ARM ADI-V5: PIDs and CIDs are 8 bits
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm.h"
73 #include "arm_adi_v5.h"
74 #include <helper/time_support.h>
75
76
77 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
78
79 /*
80 uint32_t tar_block_size(uint32_t address)
81 Return the largest block starting at address that does not cross a tar block size alignment boundary
82 */
83 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
84 {
85 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
86 }
87
88 /***************************************************************************
89 * *
90 * DP and MEM-AP register access through APACC and DPACC *
91 * *
92 ***************************************************************************/
93
94 /**
95 * Select one of the APs connected to the specified DAP. The
96 * selection is implicitly used with future AP transactions.
97 * This is a NOP if the specified AP is already selected.
98 *
99 * @param dap The DAP
100 * @param apsel Number of the AP to (implicitly) use with further
101 * transactions. This normally identifies a MEM-AP.
102 */
103 void dap_ap_select(struct adiv5_dap *dap,uint8_t apsel)
104 {
105 uint32_t select_apsel = (apsel << 24) & 0xFF000000;
106
107 if (select_apsel != dap->apsel)
108 {
109 dap->apsel = select_apsel;
110 /* Switching AP invalidates cached values.
111 * Values MUST BE UPDATED BEFORE AP ACCESS.
112 */
113 dap->ap_bank_value = -1;
114 dap->ap_csw_value = -1;
115 dap->ap_tar_value = -1;
116 }
117 }
118
119 /**
120 * Queue transactions setting up transfer parameters for the
121 * currently selected MEM-AP.
122 *
123 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
124 * initiate data reads or writes using memory or peripheral addresses.
125 * If the CSW is configured for it, the TAR may be automatically
126 * incremented after each transfer.
127 *
128 * @todo Rename to reflect it being specifically a MEM-AP function.
129 *
130 * @param dap The DAP connected to the MEM-AP.
131 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
132 * matches the cached value, the register is not changed.
133 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
134 * matches the cached address, the register is not changed.
135 *
136 * @return ERROR_OK if the transaction was properly queued, else a fault code.
137 */
138 int dap_setup_accessport(struct adiv5_dap *dap, uint32_t csw, uint32_t tar)
139 {
140 int retval;
141
142 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
143 if (csw != dap->ap_csw_value)
144 {
145 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
146 retval = dap_queue_ap_write(dap, AP_REG_CSW, csw);
147 if (retval != ERROR_OK)
148 return retval;
149 dap->ap_csw_value = csw;
150 }
151 if (tar != dap->ap_tar_value)
152 {
153 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
154 retval = dap_queue_ap_write(dap, AP_REG_TAR, tar);
155 if (retval != ERROR_OK)
156 return retval;
157 dap->ap_tar_value = tar;
158 }
159 /* Disable TAR cache when autoincrementing */
160 if (csw & CSW_ADDRINC_MASK)
161 dap->ap_tar_value = -1;
162 return ERROR_OK;
163 }
164
165 /**
166 * Asynchronous (queued) read of a word from memory or a system register.
167 *
168 * @param dap The DAP connected to the MEM-AP performing the read.
169 * @param address Address of the 32-bit word to read; it must be
170 * readable by the currently selected MEM-AP.
171 * @param value points to where the word will be stored when the
172 * transaction queue is flushed (assuming no errors).
173 *
174 * @return ERROR_OK for success. Otherwise a fault code.
175 */
176 int mem_ap_read_u32(struct adiv5_dap *dap, uint32_t address,
177 uint32_t *value)
178 {
179 int retval;
180
181 /* Use banked addressing (REG_BDx) to avoid some link traffic
182 * (updating TAR) when reading several consecutive addresses.
183 */
184 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
185 address & 0xFFFFFFF0);
186 if (retval != ERROR_OK)
187 return retval;
188
189 return dap_queue_ap_read(dap, AP_REG_BD0 | (address & 0xC), value);
190 }
191
192 /**
193 * Synchronous read of a word from memory or a system register.
194 * As a side effect, this flushes any queued transactions.
195 *
196 * @param dap The DAP connected to the MEM-AP performing the read.
197 * @param address Address of the 32-bit word to read; it must be
198 * readable by the currently selected MEM-AP.
199 * @param value points to where the result will be stored.
200 *
201 * @return ERROR_OK for success; *value holds the result.
202 * Otherwise a fault code.
203 */
204 int mem_ap_read_atomic_u32(struct adiv5_dap *dap, uint32_t address,
205 uint32_t *value)
206 {
207 int retval;
208
209 retval = mem_ap_read_u32(dap, address, value);
210 if (retval != ERROR_OK)
211 return retval;
212
213 return dap_run(dap);
214 }
215
216 /**
217 * Asynchronous (queued) write of a word to memory or a system register.
218 *
219 * @param dap The DAP connected to the MEM-AP.
220 * @param address Address to be written; it must be writable by
221 * the currently selected MEM-AP.
222 * @param value Word that will be written to the address when transaction
223 * queue is flushed (assuming no errors).
224 *
225 * @return ERROR_OK for success. Otherwise a fault code.
226 */
227 int mem_ap_write_u32(struct adiv5_dap *dap, uint32_t address,
228 uint32_t value)
229 {
230 int retval;
231
232 /* Use banked addressing (REG_BDx) to avoid some link traffic
233 * (updating TAR) when writing several consecutive addresses.
234 */
235 retval = dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_OFF,
236 address & 0xFFFFFFF0);
237 if (retval != ERROR_OK)
238 return retval;
239
240 return dap_queue_ap_write(dap, AP_REG_BD0 | (address & 0xC),
241 value);
242 }
243
244 /**
245 * Synchronous write of a word to memory or a system register.
