1441 break;
1442 }
1443 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1444 devtype & ARM_CS_C9_DEVTYPE_MASK,
1445 major, subtype);
1446 return ERROR_OK;
1447 }
1448
1449 static int dap_rom_display(struct command_invocation *cmd,
1450 struct adiv5_ap *ap, target_addr_t dbgbase, int depth)
1451 {
1452 int retval;
1453 uint64_t pid;
1454 uint32_t cid;
1455 char tabs[16] = "";
1456
1457 if (depth > 16) {
1458 command_print(cmd, "\tTables too deep");
1459 return ERROR_FAIL;
1460 }
1461
1462 if (depth)
1463 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1464
1465 target_addr_t base_addr = dbgbase & 0xFFFFFFFFFFFFF000ull;
1466 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_addr);
1467
1468 retval = dap_read_part_id(ap, base_addr, &cid, &pid);
1469 if (retval != ERROR_OK) {
1470 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1471 return ERROR_OK; /* Don't abort recursion */
1472 }
1473
1474 if (!is_valid_arm_cs_cidr(cid)) {
1475 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, cid);
1476 return ERROR_OK; /* Don't abort recursion */
1477 }
1478
1479 /* component may take multiple 4K pages */
1480 uint32_t size = ARM_CS_PIDR_SIZE(pid);
1481 if (size > 0)
1482 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_addr - 0x1000 * size);
1483
1484 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, pid);
1485
1486 const unsigned int class = ARM_CS_CIDR_CLASS(cid);
1487 const unsigned int part_num = ARM_CS_PIDR_PART(pid);
1488 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(pid);
1489
1490 if (pid & ARM_CS_PIDR_JEDEC) {
1491 /* JEP106 code */
1492 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1493 designer_id, jep106_manufacturer(designer_id));
1494 } else {
1495 /* Legacy ASCII ID, clear invalid bits */
1496 designer_id &= 0x7f;
1497 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1498 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1499 }
1500
1501 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1502 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1503 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1504
1505 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1506 uint32_t memtype;
1507 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C1_MEMTYPE, &memtype);
1508 if (retval != ERROR_OK)
1509 return retval;
1510
1511 if (memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1512 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1513 else
1514 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1515
1516 /* Read ROM table entries from base address until we get 0x00000000 or reach the reserved area */
1517 for (uint16_t entry_offset = 0; entry_offset < 0xF00; entry_offset += 4) {
1518 uint32_t romentry;
1519 retval = mem_ap_read_atomic_u32(ap, base_addr | entry_offset, &romentry);
1520 if (retval != ERROR_OK)
1521 return retval;
1522 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%" PRIx32 "",
1523 tabs, entry_offset, romentry);
1524 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1525 /* Recurse. "romentry" is signed */
1526 retval = dap_rom_display(cmd, ap, base_addr + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK),
1527 depth + 1);
1528 if (retval != ERROR_OK)
1529 return retval;
1530 } else if (romentry != 0) {
1531 command_print(cmd, "\t\tComponent not present");
1532 } else {
1533 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1534 break;
1535 }
1536 }
1537 } else if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1538 uint32_t devtype;
1539 retval = mem_ap_read_atomic_u32(ap, base_addr + ARM_CS_C9_DEVTYPE, &devtype);
1540 if (retval != ERROR_OK)
1541 return retval;
1542
1543 retval = dap_devtype_display(cmd, devtype);
1544 if (retval != ERROR_OK)
1545 return retval;
1546
1547 /* REVISIT also show ARM_CS_C9_DEVID */
1548 }
1549
1550 return ERROR_OK;
1551 }
1552
1553 int dap_info_command(struct command_invocation *cmd,
1554 struct adiv5_ap *ap)
1555 {
1556 int retval;
1557 uint32_t apid;
1558 target_addr_t dbgbase;
1559 target_addr_t dbgaddr;
1560
1561 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1562 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1563 if (retval != ERROR_OK)
1564 return retval;
1565
1566 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1567 if (apid == 0) {
1568 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1569 return ERROR_FAIL;
1570 }
1571
1572 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1573
1574 /* NOTE: a MEM-AP may have a single CoreSight component that's
1575 * not a ROM table ... or have no such components at all.
