ADIv5: Introduce function to detect ROM Table location
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313 if (retval != ERROR_OK)
314 return retval;
315
316 for (writecount = 0; writecount < blocksize; writecount++)
317 {
318 retval = dap_queue_ap_write(dap, AP_REG_DRW,
319 *(uint32_t *) ((void *) (buffer + 4 * writecount)));
320 if (retval != ERROR_OK)
321 break;
322 }
323
324 if ((retval = dap_run(dap)) == ERROR_OK)
325 {
326 wcount = wcount - blocksize;
327 address = address + 4 * blocksize;
328 buffer = buffer + 4 * blocksize;
329 }
330 else
331 {
332 errorcount++;
333 }
334
335 if (errorcount > 1)
336 {
337 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
338 return retval;
339 }
340 }
341
342 return retval;
343 }
344
345 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
346 uint8_t *buffer, int count, uint32_t address)
347 {
348 int retval = ERROR_OK;
349 int wcount, blocksize, writecount, i;
350
351 wcount = count >> 1;
352
353 while (wcount > 0)
354 {
355 int nbytes;
356
357 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
358 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
359
360 if (wcount < blocksize)
361 blocksize = wcount;
362
363 /* handle unaligned data at 4k boundary */
364 if (blocksize == 0)
365 blocksize = 1;
366
367 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
368 if (retval != ERROR_OK)
369 return retval;
370 writecount = blocksize;
371
372 do
373 {
374 nbytes = MIN((writecount << 1), 4);
375
376 if (nbytes < 4)
377 {
378 retval = mem_ap_write_buf_u16(dap, buffer,
379 nbytes, address);
380 if (retval != ERROR_OK)
381 {
382 LOG_WARNING("Block write error address "
383 "0x%" PRIx32 ", count 0x%x",
384 address, count);
385 return retval;
386 }
387
388 address += nbytes >> 1;
389 }
390 else
391 {
392 uint32_t outvalue;
393 memcpy(&outvalue, buffer, sizeof(uint32_t));
394
395 for (i = 0; i < nbytes; i++)
396 {
397 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
398 outvalue >>= 8;
399 address++;
400 }
401
402 memcpy(&outvalue, buffer, sizeof(uint32_t));
403 retval = dap_queue_ap_write(dap,
404 AP_REG_DRW, outvalue);
405 if (retval != ERROR_OK)
406 break;
407
408 if ((retval = dap_run(dap)) != ERROR_OK)
409 {
410 LOG_WARNING("Block write error address "
411 "0x%" PRIx32 ", count 0x%x",
412 address, count);
413 return retval;
414 }
415 }
416
417 buffer += nbytes >> 1;
418 writecount -= nbytes >> 1;
419
420 } while (writecount);
421 wcount -= blocksize;
422 }
423
424 return retval;
425 }
426
427 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
428 {
429 int retval = ERROR_OK;
430
431 if (count >= 4)
432 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
433
434 while (count > 0)
435 {
436 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
437 if (retval != ERROR_OK)
438 return retval;
439 uint16_t svalue;
440 memcpy(&svalue, buffer, sizeof(uint16_t));
441 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
442 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
443 if (retval != ERROR_OK)
444 break;
445
446 retval = dap_run(dap);
447 if (retval != ERROR_OK)
448 break;
449
450 count -= 2;
451 address += 2;
452 buffer += 2;
453 }
454
455 return retval;
456 }
457
458 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
459 uint8_t *buffer, int count, uint32_t address)
460 {
461 int retval = ERROR_OK;
462 int wcount, blocksize, writecount, i;
463
464 wcount = count;
465
466 while (wcount > 0)
467 {
468 int nbytes;
469
470 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
471 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
472
473 if (wcount < blocksize)
474 blocksize = wcount;
475
476 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
477 if (retval != ERROR_OK)
478 return retval;
479 writecount = blocksize;
480
481 do
482 {
483 nbytes = MIN(writecount, 4);
484
485 if (nbytes < 4)
486 {
487 retval = mem_ap_write_buf_u8(dap, buffer, nbytes, address);
488 if (retval != ERROR_OK)
489 {
490 LOG_WARNING("Block write error address "
491 "0x%" PRIx32 ", count 0x%x",
492 address, count);
493 return retval;
494 }
495
496 address += nbytes;
497 }
498 else
499 {
500 uint32_t outvalue;
501 memcpy(&outvalue, buffer, sizeof(uint32_t));
502
503 for (i = 0; i < nbytes; i++)
504 {
505 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
506 outvalue >>= 8;
507 address++;
508 }
509
510 memcpy(&outvalue, buffer, sizeof(uint32_t));
511 retval = dap_queue_ap_write(dap,
512 AP_REG_DRW, outvalue);
513 if (retval != ERROR_OK)
514 break;
515
516 if ((retval = dap_run(dap)) != ERROR_OK)
517 {
518 LOG_WARNING("Block write error address "
519 "0x%" PRIx32 ", count 0x%x",
520 address, count);
521 return retval;
522 }
523 }
524
525 buffer += nbytes;
526 writecount -= nbytes;
527
528 } while (writecount);
529 wcount -= blocksize;
530 }
531
532 return retval;
533 }
534
535 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
536 {
537 int retval = ERROR_OK;
538
539 if (count >= 4)
540 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
541
542 while (count > 0)
543 {
544 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
545 if (retval != ERROR_OK)
546 return retval;
547 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
548 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
549 if (retval != ERROR_OK)
550 break;
551
552 retval = dap_run(dap);
553 if (retval != ERROR_OK)
554 break;
555
556 count--;
557 address++;
558 buffer++;
559 }
560
561 return retval;
562 }
563
564 /* FIXME don't import ... this is a temporary workaround for the
565 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
566 */
567 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
568 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
569 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
570
571 /**
572 * Synchronously read a block of 32-bit words into a buffer
573 * @param dap The DAP connected to the MEM-AP.