246 * As a side effect, this flushes any queued transactions.
247 *
248 * @param dap The DAP connected to the MEM-AP.
249 * @param address Address to be written; it must be writable by
250 * the currently selected MEM-AP.
251 * @param value Word that will be written.
252 *
253 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
254 */
255 int mem_ap_write_atomic_u32(struct adiv5_dap *dap, uint32_t address,
256 uint32_t value)
257 {
258 int retval = mem_ap_write_u32(dap, address, value);
259
260 if (retval != ERROR_OK)
261 return retval;
262
263 return dap_run(dap);
264 }
265
266 /*****************************************************************************
267 * *
268 * mem_ap_write_buf(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address) *
269 * *
270 * Write a buffer in target order (little endian) *
271 * *
272 *****************************************************************************/
273 int mem_ap_write_buf_u32(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
274 {
275 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
276 uint32_t adr = address;
277 uint8_t* pBuffer = buffer;
278
279 count >>= 2;
280 wcount = count;
281
282 /* if we have an unaligned access - reorder data */
283 if (adr & 0x3u)
284 {
285 for (writecount = 0; writecount < count; writecount++)
286 {
287 int i;
288 uint32_t outvalue;
289 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
290
291 for (i = 0; i < 4; i++)
292 {
293 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
294 outvalue >>= 8;
295 adr++;
296 }
297 pBuffer += sizeof(uint32_t);
298 }
299 }
300
301 while (wcount > 0)
302 {
303 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
304 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
305 if (wcount < blocksize)
306 blocksize = wcount;
307
308 /* handle unaligned data at 4k boundary */
309 if (blocksize == 0)
310 blocksize = 1;
311
312 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
313
314 for (writecount = 0; writecount < blocksize; writecount++)
315 {
316 retval = dap_queue_ap_write(dap, AP_REG_DRW,
317 *(uint32_t *) (buffer + 4 * writecount));
318 if (retval != ERROR_OK)
319 break;
320 }
321
322 if (dap_run(dap) == ERROR_OK)
323 {
324 wcount = wcount - blocksize;
325 address = address + 4 * blocksize;
326 buffer = buffer + 4 * blocksize;
327 }
328 else
329 {
330 errorcount++;
331 }
332
333 if (errorcount > 1)
334 {
335 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
336 /* REVISIT return the *actual* fault code */
337 return ERROR_JTAG_DEVICE_ERROR;
338 }
339 }
340
341 return retval;
342 }
343
344 static int mem_ap_write_buf_packed_u16(struct adiv5_dap *dap,
345 uint8_t *buffer, int count, uint32_t address)
346 {
347 int retval = ERROR_OK;
348 int wcount, blocksize, writecount, i;
349
350 wcount = count >> 1;
351
352 while (wcount > 0)
353 {
354 int nbytes;
355
356 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
357 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
358
359 if (wcount < blocksize)
360 blocksize = wcount;
361
362 /* handle unaligned data at 4k boundary */
363 if (blocksize == 0)
364 blocksize = 1;
365
366 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
367 writecount = blocksize;
368
369 do
370 {
371 nbytes = MIN((writecount << 1), 4);
372
373 if (nbytes < 4)
374 {
375 if (mem_ap_write_buf_u16(dap, buffer,
376 nbytes, address) != ERROR_OK)
377 {
378 LOG_WARNING("Block write error address "
379 "0x%" PRIx32 ", count 0x%x",
380 address, count);
381 return ERROR_JTAG_DEVICE_ERROR;
382 }
383
384 address += nbytes >> 1;
385 }
386 else
387 {
388 uint32_t outvalue;
389 memcpy(&outvalue, buffer, sizeof(uint32_t));
390
391 for (i = 0; i < nbytes; i++)
392 {
393 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
394 outvalue >>= 8;
395 address++;
396 }
397
398 memcpy(&outvalue, buffer, sizeof(uint32_t));
399 retval = dap_queue_ap_write(dap,
400 AP_REG_DRW, outvalue);
401 if (retval != ERROR_OK)
402 break;
403
404 if (dap_run(dap) != ERROR_OK)
405 {
406 LOG_WARNING("Block write error address "
407 "0x%" PRIx32 ", count 0x%x",
408 address, count);
409 /* REVISIT return *actual* fault code */
410 return ERROR_JTAG_DEVICE_ERROR;
411 }
412 }
413
414 buffer += nbytes >> 1;
415 writecount -= nbytes >> 1;
416
417 } while (writecount);
418 wcount -= blocksize;
419 }
420
421 return retval;
422 }
423
424 int mem_ap_write_buf_u16(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
425 {
426 int retval = ERROR_OK;
427
428 if (count >= 4)
429 return mem_ap_write_buf_packed_u16(dap, buffer, count, address);
430
431 while (count > 0)
432 {
433 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
434 uint16_t svalue;
435 memcpy(&svalue, buffer, sizeof(uint16_t));
436 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