1576 */
1577 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1578
1579 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1580 if (is_64bit_ap(ap))
1581 dbgaddr = 0xFFFFFFFFFFFFFFFFull;
1582 else
1583 dbgaddr = 0xFFFFFFFFul;
1584
1585 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1586
1587 if (dbgbase == dbgaddr || (dbgbase & 0x3) == 0x2) {
1588 command_print(cmd, "\tNo ROM table present");
1589 } else {
1590 if (dbgbase & 0x01)
1591 command_print(cmd, "\tValid ROM table present");
1592 else
1593 command_print(cmd, "\tROM table in legacy format");
1594
1595 dap_rom_display(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1596 }
1597 }
1598
1599 return ERROR_OK;
1600 }
1601
1602 enum adiv5_cfg_param {
1603 CFG_DAP,
1604 CFG_AP_NUM,
1605 CFG_BASEADDR,
1606 CFG_CTIBASE, /* DEPRECATED */
1607 };
1608
1609 static const struct jim_nvp nvp_config_opts[] = {
1610 { .name = "-dap", .value = CFG_DAP },
1611 { .name = "-ap-num", .value = CFG_AP_NUM },
1612 { .name = "-baseaddr", .value = CFG_BASEADDR },
1613 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1614 { .name = NULL, .value = -1 }
1615 };
1616
1617 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1618 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1619 {
1620 if (!goi->argc)
1621 return JIM_OK;
1622
1623 Jim_SetEmptyResult(goi->interp);
1624
1625 struct jim_nvp *n;
1626 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1627 goi->argv[0], &n);
1628 if (e != JIM_OK)
1629 return JIM_CONTINUE;
1630
1631 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1632 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1633 return JIM_CONTINUE;
1634
1635 e = jim_getopt_obj(goi, NULL);
1636 if (e != JIM_OK)
1637 return e;
1638
1639 switch (n->value) {
1640 case CFG_DAP:
1641 if (goi->isconfigure) {
1642 Jim_Obj *o_t;
1643 struct adiv5_dap *dap;
1644 e = jim_getopt_obj(goi, &o_t);
1645 if (e != JIM_OK)
1646 return e;
1647 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1648 if (!dap) {
1649 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1650 return JIM_ERR;
1651 }
1652 if (*dap_p && *dap_p != dap) {
1653 Jim_SetResultString(goi->interp,
1654 "DAP assignment cannot be changed!", -1);
1655 return JIM_ERR;
1656 }
1657 *dap_p = dap;
1658 } else {
1659 if (goi->argc)
1660 goto err_no_param;
1661 if (!*dap_p) {
1662 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1663 return JIM_ERR;
1664 }
1665 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1666 }
1667 break;
1668
1669 case CFG_AP_NUM:
1670 if (goi->isconfigure) {
1671 jim_wide ap_num;
1672 e = jim_getopt_wide(goi, &ap_num);
1673 if (e != JIM_OK)
1674 return e;
1675 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1676 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1677 return JIM_ERR;
1678 }
1679 *ap_num_p = ap_num;
1680 } else {
1681 if (goi->argc)
1682 goto err_no_param;
1683 if (*ap_num_p == DP_APSEL_INVALID) {
1684 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1685 return JIM_ERR;
1686 }
1687 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1688 }
1689 break;
1690
1691 case CFG_CTIBASE:
1692 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1693 /* fall through */
1694 case CFG_BASEADDR:
1695 if (goi->isconfigure) {
1696 jim_wide base;
1697 e = jim_getopt_wide(goi, &base);
1698 if (e != JIM_OK)
1699 return e;
1700 *base_p = (uint32_t)base;
1701 } else {
1702 if (goi->argc)
1703 goto err_no_param;
1704 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1705 }
1706 break;
1707 };
1708
1709 return JIM_OK;
1710
1711 err_no_param:
1712 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1713 return JIM_ERR;
1714 }
1715
1716 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1717 {
1718 struct adiv5_private_config *pc;
1719 int e;
1720
1721 pc = (struct adiv5_private_config *)target->private_config;
1722 if (!pc) {
1723 pc = calloc(1, sizeof(struct adiv5_private_config));
1724 pc->ap_num = DP_APSEL_INVALID;
1725 target->private_config = pc;