574 * @param buffer where the words will be stored (in host byte order).
575 * @param count How many words to read.
576 * @param address Memory address from which to read words; all the
577 * words must be readable by the currently selected MEM-AP.
578 */
579 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
580 int count, uint32_t address)
581 {
582 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
583 uint32_t adr = address;
584 uint8_t* pBuffer = buffer;
585
586 count >>= 2;
587 wcount = count;
588
589 while (wcount > 0)
590 {
591 /* Adjust to read blocks within boundaries aligned to the
592 * TAR autoincrement size (at least 2^10). Autoincrement
593 * mode avoids an extra per-word roundtrip to update TAR.
594 */
595 blocksize = max_tar_block_size(dap->tar_autoincr_block,
596 address);
597 if (wcount < blocksize)
598 blocksize = wcount;
599
600 /* handle unaligned data at 4k boundary */
601 if (blocksize == 0)
602 blocksize = 1;
603
604 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
605 address);
606 if (retval != ERROR_OK)
607 return retval;
608
609 /* FIXME remove these three calls to adi_jtag_dp_scan(),
610 * so this routine becomes transport-neutral. Be careful
611 * not to cause performance problems with JTAG; would it
612 * suffice to loop over dap_queue_ap_read(), or would that
613 * be slower when JTAG is the chosen transport?
614 */
615
616 /* Scan out first read */
617 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
618 DPAP_READ, 0, NULL, NULL);
619 if (retval != ERROR_OK)
620 return retval;
621 for (readcount = 0; readcount < blocksize - 1; readcount++)
622 {
623 /* Scan out next read; scan in posted value for the
624 * previous one. Assumes read is acked "OK/FAULT",
625 * and CTRL_STAT says that meant "OK".
626 */
627 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
628 DPAP_READ, 0, buffer + 4 * readcount,
629 &dap->ack);
630 if (retval != ERROR_OK)
631 return retval;
632 }
633
634 /* Scan in last posted value; RDBUFF has no other effect,
635 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
636 */
637 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
638 DPAP_READ, 0, buffer + 4 * readcount,
639 &dap->ack);
640 if (retval != ERROR_OK)
641 return retval;
642
643 retval = dap_run(dap);
644 if (retval != ERROR_OK)
645 {
646 errorcount++;
647 if (errorcount <= 1)
648 {
649 /* try again */
650 continue;
651 }
652 LOG_WARNING("Block read error address 0x%" PRIx32, address);
653 return retval;
654 }
655 wcount = wcount - blocksize;
656 address += 4 * blocksize;
657 buffer += 4 * blocksize;
658 }
659
660 /* if we have an unaligned access - reorder data */
661 if (adr & 0x3u)
662 {
663 for (readcount = 0; readcount < count; readcount++)
664 {
665 int i;
666 uint32_t data;
667 memcpy(&data, pBuffer, sizeof(uint32_t));
668
669 for (i = 0; i < 4; i++)
670 {
671 *((uint8_t*)pBuffer) =
672 (data >> 8 * (adr & 0x3));
673 pBuffer++;
674 adr++;
675 }
676 }
677 }
678
679 return retval;
680 }
681
682 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
683 uint8_t *buffer, int count, uint32_t address)
684 {
685 uint32_t invalue;
686 int retval = ERROR_OK;
687 int wcount, blocksize, readcount, i;
688
689 wcount = count >> 1;
690
691 while (wcount > 0)
692 {
693 int nbytes;
694
695 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
696 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
697 if (wcount < blocksize)
698 blocksize = wcount;
699
700 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
701 if (retval != ERROR_OK)
702 return retval;
703
704 /* handle unaligned data at 4k boundary */
705 if (blocksize == 0)
706 blocksize = 1;
707 readcount = blocksize;
708
709 do
710 {
711 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
712 if (retval != ERROR_OK)
713 return retval;
714 if ((retval = dap_run(dap)) != ERROR_OK)
715 {
716 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
717 return retval;
718 }
719
720 nbytes = MIN((readcount << 1), 4);
721
722 for (i = 0; i < nbytes; i++)
723 {
724 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
725 buffer++;
726 address++;
727 }
728
729 readcount -= (nbytes >> 1);
730 } while (readcount);
731 wcount -= blocksize;
732 }
733
734 return retval;
735 }
736
737 /**
738 * Synchronously read a block of 16-bit halfwords into a buffer
739 * @param dap The DAP connected to the MEM-AP.