437 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
438 if (retval != ERROR_OK)
439 break;
440
441 retval = dap_run(dap);
442 if (retval != ERROR_OK)
443 break;
444
445 count -= 2;
446 address += 2;
447 buffer += 2;
448 }
449
450 return retval;
451 }
452
453 static int mem_ap_write_buf_packed_u8(struct adiv5_dap *dap,
454 uint8_t *buffer, int count, uint32_t address)
455 {
456 int retval = ERROR_OK;
457 int wcount, blocksize, writecount, i;
458
459 wcount = count;
460
461 while (wcount > 0)
462 {
463 int nbytes;
464
465 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
466 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
467
468 if (wcount < blocksize)
469 blocksize = wcount;
470
471 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
472 writecount = blocksize;
473
474 do
475 {
476 nbytes = MIN(writecount, 4);
477
478 if (nbytes < 4)
479 {
480 if (mem_ap_write_buf_u8(dap, buffer, nbytes, address) != ERROR_OK)
481 {
482 LOG_WARNING("Block write error address "
483 "0x%" PRIx32 ", count 0x%x",
484 address, count);
485 return ERROR_JTAG_DEVICE_ERROR;
486 }
487
488 address += nbytes;
489 }
490 else
491 {
492 uint32_t outvalue;
493 memcpy(&outvalue, buffer, sizeof(uint32_t));
494
495 for (i = 0; i < nbytes; i++)
496 {
497 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
498 outvalue >>= 8;
499 address++;
500 }
501
502 memcpy(&outvalue, buffer, sizeof(uint32_t));
503 retval = dap_queue_ap_write(dap,
504 AP_REG_DRW, outvalue);
505 if (retval != ERROR_OK)
506 break;
507
508 if (dap_run(dap) != ERROR_OK)
509 {
510 LOG_WARNING("Block write error address "
511 "0x%" PRIx32 ", count 0x%x",
512 address, count);
513 /* REVISIT return *actual* fault code */
514 return ERROR_JTAG_DEVICE_ERROR;
515 }
516 }
517
518 buffer += nbytes;
519 writecount -= nbytes;
520
521 } while (writecount);
522 wcount -= blocksize;
523 }
524
525 return retval;
526 }
527
528 int mem_ap_write_buf_u8(struct adiv5_dap *dap, uint8_t *buffer, int count, uint32_t address)
529 {
530 int retval = ERROR_OK;
531
532 if (count >= 4)
533 return mem_ap_write_buf_packed_u8(dap, buffer, count, address);
534
535 while (count > 0)
536 {
537 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
538 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
539 retval = dap_queue_ap_write(dap, AP_REG_DRW, outvalue);
540 if (retval != ERROR_OK)
541 break;
542
543 retval = dap_run(dap);
544 if (retval != ERROR_OK)
545 break;
546
547 count--;
548 address++;
549 buffer++;
550 }
551
552 return retval;
553 }
554
555 /* FIXME don't import ... this is a temporary workaround for the
556 * mem_ap_read_buf_u32() mess, until it's no longer JTAG-specific.
557 */
558 extern int adi_jtag_dp_scan(struct adiv5_dap *dap,
559 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
560 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack);
561
562 /**
563 * Synchronously read a block of 32-bit words into a buffer
564 * @param dap The DAP connected to the MEM-AP.
565 * @param buffer where the words will be stored (in host byte order).
566 * @param count How many words to read.
567 * @param address Memory address from which to read words; all the
568 * words must be readable by the currently selected MEM-AP.
569 */
570 int mem_ap_read_buf_u32(struct adiv5_dap *dap, uint8_t *buffer,
571 int count, uint32_t address)
572 {
573 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
574 uint32_t adr = address;
575 uint8_t* pBuffer = buffer;
576
577 count >>= 2;
578 wcount = count;
579
580 while (wcount > 0)
581 {
582 /* Adjust to read blocks within boundaries aligned to the
583 * TAR autoincrement size (at least 2^10). Autoincrement
584 * mode avoids an extra per-word roundtrip to update TAR.
585 */
586 blocksize = max_tar_block_size(dap->tar_autoincr_block,
587 address);
588 if (wcount < blocksize)
589 blocksize = wcount;
590
591 /* handle unaligned data at 4k boundary */
592 if (blocksize == 0)
593 blocksize = 1;
594
595 dap_setup_accessport(dap, CSW_32BIT | CSW_ADDRINC_SINGLE,
596 address);
597
598 /* FIXME remove these three calls to adi_jtag_dp_scan(),
599 * so this routine becomes transport-neutral. Be careful
600 * not to cause performance problems with JTAG; would it
601 * suffice to loop over dap_queue_ap_read(), or would that
602 * be slower when JTAG is the chosen transport?
603 */
604
605 /* Scan out first read */
606 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
607 DPAP_READ, 0, NULL, NULL);
608 if (retval != ERROR_OK)
609 return retval;
610 for (readcount = 0; readcount < blocksize - 1; readcount++)
611 {
612 /* Scan out next read; scan in posted value for the
613 * previous one. Assumes read is acked "OK/FAULT",
614 * and CTRL_STAT says that meant "OK".