1726 }
1727
1728 target->has_dap = true;
1729
1730 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1731 if (e != JIM_OK)
1732 return e;
1733
1734 if (pc->dap && !target->dap_configured) {
1735 if (target->tap_configured) {
1736 pc->dap = NULL;
1737 Jim_SetResultString(goi->interp,
1738 "-chain-position and -dap configparams are mutually exclusive!", -1);
1739 return JIM_ERR;
1740 }
1741 target->tap = pc->dap->tap;
1742 target->dap_configured = true;
1743 }
1744
1745 return JIM_OK;
1746 }
1747
1748 int adiv5_verify_config(struct adiv5_private_config *pc)
1749 {
1750 if (!pc)
1751 return ERROR_FAIL;
1752
1753 if (!pc->dap)
1754 return ERROR_FAIL;
1755
1756 return ERROR_OK;
1757 }
1758
1759 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1760 struct jim_getopt_info *goi)
1761 {
1762 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1763 }
1764
1765 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1766 {
1767 p->dap = NULL;
1768 p->ap_num = DP_APSEL_INVALID;
1769 p->base = 0;
1770 return ERROR_OK;
1771 }
1772
1773 COMMAND_HANDLER(handle_dap_info_command)
1774 {
1775 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1776 uint32_t apsel;
1777
1778 switch (CMD_ARGC) {
1779 case 0:
1780 apsel = dap->apsel;
1781 break;
1782 case 1:
1783 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1784 if (apsel > DP_APSEL_MAX) {
1785 command_print(CMD, "Invalid AP number");
1786 return ERROR_COMMAND_ARGUMENT_INVALID;
1787 }
1788 break;
1789 default:
1790 return ERROR_COMMAND_SYNTAX_ERROR;
1791 }
1792
1793 return dap_info_command(CMD, &dap->ap[apsel]);
1794 }
1795
1796 COMMAND_HANDLER(dap_baseaddr_command)
1797 {
1798 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1799 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1800 struct adiv5_ap *ap;
1801 target_addr_t baseaddr;
1802 int retval;
1803
1804 baseaddr_upper = 0;
1805
1806 switch (CMD_ARGC) {
1807 case 0:
1808 apsel = dap->apsel;
1809 break;
1810 case 1:
1811 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1812 /* AP address is in bits 31:24 of DP_SELECT */
1813 if (apsel > DP_APSEL_MAX) {
1814 command_print(CMD, "Invalid AP number");
1815 return ERROR_COMMAND_ARGUMENT_INVALID;
1816 }
1817 break;
1818 default:
1819 return ERROR_COMMAND_SYNTAX_ERROR;
1820 }
1821
1822 /* NOTE: assumes we're talking to a MEM-AP, which
1823 * has a base address. There are other kinds of AP,
1824 * though they're not common for now. This should
1825 * use the ID register to verify it's a MEM-AP.
1826 */
1827
1828 ap = dap_ap(dap, apsel);
1829 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1830
1831 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1832 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1833
1834 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1835 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1836 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1837 }
1838
1839 if (retval == ERROR_OK)
1840 retval = dap_run(dap);
1841 if (retval != ERROR_OK)
1842 return retval;
1843
1844 if (is_64bit_ap(ap)) {
1845 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1846 command_print(CMD, "0x%016" PRIx64, baseaddr);
1847 } else
1848 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1849
1850 return ERROR_OK;
1851 }
1852
1853 COMMAND_HANDLER(dap_memaccess_command)
1854 {
1855 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1856 uint32_t memaccess_tck;
1857
1858 switch (CMD_ARGC) {
1859 case 0:
1860 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1861 break;
1862 case 1:
1863 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1864 break;
1865 default:
1866 return ERROR_COMMAND_SYNTAX_ERROR;
1867 }
1868 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1869
1870 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1871 dap->ap[dap->apsel].memaccess_tck);
1872
1873 return ERROR_OK;
1874 }
1875
1876 COMMAND_HANDLER(dap_apsel_command)
1877 {
1878 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1879 uint32_t apsel;