740 * @param buffer where the halfwords will be stored (in host byte order).
741 * @param count How many halfwords to read.
742 * @param address Memory address from which to read words; all the
743 * words must be readable by the currently selected MEM-AP.
744 */
745 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
746 int count, uint32_t address)
747 {
748 uint32_t invalue, i;
749 int retval = ERROR_OK;
750
751 if (count >= 4)
752 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
753
754 while (count > 0)
755 {
756 retval = dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
757 if (retval != ERROR_OK)
758 return retval;
759 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
760 if (retval != ERROR_OK)
761 break;
762
763 retval = dap_run(dap);
764 if (retval != ERROR_OK)
765 break;
766
767 if (address & 0x1)
768 {
769 for (i = 0; i < 2; i++)
770 {
771 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
772 buffer++;
773 address++;
774 }
775 }
776 else
777 {
778 uint16_t svalue = (invalue >> 8 * (address & 0x3));
779 memcpy(buffer, &svalue, sizeof(uint16_t));
780 address += 2;
781 buffer += 2;
782 }
783 count -= 2;
784 }
785
786 return retval;
787 }
788
789 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
790 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
791 *
792 * The solution is to arrange for a large out/in scan in this loop and
793 * and convert data afterwards.
794 */
795 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
796 uint8_t *buffer, int count, uint32_t address)
797 {
798 uint32_t invalue;
799 int retval = ERROR_OK;
800 int wcount, blocksize, readcount, i;
801
802 wcount = count;
803
804 while (wcount > 0)
805 {
806 int nbytes;
807
808 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
809 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
810
811 if (wcount < blocksize)
812 blocksize = wcount;
813
814 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
815 if (retval != ERROR_OK)
816 return retval;
817 readcount = blocksize;
818
819 do
820 {
821 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
822 if (retval != ERROR_OK)
823 return retval;
824 if ((retval = dap_run(dap)) != ERROR_OK)
825 {
826 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
827 return retval;
828 }
829
830 nbytes = MIN(readcount, 4);
831
832 for (i = 0; i < nbytes; i++)
833 {
834 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
835 buffer++;
836 address++;
837 }
838
839 readcount -= nbytes;
840 } while (readcount);
841 wcount -= blocksize;
842 }
843
844 return retval;
845 }
846
847 /**
848 * Synchronously read a block of bytes into a buffer
849 * @param dap The DAP connected to the MEM-AP.
850 * @param buffer where the bytes will be stored.
851 * @param count How many bytes to read.
852 * @param address Memory address from which to read data; all the
853 * data must be readable by the currently selected MEM-AP.
854 */
855 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
856 int count, uint32_t address)
857 {
858 uint32_t invalue;
859 int retval = ERROR_OK;
860
861 if (count >= 4)
862 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
863
864 while (count > 0)
865 {
866 retval = dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
867 if (retval != ERROR_OK)
868 return retval;
869 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
870 if (retval != ERROR_OK)
871 return retval;
872 retval = dap_run(dap);
873 if (retval != ERROR_OK)
874 break;
875
876 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
877 count--;
878 address++;
879 buffer++;
880 }
881
882 return retval;
883 }
884
885 /*--------------------------------------------------------------------------*/
886
887
888 /* FIXME don't import ... just initialize as
889 * part of DAP transport setup
890 */
891 extern const struct dap_ops jtag_dp_ops;
892
893 /*--------------------------------------------------------------------------*/
894
895 /**
896 * Initialize a DAP. This sets up the power domains, prepares the DP
897 * for further use, and arranges to use AP #0 for all AP operations
898 * until dap_ap-select() changes that policy.
899 *
900 * @param dap The DAP being initialized.
901 *
902 * @todo Rename this. We also need an initialization scheme which account
903 * for SWD transports not just JTAG; that will need to address differences
904 * in layering. (JTAG is useful without any debug target; but not SWD.)