615 */
616 retval = adi_jtag_dp_scan(dap, JTAG_DP_APACC, AP_REG_DRW,
617 DPAP_READ, 0, buffer + 4 * readcount,
618 &dap->ack);
619 if (retval != ERROR_OK)
620 return retval;
621 }
622
623 /* Scan in last posted value; RDBUFF has no other effect,
624 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
625 */
626 retval = adi_jtag_dp_scan(dap, JTAG_DP_DPACC, DP_RDBUFF,
627 DPAP_READ, 0, buffer + 4 * readcount,
628 &dap->ack);
629 if (retval != ERROR_OK)
630 return retval;
631
632 retval = dap_run(dap);
633 if (retval != ERROR_OK)
634 {
635 errorcount++;
636 if (errorcount <= 1)
637 {
638 /* try again */
639 continue;
640 }
641 LOG_WARNING("Block read error address 0x%" PRIx32, address);
642 return retval;
643 }
644 wcount = wcount - blocksize;
645 address += 4 * blocksize;
646 buffer += 4 * blocksize;
647 }
648
649 /* if we have an unaligned access - reorder data */
650 if (adr & 0x3u)
651 {
652 for (readcount = 0; readcount < count; readcount++)
653 {
654 int i;
655 uint32_t data;
656 memcpy(&data, pBuffer, sizeof(uint32_t));
657
658 for (i = 0; i < 4; i++)
659 {
660 *((uint8_t*)pBuffer) =
661 (data >> 8 * (adr & 0x3));
662 pBuffer++;
663 adr++;
664 }
665 }
666 }
667
668 return retval;
669 }
670
671 static int mem_ap_read_buf_packed_u16(struct adiv5_dap *dap,
672 uint8_t *buffer, int count, uint32_t address)
673 {
674 uint32_t invalue;
675 int retval = ERROR_OK;
676 int wcount, blocksize, readcount, i;
677
678 wcount = count >> 1;
679
680 while (wcount > 0)
681 {
682 int nbytes;
683
684 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
685 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
686 if (wcount < blocksize)
687 blocksize = wcount;
688
689 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_PACKED, address);
690
691 /* handle unaligned data at 4k boundary */
692 if (blocksize == 0)
693 blocksize = 1;
694 readcount = blocksize;
695
696 do
697 {
698 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
699 if (dap_run(dap) != ERROR_OK)
700 {
701 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
702 /* REVISIT return the *actual* fault code */
703 return ERROR_JTAG_DEVICE_ERROR;
704 }
705
706 nbytes = MIN((readcount << 1), 4);
707
708 for (i = 0; i < nbytes; i++)
709 {
710 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
711 buffer++;
712 address++;
713 }
714
715 readcount -= (nbytes >> 1);
716 } while (readcount);
717 wcount -= blocksize;
718 }
719
720 return retval;
721 }
722
723 /**
724 * Synchronously read a block of 16-bit halfwords into a buffer
725 * @param dap The DAP connected to the MEM-AP.
726 * @param buffer where the halfwords will be stored (in host byte order).
727 * @param count How many halfwords to read.
728 * @param address Memory address from which to read words; all the
729 * words must be readable by the currently selected MEM-AP.
730 */
731 int mem_ap_read_buf_u16(struct adiv5_dap *dap, uint8_t *buffer,
732 int count, uint32_t address)
733 {
734 uint32_t invalue, i;
735 int retval = ERROR_OK;
736
737 if (count >= 4)
738 return mem_ap_read_buf_packed_u16(dap, buffer, count, address);
739
740 while (count > 0)
741 {
742 dap_setup_accessport(dap, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
743 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
744 if (retval != ERROR_OK)
745 break;
746
747 retval = dap_run(dap);
748 if (retval != ERROR_OK)
749 break;
750
751 if (address & 0x1)
752 {
753 for (i = 0; i < 2; i++)
754 {
755 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
756 buffer++;
757 address++;
758 }
759 }
760 else
761 {
762 uint16_t svalue = (invalue >> 8 * (address & 0x3));
763 memcpy(buffer, &svalue, sizeof(uint16_t));
764 address += 2;
765 buffer += 2;
766 }
767 count -= 2;
768 }
769
770 return retval;
771 }
772
773 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
774 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
775 *
776 * The solution is to arrange for a large out/in scan in this loop and
777 * and convert data afterwards.
778 */
779 static int mem_ap_read_buf_packed_u8(struct adiv5_dap *dap,
780 uint8_t *buffer, int count, uint32_t address)
781 {
782 uint32_t invalue;
783 int retval = ERROR_OK;
784 int wcount, blocksize, readcount, i;
785
786 wcount = count;
787
788 while (wcount > 0)
789 {
790 int nbytes;
791
792 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
793 blocksize = max_tar_block_size(dap->tar_autoincr_block, address);
794
795 if (wcount < blocksize)
796 blocksize = wcount;
797
798 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_PACKED, address);
799 readcount = blocksize;
800
801 do
802 {
803 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
804 if (dap_run(dap) != ERROR_OK)
805 {
806 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
807 /* REVISIT return the *actual* fault code */
808 return ERROR_JTAG_DEVICE_ERROR;
809 }
810
811 nbytes = MIN(readcount, 4);
812
813 for (i = 0; i < nbytes; i++)
814 {
815 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
816 buffer++;
817 address++;
818 }
819
820 readcount -= nbytes;
821 } while (readcount);
822 wcount -= blocksize;
823 }
824
825 return retval;
826 }
827
828 /**
829 * Synchronously read a block of bytes into a buffer
830 * @param dap The DAP connected to the MEM-AP.
831 * @param buffer where the bytes will be stored.
832 * @param count How many bytes to read.
833 * @param address Memory address from which to read data; all the
834 * data must be readable by the currently selected MEM-AP.
835 */
836 int mem_ap_read_buf_u8(struct adiv5_dap *dap, uint8_t *buffer,
837 int count, uint32_t address)
838 {
839 uint32_t invalue;
840 int retval = ERROR_OK;
841
842 if (count >= 4)
843 return mem_ap_read_buf_packed_u8(dap, buffer, count, address);
844
845 while (count > 0)
846 {
847 dap_setup_accessport(dap, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
848 retval = dap_queue_ap_read(dap, AP_REG_DRW, &invalue);
849 retval = dap_run(dap);
850 if (retval != ERROR_OK)
851 break;
852
853 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
854 count--;
855 address++;
856 buffer++;
857 }
858
859 return retval;
860 }
861
862 /*--------------------------------------------------------------------------*/
863
864
865 /* FIXME don't import ... just initialize as
866 * part of DAP transport setup
867 */
868 extern const struct dap_ops jtag_dp_ops;
869
870 /*--------------------------------------------------------------------------*/
871
872 /**
873 * Initialize a DAP. This sets up the power domains, prepares the DP
874 * for further use, and arranges to use AP #0 for all AP operations
875 * until dap_ap-select() changes that policy.