1880
1881 switch (CMD_ARGC) {
1882 case 0:
1883 command_print(CMD, "%" PRIu32, dap->apsel);
1884 return ERROR_OK;
1885 case 1:
1886 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1887 /* AP address is in bits 31:24 of DP_SELECT */
1888 if (apsel > DP_APSEL_MAX) {
1889 command_print(CMD, "Invalid AP number");
1890 return ERROR_COMMAND_ARGUMENT_INVALID;
1891 }
1892 break;
1893 default:
1894 return ERROR_COMMAND_SYNTAX_ERROR;
1895 }
1896
1897 dap->apsel = apsel;
1898 return ERROR_OK;
1899 }
1900
1901 COMMAND_HANDLER(dap_apcsw_command)
1902 {
1903 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1904 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
1905 uint32_t csw_val, csw_mask;
1906
1907 switch (CMD_ARGC) {
1908 case 0:
1909 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
1910 dap->apsel, apcsw);
1911 return ERROR_OK;
1912 case 1:
1913 if (strcmp(CMD_ARGV[0], "default") == 0)
1914 csw_val = CSW_AHB_DEFAULT;
1915 else
1916 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1917
1918 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1919 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
1920 return ERROR_COMMAND_ARGUMENT_INVALID;
1921 }
1922 apcsw = csw_val;
1923 break;
1924 case 2:
1925 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
1926 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
1927 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
1928 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
1929 return ERROR_COMMAND_ARGUMENT_INVALID;
1930 }
1931 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
1932 break;
1933 default:
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 dap->ap[dap->apsel].csw_default = apcsw;
1937
1938 return 0;
1939 }
1940
1941
1942
1943 COMMAND_HANDLER(dap_apid_command)
1944 {
1945 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1946 uint32_t apsel, apid;
1947 int retval;
1948
1949 switch (CMD_ARGC) {
1950 case 0:
1951 apsel = dap->apsel;
1952 break;
1953 case 1:
1954 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1955 /* AP address is in bits 31:24 of DP_SELECT */
1956 if (apsel > DP_APSEL_MAX) {
1957 command_print(CMD, "Invalid AP number");
1958 return ERROR_COMMAND_ARGUMENT_INVALID;
1959 }
1960 break;
1961 default:
1962 return ERROR_COMMAND_SYNTAX_ERROR;
1963 }
1964
1965 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
1966 if (retval != ERROR_OK)
1967 return retval;
1968 retval = dap_run(dap);
1969 if (retval != ERROR_OK)
1970 return retval;
1971
1972 command_print(CMD, "0x%8.8" PRIx32, apid);
1973
1974 return retval;
1975 }
1976
1977 COMMAND_HANDLER(dap_apreg_command)
1978 {
1979 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1980 uint32_t apsel, reg, value;
1981 struct adiv5_ap *ap;
1982 int retval;
1983
1984 if (CMD_ARGC < 2 || CMD_ARGC > 3)
1985 return ERROR_COMMAND_SYNTAX_ERROR;
1986
1987 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1988 /* AP address is in bits 31:24 of DP_SELECT */
1989 if (apsel > DP_APSEL_MAX) {
1990 command_print(CMD, "Invalid AP number");
1991 return ERROR_COMMAND_ARGUMENT_INVALID;
1992 }
1993
1994 ap = dap_ap(dap, apsel);
1995
1996 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
1997 if (reg >= 256 || (reg & 3)) {
1998 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
1999 return ERROR_COMMAND_ARGUMENT_INVALID;
2000 }
2001
2002 if (CMD_ARGC == 3) {
2003 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2004 switch (reg) {
2005 case MEM_AP_REG_CSW:
2006 ap->csw_value = 0; /* invalid, in case write fails */
2007 retval = dap_queue_ap_write(ap, reg, value);
2008 if (retval == ERROR_OK)
2009 ap->csw_value = value;
2010 break;
2011 case MEM_AP_REG_TAR:
2012 retval = dap_queue_ap_write(ap, reg, value);
2013 if (retval == ERROR_OK)
2014 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2015 else {
2016 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2017 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2018 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2019 /* if tar_valid is false. */