905 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
906 */
907 int ahbap_debugport_init(struct adiv5_dap *dap)
908 {
909 uint32_t dummy;
910 uint32_t ctrlstat;
911 int cnt = 0;
912 int retval;
913
914 LOG_DEBUG(" ");
915
916 /* JTAG-DP or SWJ-DP, in JTAG mode */
917 dap->ops = &jtag_dp_ops;
918
919 /* Default MEM-AP setup.
920 *
921 * REVISIT AP #0 may be an inappropriate default for this.
922 * Should we probe, or take a hint from the caller?
923 * Presumably we can ignore the possibility of multiple APs.
924 */
925 dap->apsel = !0;
926 dap_ap_select(dap, 0);
927
928 /* DP initialization */
929
930 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
931 if (retval != ERROR_OK)
932 return retval;
933
934 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
935 if (retval != ERROR_OK)
936 return retval;
937
938 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
939 if (retval != ERROR_OK)
940 return retval;
941
942 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
943 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
944 if (retval != ERROR_OK)
945 return retval;
946
947 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
948 if (retval != ERROR_OK)
949 return retval;
950 if ((retval = dap_run(dap)) != ERROR_OK)
951 return retval;
952
953 /* Check that we have debug power domains activated */
954 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
955 {
956 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
957 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
958 if (retval != ERROR_OK)
959 return retval;
960 if ((retval = dap_run(dap)) != ERROR_OK)
961 return retval;
962 alive_sleep(10);
963 }
964
965 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
966 {
967 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
968 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
969 if (retval != ERROR_OK)
970 return retval;
971 if ((retval = dap_run(dap)) != ERROR_OK)
972 return retval;
973 alive_sleep(10);
974 }
975
976 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
977 if (retval != ERROR_OK)
978 return retval;
979 /* With debug power on we can activate OVERRUN checking */
980 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
981 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
982 if (retval != ERROR_OK)
983 return retval;
984 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
985 if (retval != ERROR_OK)
986 return retval;
987
988 return ERROR_OK;
989 }
990
991 /* CID interpretation -- see ARM IHI 0029B section 3
992 * and ARM IHI 0031A table 13-3.
993 */
994 static const char *class_description[16] ={
995 "Reserved", "ROM table", "Reserved", "Reserved",
996 "Reserved", "Reserved", "Reserved", "Reserved",
997 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
998 "Reserved", "OptimoDE DESS",
999 "Generic IP component", "PrimeCell or System component"
1000 };
1001
1002 static bool
1003 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1004 {
1005 return cid3 == 0xb1 && cid2 == 0x05
1006 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1007 }
1008
1009 struct broken_cpu {
1010 uint32_t dbgbase;
1011 uint32_t apid;
1012 uint32_t correct_dbgbase;
1013 char *model;
1014 } broken_cpus[] = {
1015 { 0x80000000, 0x04770002, 0x60000000, "imx51" },
1016 };
1017
1018 int dap_get_debugbase(struct adiv5_dap *dap, int apsel,
1019 uint32_t *out_dbgbase, uint32_t *out_apid)
1020 {
1021 uint32_t apselold;
1022 int retval;
1023 unsigned int i;
1024 uint32_t dbgbase, apid;
1025
1026 /* AP address is in bits 31:24 of DP_SELECT */
1027 if (apsel >= 256)
1028 return ERROR_INVALID_ARGUMENTS;
1029
1030 apselold = dap->apsel;
1031 dap_ap_select(dap, apsel);
1032
1033 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1034 if (retval != ERROR_OK)
1035 return retval;
1036 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1037 if (retval != ERROR_OK)
1038 return retval;
1039 retval = dap_run(dap);
1040 if (retval != ERROR_OK)
1041 return retval;
1042
1043 /* Some CPUs are messed up, so fixup if needed. */
1044 for (i = 0; i < sizeof(broken_cpus)/sizeof(struct broken_cpu); i++)
1045 if (broken_cpus[i].dbgbase == dbgbase &&
1046 broken_cpus[i].apid == apid) {
1047 LOG_WARNING("Found broken CPU (%s), trying to fixup "
1048 "ROM Table location from 0x%08x to 0x%08x",
1049 broken_cpus[i].model, dbgbase,
1050 broken_cpus[i].correct_dbgbase);
1051 dbgbase = broken_cpus[i].correct_dbgbase;
1052 break;
1053 }
1054
1055 dap_ap_select(dap, apselold);
1056
1057 /* The asignment happens only here to prevent modification of these
1058 * values before they are certain. */
1059 *out_dbgbase = dbgbase;
1060 *out_apid = apid;
1061
1062 return ERROR_OK;
1063 }
1064
1065 static int dap_info_command(struct command_context *cmd_ctx,
1066 struct adiv5_dap *dap, int apsel)
1067 {
1068 int retval;
1069 uint32_t dbgbase, apid;
1070 int romtable_present = 0;
1071 uint8_t mem_ap;
1072 uint32_t apselold;
1073
1074 retval = dap_get_debugbase(dap, apsel, &dbgbase, &apid);
1075 if (retval != ERROR_OK)
1076 return retval;
1077
1078 apselold = dap->apsel;
1079 dap_ap_select(dap, apsel);
1080
1081 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1082 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1083 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1084 if (apid)
1085 {
1086 switch (apid&0x0F)
1087 {
1088 case 0:
1089 command_print(cmd_ctx, "\tType is JTAG-AP");
1090 break;
1091 case 1:
1092 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1093 break;
1094 case 2:
1095 command_print(cmd_ctx, "\tType is MEM-AP APB");
1096 break;
1097 default:
1098 command_print(cmd_ctx, "\tUnknown AP type");
1099 break;
1100 }
1101
1102 /* NOTE: a MEM-AP may have a single CoreSight component that's
1103 * not a ROM table ... or have no such components at all.