876 *
877 * @param dap The DAP being initialized.
878 *
879 * @todo Rename this. We also need an initialization scheme which account
880 * for SWD transports not just JTAG; that will need to address differences
881 * in layering. (JTAG is useful without any debug target; but not SWD.)
882 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
883 */
884 int ahbap_debugport_init(struct adiv5_dap *dap)
885 {
886 uint32_t idreg, romaddr, dummy;
887 uint32_t ctrlstat;
888 int cnt = 0;
889 int retval;
890
891 LOG_DEBUG(" ");
892
893 /* JTAG-DP or SWJ-DP, in JTAG mode */
894 dap->ops = &jtag_dp_ops;
895
896 /* Default MEM-AP setup.
897 *
898 * REVISIT AP #0 may be an inappropriate default for this.
899 * Should we probe, or take a hint from the caller?
900 * Presumably we can ignore the possibility of multiple APs.
901 */
902 dap->apsel = !0;
903 dap_ap_select(dap, 0);
904
905 /* DP initialization */
906
907 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
908 if (retval != ERROR_OK)
909 return retval;
910
911 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, SSTICKYERR);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
916 if (retval != ERROR_OK)
917 return retval;
918
919 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
920 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
921 if (retval != ERROR_OK)
922 return retval;
923
924 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
925 if (retval != ERROR_OK)
926 return retval;
927 if ((retval = dap_run(dap)) != ERROR_OK)
928 return retval;
929
930 /* Check that we have debug power domains activated */
931 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
932 {
933 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
934 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
935 if (retval != ERROR_OK)
936 return retval;
937 if ((retval = dap_run(dap)) != ERROR_OK)
938 return retval;
939 alive_sleep(10);
940 }
941
942 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
943 {
944 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
945 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &ctrlstat);
946 if (retval != ERROR_OK)
947 return retval;
948 if ((retval = dap_run(dap)) != ERROR_OK)
949 return retval;
950 alive_sleep(10);
951 }
952
953 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
954 if (retval != ERROR_OK)
955 return retval;
956 /* With debug power on we can activate OVERRUN checking */
957 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
958 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
959 if (retval != ERROR_OK)
960 return retval;
961 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, &dummy);
962 if (retval != ERROR_OK)
963 return retval;
964
965 /*
966 * REVISIT this isn't actually *initializing* anything in an AP,
967 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
968 * Should it? If the ROM address is valid, is this the right
969 * place to scan the table and do any topology detection?
970 */
971 retval = dap_queue_ap_read(dap, AP_REG_IDR, &idreg);
972 retval = dap_queue_ap_read(dap, AP_REG_BASE, &romaddr);
973
974 if ((retval = dap_run(dap)) != ERROR_OK)
975 return retval;
976
977 LOG_DEBUG("MEM-AP #%" PRId32 " ID Register 0x%" PRIx32
978 ", Debug ROM Address 0x%" PRIx32,
979 dap->apsel, idreg, romaddr);
980
981 return ERROR_OK;
982 }
983
984 /* CID interpretation -- see ARM IHI 0029B section 3
985 * and ARM IHI 0031A table 13-3.
986 */
987 static const char *class_description[16] ={
988 "Reserved", "ROM table", "Reserved", "Reserved",
989 "Reserved", "Reserved", "Reserved", "Reserved",
990 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
991 "Reserved", "OptimoDE DESS",
992 "Generic IP component", "PrimeCell or System component"
993 };
994
995 static bool
996 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
997 {
998 return cid3 == 0xb1 && cid2 == 0x05
999 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1000 }
1001
1002 static int dap_info_command(struct command_context *cmd_ctx,
1003 struct adiv5_dap *dap, int apsel)
1004 {
1005 int retval;
1006 uint32_t dbgbase, apid;
1007 int romtable_present = 0;
1008 uint8_t mem_ap;
1009 uint32_t apselold;
1010
1011 /* AP address is in bits 31:24 of DP_SELECT */
1012 if (apsel >= 256)
1013 return ERROR_INVALID_ARGUMENTS;
1014
1015 apselold = dap->apsel;
1016 dap_ap_select(dap, apsel);
1017 retval = dap_queue_ap_read(dap, AP_REG_BASE, &dbgbase);
1018 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1019 retval = dap_run(dap);
1020 if (retval != ERROR_OK)
1021 return retval;
1022
1023 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1024 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1025 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1026 if (apid)
1027 {
1028 switch (apid&0x0F)
1029 {
1030 case 0:
1031 command_print(cmd_ctx, "\tType is JTAG-AP");
1032 break;
1033 case 1:
1034 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1035 break;
1036 case 2:
1037 command_print(cmd_ctx, "\tType is MEM-AP APB");
1038 break;
1039 default:
1040 command_print(cmd_ctx, "\tUnknown AP type");
1041 break;
1042 }
1043
1044 /* NOTE: a MEM-AP may have a single CoreSight component that's
1045 * not a ROM table ... or have no such components at all.