2020 ap->tar_valid = false;
2021 }
2022 break;
2023 case MEM_AP_REG_TAR64:
2024 retval = dap_queue_ap_write(ap, reg, value);
2025 if (retval == ERROR_OK)
2026 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2027 else {
2028 /* See above comment for the MEM_AP_REG_TAR failed write case */
2029 ap->tar_valid = false;
2030 }
2031 break;
2032 default:
2033 retval = dap_queue_ap_write(ap, reg, value);
2034 break;
2035 }
2036 } else {
2037 retval = dap_queue_ap_read(ap, reg, &value);
2038 }
2039 if (retval == ERROR_OK)
2040 retval = dap_run(dap);
2041
2042 if (retval != ERROR_OK)
2043 return retval;
2044
2045 if (CMD_ARGC == 2)
2046 command_print(CMD, "0x%08" PRIx32, value);
2047
2048 return retval;
2049 }
2050
2051 COMMAND_HANDLER(dap_dpreg_command)
2052 {
2053 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2054 uint32_t reg, value;
2055 int retval;
2056
2057 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2058 return ERROR_COMMAND_SYNTAX_ERROR;
2059
2060 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2061 if (reg >= 256 || (reg & 3)) {
2062 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2063 return ERROR_COMMAND_ARGUMENT_INVALID;
2064 }
2065
2066 if (CMD_ARGC == 2) {
2067 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2068 retval = dap_queue_dp_write(dap, reg, value);
2069 } else {
2070 retval = dap_queue_dp_read(dap, reg, &value);
2071 }
2072 if (retval == ERROR_OK)
2073 retval = dap_run(dap);
2074
2075 if (retval != ERROR_OK)
2076 return retval;
2077
2078 if (CMD_ARGC == 1)
2079 command_print(CMD, "0x%08" PRIx32, value);
2080
2081 return retval;
2082 }
2083
2084 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2085 {
2086 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2087 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2088 "TI BE-32 quirks mode");
2089 }
2090
2091 const struct command_registration dap_instance_commands[] = {
2092 {
2093 .name = "info",
2094 .handler = handle_dap_info_command,
2095 .mode = COMMAND_EXEC,
2096 .help = "display ROM table for MEM-AP "
2097 "(default currently selected AP)",
2098 .usage = "[ap_num]",
2099 },
2100 {
2101 .name = "apsel",
2102 .handler = dap_apsel_command,
2103 .mode = COMMAND_ANY,
2104 .help = "Set the currently selected AP (default 0) "
2105 "and display the result",
2106 .usage = "[ap_num]",
2107 },
2108 {
2109 .name = "apcsw",
2110 .handler = dap_apcsw_command,
2111 .mode = COMMAND_ANY,
2112 .help = "Set CSW default bits",
2113 .usage = "[value [mask]]",
2114 },
2115
2116 {
2117 .name = "apid",
2118 .handler = dap_apid_command,
2119 .mode = COMMAND_EXEC,
2120 .help = "return ID register from AP "
2121 "(default currently selected AP)",
2122 .usage = "[ap_num]",
2123 },
2124 {
2125 .name = "apreg",
2126 .handler = dap_apreg_command,
2127 .mode = COMMAND_EXEC,
2128 .help = "read/write a register from AP "
2129 "(reg is byte address of a word register, like 0 4 8...)",
2130 .usage = "ap_num reg [value]",
2131 },
2132 {
2133 .name = "dpreg",
2134 .handler = dap_dpreg_command,
2135 .mode = COMMAND_EXEC,
2136 .help = "read/write a register from DP "
2137 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2138 .usage = "reg [value]",
2139 },
2140 {
2141 .name = "baseaddr",
2142 .handler = dap_baseaddr_command,
2143 .mode = COMMAND_EXEC,
2144 .help = "return debug base address from MEM-AP "
2145 "(default currently selected AP)",
2146 .usage = "[ap_num]",
2147 },
2148 {
2149 .name = "memaccess",
2150 .handler = dap_memaccess_command,
2151 .mode = COMMAND_EXEC,
2152 .help = "set/get number of extra tck for MEM-AP memory "
2153 "bus access [0-255]",
2154 .usage = "[cycles]",
2155 },
2156 {
2157 .name = "ti_be_32_quirks",
2158 .handler = dap_ti_be_32_quirks_command,
2159 .mode = COMMAND_CONFIG,
2160 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2161 .usage = "[enable]",
2162 },
2163 COMMAND_REGISTRATION_DONE
2164 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)