1104 */
1105 if (mem_ap)
1106 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1107 dbgbase);
1108 }
1109 else
1110 {
1111 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1112 }
1113
1114 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1115 if (romtable_present)
1116 {
1117 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1118 uint16_t entry_offset;
1119
1120 /* bit 16 of apid indicates a memory access port */
1121 if (dbgbase & 0x02)
1122 command_print(cmd_ctx, "\tValid ROM table present");
1123 else
1124 command_print(cmd_ctx, "\tROM table in legacy format");
1125
1126 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1127 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1128 if (retval != ERROR_OK)
1129 return retval;
1130 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1131 if (retval != ERROR_OK)
1132 return retval;
1133 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1134 if (retval != ERROR_OK)
1135 return retval;
1136 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1137 if (retval != ERROR_OK)
1138 return retval;
1139 retval = mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1140 if (retval != ERROR_OK)
1141 return retval;
1142 retval = dap_run(dap);
1143 if (retval != ERROR_OK)
1144 return retval;
1145
1146 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1147 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1148 ", CID2 0x%2.2x"
1149 ", CID1 0x%2.2x"
1150 ", CID0 0x%2.2x",
1151 (unsigned) cid3, (unsigned)cid2,
1152 (unsigned) cid1, (unsigned) cid0);
1153 if (memtype & 0x01)
1154 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1155 else
1156 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1157 "Dedicated debug bus.");
1158
1159 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1160 entry_offset = 0;
1161 do
1162 {
1163 retval = mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1164 if (retval != ERROR_OK)
1165 return retval;
1166 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1167 if (romentry&0x01)
1168 {
1169 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1170 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1171 uint32_t component_base;
1172 unsigned part_num;
1173 char *type, *full;
1174
1175 component_base = (dbgbase & 0xFFFFF000)
1176 + (romentry & 0xFFFFF000);
1177
1178 /* IDs are in last 4K section */
1179
1180
1181 retval = mem_ap_read_atomic_u32(dap,
1182 component_base + 0xFE0, &c_pid0);
1183 if (retval != ERROR_OK)
1184 return retval;
1185 c_pid0 &= 0xff;
1186 retval = mem_ap_read_atomic_u32(dap,
1187 component_base + 0xFE4, &c_pid1);
1188 if (retval != ERROR_OK)
1189 return retval;
1190 c_pid1 &= 0xff;
1191 retval = mem_ap_read_atomic_u32(dap,
1192 component_base + 0xFE8, &c_pid2);
1193 if (retval != ERROR_OK)
1194 return retval;
1195 c_pid2 &= 0xff;
1196 retval = mem_ap_read_atomic_u32(dap,
1197 component_base + 0xFEC, &c_pid3);
1198 if (retval != ERROR_OK)
1199 return retval;
1200 c_pid3 &= 0xff;
1201 retval = mem_ap_read_atomic_u32(dap,
1202 component_base + 0xFD0, &c_pid4);
1203 if (retval != ERROR_OK)
1204 return retval;
1205 c_pid4 &= 0xff;
1206
1207 retval = mem_ap_read_atomic_u32(dap,
1208 component_base + 0xFF0, &c_cid0);
1209 if (retval != ERROR_OK)
1210 return retval;
1211 c_cid0 &= 0xff;
1212 retval = mem_ap_read_atomic_u32(dap,
1213 component_base + 0xFF4, &c_cid1);
1214 if (retval != ERROR_OK)
1215 return retval;
1216 c_cid1 &= 0xff;
1217 retval = mem_ap_read_atomic_u32(dap,
1218 component_base + 0xFF8, &c_cid2);
1219 if (retval != ERROR_OK)
1220 return retval;
1221 c_cid2 &= 0xff;
1222 retval = mem_ap_read_atomic_u32(dap,
1223 component_base + 0xFFC, &c_cid3);
1224 if (retval != ERROR_OK)
1225 return retval;
1226 c_cid3 &= 0xff;
1227
1228
1229 command_print(cmd_ctx,
1230 "\t\tComponent base address 0x%" PRIx32