1046 */
1047 if (mem_ap)
1048 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1049 dbgbase);
1050 }
1051 else
1052 {
1053 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1054 }
1055
1056 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1057 if (romtable_present)
1058 {
1059 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1060 uint16_t entry_offset;
1061
1062 /* bit 16 of apid indicates a memory access port */
1063 if (dbgbase & 0x02)
1064 command_print(cmd_ctx, "\tValid ROM table present");
1065 else
1066 command_print(cmd_ctx, "\tROM table in legacy format");
1067
1068 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1069 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1070 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1071 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1072 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1073 mem_ap_read_u32(dap, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1074 retval = dap_run(dap);
1075 if (retval != ERROR_OK)
1076 return retval;
1077
1078 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1079 command_print(cmd_ctx, "\tCID3 0x%2.2x"
1080 ", CID2 0x%2.2x"
1081 ", CID1 0x%2.2x"
1082 ", CID0 0x%2.2x",
1083 (unsigned) cid3, (unsigned)cid2,
1084 (unsigned) cid1, (unsigned) cid0);
1085 if (memtype & 0x01)
1086 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1087 else
1088 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1089 "Dedicated debug bus.");
1090
1091 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1092 entry_offset = 0;
1093 do
1094 {
1095 mem_ap_read_atomic_u32(dap, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1096 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1097 if (romentry&0x01)
1098 {
1099 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1100 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1101 uint32_t component_start, component_base;
1102 unsigned part_num;
1103 char *type, *full;
1104
1105 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1106 + (int)(romentry & 0xFFFFF000));
1107 mem_ap_read_atomic_u32(dap,
1108 (component_base & 0xFFFFF000)
1109 | 0xFE0, &c_pid0);
1110 c_pid0 &= 0xff;
1111 mem_ap_read_atomic_u32(dap,
1112 (component_base & 0xFFFFF000)
1113 | 0xFE4, &c_pid1);
1114 c_pid1 &= 0xff;
1115 mem_ap_read_atomic_u32(dap,
1116 (component_base & 0xFFFFF000)
1117 | 0xFE8, &c_pid2);
1118 c_pid2 &= 0xff;
1119 mem_ap_read_atomic_u32(dap,
1120 (component_base & 0xFFFFF000)
1121 | 0xFEC, &c_pid3);
1122 c_pid3 &= 0xff;
1123 mem_ap_read_atomic_u32(dap,
1124 (component_base & 0xFFFFF000)
1125 | 0xFD0, &c_pid4);
1126 c_pid4 &= 0xff;
1127
1128 mem_ap_read_atomic_u32(dap,
1129 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1130 c_cid0 &= 0xff;
1131 mem_ap_read_atomic_u32(dap,
1132 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1133 c_cid1 &= 0xff;
1134 mem_ap_read_atomic_u32(dap,
1135 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1136 c_cid2 &= 0xff;
1137 mem_ap_read_atomic_u32(dap,
1138 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1139 c_cid3 &= 0xff;
1140 component_start = component_base - 0x1000*(c_pid4 >> 4);
1141
1142 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1143 ", start address 0x%" PRIx32,
1144 component_base, component_start);
1145 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1146 (int) (c_cid1 >> 4) & 0xf,
1147 /* See ARM IHI 0029B Table 3-3 */
1148 class_description[(c_cid1 >> 4) & 0xf]);
1149
1150 /* CoreSight component? */
1151 if (((c_cid1 >> 4) & 0x0f) == 9) {
1152 uint32_t devtype;
1153 unsigned minor;
1154 char *major = "Reserved", *subtype = "Reserved";
1155
1156 mem_ap_read_atomic_u32(dap,
1157 (component_base & 0xfffff000) | 0xfcc,
1158 &devtype);
1159 minor = (devtype >> 4) & 0x0f;
1160 switch (devtype & 0x0f) {
1161 case 0:
1162 major = "Miscellaneous";
1163 switch (minor) {
1164 case 0:
1165 subtype = "other";
1166 break;
1167 case 4:
1168 subtype = "Validation component";
1169 break;
1170 }
1171 break;
1172 case 1:
1173 major = "Trace Sink";
1174 switch (minor) {
1175 case 0:
1176 subtype = "other";
1177 break;
1178 case 1:
1179 subtype = "Port";
1180 break;
1181 case 2:
1182 subtype = "Buffer";
1183 break;
1184 }
1185 break;
1186 case 2:
1187 major = "Trace Link";
1188 switch (minor) {
1189 case 0:
1190 subtype = "other";
1191 break;
1192 case 1:
1193 subtype = "Funnel, router";
1194 break;
1195 case 2:
1196 subtype = "Filter";
1197 break;
1198 case 3:
1199 subtype = "FIFO, buffer";
1200 break;
1201 }
1202 break;
1203 case 3:
1204 major = "Trace Source";
1205 switch (minor) {
1206 case 0:
1207 subtype = "other";
1208 break;
1209 case 1:
1210 subtype = "Processor";
1211 break;
1212 case 2:
1213 subtype = "DSP";
1214 break;
1215 case 3:
1216 subtype = "Engine/Coprocessor";
1217 break;
1218 case 4:
1219 subtype = "Bus";
1220 break;
1221 }
1222 break;
1223 case 4:
1224 major = "Debug Control";
1225 switch (minor) {
1226 case 0:
1227 subtype = "other";
1228 break;
1229 case 1:
1230 subtype = "Trigger Matrix";
1231 break;
1232 case 2:
1233 subtype = "Debug Auth";
1234 break;
1235 }
1236 break;
1237 case 5:
1238 major = "Debug Logic";
1239 switch (minor) {
1240 case 0:
1241 subtype = "other";
1242 break;
1243 case 1:
1244 subtype = "Processor";
1245 break;
1246 case 2:
1247 subtype = "DSP";
1248 break;
1249 case 3:
1250 subtype = "Engine/Coprocessor";
1251 break;
1252 }
1253 break;
1254 }
1255 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1256 (unsigned) (devtype & 0xff),
1257 major, subtype);
1258 /* REVISIT also show 0xfc8 DevId */
1259 }
1260
1261 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1262 command_print(cmd_ctx,
1263 "\t\tCID3 0%2.2x"
1264 ", CID2 0%2.2x"
1265 ", CID1 0%2.2x"
1266 ", CID0 0%2.2x",
1267 (int) c_cid3,
1268 (int) c_cid2,
1269 (int)c_cid1,
1270 (int)c_cid0);
1271 command_print(cmd_ctx,
1272 "\t\tPeripheral ID[4..0] = hex "
1273 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1274 (int) c_pid4, (int) c_pid3, (int) c_pid2,
1275 (int) c_pid1, (int) c_pid0);
1276
1277 /* Part number interpretations are from Cortex
1278 * core specs, the CoreSight components TRM
1279 * (ARM DDI 0314H), and ETM specs; also from
1280 * chip observation (e.g. TI SDTI).