1231 ", start address 0x%" PRIx32,
1232 component_base,
1233 /* component may take multiple 4K pages */
1234 component_base - 0x1000*(c_pid4 >> 4));
1235 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1236 (int) (c_cid1 >> 4) & 0xf,
1237 /* See ARM IHI 0029B Table 3-3 */
1238 class_description[(c_cid1 >> 4) & 0xf]);
1239
1240 /* CoreSight component? */
1241 if (((c_cid1 >> 4) & 0x0f) == 9) {
1242 uint32_t devtype;
1243 unsigned minor;
1244 char *major = "Reserved", *subtype = "Reserved";
1245
1246 retval = mem_ap_read_atomic_u32(dap,
1247 (component_base & 0xfffff000) | 0xfcc,
1248 &devtype);
1249 if (retval != ERROR_OK)
1250 return retval;
1251 minor = (devtype >> 4) & 0x0f;
1252 switch (devtype & 0x0f) {
1253 case 0:
1254 major = "Miscellaneous";
1255 switch (minor) {
1256 case 0:
1257 subtype = "other";
1258 break;
1259 case 4:
1260 subtype = "Validation component";
1261 break;
1262 }
1263 break;
1264 case 1:
1265 major = "Trace Sink";
1266 switch (minor) {
1267 case 0:
1268 subtype = "other";
1269 break;
1270 case 1:
1271 subtype = "Port";
1272 break;
1273 case 2:
1274 subtype = "Buffer";
1275 break;
1276 }
1277 break;
1278 case 2:
1279 major = "Trace Link";
1280 switch (minor) {
1281 case 0:
1282 subtype = "other";
1283 break;
1284 case 1:
1285 subtype = "Funnel, router";
1286 break;
1287 case 2:
1288 subtype = "Filter";
1289 break;
1290 case 3:
1291 subtype = "FIFO, buffer";
1292 break;
1293 }
1294 break;
1295 case 3:
1296 major = "Trace Source";
1297 switch (minor) {
1298 case 0:
1299 subtype = "other";
1300 break;
1301 case 1:
1302 subtype = "Processor";
1303 break;
1304 case 2:
1305 subtype = "DSP";
1306 break;
1307 case 3:
1308 subtype = "Engine/Coprocessor";
1309 break;
1310 case 4:
1311 subtype = "Bus";
1312 break;
1313 }
1314 break;
1315 case 4:
1316 major = "Debug Control";
1317 switch (minor) {
1318 case 0:
1319 subtype = "other";
1320 break;
1321 case 1:
1322 subtype = "Trigger Matrix";
1323 break;
1324 case 2:
1325 subtype = "Debug Auth";
1326 break;
1327 }
1328 break;
1329 case 5:
1330 major = "Debug Logic";
1331 switch (minor) {
1332 case 0:
1333 subtype = "other";
1334 break;
1335 case 1:
1336 subtype = "Processor";
1337 break;
1338 case 2:
1339 subtype = "DSP";
1340 break;
1341 case 3:
1342 subtype = "Engine/Coprocessor";
1343 break;
1344 }
1345 break;
1346 }
1347 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1348 (unsigned) (devtype & 0xff),
1349 major, subtype);
1350 /* REVISIT also show 0xfc8 DevId */
1351 }
1352
1353 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1354 command_print(cmd_ctx,
1355 "\t\tCID3 0%2.2x"
1356 ", CID2 0%2.2x"
1357 ", CID1 0%2.2x"
1358 ", CID0 0%2.2x",
1359 (int) c_cid3,
1360 (int) c_cid2,
1361 (int)c_cid1,
1362 (int)c_cid0);
1363 command_print(cmd_ctx,
1364 "\t\tPeripheral ID[4..0] = hex "
1365 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1366 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1367 (int) c_pid1, (int) c_pid0);
1368
1369 /* Part number interpretations are from Cortex
1370 * core specs, the CoreSight components TRM
1371 * (ARM DDI 0314H), and ETM specs; also from
1372 * chip observation (e.g. TI SDTI).
1373 */
1374 part_num = (c_pid0 & 0xff);
1375 part_num |= (c_pid1 & 0x0f) << 8;
1376 switch (part_num) {
1377 case 0x000:
1378 type = "Cortex-M3 NVIC";
1379 full = "(Interrupt Controller)";
1380 break;
1381 case 0x001:
1382 type = "Cortex-M3 ITM";
1383 full = "(Instrumentation Trace Module)";
1384 break;
1385 case 0x002:
1386 type = "Cortex-M3 DWT";
1387 full = "(Data Watchpoint and Trace)";
1388 break;
1389 case 0x003:
1390 type = "Cortex-M3 FBP";
1391 full = "(Flash Patch and Breakpoint)";
1392 break;
1393 case 0x00d:
1394 type = "CoreSight ETM11";
1395 full = "(Embedded Trace)";
1396 break;
1397 // case 0x113: what?