1281 */
1282 part_num = (c_pid0 & 0xff);
1283 part_num |= (c_pid1 & 0x0f) << 8;
1284 switch (part_num) {
1285 case 0x000:
1286 type = "Cortex-M3 NVIC";
1287 full = "(Interrupt Controller)";
1288 break;
1289 case 0x001:
1290 type = "Cortex-M3 ITM";
1291 full = "(Instrumentation Trace Module)";
1292 break;
1293 case 0x002:
1294 type = "Cortex-M3 DWT";
1295 full = "(Data Watchpoint and Trace)";
1296 break;
1297 case 0x003:
1298 type = "Cortex-M3 FBP";
1299 full = "(Flash Patch and Breakpoint)";
1300 break;
1301 case 0x00d:
1302 type = "CoreSight ETM11";
1303 full = "(Embedded Trace)";
1304 break;
1305 // case 0x113: what?
1306 case 0x120: /* from OMAP3 memmap */
1307 type = "TI SDTI";
1308 full = "(System Debug Trace Interface)";
1309 break;
1310 case 0x343: /* from OMAP3 memmap */
1311 type = "TI DAPCTL";
1312 full = "";
1313 break;
1314 case 0x906:
1315 type = "Coresight CTI";
1316 full = "(Cross Trigger)";
1317 break;
1318 case 0x907:
1319 type = "Coresight ETB";
1320 full = "(Trace Buffer)";
1321 break;
1322 case 0x908:
1323 type = "Coresight CSTF";
1324 full = "(Trace Funnel)";
1325 break;
1326 case 0x910:
1327 type = "CoreSight ETM9";
1328 full = "(Embedded Trace)";
1329 break;
1330 case 0x912:
1331 type = "Coresight TPIU";
1332 full = "(Trace Port Interface Unit)";
1333 break;
1334 case 0x921:
1335 type = "Cortex-A8 ETM";
1336 full = "(Embedded Trace)";
1337 break;
1338 case 0x922:
1339 type = "Cortex-A8 CTI";
1340 full = "(Cross Trigger)";
1341 break;
1342 case 0x923:
1343 type = "Cortex-M3 TPIU";
1344 full = "(Trace Port Interface Unit)";
1345 break;
1346 case 0x924:
1347 type = "Cortex-M3 ETM";
1348 full = "(Embedded Trace)";
1349 break;
1350 case 0xc08:
1351 type = "Cortex-A8 Debug";
1352 full = "(Debug Unit)";
1353 break;
1354 default:
1355 type = "-*- unrecognized -*-";
1356 full = "";
1357 break;
1358 }
1359 command_print(cmd_ctx, "\t\tPart is %s %s",
1360 type, full);
1361 }
1362 else
1363 {
1364 if (romentry)
1365 command_print(cmd_ctx, "\t\tComponent not present");
1366 else
1367 command_print(cmd_ctx, "\t\tEnd of ROM table");
1368 }
1369 entry_offset += 4;
1370 } while (romentry > 0);
1371 }
1372 else
1373 {
1374 command_print(cmd_ctx, "\tNo ROM table present");
1375 }
1376 dap_ap_select(dap, apselold);
1377
1378 return ERROR_OK;
1379 }
1380
1381 COMMAND_HANDLER(handle_dap_info_command)
1382 {
1383 struct target *target = get_current_target(CMD_CTX);
1384 struct arm *arm = target_to_arm(target);
1385 struct adiv5_dap *dap = arm->dap;
1386 uint32_t apsel;
1387
1388 switch (CMD_ARGC) {
1389 case 0:
1390 apsel = dap->apsel;
1391 break;
1392 case 1:
1393 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1394 break;
1395 default:
1396 return ERROR_COMMAND_SYNTAX_ERROR;
1397 }
1398
1399 return dap_info_command(CMD_CTX, dap, apsel);
1400 }
1401
1402 COMMAND_HANDLER(dap_baseaddr_command)
1403 {
1404 struct target *target = get_current_target(CMD_CTX);
1405 struct arm *arm = target_to_arm(target);
1406 struct adiv5_dap *dap = arm->dap;
1407
1408 uint32_t apsel, apselsave, baseaddr;
1409 int retval;
1410
1411 apselsave = dap->apsel;
1412 switch (CMD_ARGC) {
1413 case 0:
1414 apsel = dap->apsel;
1415 break;
1416 case 1:
1417 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1418 /* AP address is in bits 31:24 of DP_SELECT */
1419 if (apsel >= 256)
1420 return ERROR_INVALID_ARGUMENTS;
1421 break;
1422 default:
1423 return ERROR_COMMAND_SYNTAX_ERROR;
1424 }
1425
1426 if (apselsave != apsel)
1427 dap_ap_select(dap, apsel);
1428
1429 /* NOTE: assumes we're talking to a MEM-AP, which
1430 * has a base address. There are other kinds of AP,
1431 * though they're not common for now. This should
1432 * use the ID register to verify it's a MEM-AP.
1433 */
1434 retval = dap_queue_ap_read(dap, AP_REG_BASE, &baseaddr);
1435 retval = dap_run(dap);
1436 if (retval != ERROR_OK)
1437 return retval;
1438
1439 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1440
1441 if (apselsave != apsel)
1442 dap_ap_select(dap, apselsave);
1443
1444 return retval;
1445 }
1446
1447 COMMAND_HANDLER(dap_memaccess_command)
1448 {
1449 struct target *target = get_current_target(CMD_CTX);
1450 struct arm *arm = target_to_arm(target);
1451 struct adiv5_dap *dap = arm->dap;
1452
1453 uint32_t memaccess_tck;
1454
1455 switch (CMD_ARGC) {
1456 case 0:
1457 memaccess_tck = dap->memaccess_tck;
1458 break;
1459 case 1:
1460 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1461 break;
1462 default:
1463 return ERROR_COMMAND_SYNTAX_ERROR;
1464 }
1465 dap->memaccess_tck = memaccess_tck;
1466
1467 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1468 dap->memaccess_tck);
1469
1470 return ERROR_OK;
1471 }
1472
1473 COMMAND_HANDLER(dap_apsel_command)
1474 {
1475 struct target *target = get_current_target(CMD_CTX);
1476 struct arm *arm = target_to_arm(target);
1477 struct adiv5_dap *dap = arm->dap;
1478
1479 uint32_t apsel, apid;
1480 int retval;
1481
1482 switch (CMD_ARGC) {
1483 case 0:
1484 apsel = 0;
1485 break;
1486 case 1:
1487 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1488 /* AP address is in bits 31:24 of DP_SELECT */
1489 if (apsel >= 256)
1490 return ERROR_INVALID_ARGUMENTS;
1491 break;
1492 default:
1493 return ERROR_COMMAND_SYNTAX_ERROR;
1494 }
1495
1496 dap_ap_select(dap, apsel);
1497 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1498 retval = dap_run(dap);
1499 if (retval != ERROR_OK)
1500 return retval;
1501
1502 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1503 apsel, apid);
1504
1505 return retval;
1506 }
1507
1508 COMMAND_HANDLER(dap_apid_command)
1509 {
1510 struct target *target = get_current_target(CMD_CTX);
1511 struct arm *arm = target_to_arm(target);
1512 struct adiv5_dap *dap = arm->dap;
1513
1514 uint32_t apsel, apselsave, apid;
1515 int retval;
1516
1517 apselsave = dap->apsel;
1518 switch (CMD_ARGC) {
1519 case 0:
1520 apsel = dap->apsel;
1521 break;
1522 case 1:
1523 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1524 /* AP address is in bits 31:24 of DP_SELECT */
1525 if (apsel >= 256)
1526 return ERROR_INVALID_ARGUMENTS;
1527 break;
1528 default:
1529 return ERROR_COMMAND_SYNTAX_ERROR;
1530 }
1531
1532 if (apselsave != apsel)
1533 dap_ap_select(dap, apsel);
1534
1535 retval = dap_queue_ap_read(dap, AP_REG_IDR, &apid);
1536 retval = dap_run(dap);
1537 if (retval != ERROR_OK)
1538 return retval;
1539
1540 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1541 if (apselsave != apsel)
1542 dap_ap_select(dap, apselsave);
1543
1544 return retval;
1545 }
1546
1547 static const struct command_registration dap_commands[] = {
1548 {
1549 .name = "info",
1550 .handler = handle_dap_info_command,
1551 .mode = COMMAND_EXEC,
1552 .help = "display ROM table for MEM-AP "
1553 "(default currently selected AP)",
1554 .usage = "[ap_num]",
1555 },
1556 {
1557 .name = "apsel",
1558 .handler = dap_apsel_command,
1559 .mode = COMMAND_EXEC,
1560 .help = "Set the currently selected AP (default 0) "
1561 "and display the result",
1562 .usage = "[ap_num]",
1563 },
1564 {
1565 .name = "apid",
1566 .handler = dap_apid_command,
1567 .mode = COMMAND_EXEC,
1568 .help = "return ID register from AP "
1569 "(default currently selected AP)",
1570 .usage = "[ap_num]",
1571 },
1572 {
1573 .name = "baseaddr",
1574 .handler = dap_baseaddr_command,
1575 .mode = COMMAND_EXEC,
1576 .help = "return debug base address from MEM-AP "
1577 "(default currently selected AP)",
1578 .usage = "[ap_num]",
1579 },
1580 {
1581 .name = "memaccess",
1582 .handler = dap_memaccess_command,
1583 .mode = COMMAND_EXEC,
1584 .help = "set/get number of extra tck for MEM-AP memory "
1585 "bus access [0-255]",
1586 .usage = "[cycles]",
1587 },
1588 COMMAND_REGISTRATION_DONE
1589 };
1590
1591 const struct command_registration dap_command_handlers[] = {
1592 {
1593 .name = "dap",
1594 .mode = COMMAND_EXEC,
1595 .help = "DAP command group",
1596 .chain = dap_commands,
1597 },
1598 COMMAND_REGISTRATION_DONE
1599 };
1600
1601

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)