1398 case 0x120: /* from OMAP3 memmap */
1399 type = "TI SDTI";
1400 full = "(System Debug Trace Interface)";
1401 break;
1402 case 0x343: /* from OMAP3 memmap */
1403 type = "TI DAPCTL";
1404 full = "";
1405 break;
1406 case 0x906:
1407 type = "Coresight CTI";
1408 full = "(Cross Trigger)";
1409 break;
1410 case 0x907:
1411 type = "Coresight ETB";
1412 full = "(Trace Buffer)";
1413 break;
1414 case 0x908:
1415 type = "Coresight CSTF";
1416 full = "(Trace Funnel)";
1417 break;
1418 case 0x910:
1419 type = "CoreSight ETM9";
1420 full = "(Embedded Trace)";
1421 break;
1422 case 0x912:
1423 type = "Coresight TPIU";
1424 full = "(Trace Port Interface Unit)";
1425 break;
1426 case 0x921:
1427 type = "Cortex-A8 ETM";
1428 full = "(Embedded Trace)";
1429 break;
1430 case 0x922:
1431 type = "Cortex-A8 CTI";
1432 full = "(Cross Trigger)";
1433 break;
1434 case 0x923:
1435 type = "Cortex-M3 TPIU";
1436 full = "(Trace Port Interface Unit)";
1437 break;
1438 case 0x924:
1439 type = "Cortex-M3 ETM";
1440 full = "(Embedded Trace)";
1441 break;
1442 case 0xc08:
1443 type = "Cortex-A8 Debug";
1444 full = "(Debug Unit)";
1445 break;
1446 default:
1447 type = "-*- unrecognized -*-";
1448 full = "";
1449 break;
1450 }
1451 command_print(cmd_ctx, "\t\tPart is %s %s",
1452 type, full);
1453 }
1454 else
1455 {
1456 if (romentry)
1457 command_print(cmd_ctx, "\t\tComponent not present");
1458 else
1459 command_print(cmd_ctx, "\t\tEnd of ROM table");
1460 }
1461 entry_offset += 4;
1462 } while (romentry > 0);
1463 }
1464 else
1465 {
1466 command_print(cmd_ctx, "\tNo ROM table present");
1467 }
1468 dap_ap_select(dap, apselold);
1469
1470 return ERROR_OK;
1471 }
1472
1473 COMMAND_HANDLER(handle_dap_info_command)
1474 {
1475 struct target *target = get_current_target(CMD_CTX);
1476 struct arm *arm = target_to_arm(target);
1477 struct adiv5_dap *dap = arm->dap;
1478 uint32_t apsel;
1479
1480 switch (CMD_ARGC) {
1481 case 0:
1482 apsel = dap->apsel;
1483 break;
1484 case 1:
1485 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1486 break;
1487 default:
1488 return ERROR_COMMAND_SYNTAX_ERROR;
1489 }
1490
1491 return dap_info_command(CMD_CTX, dap, apsel);
1492 }
1493
1494 COMMAND_HANDLER(dap_baseaddr_command)
1495 {
1496 struct target *target = get_current_target(CMD_CTX);
1497 struct arm *arm = target_to_arm(target);
1498 struct adiv5_dap *dap = arm->dap;
1499
1500 uint32_t apsel, apselsave, baseaddr;
1501 int retval;
1502
1503 apselsave = dap->apsel;
1504 switch (CMD_ARGC) {
1505 case 0:
1506 apsel = dap->apsel;
1507 break;
1508 case 1:
1509 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1510 /* AP address is in bits 31:24 of DP_SELECT */
1511 if (apsel >= 256)
1512 return ERROR_INVALID_ARGUMENTS;
1513 break;
1514 default:
1515 return ERROR_COMMAND_SYNTAX_ERROR;
1516 }
1517
1518 if (apselsave != apsel)
1519 dap_ap_select(dap, apsel);
1520
1521 /* NOTE: assumes we're talking to a MEM-AP, which
1522 * has a base address. There are other kinds of AP,
1523 * though they're not common for now. This should
1524 * use the ID register to verify it's a MEM-AP.
1525 */
1526 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1527 if (retval != ERROR_OK)
1528 return retval;
1529 retval = dap_run(dap);
1530 if (retval != ERROR_OK)
1531 return retval;
1532
1533 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1534
1535 if (apselsave != apsel)
1536 dap_ap_select(dap, apselsave);
1537
1538 return retval;
1539 }
1540
1541 COMMAND_HANDLER(dap_memaccess_command)
1542 {
1543 struct target *target = get_current_target(CMD_CTX);
1544 struct arm *arm = target_to_arm(target);
1545 struct adiv5_dap *dap = arm->dap;
1546
1547 uint32_t memaccess_tck;
1548
1549 switch (CMD_ARGC) {
1550 case 0:
1551 memaccess_tck = dap->memaccess_tck;
1552 break;
1553 case 1:
1554 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1555 break;
1556 default:
1557 return ERROR_COMMAND_SYNTAX_ERROR;
1558 }
1559 dap->memaccess_tck = memaccess_tck;
1560
1561 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1562 dap->memaccess_tck);
1563
1564 return ERROR_OK;
1565 }
1566
1567 COMMAND_HANDLER(dap_apsel_command)
1568 {
1569 struct target *target = get_current_target(CMD_CTX);
1570 struct arm *arm = target_to_arm(target);
1571 struct adiv5_dap *dap = arm->dap;
1572
1573 uint32_t apsel, apid;
1574 int retval;
1575
1576 switch (CMD_ARGC) {
1577 case 0:
1578 apsel = 0;
1579 break;
1580 case 1:
1581 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1582 /* AP address is in bits 31:24 of DP_SELECT */
1583 if (apsel >= 256)
1584 return ERROR_INVALID_ARGUMENTS;
1585 break;
1586 default:
1587 return ERROR_COMMAND_SYNTAX_ERROR;
1588 }
1589
1590 dap_ap_select(dap, apsel);
1591 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1592 if (retval != ERROR_OK)
1593 return retval;
1594 retval = dap_run(dap);
1595 if (retval != ERROR_OK)
1596 return retval;
1597
1598 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1599 apsel, apid);
1600
1601 return retval;
1602 }
1603
1604 COMMAND_HANDLER(dap_apid_command)
1605 {
1606 struct target *target = get_current_target(CMD_CTX);
1607 struct arm *arm = target_to_arm(target);
1608 struct adiv5_dap *dap = arm->dap;
1609
1610 uint32_t apsel, apselsave, apid;
1611 int retval;
1612
1613 apselsave = dap->apsel;
1614 switch (CMD_ARGC) {
1615 case 0:
1616 apsel = dap->apsel;
1617 break;
1618 case 1:
1619 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1620 /* AP address is in bits 31:24 of DP_SELECT */
1621 if (apsel >= 256)
1622 return ERROR_INVALID_ARGUMENTS;
1623 break;
1624 default:
1625 return ERROR_COMMAND_SYNTAX_ERROR;
1626 }
1627
1628 if (apselsave != apsel)
1629 dap_ap_select(dap, apsel);
1630
1631 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1632 if (retval != ERROR_OK)
1633 return retval;
1634 retval = dap_run(dap);
1635 if (retval != ERROR_OK)
1636 return retval;
1637
1638 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1639 if (apselsave != apsel)
1640 dap_ap_select(dap, apselsave);
1641
1642 return retval;
1643 }
1644
1645 static const struct command_registration dap_commands[] = {
1646 {
1647 .name = "info",
1648 .handler = handle_dap_info_command,
1649 .mode = COMMAND_EXEC,
1650 .help = "display ROM table for MEM-AP "
1651 "(default currently selected AP)",
1652 .usage = "[ap_num]",
1653 },
1654 {
1655 .name = "apsel",
1656 .handler = dap_apsel_command,
1657 .mode = COMMAND_EXEC,
1658 .help = "Set the currently selected AP (default 0) "
1659 "and display the result",
1660 .usage = "[ap_num]",
1661 },
1662 {
1663 .name = "apid",
1664 .handler = dap_apid_command,
1665 .mode = COMMAND_EXEC,
1666 .help = "return ID register from AP "
1667 "(default currently selected AP)",
1668 .usage = "[ap_num]",
1669 },
1670 {
1671 .name = "baseaddr",
1672 .handler = dap_baseaddr_command,
1673 .mode = COMMAND_EXEC,
1674 .help = "return debug base address from MEM-AP "
1675 "(default currently selected AP)",
1676 .usage = "[ap_num]",
1677 },
1678 {
1679 .name = "memaccess",
1680 .handler = dap_memaccess_command,
1681 .mode = COMMAND_EXEC,
1682 .help = "set/get number of extra tck for MEM-AP memory "
1683 "bus access [0-255]",
1684 .usage = "[cycles]",
1685 },
1686 COMMAND_REGISTRATION_DONE
1687 };
1688
1689 const struct command_registration dap_command_handlers[] = {
1690 {
1691 .name = "dap",
1692 .mode = COMMAND_EXEC,
1693 .help = "DAP command group",
1694 .chain = dap_commands,
1695 },
1696 COMMAND_REGISTRATION_DONE
1697 };
1698
1699

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)